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On Sinplifying the Matrix of a W
by Peter Andrews®

§1; Introduction. In [3], [4], and [5  Joyce Friedman fornu-
| ated and investigated certain rules which constitute a
sem -deci sion procedure for wifs of first order predicate
calculus in closed prenex normal -formw th prefixes of the
form Vx,j_ . .VX.KZyl. .. %}/Vlz,, . I}/’z . @ven .such awf QM
where Q is the prefix and M is the matrix in conjunctive
normal form Friednan's rules can be used, in effect, to
construct a matrix M which is obtained from M by
del eting certain conjuncts of M Qoviously h Q"P Q%
Usi ng the Herbrand- Godel Theorem for first order predicate
cal culus, Friednman showed that HQM if and only if h Qw.
Qearly if M is the enpty conjunct (i.e., a tautol ogy),
hQw  so f-QM- Fri edman al so showed that for certain cl asses
of wifs, such as those inwhich m<2 or n=0 inthe
prefix above, h QM if and only if M is the enpty conjunct.
Hence for such classes of wifs the rules Constitute a deci sion
procedure. Conputer inplenentation [4] of .the procedure has
shown it to be quite efficient by present standards.

The purpose of this paper is to pr esent‘ two theorens

whi ch are generalizations of Friednan's rules , and can be
applied to wifs of higher order |ogi cs as well as first order
logic. The theorens will apply to wifs in prenex normal form

with arbitrary prefixes. Mreover (using the notation above),

1 This research was partially supported by NSF @ ant GP- 4494.




|~ QMU= QW. Therefore the theorens can be used to sinplify
the matrices of certain wifs whether or hot they are valid.

VW then go on to consider how these theorens can be applied

‘to wfs fromwhich existential quantifiers have been elimnated

through the introduction of Skolem functions. W shall show
that after one has sinplified the matrix, one can go back to a
wf with exiStentiaI quantifiers but no Skol em functions, which
is the original Wif with a sinplified matrix. Finally we shall
show how to use these theorens as the basis for a conpl ete

proof procedure for first order |ogic.

Many- Sorted Logi c

V¢ shall prove our theorens in the context of many- sorted

_first order logic with function synbols. The theorens in § 3

~apply whether or not function synbols are present in the |anguage,

but in §7 we shall showthat the theorens can be used as the
basis of a conplete proof procedure for first order logic when
function synbols are present. The nunber of sorts ﬁay be
finite or infinite. Wen there is just one sort, we have the
usual first order predicate calculus. W shall present bel ow a
formul ati on of type theory whose wffs can be regarded as those.

of a many-sorted first order logic. Thus our theorens can be

‘applied to type theory.

V¢ now present the primtive basis for nany-sorfed first
order logic. W assunme given a non-enpty, finite or denunerably

infinite collection of synbols a. «called sort synbols.

(a) tmproper—syrbots: [ ] TF~AVYV 3 (brackets, truth, false-

hood, negation, conjunction, disjunction, universal and existen- :

tial quantifiers).




(b) Proper synbols: Let a, a 1 - & be sort synbol s,
where n > 1, and let i range over positive integers. Then
t he variables which may occur are individual variables x; ,
function variables f~ , , *>> * and predijcate variabl es

i AUUILx e ATy '

i : .
Yy rv ¥*>« (Constants of various types may also occur, but

1***#* n

for our present purposes they may usually be replaced by
vari abl es.) -
For mation Rul es
Terms are defined inductively as follows:

(a) x& is a termof sort ct.

(b) | f @ v, WA are terms of sorts e EaTEe respective-
ly, then AraLrv rv>"%v eeey is atermof sort a

S >- .. °1 n

(No parentheses are required, since the nunber of argunents of
each function variable is indicated by its subscripts.)
WS are defined inductively as foll ows:

(a) T'a.ndl F are wifs.

n .
(b If wgo...,® are terns of sorts O.,-..., a3 respectively,
. al n | n
then Pj o>w 0w is a wf.

(c) If A and B are wffs, then ~A [AAB], [AVB], VA

and a’\.A are wffs.

R ﬂ}Wfs of type (a) and (b) are atomic wifs.

.Fbr dur pre;eht purpoées_ it iélhot neceésary to specify an
econom cal set of axionms and rules of inference for our system
W sinply state that the follomﬁﬁg fam liar principles of
quantification theory are primtive or derived rules of inference

. of our system = and ~ are introduced by appropriate defin-

itions. A, A* B, C stand for arbitrary wifs, u, u., v stand




for variables of any sort, and w, W, stand for terns of any
sort. \r A neans that A is a theoremS(S denotes substi-
~tution for all(free)occurrences of the variables in question, fol-_

|l owing the notation of Church [2]. Aterm w is free for

r——

a variable u inawf A if no free occurrence of u in A
isinaw part of A of the form WC or 3vC where v is

a (free) variable in the term w

Rul es of |Inference

‘I. (Rule P) If B is a substitution instance of a tautol ogy,
HB. If [A, A... AA] "B is asubstitution instance

of a tautol ogy and hA.JL for each i (1 <i <n)g then YB.

