ON FINITE GROUPS WHOSE p-SYLOW ȘUBGROUP ISA.T.I.SET
by

Henry S. Leonard, Jr. Report 67-4

February, 1967

Uniyersity Libraries

ON FINITE GROUPS WHOSE p-SYLOVI SUBGROUP

IS -A T, $I_{\#}$ SET $^{\mathrm{x}}$

Henry S* Leonards Jr,

Throughout this note we let p be a fixed prime and let G be a finite group whose fixed p-Sylow subgroup P is a T. I. set (trivial intersection . set)*. That is, the intersection of any* two distinct conjugates of P is <]>• Denote $|p|$ by $p^{\boldsymbol{a}} \#$ It is conjectured that if G has a faithful complex character X with $J \backslash^{\prime}(1) \leq p^{a / 2}-1$ then $P \ll G \in$ This has been confirmed in certain cases [4, page 287 and Lemma 4.2], [6, Theorem 4*33• In fact under certain conditions it is sufficient to assume \# (l) < ($\left.\mathrm{p}^{a} \sim 1\right) / 2$ [1 , Theorem 3]> [6 , Theorem 4<2], but in general the conclusion $P<G$ does not hold under this weaker assumption because of the presence of Suzúki's simple groups.

Our purpose here is to use Brauer ${ }^{f}$ s theory of the correspondence between $p-b l o c k s$ of a subgroup of G and p-blocks of G [2], [3] together with a result of Gorenstein and Walter [5 \% (46)] to obtain the theorem below which verifies the conjecture in the case that $C(V) . C N(P)$, where V is the group of p-regular elements of $C(P)$ e In particular for any counterexample of minimal order of the conjecture, we would have $C(P) £ P \quad Z(G) \#$

The notation is standard. If H is a subgroup of G then $N(H), C(H)$, and $Z(H)$ denote the normalizer, centralizer, and center of H • Denote Z(G) by Z, All characters are over the complex field\#

Assuming P is a T. $I_{\#}$ set, let B be p -block of G of defect 0 ,

This research was supported in part by National Science Foundation Grant
GP-4240.
and let D be a defect group of B with $D \mathcal{O}^{P}$ and with $|D|=p^{\text {d }}$. Then $N(D)$ C $N(P)$, and the p-Sylow group of $N(D)$ is normal in $N(D)$, Furthermore by $\left[2_{y}(80)\right]$ there is a block \widetilde{B} of $N(D)$ which corresponds to B in the sense of $\left[2,(75) 1^{*}\right.$ The defect group of B is the p-Sylow group of $N(D)\left[y_{y}(9 F)\right]>$ and is contained in $D \quad[2$, (8D)]« We must have $D=P$ • Thus every p-block of G has defect 0 or full defect a •

Vfe know that
(1)

$$
P C(P)=P X V
$$

where V is a group of order prime to p g Then every p-block of $P C(P)$ consists of the $\frac{p^{\circ}}{p}$ irreducible characters A^{\wedge} where \wedge is a fixed irreducible character of V and A ranges over all the irreducible characters of P , We shall denote this block by b(^) , ..

There is a one-to-one correspondence between the p-blocks of defect a of G and the classes $\left\{\wedge f^{\prime} \mathcal{j}\right.$ of irreducible characters of V associated in $N(P)$ $[2,(12 A)]$. Denote the block of G corresponding to $\{\$\}$ by $B(£ f)$, Then, according to [3 > (2D) J,
(2)

$$
\mathrm{b}(\$ r)^{G}=\mathrm{B}(\boldsymbol{T}),
$$

in the sense defined there. Every p-block of $N(P)$ is of defect a and must be of the form $b\left(9^{\prime}\right)^{N(P)}$ for some (3 f «. VJe denote this block by $\tilde{B}\left({ }^{\wedge} T\right)$. Then [3, (2C)] implies
(3)

$$
\tilde{B}\left(00^{\prime}\right)^{G}=B(\mathscr{N}) .
$$

LEMMA 1* An irreducible character ty off $N(P)$ jbelongf to $\tilde{B}(\tilde{N})$
if a.nd only if $\dot{v} \mid V$ has J^{\wedge} af a constit.uentur.

Proof, Let XL be an algebraic number field of finite degree containing the- $|N(P)|$-th roots of unity* Let o be the ring of algebraic integers in 括, and let $\underset{\sim}{p}$ be a•prime ideal of ${ }^{\circ}$ o containing p *

If we apply (2) to $N(P)$, it follows- from $[2>(12,2)]$ that for $t y e \wedge\left(c^{\wedge}\right)$ and $v e V$ we have

$$
\frac{|N(P)| \mathscr{I}(1)}{|C(v) A N(P)|} \frac{\psi(v)}{*(D-w} \quad\left(\sum_{P} M\right) .
$$

Here w ranges over the elements of V which are conjugate to v in $N(P)$ * Hence'
where ${ }^{\wedge} 3^{\prime \prime}$. ranges over the associates of \wedge in $N(P)$ and q is the number of these associates. But, since $V\langle N(P)\rangle$
(4)

$$
\psi \left\lvert\, V=\frac{\psi(1)}{q^{\prime} q^{\prime}(I)} \sum_{\left\{N^{\prime}\right\}} N_{j}^{t}\right.
$$

