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On Simplifying the Matrix of a Wff

by Peter Andrews

Introduction. In [3], [4], and [5] Joyce Friedman formu-

lated and investigated certain rules which constitute a

semi-decision procedure for wffs of first order predicate

calculus in closed prenex normal form with prefixes of the

form Vx,. . .Vx. 2y1. • . 3y Vz,, . .Vz . Given such a wff QM,

where Q is the prefix and M is the matrix in conjunctive

normal form, Friedman's rules can be used, in effect, to

construct a matrix M* which is obtained from M by

deleting certain conjuncts of M. Obviously h QM D QM*•

Using the Herbrand-Godel Theorem for first order predicate

calculus, Friedman showed that H QM if and only if h QM*.

Clearly if M* is the empty conjunct (i.e., a tautology),

hQM* so f-QM. Friedman also showed that for certain classes

of wffs, such as those in which m < 2 or n = 0 in the

prefix above, h QM if and only if M* is the empty conjunct.

Hence for such classes of wffs the rules constitute a decision

procedure. Computer implementation [4] of the procedure has

shown it to be quite efficient by present standards.

The purpose of this paper is to present two theorems

which are generalizations of FriedmanTs rules , and can be

applied to wffs of higher order logics as well as first order

logic. The theorems will apply to wffs in prenex normal form

with arbitrary prefixes. Moreover (using the notation above),
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|~ QM = QM*. Therefore the theorems can be used to simplify

the matrices of certain wffs whether or not they are valid.

We then go on to consider how these theorems can be applied

to wffs from which existential quantifiers have been eliminated

through the introduction of Skolem functions. We shall show

that after one has simplified the matrix, one can go back to a

wff with existential quantifiers but no Skolem functions, which

is the original wff with a simplified matrix. Finally we shall

show how to use these theorems as the basis for a complete

proof procedure for first order logic.

Many-Sorted Logic

We shall prove our theorems in the context of many-sorted

first order logic with function symbols. The theorems in § 3

apply whether or not function symbols are present in the language,

but in §7 we shall show that the theorems can be used as the

basis of a complete proof procedure for first order logic when

function symbols are present. The number of sorts may be

finite or infinite. When there is just one sort, we have the

usual first order predicate calculus. We shall present below a

formulation of type theory whose wffs can be regarded as those

of a many-sorted first order logic. Thus our theorems can be

applied to type theory.

We now present the primitive basis for many-sorted first

order logic. We assume given a non-empty, finite or denumerably

infinite collection of symbols a. called sort symbols.
l —~•"-——- —

(a) Improper symbols: [ ] T F ~ A V V 3 (brackets, truth, false-

hood, negation, conjunction, disjunction, universal and existen-

tial quantifiers).



(b) Proper symbols: Let a, a , , . . , a be sort symbols,

where n >_ 1, and let i range over positive integers. Then

the variables which may occur are individual variables x ,

function variables f^ „ „ *>> * a n d predicate variables
- ^ U5 UJL* ' • # ̂  n
*̂vv rv *> • (Constants of various types may also occur, but

1 * * * # * n
for our present purposes they may usually be replaced by

variables.)

Formation Rules

Terms are defined inductively as follows:

(a) x* is a term of sort ct.

(b) If w ,,,,,w^ are terms of sorts OL9.M.9OL , respective-
1 ^ n ^ n

ly, then f^rv.rv rv > wrv • • • wrv is a term of sort a.

>al>--->an °1 n

(No parentheses are required, since the number of arguments of

each function variable is indicated by its subscripts.)

Wffs are defined inductively as follows:

(a) T and F are wffs.

(b) If w 9 . . . ,w are terms of sorts OL ,-..., a 3 respectively,
al n l n

then Pj w^ ... w^ is a wff.

(c) If A and B are wffs, then ~ A, [A A B] , [A V B] , Vx^A

and a ^ A are wffs.

Wffs of type (a) and (b) are atomic wffs.

For our present purposes it is not necessary to specify an

economical set of axioms and rules of inference for our system.

We simply state that the following familiar principles of

quantification theory are primitive or derived rules of inference

of our system. = and ^ are introduced by appropriate defin-

itions. A, A^ B, C stand for arbitrary wffs, u, u ±, v stand



for variables of any sort, and w, w. stand for terms of any

sort. \r A means that A is a theorem.S (S) denotes substi-

tution for all(free)occurrences of the variables in question, fol-

lowing the notation of Church [2]. A term w is free for

a variable u in a wff A if no free occurrence of u in A

is in a wf part of A of the form VvC or 3vC, where v is

a (free) variable in the term w.

Rules of Inference

I. (Rule P) If B is a substitution instance of a tautology,

HB. If [A, A ... A A ] ^ B is a substitution instance

of a tautology and h A. for each i (1 < i < n) 9 then Y B.