1. (RJIe of ‘al phabetic change of bound variables.) If wu
and v are of the sane sort and u does not occur free in
C and v does not occur in C, then the result of replac-
ing one occurrence of C in a theoremby an occurrence of

S\‘i C is a theorem

I11. (Rule of Substitution) If HA and U,-..,u are di s-
tinct and for each i (1 <i <n), w is of the sane
Uyg. ..U
sort as u. and free for u. in A thenhS" A,
n

IV, Let w be of the sane sort as u, |et A(-u) be a wWff in
which w is free for u, and let A(w Dbe _S‘L;A. Then |
h VUA(u) =3 A(w) ; if h Alw ~B thenV-WuA(u) ~ B. Also
HA(wW) 3 3uA(u) .
V. 1f - A”B and u does not occur free in A then h- A" VB,
VI. If KA~B and u does not occur free in B then H%A 3.B,,
Vil. If hA3B thenhVuA=>VuB_andH3uA:>3uB.




If h A=B then HVUA = VuB and h 3uA = 3uB.

VIITI. I'f K* A s B and u does not occur free in C, then
hC = .VuA= VuB and h C " .3uA = 3uB,
| X.  (Substitutivity of Equivélence) If HA =B, then the
result of replacing an occurrence of A Dby an occurrence
of B in a theoremis a theorem |

X. If u is not freein A, then

HVUfA VB = .AV VuB and HVU[B VA = VuB V A
XI. Mu[AVB] = .3uA V 3uB. -

XIl. |- Vu~As ~ 3uA

Of cburse, in many contexts it is possible to reduce nany;
sorted logic to first order logic by introducing unary predicate
constants ., for each sort aj aﬁd writing Vx aA(x & as
VxfAr=>Ax)] and *MA(x") as 3X[*"XAA(X)] (see [9])
However, when one is éoncerned wi{h the practical problems of
searching for proofs of theorems of a discipline in which the
i ndividuals can naturally be divided into sorts, a many-sorted
underlying logic may be a distinct advantage, since one is auto-
matically prevented from considering certain wifs which express
nonsense from an intuitive point of view.

We next present a formulation of type theory which consti-’

tutes a particularly useful exanple of a many-sorted logic. W

define type symbols inductively as follows;

(a) ¢ is atype synbol (the type of i ndividuals).
(b) If Tg,. . .yl are type synbols, then Eﬂ.nﬁn) Is a
type symbol. ((Ti***T,) ~°'"® type °" propositional functions

with n arguments, of types T" ...T_ respectively.)




8§ 3.

W take the type synbols as sort synbols for a many-sorted

logic inwhich (for convenience) there are no function vari abl es,

and the only predicates are predicate constants of the form

>, N N where riy..oT are type synbols.
AT~ .. T ), T-, .. .oT > 1 n

1 n - = Ny 7 . In
Then an atomic wWif ~</; , \ 1 T>Y(r r)y VT o« VT

1** % n* Jx*x*x pn * 0 *En 1* n
may be unanbi guously abbreviated u,- X Vv ...v , and
3 + n % n

interpreted as meaning that le*.., vlTl: stand in the relation

n
un 1 %. O course, in addition to the rules of inference
|'isted above one woul d assune the conprehension axi ons

: 1 n 1 n =
3u#r1...1'rgo WTy e oo Vo [ury...tvry ... vr, ~ A, where
1"{Ti....nT) does not occur free in the wif A

Theor ens

W shall use the follow ng notations and conventions. A

signis + or ~. If A isawfand O is +, (A is A
If cr is ~, oh" is ~A unless A has the form ~B:; o—B
my stand for ~-B or B , the context determning the

appropriate choice. An enpty disjunction is F , and an enpty
conjunction is T.

Let QM be a wif in prenex normnal fdrm_vvith prefix Q

~and matrix M. The wff may contain free variables, M is in:

full disjunctive normal form i.e., M is a disjunction

D. V... VD of disjuncts D, , and each disjunct is a con-
junction Py; A ... APA. The conjuncts P.. are atons or
t he negatioﬁls of at OrrB,Kuand each atomwhi ch %%:_curs in M

occurs exactly once in each disjunct. The quantifiers in Q




| are Vy‘L . V¥n (Mere m>" O and 3z, _,L.' Co 32n (where n>;_0') "
(The Reduction Theorem stated below is vacuous for the case

m= 0. The reader who wi shes to conpare the theorens bel ow
with Friedman's rules may consider that QM is the negation of
the wif on which Friedman's rul es operate; hence the reversal

of the roles of universal and existential quantifiers.)

We shall say that a variable of the wif is absolutely

stable if it is free in the wff, or if it is existentially
quantified but its quantifier is in the scope of no universa

quantifier.