 These last two relations yield a congruence relating the values of pf i and its associates to those of <\$" ${ }^{a} n d$
its associates. However, the irreducible characters of V are linearly independent $(\bmod \overrightarrow{\mathrm{p}}) \cdot[2,(3 C)]$. Therefore <!? and ${ }^{\wedge}$ 》 are associates in $N(P)$ > and the lemma follows from (k)*

Let D denote the set of $p \sim$ singular elements of G whose p-factor is in the fixed p-Sylow subgroup P o Let B be a p-block of G and let $f_{ \pm}$e B • Then
(5)

$$
/ f t I N(P)=\sum_{j} a_{i j} \quad \dot{\psi}_{j}
$$

where the ty j are the irreducible characters of $N(P)$ and the $a \cdot{ }^{\wedge} \mathfrak{\jmath}$ are integers. Then according to [5 > (46)]

where we have summed only those terms for which ty, e B and $B=B$ for some block $\stackrel{\sim}{B}$ of $N(P)$ «
 $P l_{i} \mid V$ is an associate in $K(P)$ of ${ }^{\wedge}$ « In particular, if $£ f==1$ then the kernel of $O f$ contains \mathbf{i} •

Proofs For $p\left({ }_{i}\right.$ vie have an equation of the form -(5) • It follows from (3) and (6) that

$$
* \quad \sum_{\psi_{j} f \hat{B}(g)}{ }^{a_{i j}} \psi_{j}
$$

vanishes on $P-\{l\}$ • Hence ty $\mid P$ must be a multiple of the character of the regular representation of P, so $p^{a} \mid \wedge(1) \cdot$ Since. ${ }^{\wedge} C \wedge$ is not范 vof defect $0>\boldsymbol{N}^{\boldsymbol{2}}(1)<p$. Hence ty is identically zero, and (5) and (6) have.the same terms* The lemma now follows from Lemma 1 *

In particular, $B(l y)$ is the principal block (containing the principal character $1 Q$ of G) ,
 Proqfo It follows from Lemma 2 that $\rho \overrightarrow{y^{(}}$has a non-principal constituent in $B(l)$, and that this constituent has V in its kernel,

REMARK* If G has a non-principal character ${ }^{*} \neq\left(\right.$ such that $X I^{v}$ is irreducible then without use of the lemmas we see easily that G has a normal subgroup $M \wedge G$ containing either P or V.

THEOREM . Stippese the p-S^flow subgroup P of G is a T. I_{0} set and. thajb ClV$) \mathrm{S} \mathrm{K}(\mathrm{P})$, $\ddagger \mathrm{f}$. G has -a . $1 \Delta \mathrm{ithftl}$ eharacter $\%$ atl of whese constituents have degress $\leqslant(p+1) \sim$ tien_ $P^{\wedge} G$,

Prof Suppose the statement is false and that G is a counterexample of minimal order ${ }_{\#}$ If for every constituent pTo of $\%, \mathrm{X}_{\mathrm{o}} \mathrm{I}^{\mathrm{PV}}$ is irreducible then $Z(P) £ Z(G)$ and $P<3 G$; which is not the case. Hence for some constituent $\%_{Q}$ of $X>\%_{o} I^{p v}$ is reducible* Then $X_{o} \quad X_{o}$ has a constituent $p\left(.^{\wedge} 1\right.$ such that $\operatorname{lp}_{\mathrm{v}} £=\mathrm{PC}-, \notin \mathrm{PV}$ • By Lemma $2 \wedge$ V£K, the kernel of X_{x} • Either $K N(P)=G$ or $P<3 K N(P)$ • In the first case, $\%, \downarrow \mathrm{~J}\}(\mathrm{P})$ is irreducible and then $\mathrm{P} C^{\wedge}-K<Q G *$ By the minimality of $\mathrm{G}>\mathrm{P} 4 \mathrm{~K}<\mathrm{G}$, which is not the case.

Thus $\mathrm{P}<3 \mathrm{KN}(\mathrm{P}) \wedge$ Then $\mathrm{KHP}=1$ since $\mathrm{P}^{\wedge} \mathrm{G}$. Hence $\mathrm{KP}=\mathrm{KX} \mathrm{P}$, so $\mathrm{V} j \notin K<£ \mathrm{~V}$, and $\mathrm{V}<\mathrm{G}_{\mathrm{e}}$ Then $\mathrm{P} A \mathrm{~V} \mathrm{C}(\mathrm{V})<\mathrm{J} \quad \mathrm{G}$ so $\mathrm{P}<3 \quad \mathrm{G}$. This Is a contradiction and the proof Is complete*

REFERENCES

$l_{0} R \ll$ Brauer, On ^ToUJQ^ whose order icontain^ a frime number to t^e first

 2. ${ }^{\text {2. }}$ (Z_{p} Zur Darstellungstheorie der Sruggen £2^1icher Ordnung,3*__ Zur Parstellunggthec>rie der Gruggen endlicher Ordnung II, Math, z- $72 \wedge$ T1959), $25^{\wedge "-~}$
$k^{*} \mathrm{~W}, \mathrm{Feit}$ Groups which have ci ^faithfiil reoresentatdon^^gf fl^reejb^s

5» D. Gorenstein and J. H. Walter, On finite grougs witih' dihedral^

$6_{0} \quad H_{o} S^{\wedge}$ Leonard^ $\mathrm{Jr}_{\#}$, On J^{\wedge} nite ${ }^{\wedge}$ £Tfups which contain a FrobenijDLS factor group, Illinois J_{s} Math, 9 (1965)," $47 \wedge 50$.

