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ON SUBOBJECTS IN CATEGORIES

by Oswald Wyler 1
l. Introduction

ggggggggiggg {1] defined a subgadget (sous-truc) of an object A of a
categdry ¥ as an equivalence class of monomorphisms of £ with codomain A .
Ih operational categories f7], a subobject of an object .A is basicaliy a sub=-
set of tﬁe underlying set of A which, with operations induced by the operations
of A, becomes an iject of the bategory. In many operational categories
(e.g. sets, groups, rings), éubgadgets correspond bijectively to subobjects.,

In others (e.z. topological spaces), there are subgadgets which do not cor-
respond to éubobjeéts.

Various catqurical remedies have been considered for.this situation,
giﬁiﬁ% f2] introduced bicafegories. These were geperalizéd by the author in f6];
Sonner [5] introduced canonical categories, with extreﬁal monomorphisms as sub-
objects.  Other méthods have been suggested by ;222££ [3] and others,

None of these methods seem to be satisfactory for all situationé. Thus we
propose in this noté an axiomatic theory of categories with ;njectioqs as a
éommon generalization, ﬁith subbbjects represented by injections, This also

generalizes a situation encountered by the author in the study of operational

e

1 Research partially supported by Research Grant DA-ARO-D-31-124-G680,
Army Research Office (Durham).



categories f7]. We obtain the basic properties of catégories with injections,
we consider the question whether monomorphisms obtained by limit constructions
are injections, and we discuss some related topicﬁ.

We shall use the language of Mitchell [4], with some modifications., For
instance, we use "map" as a synonym of "morphism", and we often identify objects
and their identity maps. We find it more convenient to write composition of maps

“from left to right", and not "from right to left" as in f 4].
2. Categories with injections

Let € be a category, with composition of maps written *from left to right".
We shall denote by oxu the domain.or left identity of a map u of 2?, and by
Bu the codomain or right identity of u, so that (oc wu=u(Bu)=u.

'For monomorphisms m and m' with the same codomain, we put m' <m if m'=xm
foramap x of & , and we call m and m' equivalent, in symbols n'2~mn,
if m*<m and m<Lm', i.e. if m' = xm for an isomorphism x of & .

In particular, m< ﬁm for any monomorphism m , and m~fm if and only if
m is an isomorphism.

In many categories (exémple: topolqgical spaces) there are monomorphisms
which one does not want to associate‘with spbobjects of their codomains, This

leads us to the following definition.

2.1. Definition. A category with injections is a pair (%€,2 ) con-

sisting of a category (g and a subcategory 2 of E , subject to the foilow-




ing conditions.

J 1. Every map of ) is a monomorphism of (f, and every isomorphism
of € isin .
J 2. VWhenever uv is defined in ¥, and uv and v are in ;, then

uv isin}.

J 3. For any map u of &” there is a map j of } with the following

properties. (i) u=p j foramap p of ©. (ii) If also u=u' j' with

j,'égf, then j<£3j', i.e. J=xJ' foramp x of &,

We call the maps of } injections of (8,}) ,- and we usually write €
for (lf,)) e« Themap J of J 3 is called a ; ~-image, or just an image,

of the map u . Examples will be given in (2.8).

-2,2, We assume from now on that a category with injections (g,}) is
given, If 6} is an image of u g (bo, then we call the factorization

u=pJj adecomposition of u , and the factor p a preimsge of u .

‘In order to make our theory independent of the underlying axiomatic set

theory, and only for this reason, we impose the following condition on J‘ .

~J 0. There is a subclass 90 of 2 such that every map j of ; is

equivalent to exactly one map of }o , and all identity maps of ¥ are in ;'o .
Amap j of }o will be called a subobject of its codomain £j . Every

object of & is a subobject of itself.

2.3, Images are defined up to equivalence., Thus every map u of ¥ has

exactly one image in 20 which we denote by im u . More generally, we put




uli) = im (§u)
if ju is defined in € ana J é.} . We note the following properties.