II. (Rule of alphabetic change of bound variables.) If u

and v are of the same sort and u does not occur free in

C and v does not occur in C, then the result of replac-

ing one occurrence of C in a theorem by an occurrence of

SU C is a theorem.

III. (Rule of Substitution) If H A, and u,,...,u are dis-

tinct and for each i (1 < i < n), w. is of the same
u,. . .u

sort as u. and free for u. in A. then h S A.

IV, Let w be of the same sort as u, let A(u) be a wff in

which w is free for u, and let A(w) be SUA. Then

h VuA(u) =3 A(w) ; if h A(w) ^ B then V-VuA(u) ^ B. Also

H A(w) 3 3uA(u) .

V. If I- A ^ B and u does not occur free in A then h- A ^ VuB,

VI. If K A ^ B and u does not occur free in B then H auA 3.B,

VII. If h A 3 B then h VuA => VuB and H 3uA => 3uB.



If h A = B then H VuA = VuB and h 3uA = 3uB.

VIII. If K ^ .A s B and u does not occur free in C, then

hC => .VuA = VuB and h C ^ .3uA = 3uB.

IX. (Substitutivity of Equivalence) If HA = B, then the

result of replacing an occurrence of A by an occurrence

of B in a theorem is a theorem.

X. If u is not free in A , then

HVufA V B] = .A V VuB and H Vu [B V A] = VuB V A.

XI. M u [ A V B ] = .3uA V 3uB.

XII. |- Vu ~ A s ~ 3uA.

Of course, in many contexts it is possible to reduce many-

sorted logic to first order logic by introducing unary predicate

constants $ for each sort a 3 and writing Vx A(x ) as

V x f ^ => A(x) ] and a^A(x^) as 3 X [ ^ X A A ( X ) ] (see [9]).

However, when one is concerned with the practical problems of

searching for proofs of theorems of a discipline in which the

individuals can naturally be divided into sorts, a many-sorted

underlying logic may be a distinct advantage, since one is auto-

matically prevented from considering certain wffs which express

nonsense from an intuitive point of view.

We next present a formulation of type theory which consti-

tutes a particularly useful example of a many-sorted logic. We

define type symbols inductively as follows;

(a) c is a type symbol (the type of individuals).

(b) If T.J, . . . ,T are type symbols, then (T^.*OT ) is a

type symbol. ((Ti***T
n) ^s t h e type of propositional functions

with n arguments, of types T^,...T , respectively.)



We take the type symbols as sort symbols for a many-sorted

logic in which (for convenience) there are no function variables,

and the only predicates are predicate constants of the form

>J> , N ^. where riy..9T are type symbols.
<{T~...T ), T - , .. . 9T >

3 1 n

1 n ± n In
Then an atomic wff ^</T r \ T T > u (r r ) VT • • - V T

1 * * * n * 1* * * * n 1 * " * n 1 * n
may be unambiguously abbreviated u, x v ...v , and

± n ± n
interpreted as meaning that v *.., v11: stand in the relation

Tl Tn
u^ T % . Of course, in addition to the rules of inference

listed above one would assume the comprehension axioms

i T\ 1 n

3u # x Vv • • • Vv [u, x v ... v ~ A] , where

{T.....T ) does not occur free in the wff A.

§ 3 . Theorems

We shall use the following notations and conventions. A

sign is + or ~ . If A is a wff and O is + , (XA is A.

If cr is ~ , oh is ~ A unless A has the form ~ B ; o — B

may stand for ~ —B or B , the context determining the

appropriate choice. An empty disjunction is F , and an empty

conjunction is T.

Let QM be a wff in prenex normal form with prefix Q

and matrix M. The wff may contain free variables, M is in

full disjunctive normal form; i.e., M is a disjunction

Dn V ... V D of disjuncts D, , and each disjunct is a con-

junction PV1 A ... A Pv^. The conjuncts P.. are atoms or
Kl Ku K̂ J

the negations of atoms, and each atom which occurs in M

occurs exactly once in each disjunct. The quantifiers in Q



are Vy-, . . ., Vy (where m >^ O) and 3z, , . . ., 3z (where n >. 0) ,

(The Reduction Theorem stated below is vacuous for the case

m = 0. The reader who wishes to compare the theorems below

with FriedmanTs rules may consider that QM is the negation of

the wff on which FriedmanTs rules operate; hence the reversal

of the roles of universal and existential quantifiers.)

We shall say that a variable of the wff is absolutely

stable if it is free in the wff, or if it is existentially

quantified but its quantifier is in the scope of no universal

quantifier.