Reducti on Theorem

Let VV,---1“h be any mtuple of ternms such that W,

is of the same sort as y. for 1 <i <m W define a varia-
1 L—_ =

ble of the wif to be stabre (with respect to this mtuple) if
it is free inthe wifg or if it is existentially quantified but
its quantifier is in the scope of no universal quantifier

Y. . .
1 such that "~ A~ YA o Letthe ypstaple existentially
quantified variables of the wif be z ,...,z . Let t «...,t
p - n p* * n

be distinct variables which do not occur in the wt or in the

wff such that t3 has the sane sort as zJ for p
Let AM ...AM be any set of atons of the matrix in

of zp,...jZ, occur. Let fiA-**ACT, e signs.

Suppose there is no disjunct D, of the matrix i n whi ch
(&) A occurs with sign o for all i (1 <.i <.L),
and in which

(b) for any two atons B1 and B, of the matrix, if




Yl...ym zp..lzn Yl...ym zp...zn

S B is the same as S ; B
W| **me"**tn | W IW- ut#mp#t-*a>

‘then B,J~ and B, occur with the sane sign in D.K.

Then let N be the disjunction of all disjuncts D,

yl LI ] .Ym

of the matrix in which §; A._ occurs with sign 0., for
jore

W 1
m

‘all i (1<i <L)y and let N be the disjunction of all
remai ni ng di sj'uncts of the matrix. Then h Q= (N
Splitting Theorem

e
vari abl es which are universally quantified in the wif, where

Let ' .. .,'ahl' be disjoint (perhaps enpty) sets of

2<qg<m+ 2. IfT/_o'.JL i s non-enpty let its nmenbers be

Al x **P AR . For each variable Yoay occurring in one of

these sets let w.., be atermof the sane sort. Let A_,,..., A
_ _ 13 1L :|.Li

(where L. > 1) be atons of the matrix in which only vari abl es
in ?a[l; and absol utel y stabl e variables occur. For each such
atom A_. let a.. be a sign.

17 19

- Suppose there is no disjunct of the matrix in which AlD. '

occurs with sign a.. for all j (1<j <L) andall i
X] — —

(1:i 2q). Form q disjunctions N,....,N of the di sjuncts
Df( as follows: N% Is the disjunction of all those disjuncts of

the matri x in which
Yil-..YiRi
S Alj occurs with sign a.l.J for all j(1 <] 5L.1)+.

w. "..w
il iRi

Let N1 be the disjunction of all the disjuncts of the matrix-

whi ch are not in N,. Then

- QV® . V QN.,

i=1




§ 4.

Note: To facilitate the discussion of particular applications
of these theorens, we shall refer to w (w..) as the substi-
tution termfor y.(y..). When a substttution termTor y.  is

Lo !

not specified, the reader is to understand that W S y-,°

An exanpl e

Before proving the theorens we illustrate how they may be
applied by using themto prove the followng rather trivial |

t heorem of second order | ogic:

Va3Rat . 3v[ Patv => Paav] A .Wu[VbRbau => VWG u]
N 3x. WRyxt M Sz, Pxaz A Gzt x.

We shall refer to this wif as C Evidently P, G and R are
are variables of type (tit)* and the remaining letters in C
are variables of type t.

W put ~ C into prenex nqrmal form and obtain
aaVRVt VuSBbWwWWxWVz. [Patv A ~ Paav] V . [~ Rbau V G/vtu] A Ryxt A
['~ Pxaz V ~ Gth]. W must next put the matrix of this wif into
ful I:y de\)el oped disjunctive normal form Rather than wite
this matrix out conpletely we represent it by Figure 1.

Each row in Figure 1 represents all those disjuncts (i.e.
conjunctions of signed atons) in which each atomoccurs with
the sign indicated. If no sign occurs for sone atom'in.a-row,
then the sign of that atomis arbitrary in disjuncts associated
with that row O course sonme disjuncts are represented by
nore than one row, for exanple Patv A ~ Paav A ~ Rbau A ~ Gm u

A Ryxt A Pxaz A~ Gztx is represented by rows (1) and (3) . What

is inportant is that a conj unction of signed.at oms is a disjunct

of the matrix if and only if it is represented by some row in




Figure 1. Matrix of —C

Pat v Paav . Kbau Gwt u Ry xt Pxaz Gzt x
(1) o+ ~ |
(2) - . -
(3 - + ~
(4) + + ~
(5) i . ~

Figure 2. N,

Pat v Paav ‘Rbau Gwt u Ry xt _anz_ Gzt x
(6) + ' ~ | +
(7) ~ ‘ + + ~
(8) + + + ~

Figure 3. Amplified N,

Patv Paav Rbau Gt u Ryxt Pxaz Gzt x Paaa
+ o~

~ ~ + ~

~ ~ + ~

~ + + ~
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Figure 1

Ve first apply the Splitting Theorem | Let [Ea‘.L = [vj
and *i%i = +Paav. Let 1T, = (Rt,x,y] and %i”*2] ~~ Ryxt.
The substitution terns for Vv,R t,Xx,y are respectively v,P,z,
a,X. Nowthere is no disjunct of the matrix in which + Paao and
~ Ryxt both occur, sol —C = .Q'\Tl VQN_Z, where Q is the prefix
of ~C Nl is the disjunction of all disjuncts in Figure 1
whi ch do not contain + Paav and N, is the disjunction of all
di sj uncts whi ch do not contain ~ ﬁ%az (see Figure 2) .