(2.3.1) imu:ufau] for any ueg , and imuZru if ue} o

(2.3.2) If u[j] and wfj'] are defined and j'< § , _then ufj']éur,j] .
This follows immediately from the definitions.,

éi. Injections form one half of a bicategory [ 2]; we replace the other half
by a definition. We call p & 4 é pi‘o;'ection of (f,}) if p is a preimage
(2.2) of some map u of }f o We shall denote by ./(0 the class of all projections

of (‘g,}) . This class has the following properties,

(2.4.1) Amap v of € isin P if and only if imv= Av.

"(2.4.2) If uv isdefinedin £ amd uve, then ve P.

(2.4.3) }ﬂ P is the class of all isomorphisms of .

(2.4.8) If u=pJj in &, with p& P and j€) s then is an

image, and p & preimage, of u .

Proof, If imv = ﬁv s then véj)_. Conversely, let j‘ bbe an image
of vj, and let v=v'j', with j'é} e Then v j=v'j ,j‘ , and hence
J£3'§ . It follows that j' is isomorphic, and thus im v = ﬂ’v .

If v=v'j with jej , then im(uv)< j . Thus im(uv)éimv.
If im (uv) = ,Bv y it follows that imv = ﬂv . This proves (2.4.2).

A mp u of 2 is in P if and only if ﬂu = imue~ru, and hence if and

only if u is isomorphic. This proves (2.4.3).




'= . . <. T =
If imu=j in (2.4.4), then J €3 If §y=3J'J and u=p 3y
then '€/} byJ 2, and p= p; 3' . But then j'>imp= Ap, and j' is

isomorphic. Thus jﬁjl », and j is an image of u .

2.5. Proposition. The following statements are logically equivalent.

(i) vfufj]] = (u v)[j] whenever u v and ufj] are defined in ?.

(1i) im(uv) = vrim u] whenever u v is defined in &,

(iii) If ug=°~fu' jg’g,_ and if u=p J and u' =p' j' are decom-

positions, then there always is a map h in ¢ such that the diagram
=

P~ 37
lf \l/h J/g
p'> j'>

is commutative.

(iv) Projections form a subcategory of i? .

Proof. (i) ==> (ii) by putting j = xu in (i).

In the diagram of (iii), we always have im (fu') € j* . If (ii) is valid,
then im (fu') = im (u g) = g[j] = im (j g) , and it follows that j g=h j'
for amap h . But then ph j' =pjg=f’p' j'_, and hence ph=7f p',
Thus (ii) ==> (iii) .

Consider now the diagram of (iii) with u = P in P y J= ﬂp‘ y f=«p,
and u'=pg . If (iii) is valid, then g=h j' for a map h, and it followsA
that img<in(pg) . If g& P, so that img= Bg, this implies that

in (p g) = /gg , and hence pge€ P . Thus (iii) = (iv) .




Finally, if u[j] = §, and v[Jl] = J, » with decompositions ju = p

1 9

and jl v=p, ;52 s, then juvs= pl 1 32 is a decomposition, and (u v)[j]

= 32 = vfufj]] , 1if P, D, 655. Thus (iv) ==> (i) .

2.6, Proposition. The followingz two statements are logically equivalent.

(i) Every map u of ié’ has g factorization u=e j with e epimorphic
in € and ; €}.

(1i) Every projection of 74 is epimorphic in &.

Proof. If p=e j with p & P, jé} , and e epimorphic, then
pp=inp<j, and j is isomorphic. But then p is epimorphic, and thus

(i) == (ii) . The converse is trivial.

2.7. Remarks. Definition (2.1) is easily dualized. We call the dual of a

category with injections a category with projections. A decomposition u=p j
in a category with projections. defines a coimage p and a postimage j of u,
and postimages are injections of the éategory.

We have used J 2 exactly once, in the proof of (2.4.4)., It is easily seen
that, conversely, J 2 follows from J 1, J 3, and (2.4.4).