Reduction Theorem

Let Wj,...,w be any m-tuple of terms such that w.

is of the same sort as y. for 1 < i < m. We define a varia-
1 —. —

ble of the wff to be stable (with respect to this m-tuple) if

it is free in the wff9 or if it is existentially quantified but

its quantifier is in the scope of no universal quantifier

such that w^ ^ Y^ • L e t t h e unstable existentially
quantified variables of the wff be z ,...,z . Let t «...,t

p n p* * n

be distinct variables which do not occur in the w. or in the

wff such that t. has the same sort as z. for p < j < n.
Let A^,...A^ be any set of atoms of the matrix in which none

of z ,...jZ occur. Let ai^-**^orTJ
 be signs.

Suppose there is no disjunct D., of the matrix in which

(a) Ai occurs with sign o^ for all i (1 < i < L) ,

and in which

(b) for any two atoms B., and B2 of the matrix, if
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Sw w t t Bl is t h e s a m e as Sw w t t B2>l***mp"**n l " " # m p # - * n

then B, and B2 occur with the same sign in D. .

Then let N be the disjunction of all disjuncts D,

of the matrix in which S A. occurs with sign o. for

all i (1 < i < L) 9 and let N be the disjunction of all

remaining disjuncts of the matrix. Then h QM = QN.

Splitting Theorem

Let V,, . . ., [1 be disjoint (perhaps empty) sets of

variables which are universally quantified in the wff, where

2 < q < m + 2. IfT/. is non-empty let its members be

^il* *# # ^iR.. For each variable y. . occurring in one of

these sets let w.. be a term of the same sort. Let A.,,...,A.

(where L. > 1) be atoms of the matrix in which only variables

in ll. and absolutely stable variables occur. For each such

atom A.. let a.. be a sign.

Suppose there is no disjunct of the matrix in which A..

occurs with sign a.. for all j (1 < j < L.) and all i
xj — — I

(1 < i < q). Form q disjunctions N,,...,N of the disjuncts

D, as follows: N. is the disjunction of all those disjuncts of

the matrix in which

A.. occurs with sign a.. for all j(1 < j < L.)

Let N. be the disjunction of all the disjuncts of the matrix

which are not in N.. Then

I- QM s . V QN.



Note: To facilitate the discussion of particular applications

of these theorems, we shall refer to w.(w..) as the substi-

tution term for y.(y..). When a substitution term for y. is

-L -L-J !

not specified, the reader is to understand that w. is y. •

§ 4. An example

Before proving the theorems we illustrate how they may be

applied by using them to prove the following rather trivial

theorem of second order logic:

Va3Rat.3v[Patv => Paav] A .Vu[VbRbau => VwGwtu]

^ 3x.VyRyxt ^ Sz.Pxaz A Gztx.

We shall refer to this wff as C. Evidently P, G, and R are

are variables of type (tit)* and the remaining letters in C

are variables of type t.

We put ~ C into prenex normal form and obtain

aaVRVtVu3bVvVwVxVyVz. [Patv A ~ Paav] V . [~ Rbau V Gwtu] A Ryxt A

[~ Pxaz V ~ Gztx]. We must next put the matrix of this wff into

fully developed disjunctive normal form. Rather than write

this matrix out completely we represent it by Figure 1.

Each row in Figure 1 represents all those disjuncts (i.e.,

conjunctions of signed atoms) in which each atom occurs with

the sign indicated. If no sign occurs for some atom in a row,

then the sign of that atom is arbitrary in disjuncts associated

with that row. Of course some disjuncts are represented by

more than one row; for example Patv A ~ Paav A ~ Rbau A ~ Gwtu

A Ryxt A Pxaz A ~ Gztx is represented by rows (1) and (3) . What

is important is that a conjunction of signed atoms is a disjunct

of the matrix if and only if it is represented by some row in



Figure 1. Matrix of — C

Patv Paav Kbau Gwtu Ryxt Pxaz Gztx

(1) +

(2) ~ • + ~

(3) ~ +

(4) + + ~

(5) + +

Figure 2. N '

Patv Paav Rbau Gwtu Ryxt Pxaz Gztx

(6) + ~ +

(7) ~ + + ~

(8) + + + ~

Figure 3. Amplified N,

Patv Paav Rbau Gwtu Ryxt Pxaz Gztx Paaa
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Figure 1.

We first apply the Splitting Theorem. Let [J^. = [vj

and aiiAii = +Paav. Let li2 = (R,t,x,y] and a
2i

A2l ~ ~

The substitution terms for v,R, t,x,y are respectively v,P,z,

a,x. Now there is no disjunct of the matrix in which + PaaV and

~ Ryxt both occur, sol— C = .QN.. V QN2, where Q is the prefix

of ~ C, N, is the disjunction of all disjuncts in Figure 1

which do not contain + Paav and N2 is the disjunction of all

disjuncts which do not contain ~ Pxaz (see Figure 2) .

Next we apply the Reduction Theorem three times to the wff

QNp. First, the substitution terms for x,z are respectively

a,v. There is no disjunct of N2 in which ~ Pxaz occurs, so

we eliminate from N2 all disjuncts in which ~ Paav occurs.