Next we apply the Reduction Theoremthree tines to the wf
Cﬁp. Firsf, the substitution terns for X,z are respectively
a,Q. There is no disjunct of N, in which ~ Pxaz occurs, so
we elimnate from N, all disjuncts in which ~ Paav occurs.
This elimnates all disjuncts in line (6) of Figure 2 (plus cer-
tain disjuncts-fromlines (7) and (8)). Secondly, the substi -
tution terns for t,x,y are respectively u,ab. There remains
no disjunct in which ~ Ryxt occurs, so we elimnate all disjuncts
inwhich ~ Roau occurs. Then only certain disjuncts in line
(8) renafn. Finally, as substitution terns for u,w we take
X,z. There is now no di sjunct in which MBwtu occurs, so we
elimnate all disjuncts in which ~ Gtx occurs. This elimnates
all remaining disjuncts, so fr- QZSL—':Q:. But \- F= QF, so by
Rule Pf--CE Cﬁh: '

| Next we turn our attention fo Qﬁh. First we repl ace N&
by an equivalen? hatrix in fully devel oped disjunctive nornal
formwhich contains the atom Paaa in addition to the atons of
N*. (See Figure 3.) The r eader may suppose, if he w shes, that

we originally included in the matrix of ~ C all atoms which can




1L

be constructed fromthe variables occurring in the wif. Actually
If one wishes to construct a general sem -decision procedure
based on these theorens, the question of howto anplify a matrix
*(i.e., add atons to it) when necessary as economcally as possible
assunes consi derabl e practi cal irrportancé.- Fri edman has studied
this qUestion extensively for certain classes of Wfs in [5]4
Now we apply the Reduction Theoremtwi ce to the matrix

represented by Figure 3. First we take a as the substitut ilon
termfor v. There is.no disjunct in which + Paav occurs,
'so we elimnate all disjuncts in which + Paaa occurs. Then
we take P,a,a,a;a as substitution terms -for R t,v,Xx,y. Now
there is no disj unct inwhich (a) ~ Ryxt occurs and in which
(b) Patv and Paav occur with the sane sign. Therefore we
elimnate all di sjuncts in which ~ Paaa occurs. But this
elinnates all remaini ng disjuncts, so hN, ~ F  Therefore
j—C=F so hC~ |

Not e that when one attenpts to use our
theorens to prove a wf C as above, one sinply attenpts to re-
ducé the matrix of ~ C to the enpty disjunction, and there
are only a finite nunber of ways in which one can apply the
theorens to a given wWf, so the process eventual |y term nates.
If the matrix has not been reduced to the enpty disjunction and
the Splitting Theoremhas been used, one is then left with an
equi val ence of the formJ- QM= . _PV Q\l/l, wher e Q\/I I's equival ent
to ~ C and each of the M is .;zéi sjunction of certain dis-
juncts of M If we let N be the disjunction of all disj unct s
whi ch occur in sone J\L;‘ then HM_ =>N andhN=>M so J- (;I\/Il NN
and hQN*" QM so hQM= Q. Nowif N is not the sane as M
the fif QN is in a certain sense si npler than the wif QV since




%5.
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it has fewer disjuncts in its matrix. C course the theorens

in 83 can be used to reduce the nunber of conjuncts in a matrix

in full conjunctive normal formby appl 'yi ng themto the negation

of the wff.

Proofs

Proof of the Reduction Theorem

In addition to the notation in ~3, we shall use the foll ow

ing notation. Choose r so that w* =y for i <r, and
. - . -
W yf Let zp. -0 Z be the unstabl e existentially quanti

fied variables of the prefix. Let Q be the portion of the
prefix containing Wy, ...>\Y, "¢ #f jeeesdt e andiet g
be the initial portion of the prefix.  Then we may wite the
original wff as Q *Q[D, V ... VDc]. W shall wite A as
Al(yr, : ..*ym), and use the obvious substitution notation:

. YrimYm .. .
Ai (vrv, . .m,w) ISW*S**Wm A . Sinmlarlywe wite D, as

L]

After each line of the proof we indicate by a roman nuneral
the rules of inference fromJ2 used to infer that line, and the
numbers of the preceding lines fromwhich it is inferred. It may

be necessar)l/_ to apply the rules of inference more than once.

1. h N~ .Aog.ﬁ..i(wr,....,wn} by Rule P, since each of the
1l—X
di sjuncts of N contains A,l(wr,....,wn) with sign cr. Ifor

i=1’ ...’ LI

Let D* be any disjunct of the matrix M where 1 <k < c. Then
either case (a) or case (b) nust apply: h

case (a): D cont ai ns ~aiA1 for sone i, say i =j. Then
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2a. \- DkDNO‘.A_ . :
i ' Rule P
3a. ,- Dk(Wr,.'.y» T D ~g.
m- ps - - -,tl’]) jAj(wr,-..,wm) |||_2a
Case <b) . There are atoms A ana A A A A A g .
i th o . A 1
occur, w positive sign ana wm negat - ve ]
1 sign in D
but £ “ vy £ s oo . LA
Swl“ wm tp tn B, = Syi Ym Zpe 2, B
l". m LI ] . w v a W t .. .
b n 1 m p ’tn 2

Denote the latter wif by B.