If ,(f,),j’) is a bicategory in the sense of Isbell [2], then (La,),)
is a category with injections and P the class of its projections. Conversely,
if (5,9) is a category with injections and P the class of its projections,
then the following three statements are easily seen to be logically equivalent,

(1) P isa subcategory—of & and consists of epimorphisms of & .

(i1) (¥,P) 1is a category with projections.




(iii_) (‘5,9 ,P) is an Isbell bicategory.

Let now 4;0 be a categor&, f’C the class of its mono.morphisms, and £ the
class‘of its epimorphisms. M always satisfies conditions J 1 and J 2 of (2.1),
and M -images in our sense are images in the sense of Grothendieck [1], and of [4].
M satisfies J 3 if and only if & has images, in the sense of [4], I.10.
| let us call (6 factored if everj map u of g has a factorization u=-em
with e€ £ and me M., If & is factored, and if u=em, then m isan
image of u in the sense of rl] and [4) if and' only if e is a éoimage ;af u in
the sense of gg___nix__e___x__' [ 5], In other wérds, the images and coimaées of [ 5] are post~
images and preimages in our terminology. It follows that a canonical category,
in the sense of f 5], is the same as a factored category: € such that (¥,M) is
a category with injections, and (&,E) a category with projections.

If € is factored and (f,//() a category with injections, then the pro-

jections of (¥, M) are the extremal epimorphisms ([3], [5]) of & .

2,8, Examples. 1In a pointed category, the class of normal monomorphisms,

as defined e.g. in f6], satisfies J 1 and J 2, and in many cases also J 3, but this
class is in general not a subcategqry.

The injections of an operational ca’tegory_ £ (see [7] for the definitions
and notations used in this paragraph) form a subcategory } of é‘f vhich satisfies
J1andJ 2.. If f is an ..Q-category and all range functors R, W e_JZ,
~ preserve intersections, then £ also satisfies J 3. If these functors preserve
inverse j.mages as well as intersections, then ¥ has inverse images (seg- below),

and projections form a subcategory of £.




The categories of sets and of groups, with subsets and subgroups respectively
' as subobjects, are categories with injections, with all monomorphisms as injections,
and all epimorphisms as projections. The categories of topological spaces and of
Hausdorff spaces can be considered as categories with injections in at least three
ways., We may regard just the closed subséaces, or all subspaces, of a space A as
subobjects of A , or we may regard all monomorphisms as injections.

In all examples of the preceding paragraph, inverse images exist, and P is
a.subcategory; For topological spaces with closed subspaces as subobjects, all
epimorphisms are projections, but not all projectiéns epimorphic. For Hausdorff
spaces, with all subspaces as subobjects, all projections are epimorphic, but not

all epimorphisms prqjections.
3, Limits in categories with injections
let (@,}) be a category with injections. We consider the following

question, If a limit construction preserves, or induces, monomorphisms in any

category, does it preserve, or induce, injections in &

3.1. Proposition. ILet (j,) AeI be a family of injections with a common

codomain., - If ﬂj)\ is defined in 2—,0, then ﬂj/\ is an injection.

Proof. let m= ﬂj}\. Then m=x) j5, foramap x,, for every
A EI . But then imméj/\ for a1l A\, and hence imm<m. Now m<imm

in any case, Thus m2~imm, and mé} .




3.2, Inverse images in g are defined by pullback diagrams
===

1
(3.2.1) | jj‘i la‘

with j , and hence ;jl , monomorphic. We say that pullbacks in & preserve

injections if ji E.} in every pullback diagram (3.2.1) with j 62 . We say

that (‘f,}) has inverse images if for any maps u of % and J of } s, with

the same codomain, there is a pullback diagram (3.2.1) in &, with 5€ (} .
A pullback diagram (3.2,1) is determined by u and j up to an isomorphism
in the upper lefthand corner. Thus if jl C—Z} » Wwe can determine 31 & 2—0 in

exactly one way. We put
' .
i, = w [3)
if ;)C-‘_g and ) 590 in a pullback diagram (3.2.1).