This eliminates all disjuncts in line (6) of Figure 2 (plus cer-

tain disjuncts-from lines (7) and (8)). Secondly, the substi-

tution terms for t,x,y are respectively u,a,b. There remains

no disjunct in which ~ Ryxt occurs, so we eliminate all disjuncts

in which ~ Rbau occurs. Then only certain disjuncts in line

(8) remain. Finally, as substitution terms for u,w we take

x,z. There is now no disjunct in which M3wtu occurs, so we

eliminate all disjuncts in which ~ Gztx occurs. This eliminates

all remaining disjuncts, so fr- QSL = QF. But \- F - QF, so by

Rule Pf--C E QN,.

Next we turn our attention to QN^. First we replace N,

by an equivalent matrix in fully developed disjunctive normal

form which contains the atom Paaa in addition to the atoms of

N^. (See Figure 3.) The reader may suppose, if he wishes, that

we originally included in the matrix of ~ C all atoms which can



be constructed from the variables occurring in the wff. Actually

if one wishes to construct a general semi-decision procedure

based on these theorems, the question of how to amplify a matrix

*(i.e., add atoms to it) when necessary as economically as possible

assumes considerable practical importance. Friedman has studied

this question extensively for certain classes of wffs in [5]#

Now we apply the Reduction Theorem twice to the matrix

represented by Figure 3. First we take a as the substitution

term for v. There is .no disjunct in which + Paav occurs,

so we eliminate all disjuncts in which + Paaa occurs. Then

we take P,a,a,a,a as substitution terms for R, t,v,x,y. Now

there is no disjunct in which (a) ~ Ryxt occurs and in which

(b) Patv and Paav occur with the same sign. Therefore we

eliminate all disjuncts in which ~ Paaa occurs. But this

eliminates all remaining disjuncts, so h QN-. = F. Therefore

j C = F so h C.

Note that when one attempts to use our

theorems to prove a wff C as above, one simply attempts to re-

duce the matrix of ~ C to the empty disjunction, and there

are only a finite number of ways in which one can apply the

theorems to a given wff, so the process eventually terminates.

If the matrix has not been reduced to the empty disjunction and

the Splitting Theorem has been used, one is then left with an
P

equivalence of the form J- QM = . V QM where QM is equivalent

to ~ C and each of the M^ is a disjunction of certain dis-

juncts of M. If we let N be the disjunction of all disjuncts

which occur in some JYL̂, then H M. => N and h N => M so J- QM. ^ QN

and h QN ̂  QM so h QM = QN. Now if N is not the same as M

the wff QN is in a certain sense simpler than the wff QM, since
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it has fewer disjuncts in its matrix. Of course the theorems

in §3 can be used to reduce the number of conjuncts in a matrix

in full conjunctive normal form by applying them to the negation

of the wff.

% 5. Proofs

Proof of the Reduction Theorem:

In addition to the notation in ^3, we shall use the follow-

ing notation. Choose r so that w^ = y^ for i < r, and

w ^ y . Let z , . . ., z be the unstable existentially quanti-

fied variables of the prefix. Let Q' be the portion of the

prefix containing Vyr,...>^Ym
 a n d a z

p j • • • * 3 z
n *

 a n d l e t Q!!

be the initial portion of the prefix. Then we may write the

original wff as Q* *Qt[D1 V ... V D ]. We shall write A^ as

A.(y ,...*y ), and use the obvious substitution notation:

yr---ym
A. (w , . . . ,w ) is S A. . Similarly we write D, as
i r m v * * * in

After each line of the proof we indicate by a roman numeral

the rules of inference from J2 used to infer that line, and the

numbers of the preceding lines from which it is inferred. It may

be necessary to apply the rules of inference more than once.
L

1. h N ̂  A a A.(w ....,w ) by Rule P, since each of the
• ___•» i i r m

disjuncts of N contains A, (w ,...,w ) with sign cr. for

Let D^ be any disjunct of the matrix M, where 1 < k < c. Then

either case (a) or case (b) must apply:

case (a): D- contains ~ a.A. for some i, say i = j. Then
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2a. \- D .A .
] j

3a. ,- Dk (wr, • • • ,»
p, . . ., t n) j A .

Rule P

III:2a

case <b) : T h e r e a r e a t o m s ^ a n a ^ ^ ^ ^ ^ g

occur, with p o s i t i v e s i g n a n a ^ w m n e g a t. v e

Denote the latter wff by B.

2b. h Dk =3 Bĵ  A -^2

3b. H Dk(wr, ...wm; t , . . ., tn) ^ B A ~B

Since for each k case (a) or case (b) must hold, we

4. h N => -

Rule P

III:2b

5.

f o r

Rule P:3b or 1 and 3a

Rule P:4

v,«,«l!5

8.

9.

10.

12.

13.