2b. h Dk 83 B" A-"; ,
. Rule P

3b. HDe(wWe, .. .Wyy t ., .. .,ty) "gA-~p
p 111:2b

Since for each k case -(a) or case (b) nust hold, we obtain

4. h N=>-~ v; :
]1( r’.-,wm, t .’tn) for k = l’ 0.0,01

p’"
Rule P:3b or 1 and 3a

c
5. '-ND“"[VD(W R I .
. . k'—_-l k r’ > m? p,-co,tn)] . Ru| e P4
6. & N D ~Zt Tt [y
* S [VD w . N
P noy oy kW, Y tp,...,tn)] V, €, <15
c _
7. F Q' [V D] >3t Tt S '
. D .
k=1 k p n]£=l k(wrj -;.,Wm, tp, " ’tn)]
I,IT,.1v
8. + QM D~y | ., s 1V, VII
: Rule P:6,7
9. F QM2 M =¥
Rule P:8
10. + QI Mm3sQm = QI -
VITI:9
1. + Qg M3 N ' .
_ Rule P:10
12. + N~ M
. ' Rule P
13. QE£f 0o, wm
VIIl:12

14. b Qlwso” ' ' .
Rule P:11,13
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15. hQ" M Q*. gR - | Vil: 14

This conpletes the proof of the Reduction Theorem

Proof of the Spl it ng Theorem

In addition to the notation in 83" we shall use the

follow ng notation. Let z,.... ’Zp-l* be the absolutely stable

variables of the prefix. Then we may wite the prefix Q as

321’;'32p-TQ J where @ is the remainder of the prefix. For
each i (1 <i_<gqg) we shall introduce new variables y A "Yx;li' :
24 .« zY. which are all distinct fromone another and from

all variables inthew . or in the given wif; noreover V, is
' XA i . X.
K K . - K
of the sanme sort as y,”, and z.© is of the sane sort as z, . A so

| et tp,...jtn be variables which are distinct fromone another

. . K .
and fromall variables mentioned above; fc. is of the same sort
as ”Zy.

- Define w3 for 1<i <q and 1<j <R to be
Yyeoo¥p Z_0es2 . : .
s> T ? ?w .. Define v,. for 1 <k<metobe. y, if
¥Xeod¥ XX 40a2X  Xj Js. : i C
1 TO p n

Y Isin none of the sets:?()/(,,‘,,,,'](/j,q and to be V\/)\(J ifoyg

a
is the variable y. . in sone set iL. . (The fact that the sets
[
9;_. are disjoint assures that this definition is unambi guous.)
We shall wite A. as A .(y.1%4..3y.), Mas

XR?

xx .
M(yq,... _zp,...:,z;('], and ﬁ(i as Ni(yl,..., " zp,...,zn),

s ¥
and use the associated substitution notation as above.

In certain lines of the proof bel ow the parameter . i occurs
‘as a free variable of our neta-language. |In such cases the
reader is to understand that the theoremis asserted for each

value of 1 (1 <i <q).
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. =
1. kNi(yl,...,ym ; Z ..,zn) ciinj(w

P,l il,ooo',wiRi)

by Rule P, since each of the atons A 13(’\i A! o o JY R_)
. 1
occurs with sign a5 in each disjunct of N,.

- L.
) ST ; 1 1 1
2. HVY™ .%oz z)) 2 Atagp ety 111
(CGonsider the definition of vv.i.J to see that this is a

legitimate substitution.)

3. ko- m3a,.-.aMvy, .., VE t e, Lt I, 11,1V ,VEX
; q Li _

4. M(Yp. . yYm V"2 A3~ AR TR L)
by Rule P, since there is no di sjunct of M in which A.l.j
occurs with sign ay, forall i and j.

. L :
q [ .
5. hMVp. ..,V b ,...,t) ~~.A ;Vij?RiKl-,-~R. ) III:4
N : 1=1 3=1 2 7 |
(Here we have replaced y, by v, on.the left® and vy. .
by wt, on the right; if 'y, is y. ., then v, is vv.i.,
13 K 13 Jc | ~

so the substitution is Iegitirfate. Al'so note that only

variables inyxr and absolutely stable variables occur in

Aij .}

A, hatb...atnM(Vl,...,Vm ; tp,...,tn) 3
L. . .
1

i
~__1 AAiinI'—'—AR.)— VI:5
1—13J—1 1
. d . . - .
7. f-QM = V ~ N.(yJ;,..., yn 2MN.LZY RuleP:3,6,2

i=1
q .