3.3. The following statements are valid whenever all their terms are defined.

S
===

(’5.3.1) ué_[ﬁu] = o&Xu.
(3.3.2) (wv) T3] = o V300 .
(3.3.3) u"fﬂa’)\] = (Yu€l3) .

(3.3.4) I 3'<3, then o [3r]<u® 4] .

(3.3.5) u[jl]éj if and only if § < w 5] .
(3.3.6) wlo[3]) <5 and wS[T3]0] =S50 .

(3.3.7) 4 € u<—fuf31]] and ufuefufjl]ﬂ =uly] .




10

We omit the simple proofs, (3.3.2) is a special case of the following result

([ 4:], Prop. 1.7.2). If the righthand square of the commutative diagram
N N,
h' 7 g' el
T
> >
h g

is a pullback, ‘then the outer rectangle is a pullback if and only if the lefthand

Square is a pullback. Ve shall use.this result in (4.5) and (4.6).

3.4, Proposition. If ,73 is s subcategory of g, then pullbacks in &

preserve injections. Conversely, if (ff, 9) “has inverse images, then _? is

8 subcategory of ff.

i

_Pj_r_gg_f_ Let 369 in a pullback diagram '(3.2.1), and let im j = j' .
Then jl £3 . 1t P is a subcategory, then
u'] = in (W) = dm(w 3) <
by (2.5), and thus j' u=u' j foramsp u' ., Thus j' =x Jy» w=xu,
for a map x . But then &3, and 'jllé) since .5'62/ .
Conversely, let (@,}) have inverse images, If vu=p j in f, with
Py u, v in P and j in} , construct a pullback diagram (3.2.1), with

jleg « Then v=le, P=xu , foramp x, and ﬂv:imv.éjl.

1
But then ;jl is isomorphic, and u = jl-l uy J + Now Bu'= imugj, and j

is isomorphic. Thus vu=p j is in P » and j‘) is a subcategory.
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3,5. Proposition. Let (jy t AL —>A)) be a family of injections for

A€l
" which a product Xj)\ s XA}'\ - XA/\ is defined in ¥. If .7) is a sub-

~ category of '??, then >< j)\ is in) .

Proof. let p}\ : XAx—>4, and p} ¢ X a4 —>4) be the projections,
so that (X 3,) p, =} 3, forall AEI, endlet X in=a3 bea decom
position. By (2.5.iii‘) there areAmaps ry » one for each AETI, such that
P'=qnr., and 1, j>\= J Py s for'all A . There is a map r such that
r}\ =7 p,'\ for all A\, and then’ qQrp=gq 59 = Pa fér all \ , and hence
qr=0Xq. On the other hand, rq Jp,=rqr, Jou=T P Jy=1 Jx=13J Px
for all X\ , sothat rqj=J. Butthen rq= Bq, and q is isomorphic.

Tus X jy=qj is in ).

3.6. Proposition. If all rirojections of ‘5 are epimorphisms, then all

equalizers in <£ are injections. Conversely, if ? has equalizers, and all

equalizers are injections, then all projections are epimorphic.

m. If m is an equalizer of f and g in ?, then m is mono=- ..
morphic, If m=p j is a decompositioh, thenl n<j, and pjf=pig.
If p is epimorphic, then. jf=3jg follows. But then j<m, so that
jJm, and m GQ, . . |
| Conversely, let pf=pg, with p é__P. If f and g have an equal-
izer j in £, then p=p' j foramap p'. . If J€}, it follovs that

/3p =im p £j . But then j is isomorphic, and f =g .
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AB .
3.7. We shall denote by p‘:B and p, , or just by 12} and p2 s the
projections of a product AX B in ‘6 e« If f:C—>A and g: C—>B are
maps of (@ with the same domain C , and if a product A X B is defined in {f,

then we denote by {f,g} 1 C —> AX B the map of f characterized by
AB AB
{relr =t , {fe}p, =& .