14.

Q I M 3 # Q I M

Q'M =3 Q»N

N ^ M

Qi£f o Q, M

Q I M s Q,^

Rule P:6,7

Rule P:8

VIII:9

Rule P:1O

Rule P

VII:12

Rule P:ll,13
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15. hQ f !QfM s Q1 !.QfN VII: 14

This completes the proof of the Reduction Theorem.

Proof of the Splitting Theorem

In addition to the notation in §3^ we shall use the

following notation. Let z,,.. ..,z -* be the absolutely stable

variables of the prefix. Then we may write the prefix Q as

3z,,..3z TQ'J where Q* is the remainder of the prefix. For

each i (1 < i < q) we shall introduce new variables y ^ . . 1

.
z ..•..z . which are all distinct from one another and from

all variables in the w. . or in the given wff; moreover yv is
x^ x.

of the same sort as y, , and z. is of the same sort as z, . Also

let t ,...jt be variables which are distinct from one another

and from all variables mentioned above; fc. is of the same sort

as zk.

Define w^. for 1 < i < q and 1 < j < R. to be

S . . ? ? w. .. Define v, for 1 < k < m • to be . y, if
X X X X X j Js. iC

1 TO p n
y, is in none of the sets (/,,,,,,(/, and to be w^. if y,
K Q x jjq xj K

is the variable y. . in some set iL. . (The fact that the sets

{J. are disjoint assures that this definition is unambiguous.)

We shall write A.. as A. . ( y . 1 ^ # . . J y . ) , M a s
X] X} XX XR^

and use the associated substitution notation as above.

In certain lines of the proof below the parameter i occurs

as a free variable of our meta-language. In such cases the

reader is to understand that the theorem is asserted for each

value of i (1 < i < q) .
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A'

by Rule P, since each of the atoms A. . (̂ î  • • • JwiR

occurs with sign cr. . in each disjunct of N..

2. HVy^ . . . , ^ ; zj, . . ., zj)
L.
A1 a fw1 w1

. , i j i j ^ w i l ' ' # # ' w i R . ) 111:1
]=i 1

(Consider the definition of w.. to see that this is a

legitimate substitution.)

3. KQ.M 3 atp..-.':atnM(v1, ...,vm5 tp, ..
l.,tn) I,II,IV

q Li
4. M(y p...,y m; V " 2 ^ 3 ~ * ^ aijAij(yii''" *', -^ i j i j i i i R . )

by Rule P, since there is no disjunct of M in which A..

occurs with sign cr. . for all i and j.
Li

5. hM(vp...,vm; t ,...,tn) ^~ A ;Vij Ai jKl- ?-^R.)
^ 1 = 1 3 = 1 J J l

(Here we have replaced yv by vv on.the left^ and y. .
• •

by w. . on the right; if y, is y. ., then vv is w. .,
13 K. 13 JC l^

so the substitution is legitimate. Also note that only "'

variables in V. and absolutely stable variables occur in

A , h a t p . . . a t n M ( v 1 , . . . , v m ; t p , . . . , t n ) 3

~ -1 .^ ^ij^il'-'-^R.)- V I : 5

1 — 1 J — 1 1

7. f-Q'M = V ~ N ± ( y J ; , . . . , y ^ z^,...,z^) R u l e P : 3 , 6 , 2

i = l Y l " ' Y m p - - - v z n w i i y l J • • • ^ y m J z p ' ' . " ' V

V,IX,X:7
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q
9. hQ'M=> v Vy1# ..VymVZp...Vzn ~ N± 11:8

10. HVyi...VymVzp...V2n ~ N ± = - 1 ^ IV

11. h vyi-••vym
Vzp---Vz

n ~
 Ni 3 -M - ®i R u l e p- 1 0

12. H vy1---
vym

Vz
p---

Vz
n ~

 Ni 3 -Q'M £ Q'Nj. vinai

q ~
13. i- Q»M => V Q»N. Rule P:9/12

i=l X

14. h NA => M Rule P

15. H Q'^ =3 Q'M VII: 14

16. V-Q'M= [ V QIN.] Rule P: 13,15
i=l X

q ~
17. HazjL-'. .az 1Q'M

 s azx...az _x[ ^ Q'N±]

q ~
18. h QM = .. V QN. I

-L —~ JL JL

This completes the proof of the Splitting Theorem.

Functional Form

The reader may have noticed that existential quantifiers

are in a certain sense in the way when one wishes to apply the

meta~theorems in J3. However it is well known that for each

wff B one can find a wff #(B)3 called the functional form of

B, such that 3(B) is satisfiable if and only if B is satis-

fiable, and such that 5(B) contains no existential quantifiers.

