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NORMAL BASE COVPACTI FI CATI ONS

by
Richard AA. Alo and H L. Shapiro

In 1964, Orin Frink (see [2]) in his paper on 'Conpacti -
fications and seni-normal spaces®' introduced the notion of a
normal base Z to construct Hausdorff conpactifications of
conmpl etely regul ar T.l spaces. For a nornmal base Z of a
'corrpl etely regul ar 'I'..JL space, he constructed for his conpacti -
fication the space co(d of all Z - ultrafilers. He showed
that the Al exandroff and Stone-Cech conpactifications of a space
X can be obtai ned as spaces co(2 ‘. He then raised the question
as to whether every Hausdorff conpactification Y of a space X
can be obtained in this way.

Recently O av Nyastad ([3]) gave an affirmative answer to
this question for several inportant conpactifications. His
approach utilized a condition on the unique proximty associated
wi th a Hausdorff conpactification.

I'n another paper (see [1]) the authors gave a simlar
answer for a w der class of conpactifications. Qur approach
utilized necessary and sufficient conditions on the nornal base
Z(X) associated with the space X .

In this paper we consider another approach to the solution
of Frink's problem W consi der the normal base Z(Y) associated

with the Hausdorff conpactification Y of the space X . W
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give sufficient conditions on the base Z(Y) for the famly Z(X)

of intersections of X wth nmenbers of Z(Y) to be a nornal

base,. We also give sufficient conditions for Y to be homeonorphic
to co(ZX) .

A normal base is said to be regular if each of its nénbers
is a regular closed set™ that is a set which is the closure of
its interior. It wll folIbm1fron1our t heorens that every
conpactification which has a normal base that is also regular can
be obtained as a Frink conpactification. Thus Frink*s problem
can be solved if it can be shown that every conpactification has
a normal base that is also regular. | ‘

We have not shown this in general but we can show it for
particul ar cases like a closed cube - a product of closed intervals.
Thus we have shown that the closed cube is a Frink conpactification
of each of its dense subspaces. In particular the unit disk is
such a conpactification. |In his paper [3] N astad was not sure

if this was the case.

DEFINITIONS. A famly Z of subsets of a space Y is a

ring if it is closed under finite unions and finite intersections.

It is disjunctive if for every closed set F in Y and for

every point x not in F there is a Z in Z such that x
isin Z and FDZ=fi. W say that Z 1is normal if disjoint
menbers A, B of Z are contained in disjoint conpl enents of
menbers of Z .

W say that Z is space separating if whenever a nmenber

Z of Z is disjoint froma subspace X of Y there fs a




Z' in Z that is disjoint from Z and contains S . W say
X is 7-dense in Y if cly(Xn2z =2z for all Z in Z.

A normal base for X is a base z for the closed subsets

of X that is a normal disjunctive ring of sets.

THEOREM 1. Suppose that X is_a. subspace of Y , and that

2(Y) is anormal base on Y . 1j. Z(Y) is_space _separating then
the trace z(X) of. zOO wth X. JLE a. normal base on X .

Proof. It is easy to verify that z(X) is a ring of sets.
Let FY be a closed set in Y whose trace in X is the closed
set F . If x in X is any point not in F then x 1is not
in F,. The di sjunctive property of z(") gives a Z, in z(")
that is disjoi .nt from FY and does not contain x . Hence z(X)

Is disjunctive. _
Let A(‘:‘ and BY be subsets of z(Y) whose traces with
X give the disjoint subsets A and B of .z(X)' . Since
Ay H_By_TI X = fi and since z(Y) i° space separating there is
a Z, in z(Y) such that X 1is included in %( and Zz
is disjoint from Ay n®% « Let C, - Z, n Ay and Dy:thn By
The sets CY and DY ar_e di sjoint nenbers of z(Y) and hence

must be contained in disjoint conplements EYT and F;, of

members of z(Y) . The traces of E ' and F,/ with X are
_ Y . Y :

conpl ements of menbers of z(*) which include A and B
respectively. Hence z(X) is normal and this conpletes the proof.
In trying to show that a nornal base for a space Y is

hereditary to subspaces X g it is the property. of normality which




produces the nost difficulty. As with normal spaces, the property
that a famly of subsets is a normal famly is not heredi t_'ary.