If (e has finite products, then any pullback diagram

1
(3.7.1) lgl g

defines a monomorphic map {fl’fZ‘k .

3.8. Proposition. If ¥ has finite products, and if all projections of €

are epimorphic in @ s, then every map {fl,gl} obtained from a pullback diagram

(3.7.1) is an injection. (Conversely, if {f has finite products and pullbacks,

and if all maps {fl’gl} obtained from pullback diagrams (3.7.1) are injections,

then all projections of f are epimorphic in & .

Proof. If (3.7.1) is given, and if {fl,gl}z qQ J 1is a decomposition, then
Qj PpE=q J P, f. If q is epimorphic, J Py g=J p2 f follows, But then
jplzxfl, jp2=xg1, foramapxofi,o, andj:x{fl,f2}=xqj
follows., But then x q = qu » and as q is epimorphic, it follows that q is
isomorphic, so that {fl'gl} =qJj is in} .

Conversely, let p be a projection with codomain ﬂp = A, and assume that
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all possible pullback diagrams (3.7.1) exist, with {fl,gl} in ) . Then {1A,1A}'
is in } ,  since the square with four sides 1, is a pullback,
If pf=pg, construct a pullback diagram (3.7.1) for this f and g .

Then p=Xx fl =xg for some map x of ff , and hence

X {fl’glk = {Pvp} = P {lA!lA} .
as {1,,1,}€ ), this is a deconposition, and thus {1,,1,} &{r,.6) Y . mhis

means that 1, =y f, = y 8 foramap y of ¥ . But then

f =yegf=y5f8=2¢,

and p 1is epimorphic,
4, Complements

We consider some functors, extremal monomorphisms and epimorphisms, coretrac-—

tions, and pullbacks preserving projections.

ié. let HMap £  vbe the category with maps of & as objects and commute~
tive squares in ‘f as maps, with composition defined by juxtaposition of squares,
If & is a category with injections, and P a subcategory of &, then the dia-

gram of (2.5,iii), with J and j' in 20 y defines an image functor and a

preimage functor, both from Map ¥ to Map f .

é:'é’ We call a category with injections ((t,’,}) locally small if, for

every object A of {,”, the maps in }o with codomain A , i.e. the subobjects
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of A, forma set. This is an ordered set; we denote it by A P, For a map

us: A~—>B of ? , we define an order preserving mapping uP s AP —>BP

by putting
j (wp) = ufj]

for jEAP., If (@,}) is locally small and ° a subcategory of &, this

defines a covariant direct image functor P, from % to the category of ordered
sets,
If ((5,}) is locally small and has inverse images, then for any map u :

A—>B of Q , we define a mapping u P* ¢ B P—>A P by putting

e = o513,

for j&B P . This defines a contravariant inverse image functor P*, from &

to the category of ordered sets.
i_'.-.=3' Using the términology of (2.7), we have the following result.

Proposition. If a factored category € has images and inverse images, then

the extremal epimorphisms of f form a subcategory of @.

Proof. If € is factored and has images, then (&,M) is a category with
injections, with extremal epimorphisms as projections. If ¥ has inverse images,
these projections form a subcategory of ‘6 s by (3.4).

We note the dual result, in a somewhat weaker form.

Propositions If g factored category &? has coimages and #pushouts,- then the
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extremal monomorphisms of f form a subcategory of i:’ .

4.4. We recall that a map u of € is called a coretraction of ? if u
f—— - — .

has a right inverse, i.e, if u v = Xu for some map v of .

Proposition. If all projections of ¥ are epimorphic in f, then all

coretractions of ff are injections. Conversely, if (‘,9 has finite products and

all coretractions of Lﬂ ere injections, then all projections of ‘f are epimorphic.