J5(B) is obtained from B by replacing existential quantifiers

by function variables in an appropriate way. Thus it is natural

to apply our meta-theorems to 3(B) rather than to B. If the

matrix of 3(B) c a n be reduced to the empty disjunction,, then

B is not satisfiable; if not, then there is a wff C such

that 3(B) has been reduced to 3(c)'/ so H 3(B) = %(C), and it
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is natural to ask whether HB = C. We shall show that this is

so. To simplify our notation, we henceforth restrict our

attention to one-sorted first order logic.

Definitions Let B be a wff of first order logic in which no

variable occurs both free and bound, or occurs in two quantifiers,

and in which no quantifier is in the scope of a negation symbol.

(1) If B contains existential quantifiers, let 3zD(z) be

the first (leftmost) wf part of B consisting of an existential

1 k
quantifier and its scope. Let Vy ...Vy be the quantifiers

of B (in left to right order) which contain 3zD(z) in their

scope, and whose variables occur (free) in D(z), and let f

be the first k-ary function variable which does not occur in

B. (We omit the subscripts and superscript of f for conven-

ience.) Let J5 (B) be the result of replacing 3zD (z) by

IkD(fy . . .y ) in B. (If k = 0, f is an individual variable,

Ik
and we use f in place of fy . . .y .)

(2) Let 3°(B) be B, and let 3 j + 1(B) be ^ (3j (B) ) .

(3) <*(B) is 3 (B) , where n is the number of existential

quantifiers in B.

1 k
Note that hD(fy . . .y ) ^ 3zD(z), so it is easily proved

that h# (B) => B. (Here we use the fact that the only proposition-

al connectives in B which contain 2zD(z) in their scope

are A and V.) Hence h 3(B) ^ B. Note that every wff can

easily be transformed into an equivalent wff satisfying the

conditions of the definition.

Next we wish to embed our first order logic into a higher

order logic so that we can quantify over function variables.
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To avoid the necessity for describing explicitly the system of

higher order logic we have in mind, we shall use the formulation

/of type theory presented by Church in [1] and proved weakly

complete by Henkin.in [6]. We take as axioms only axioms 1 - 6

of [1] and call this system 3* . Let * be the wff

Vpot* azcpo(,Zt ^ pot fc6(Oc)poc^ w h ich is a formulation of the

axiom of choice with the constant c (/0 M denoting a choice

function. Let 3* be the result of adding * to 3" as an

additional axiom. We shall write \r2* A (kA^HnA) to mean

that A is a theorem of 2T* (%, first order logic, respectively) .

Every wff of first order logic can be regarded in a natural way

as a wff of 3y and we shall tacitly use this embedding of first

order logic into 2. In the argument below we shall sometimes

quantify on the constant C
L(QL\ • This will be a shorthand

way of indicating the result of replacing it by an appropriately

chosen variable, and then quantifying. Also we shall refer to

derived rules of inference of 3* by the same numbers as were

used for the corresponding rules of inference of first order

logic in § 2.

Definition Given a wff B of first order logic such that

is defined, we define a wff 3* (B) of 3' by modifying

the definition of 3 so that 3*°(B) = B and %* ^ + 1 (B) is

* -; Ik
obtained from <* J(B)upon replacing 3zD (z) by D (Gy . . .y ),

Ik
where G is the wff [Ay ...Ay . c , Q^ .AzD(z)], and 3z is
the j existential quantifier originally present in B. (Thus

we ignore quantifiers in the Gfs previously introduced.)

() i #Again 5 (B) is # (B), where n is the number of existential
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quantifiers in B.

Lemma |— ̂ B = 3 (B)

Proof:

,lh2,
az[[AzD(z)]z] => [AzD(z)] [c t ( o c ) .AzD(z)]

by instantiation of [AzD (z)] for PQt in

D(z) 3 [^zD(z)] [Gy1...yk]

by rules of A-conversion applied to .1.

.3

by rules of A-conversion applied to .2.

.4 -.K^DtGy1.. .yk) => 3zD(z) IV

.5 H2*
azD(z) = D(Gy1...yk) Rule P:.3,.4

.6 ^ 3*3 (B) s 3* J+1(B) IX:. 5,1

Hence ho.B = 3* (B)

Theorem Let B be a wff of first order logic such that 3 (B)

is defined. Let f ^...^f be the (function or individual)

variables which occur in & (B) but not in B. Then

Proof:

.1 h 2̂ -̂  (B) "^ B since h -3 (B) ^ B as remarked above.

.2 h2^3f
1.. .3fn

Now we may assume that f is the variable which was

introduced in forming 3 1 (B) from 31""1(B) . Let G1 be the

corresponding wff introduced in forming 5 1 (B) from 3 1"" (B)
fl fU

Note that 3 (B) is S x n 3 (B) , and that G1 is free for
• £. . 6 • • *G

f in 3 (B). Hence
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.3 K*3*(B) z> 3fX . . . 3f n3 (B) IV (n times), I.

py

.4 h^.B = 3 (B) ' by the Lemma.
2*

.5 h ^ B = 3fX . . . 3f nJ? (B) Rule P:.2,.3,.4

Lemma Let N be the standard model for ff (in the sense of

[6]) in which the domain of individuals is the set of natural

numbers. Then [3c /~fx*] is true in N.