It is interesting however, that if the subspace X is a nmenber

of the normal base for the space Y , then the normality of

the famly is inherited. This is given in the follow ng corollary
of our theorem

COROLLARY 1. JE X JLs ja_subspace of ji_space Y and if

Z(Y) j__L§_§é normal_base for Y _which_contains X then the trace

z2(X) Gf z(Y) with X jy3 a normal base for X .

CORCLLARY 2. Suppose that X jLs. a._dense subspace of Y

~and that z(Y) is a'normal base for Y . |IJE X is" 7(Y) -dense

in Y then the trace z (X 1B ja normal base on X .

Pr oof . If X is dense in Y then X z(")-dense i" Y
i mplies vacuously that z(Y) is space separating. Thus our

t heorem hol ds.

CORCLLARY 34 If X is a conpact closed subset of a nornal
(not necessarily T.l) space Y and if z(Y) is a normal base
on Y, then the trace z(X) is @ normal base on X .

Proof. If X satisfies the conditions of the hypothesis,
then z(Y) is space-separating with respect to the subspace X .
The conclusion follows from Theorem 1:

If Y is aclosed real interval and X is any dense subspace
of Y , each having the usual topologies, Frink has found a nornal
base for Y such that X is z(Y)-dense in Y . Let L and R

be the set of rationals and irrationals, respectively, in Y .




Then L and R are disjoint dense subsets of Y . A base for

the closed sets of Y. is the fanily, z > of finite unions of
closed intervals [1 , r] where 1 and r are in L and R
respectively. The intervals [1 , r] are regular closed intervals

and it is easy to see that_ Zz is a normal base for Y which is

al so regul ar. Since each interval contains an open set and X

is a dense subspace of Y , it follows that X is z-dense in Y .
The following |emma gives an equival ent condition for a

subspace. X to be z(Y)~9®"se jp Y

LEMVA. JUL X JLS* _a_subspace of Y and if_. z i§ JL normal

base for Y , then -the followi ng statements are equival ent:

(1) X JLS z-dense in Y .
o

2 reach Z jm 2z and for each open _ set V jln Y 3

if V meets Z then V fl * meets X

Proof. Suppose that condition (1) holds. Let V be any
open subset of Y that neets-a Z in z &~ |°" p be any
point in V fI Z . The point p is not in the closed set Y - V
and so by the disjunctive property there is a 2Z< in z |
Containing p and disjoint from Y - V . Then V h S = I
non-enpty since p isin Z' nz, cl §21 fl ZnX =27 n% >
and Z' is included in V . Thus (1) inplies (2 .

Finally, it is clear that cly(X n 2Z) is included in Z .
If p is any point of Z and V is any neighborhood of it, then
V D Z .is non-enpty. Assuming statenent (2) it follows that p

is incly(Xn Z) and that cIY(X n Z) = Z . This conpletes the

proof .
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In [1] the authors showed the following theorem W state it

here so that we may refer to it in the proof of our final theorem

THEOREM 2 . .Let Y be a, Hausdorff conpactification_of X
X

Then Y Js honmeonorphic to _a_space to(Z(X)) _if_and only _j has

a. normal base Z(X) that satisfies:

(a) cIY(AnB) =cly Afl clyB or aJA A B _in zZX

(b) For each y |[m Y aid each neighborhood V dE vy

there is a. Z [In Z(X) _such_that y jl§ _in clY Z c V.

"THEOREM 3. Let Y be a. Hausdorff compactification of ci

space X and let Z(Y) bB ci_normal base_for X _Then Y 1is

homeormrphié to ja space cc(Z(X)) where Z(X) JS the trace of

Z(Y) in X if X is. Z(Y) -dense rn Y.