Proof. -Le'c u v =xu, and let u=p J be a decomposition, so that
p(jv)=cp. If p is epimorphic, it follows that (3v) p= pr ., .so that p
is isomorphic, and u € 3.

| Conversely, let pus=pv for péj) and u, v from A to B in £.
Using the notations of (3.7), we put f=J1,,u} and g=J1,v}. Then
pf=pg and f P, = g pl = 1A » If coretractions are inj?ctions, then p £ and
P & are decompositions of the same map. But then g=xf, p=7p x.l , for an
isomorphism x of. tf « It follows that 1A = i lA and v=xu . But then

X = lA and v=u, so that p is epimorphic.

.AL‘_..-—-S-' We say that pullbacks in a category with injections g preserve pro=-

jections if f C—:-.P = fl & P for every pullback diagram (3.7.1) in f;” .

Proposition. If (f, 2) has inverse images, then the following two statee

ments are logically equivalent.

(i) Whenever a pullback diagram (3.7.1) is given in Lo, and f[,j] is

defined, then g<_ff(j]] = fll-gf- [51 .
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(ii) Pullbacks in if preserve projections.

Proof. If f£& P in a pullback diagram (3.7.1), and if (i) holds, then

g = fle lxe)) = & [tlxs]) = TRE) = Br,

and fleP by (2.4.1). Thus (i) ==> (ii).

Conversely, consider diagrams

in which all squares are pullbacks. If a pullback diagram (3.7.1) is given and

ff j] is defined,‘ and if j f = p' j' is a decomposition, then the three squares
not involving p' and p" are defined. Since & p' j' = :jl fl €, there is a
map p* such that &, p'=p" g' and jl fl = p" j" . Thus the fourth square is
defined, and a pan_back bgr the result of [4] quoted above in (3.3). If p" elP,

then jl fl = p" j® 4is a decomposition, and hence
&
£.le,” [31] = 03] = & = & (3] = & [¢l3]]

if we assume, as we may, that j" 620 . Thus (ii) = (i) .

4.6. Ve say that inverse images in ( &, ,}) preserve projections if f 6]3
=> fle P in every pullback diagram (3.7.1) with g and & in} « In the
following result, the intersections exist as inverse images and are in } by (3.1).

Thus we may, and do, assume that they are in }o .
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(

Progositigg. If (f,}) has inverse images, then the following four state--

. ments are logically equivalent.
(i) f[jr\fef_g]] = frj] N g vhenever f[;}] and fe‘rg] are defined,
(ii) fff<—[j]] = jNim f whenever £<135] is defired.

(1i1) p[p [3]] o j whemever pe P and p<[3) is defined.

(iv) Inverse images in (E?,;) preserve projections.

Proof. Replacing j by o«f and g by J in (i), we have (i) == (ii) .
Replacing f by p in (ii), with imp = /S’p , we have (ii) ==> (iii).
In a pullback diagram (3.7.1), with g and Agl inj and f in P,

we have f¢ [e] g » and im (fl g) = frgl] = fffe[g]] ~g if (iii) holds,

But then g is an image of f

1
Now consider the two diagrams of the proof of (4.5), with g 62« and

g, and f € P . Thus (§i) => (iii) .

preP . 1r pPe P, then g, jf=7p" (3" g) is a decomposition, and
it [e)] = tlinel = fle, 3] = "¢ = eny' = gnitli)

if ve assume, as we may, that j" g is in }o « Thus (iv) ==> (i) .

4.7. Remarks. In a bicategory, (4.4) and J 2 may be strengthened to the

dual of (2.4.2): If uv is defined in ¥ and 1n9,, then ué} . See [2].

The category of Hausdorff spaces, with closed subspaces as subobjects, is a
bicategory in which inverse images do not preserve projections. This is easily
verified. The author does not have at present an example of a category with injec=-

tions in which projections are preserved by inverse images, but not by arbitrary

pullbacks.
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