Proof: Since in a standard model the collection of functions

of type (c (Ou)) includes all possible functions from subsets

of the domain of individuals to individuals, it includes the

function which maps the empty set onto 1 and every non-empty

set onto its least member. But this function fulfills the

requirements on the choice function c . /rw % .

Note: By assuming the Axiom of Choice in our meta-language,

we could prove that [̂ ci/r. **] is true .in every standard

model for ff. However the weaker result of the lemma is

sufficient for our purposes.

Theorem Let B and C be wffs of first order logic such that

3(B) and #(C) are defined. Assume that no variable occurs

free in 5(B) and C but not in B, and no variable occurs

free in 5 (C) and B but not in C. If H ̂  (B) = 3(C), then

h±B = C.

Proof: Let f ,...,f be the set of variables which occur in

but not in B, or in 3 (C) but not in C. Then none of

these occur free in B or in C.

.1 h2*3(B) = 3(c) since ^ ( B ) = 3(C) .

.2 H2^af
1...afnff(B) s afi.^af^cc) viir.i.

2^
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.3 h ^ B = 3f . ..3f 3(B) by the theorem above, plus the

introduction of vacuous quantifiers, if necessary.

.4 h2^. C = &f
1. . . 3fn3 (C) as for .3.

.5 b 2* B = C Rule P:.2,.3,.4.

.6 H * =3 .B = C by the Deduction Theorem for 3*.

.7 h 2 t
ac x *] => .B = C VI: .6.

Now in order to show that (-, B = C, it suffices to show that

B = C is valid in the domain of natural numbers, by Godel!s

Completeness Theorem. But every theorem of 0* is valid, and

by the Lemma [3c • /OL\ ̂ ] is true in N, so B = C is true for

every assignment of values to its free variables (of any type)

in N. But this means B = C is valid in the domain of natural

numbers, so h-,B - C.

For the sake of completeness, we go on to prove the

following:

Theorem Let B be a wff of first order logic such that 3(B)

is defined. Then B is satisfiable if and only if <?(B) is

satisfiable. .

Proof: If 3 (B) is satisfiable, then B is, since K 3 ( B ) ^ B

and every theorem is valid. •

If B is satisfiable, then it is satisfiable in the domain

of natural numbers by Lowenheimfs Theorem. Now

Arguing as above we see that B = 3f ...3fn3(B) is valid in N.

There is an assignment of values in N to the free variables

of B which makes it true, so the same assignment makes

Bf1...3fn3(B) true. Hence 3(B) is satisfiable•
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7. The Reduction-Amplification Method

In this section we shall show that the Reduction Theorem

can be used as the basis for a complete proof procedure for first

order logic. To simplify the notation we again restrict our

attention to one-sorted logic.

Definitions

1) A wff is in functional normal form if its is in prenex

normal form and contains no existential quantifiers.

2) The lexicon (Herbrand universe) of a wff is the class of

all terms constructible from the free individual variables

of the wff (if there are none, the first individual variable

which does not occur in the wff) and the function variables

in the wff.

3) A lexical instance of a wff in functional normal form is a

quantifier-free wff obtained from the given wff by instanti-

ating all of its quantifiers with terms from its lexicon.

4) If QM is a wff in prenex normal form, an amplification of

its matrix M is any quantifier-free wff N in full dis-

junctive normal form such that M = N is a substitution

instance of a tautology, and every atom in N is constructed

from variables in M and the lexicon of -QM.

These definitions are adapted from [7] and [4]. Quine

shows in [7] that a wff in functional normal form is not satis-

fiable if and only if some finite conjunction of its lexical

instances is a contradiction.

Theorem Let QM, be an unsatisfiable wff in functional normal

form with matrix M^ in full disjunctive normal form. Then
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there is an amplification M2 of M, such that QM2 is

reducible to QF by any sequence of applications of the

Reduction Theorem, such that no further applications are

possible.

Proof: Since QM1 is not satisfiable, there is some finite

conjunction L1 A ... A L of its lexical instances which is

a contradiction. Mn is a disjunction D, V ,,, V D , so each
1 i c

lexical instance L. has the form D-. V , . . V D , where D -

is obtained from D. by substitution. Let ML be the amplifi-.

cation of M.. obtained by adding all atoms which occur in

L1 A . . . A L to M, . Let QJVL be any wff obtained from QM2

by a sequence of applications of the Reduction Theorem, such

that no further applications are possible. We must show that
M^ is F. So suppose it is not. Then ML is a disjunction

E, V . . . V E with e >. 1.
l e "

Lemma For each disjunct E. of M~ and for each lexical

instance L. (1 <^ i <^ p) there is some disjunct D of L.
I «K 1

such that h E . "=> D * .