- i = YI Ym —p__ vzn wlly_lJ...,\me zp \Vj




18. hQM= .- % Qv |

16

q
9. hQ@ M=> i"leyl# o WiVzp. .. VZ, ~ N _ 11: 8
10. HVyi...VynVz,. .. Vo ~N: =- 117 S IV
11. hVyi _.'. .vym\'/zp_ _ovz o N3 M _=CR5T Rul e p_ 10
12 Hvy'l___vyvap___vZn~Ni 3 _QMe QN” Vi nai
. q ~ '
13. i- @M= VOQ»N. : . Rule P.9/12
= X .
14. hNa=>M : Rule P
15. HQ'» 3 QM Vil: 14
16. V-Q M= [ VQI'N.] Rule P: 13,15
i =l X :
q - .
17. Hzjl-'. . % :QM® az...a [ ~ Q N ViI:16
q ~ k,xx:l’;'

-L—=JL JL

This conpletes the proof of the Splitting Theorem

Functi onal Form

The reader nay have noticed that existential quantifiers
are in a certain sense in the way when one W shes to apply the
meta~theorens in J3. However it is well known that for each

wif B one can find a wif #(B)3 called the functional form of

B, such that 3(B) is satisfiable if and only if B is satis-

fiable, and such that 5(B) contai hs no existential quantifiers.
J¥B is obtained from B by replacing exi stenti al quantifiers

by function variables in an appropriate way. Thus it 'is natural
tb apply our neta-theorens to 3(B) rather than to B. If the

matrix of 3(B) ©2""® reduced to the enpty disjunction,, then

B is not satisfiable; if not, then there is a wff C such

that 3(B) has been reduced to 3(C).'/ so H3(B) = %O, and.it
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is natural to ask whether HB = C. We shall show that this is
so. To sinplify our notation, we henceforth restrict our
-attention to one-sorted first order |ogic.

Definitions Let B be a wif of first order logic in which no

vari abl e occurs both free and bound, or occurs in two quantifiers,
and in which no quantifier is in the scope of a negation synbol.

) (1) If B contains existential quantifiers, let 3zD(z) be

the first (leftmost) wf part of B consisting of an existentia
quantifier and its séope. Let Vyl...V'yk be the quantifiers

of B (in left to right order) which contain 3zD(z) in their
scope, andlwhose_variables occur (free) in D(z), and let f

be the first k-ary function variable which does not occur in

B. (Ve onit tﬁe subscripts and superscript of f for conven-

~ience.) Let J% (B be the result of replacing 3zD(z) by

EXfylk. .y ) in B.. (If k=0, f is an individual variable,

| k
and we use f in place of fy ...y .)

(2) Let 3°(B) be B, and | et 31*1(B) be ~ (3 (B) .
(3) (B is §1(B), where n is the nunmber of existential
quantifiers in B.
Note that hD(fy = . .y%) ~ 3zD(z), so it is easily proved
t hat h#l(@ => B. (Here we use.the fact that ihe only proposition-
al connectives in B Which contain 2zD(z) in their scope
are A and V.) Hence h 3(B) ~ B. Note that every wf f can
easily be transformed into an equivalent wff satisfying the
conditions of the definition.
Next we wi sh to embed our first order logic into a higher

order logic so that we can quantify over function vari ables.
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To avoid the necessity for describing explicitly the system of

hi gher order logic we have in m nd-, we shall use the fornulation
[of type theory presented by Church in .[1] and proved vveakl y
conplete by Henkin.in [6]. W take as axions only axioms 1- 6

of [1] and call this system 3*. Let * be the wif

Vpot’.c aZcPo(,% ~Potf¢6(0Oc)Poc™ “Nch is a fornulation of the
axi om of choice with the constant © (/\0 M} denoting a choice
function. Let 3* be the result of addi ng * to. 3" as an
-addi tional axiom We shall wite \ry* A (.(KA"HnA) to nmean
that A is a theoremof 2 (% first order |ogic, respeciivel,y) :
Eve_ry wif of first order | ogic can be regarded in a natural way
as a wff of 3, and we shall tacitly use this enbedding of first
order logic into 2. In the argunent bel ow we shall sonetines
~quantify bn t he const ant CL(Q:\ , " This wll be a shorthand
way of indicating the result of replacing |t by an appropriately
chosen variable, and then quantifying. Also we shall refer to
derived rules of inference of 3* by the same numbers as were

- used for the corresponding rulesof inference of first order

logic in § 2.

Definit.i_on Gven a wif B of first order logic such that

¥(B) is defined, we define a wif 3* (B of 3 by nodi fyi ng

the definition of 3 so that 3*°(B) =B and % A*L(B) s
. w* _;" . . I_l_(
obt ai ned from <* (B)upon replacing 3zD(z) by D(Q ...y),
: I k . ]
wher e tg is the wif [Ay ...Ay . ction . AzD(z)], and 3z is
the | exi stential quantifier original Ily present ‘in B. (Thus

we ignore quantifiers in the G's previously introduced.)

Agai n 5*((5) Is #*n(B), where n is the nunber of existential
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quantifiers in B.

Lema  |—"B = 3 (B
Proof :
1 hy, *2[[AzD(2)] 2] => [AZD(2)] [ Ci(oc) - AZD(2)]

by ihstantiation of [AD (z)] for Po: Iin *.
2k 820(2) 2 [*zD(D)] [Gy ...y"] |

by rules of A-conversion épplied to .1.
3 by, 82D (2) 5 pleyl...v5)

by rules of A-conversion applied to .2.