Proof: Let A,,...,A be the atoms of M,, and let A, , ...,AT

be the corresponding atoms of L.. Each of these atoms occurs

in E. with some sign, so E. may be written as

CTyA-| A . . . A a A A H, where H is the conjunction of the

other signed atoms in E.. (Of course A1,...,A may not all

be distinct, but this causes no difficulty if we let a = a
S "C

whenever A = A .) Suppose no disjunct Dv of L. has the
s t jc l

i t t

form 0" A . A ... A a A . Then no disjunct D. of JXL has
the form cr1A1 A ... A a A_, so no disjunct of Mo contains

II J_i J_J Z

O1A1 A ... A A (since Mo is simply an amplification of jyr ) 4
1 1 JLJ Jb 2. 1
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so no disjunct of M~ contains or A, A • . . A or A (since every

disjunct of M~ is a disjunct of M9) . Then E . can be elixn-

inated from M~ by the Reduction Theorem. But this contradicts

the condition on M~, so L. has a disjunct D , of the form

a A, A ... A a A , so f-E. ^ D-. This proves the lemma*

Now H Dv 3 L. so |* E. ^ L. for each disjunct E. of ML

and each lexical instance L.. Hence

H [Ex V ... V Ee] ^ [L± A ... A L ] , so H3
 D F. Hence M3

must be the empty disjunction. This proves the theorem.

Let us summarize briefly the way the Reduction Theorem can

be used as the basis of a complete proof procedure for first

order logic. Given a wff C, one can find a wff B equivalent

to ~ C such that 3(B) is defined, and the prenex normal form

QM of #(B) is in functional normal form. Hence C is

valid if and only if some amplification of M can be reduced

to F. Of course in practice one would amplify only a little

at a time, when no further Reductions are possible, as mentioned

by Friedman in [4]. We shall call this proof procedure the

Reduction-Amplification procedure.

We have shown that the Splitting Theorem is in principle

dispensable in this context, but of course it may be an important

aid to efficiency, since it permits one to split a matrix into

several simpler matrices. Similarly clause (b) in the statement

of the Reduction Theorem can be omitted without loss of complete-

ness, since we have not used it. (It is easy to see that

several applications of the Reduction Theorem without clause (b)
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can give the same results as an application of the full Theorem

when sufficiently many atoms are present in the matrix, and there

are no existential quantifiers.) The resulting statement of

the Reduction Theorem for use in this context is pleasingly

simple.

Friedman recognized in [4] and [5] that the crucial problem

in using the Reduction-Amplification procedure efficiently is

the amplification problem, i.e. the problem of choosing the

appropriate atoms by which to amplify the matrix. It is now

obvious that this is basically the same as the instantiation

problem, i.e. the problem of choosing lexical instances appro-

priately in Quine's proof procedure [7], or of choosing re-

solvents appropriately in the Resolution method [8].

From the abstract point of view the outstanding difference

between the Resolution method and the Reduction-Amplification

method seems to be that in the Resolution method one looks at

small parts of the matrix quite carefully, whereas in the

Reduction-Amplification method one scans the whole matrix at

once. It is not surprising that each method should have its

advantages. What is now needed is a unified proof procedure

which incorporates the advantages of both.



BIBLIOGRAPHY 26

[1] Alonzo Churchy A Formulation of the Simple Theory of Types,

Journal of Symbolic Logic, vol. 5 (1940), pp. 56-68.

[2] Alonzo Church, Introduction to Mathematical Logic, vol. I,

Princeton University Press, 1956.

[3] Joyce Friedman, A Semi-Decision Procedure for the Function-

al Calculus, Journal of the Association for Computing^

Machinery, vol. 10 (1963), pp. 1-24.

[4] Joyce Friedman, A Computer Program for a Solvable Case of

the Decision Problem, Journal of the Association for

Computing Machinery, vol. 10 (1963), pp. 348-356.

[5] Joyce Friedman, A New Decision Procedure in Logic with a.

Computer Realization, Ph.D. thesis, Harvard University, 1964.

[6] Leon Henkin, Completeness in The Theory of Types, Journal.

of Symbolic Logic, vol. 15 (1950), pp. 81-91.

[7] W. V. Quine, A Proof Procedure for Quantification Theory,

Journal of Symbolic Logic, vol. 20 (1955), pp. 141-149.

[8] J. A. Robinson, A Machine-Oriented Logic Based on the

Resolution Principle, Journal of the Association for

Computing Machinery, vol. 12 (1965), pp. 23-41.

[9] Hao Wang, Logic of Many-Sorted Theories, Journal of Symbolic

Logic, vol. 17 (1952), pp. 105-116.

Carnegie Institute of Technology