4. KADEGY L Ly =>3zD(2) Y,
.5 H*3zD(z) = D(Gyl...y") Rule P:.3,.4
6 A 3*3(B s 3* J"(y) I X:. 5,1

Hence h,.B = 3* (B

Theorem Let B be a wif of first order logic such that 3 (B
is defined. Let fl"..."fn be the (function or individual)

vari abl es which occur in &(B) but not in B. Then

1

boxB = Z£ .. E£"F (B)

Proof ;:

.1 h2n-n~ (5 ""~B since h;3(B ~ B as remarked above.
L2hpn3ft . 3f"F(B) OB _ VIl

Now we may assune that f* is the variable whi ch was

introduced i n forning 31(B) from 3 () . Let G! bethe

correspondi ng wff introduced in formng St'(B) from 3 *b ](B)
_ n fl fuU

Note that 3 (B is Sk n3(B, and that G is free for

* £ . 6 ¢ o *G

f in 3 (B). Hence
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.3K*3*(B) z>3f*. .. 3f"3(B _ IV(n times), I.
o
.4 h".B =3 (B ' by the Lemma.
2*

.5h~AB=3fX .. 3fJ?(B Rule P:.2,.3,.4

Lenma Let N be the standard nmodel for ff (in the sense of

[6]) in which the domain of individuals is the set of natura

nunmbers. Then [3c /~x*] is true in N
Proof: Since in a standard nodel the collection of functions
of type (c (Qu)) includes all possible functions fromsubsets '

of the domain-of individuals to individuals, it includes the
function which maps the enpty set onto 1 and every non-enpty
set onto its |least menber. But this function fulfills the
requi rements on the choice function c.,w%

Note: By assuming the Axi om of Choice in our neta-language,
we could prove that [~ci,. **] 1is true .in every standard
model for ff. However the weaker result of the lema is

sufficient for our purposes.

Theorem Let B and C be wifs of first order logic such that
3(B) and #(C) are defined. Assume that no variable occurs
free in 5(B) and C but not in B, and no variable occurs
freein 5(Q and B but not in C If HA(B =3(C), then
h.B = C. o
Proof: Let f*,...,f® be the set of variabl es which occur in
#{B) but not in B, or in 3(Q ‘but not in C  Then none of

these occur free in B or in C
.1 h,*3(B) = 3(c) since 2 ( B) =3(0O .

.2i%ﬁaf?..af%f(8) s afi.”afcc) viir.i.
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.3 h”AB = 3f*. ..3f" 3(B) by the theorem above, plus the

I ntroduction of vacuous quantifiers, if necessary.

L4hp C=&fh L 3E"3(Q as for .3.
.5 b,* B=2C Rule P:.2,.3,.4.
.6 H* =3.B=C by the Deduction Theorem for 3.

a * : = .
7 hat'c o] = B=C VI: . 6.

Now in order to showtﬁat (-,l B =C it suffices to show that
B=C is valid in the donain of natural nunbers, by Godel 's
.Corrpl et eness Theorem But every theoremof 0* is valid, and
by the Lemm [3c-.\/_q} A true in N, so B=C is true for
every assignment of values to its free variables (of any type)
in N. But this neans B = C is valid in the domain of natural
nunbers, 'so hiB = C

For the sake of conpl eteness, we go on to prove the
fol |l ow ng:
Theorem Let B be a wif of first order | ogic such that 3(B)
is defined. Then B is sati.sfiable iIf and only if (B is
sati sfi abl e.
Proof: If 3(B is satisfiable, then B is, since Kfi(B) ~NB
and every thedrem is valid. - .

if' B is satisfiable, then it is satisfia.ble in the domain
of natural numbers by L8wenheinis Theorem Now

FoB = B0, 8673 (8) so k,[H o> B = ft,..q"F (B) .

¢ (ov) )
Argui ng as above we see that - B = 3f1...3f”3(B) is valid in N
There is an assignnment of values in N to the free variables
o-f ‘B which nakes it true, -so the same assignnment makes

Bf'...3f"3(B) true. Hence 3(B) is satisfiablee
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The Reduction-Anmplification Method

In this section we shall show that the Reduction Theorem

-can be used as the basis for a conplete proof procedure for first

order logic. To sinplify the notation we again restrict our

attention to one-sorted |ogic.

_Definftions

1)

- 2)

- 3)

4)

A wff is in functional normal formif its is in prenex

normal form and contains no existential quantifiers.

The . lexicon LﬂéLhumuLJuuAuu;gﬂ of a wff is the class of

all terms constructible fromthe free individual varfables
of the wff (if there are none, the first i ndi vi dual vari abl e
whi ch does not occur in the wif) and the function variabl es
in the wif.

A lexical instance of a wif in functional normal formis a

~quantifier-free wif obtained from the given wff by instanti-

ating all of its quantifiers with terms fromits | exicon.

| f QM is a wlff in prenex normal form an anplification of

its mtrix. M is any quantifier-free-wff N in full dis-
junctive normal form such that M = N is a substitution
i nstance of a tautology, and every atomin N is constructed

from variables in M and the lexicon of -QM

These definitions are adapted from [7] and [4]. CQuine

shows in [7] that a wff in functional normal formis not satis-

fiable if and only if some finite conjunction of its I|exica

i istances is a contradiction.

Theorem .Let QMl be an unsatisfiable wff in functional norml

formwith matrix M in full di sjunctive normal form Then
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'there is an anplification N@ of M, such_that QW is
reducible to QF by any sequence of applications of the
Reducti on Theorem such that no further applications are
possi bl e.

Proof: Since QW is not satisfiable, there is sone finite

conjunction L; A ... A Lp of its lexical instances which is

“a contradiction. M, is a disjunction D,.V ,,, VD, so each
1 1 [ 1 c Y

| exi cal instance L.% has the form D. v ... VD% where D -*

i's obtained from DX by substitution. Let Mt be the an‘plifi-.l
cation of M! obtained by adding all atons which occur in

Lt A. .. AR to M . Let QU be any wif obt ai ned from QM
by a sequence of applications of the Reduction Theorem such

that no further applications are possible. W nust show that
M is F. So suppose it is not. Then M; is a disjunction

E, V... VE vith ez 1

Lenma For each disjunct E'j of M_; and for each |exical

instance L. (1 <*i _<Mp) there is sone disjunct D of L.
| &« 1

such that hE. "=>D* . :
: 1
Proof: Let At ..., AL be the atoms of M+ and let AL ... A¢
be the corresponding atonms of L&  Each of these atons occurs

in EJ with some sign, so B} may be witten as

CyAt A ... AlalA A H where H is the 'conju'nction of the
other signed atons in EJ. (O course A ...,Ab may not all
be distinct,'.but|this causes no difficultyi|f we let a = a
whenever AS = Ai') Suppose no di sj unct IJJ,C of L.I' his the
form O"lIAtl. A L. AdJ/i'e. Then no disjunct D« of I has
the form crﬁAl A ... A;’;\i_AJ_J, so no disjunct of I\/ZL contai ns

OA A ... A_A_ (since M is sinply an anplification of jy.),
11 w Jb 2. 1
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N . . . A. .
so no di sjunct of M~J contains or ﬁ,l .. AorL% (since every
disjunct of M- is adisjunct of M) . Then E. can be eixn
i nated from Nb by the Reduction Theorem But this contradicts
the condition on M-, so L. has a disjunct D', of the form
oAl 1 ) AR g %
alA,L A ... A. aLAL, sof E] q( This proves the | emma* .

Now HD, 3 L. so|*E A~ L. for each disjunct E of M.
and each | exical instance L1‘ Hence '
H[E V ... VE] " [L: A... ALT, so H3PF. Hence M

nust be the enpty disjunction. This proves the theorem

Let .us sumarize briefly the way the Reduction Theorem can
be used as the basis of a conplete proof procedure for first
order | ogic. Gven a wf C one can find a wif B equival ent
to ~C such that 3(B) is defined, and the prenex nornal form
QM of #(B) is in functional normal form Hence C is
valid if and only if sone arrplificatioh of M. can .be r educed
to F. O course in practice one would anplify only a little
at a tinme, when no further Reductions are possible, aé nment i oned
by Friedman in [4]. W shall call this proof procedure the
Reduct i on- Anpl i fication procedure.

W have shown that the Splitting Theoremis in principle
di spensable in this context, but of course it may be an inportant
aid to efficiency, since it permts one t-o split amtrix into
several sinpler matrices. Simlarly clause (b) in the statenent
of the Reduction Theoremcan be omtted wi thout |oss of conpl ete-

ness, since we have not used it. (It is easy to see that

several applications of the Reduction Theoremw thout clause (b)
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can give the sane reéults as an application of the full Theorem
when sufficiently many atons are present in the matrix, and there
are no existential quantifiers.) The resulting statenent of
t he. Reduction Theorem for use in fhis context .is pleasingly
si mpl e. |

Fri edman recbgnized in [4] and [5] that the crucial problem

in usi ng the Reduction-Amplification procedure efficiently is

t he annlificatioh Droblénl i.e. the problemof choosing the
appropriate atoms by which to amplify the matrix. It is_now
obvious that this is basically the same as the jnstantiatiji.on
problem i.e. the problemof choosing |exical instances appro-
priately in Quine's proof procedure [7], or of choosing re-
solvents appropriately in the Resolution nethod [8].

From the abstract point of view the outstanding difference
bet ween the Resol ution nethod and the Redubtion-Aanification
met hod seens to be that in the Resolution nethod one | ooks at
snali parts of the matrix quite carefully, whereas in the
Reduction- Amplification nmethod one scans the whole matrix at
once. It is not surprising'that each nmet hod shoul d have its
advant ages. \What is now needed is a unffied proof procedure

.mhich i ncorporates the advantages of both.
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