Proof. First we note that by Corollary 2 if X is Z(Y)-dense
then Z(X) is indeed a normal base. W show that conditions (a)
and (b) of Theorem 2 hold for Z(X) .

Let EY and FY be menbers of Z(Y) whose traces in X are.
the menbers E and F respectively of Z(X) . Then since X is
Z(Y)-dense in Y we have that <cl,(E, DF, fI X) = E OFY =
cly(Ey n X) ncly(Fy n X) and condition (a) follows.

If p is in Y and G is any open set containing it then
there is ZY in Z(Y) such that p is in %{ and ZY is dis-

joint from Y - G Si nce ZY is non-empty and X is Z(Y) -dense
then p is in ZY= ClY(Zx' n xX) = cIY Z which is included in G

Thus condition (b) holds. This conpletes the proof.

If a subspace X s dense in a space Y then every non-enpty

regular closed set in Y will meet X Thus our Theorem 3 shows

F
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t hat every Hausdorff conpactification Y which has a normal base
that is also regular is a conmpactification in the sense of Frink
of each of its dense subspaces. |In particular, our exanple of a

closed real interval, as discussed previously, has this property.

Corol |l ary. If the conpact Hausdorff space Y has a regular
normal base then Y is a Frink type conpactification of each of
its dense subspaces, |

A space is zero-dinensional if it has a base for the closed

sets of closed and open (clopen) sets. |In a conpact Hausdorff

space this base is normal and thus it is a regular normal base.

THEOREM 4. Every zero di nensi onal Hausdorff conpactification

is a._Frink type conpactification of each of its dense subspaces.

Every cube Q that is a product of closed real intervals

has a norral base of regular closed sets. This normal base is

obtained in a manner simlar to that for the closed interval. For
a and b in Q we define a£b to nean a.JE b.:| for all |
in the indexing set J where a=(a.) . _ and b= (b.) . _

A closed interval [a, b] in Q is the set of all x in Q

subh that a < x < b. Abase for the closed sets in Q is the
collection of all finite unions of closed intervalé (see [4]).

Let L and R be two disjoint dense subsets of Q For a finite
subset F of the indexing set J, let B(F) be the set of al

X in Q such that % <. x. < r. for j in F where 1 = (/.)
3 D D . D

and r = (r?) are menbers of L and R respectively. It is
easy to see that B(F) is the closure of the open set which con-

sists of all x such that JiJ <x? <r? for j] in F.  The
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collection of sets which are finite unions of sets of the form
B(F) also forma base for the closed sets in Q In fact this
famly forns a nornmal base that is also regular. Thus, as stated
in the follow ng theoren1 we have answered Frink's question for

t he cube.

THEOREM 5.  The Conpéct Hausdor f f space Q which iS t he

arbitrary product of closed real intervals is _a Frink type

conpactification of each of its dense subspaces.

Proof. Since Q hés a normal base Z which is also regular,
each menber of the base nusf nmeet any dense subspace X. This
inplies that X is Z-dense in Q and our Theorem 3 applies.

Gllman and Jerison (see [5],, page 95) state that a space X
i's pseudoconpact if and only if every non-empy zero set in JSX
‘(the Stone-Cech conpactification of X) neets X It follows then
that if Y is any Hausdorff conpactification of a pseudooonpéct space X
t hen every noh-enpty zero set in Y neets X  The colléction of

zero sets of a conpletely regular space X forms a nornal base.

THEOREM 6. Every conpact Hausdorff space Y lis_ji. Fri nk type

conpactification of each of its dense pseudoconpact (and therefore

count abl e conpact and sequentially conpact) subspaces X

Proof. The theoremw || foIIOM/fron1Theoren13 if we show
that t he pseudoconpact space X is Z(Y) dense in Y where
Z(Y) is the nornal base of zero sets of Y. Let Z be a non-
enpty zero set in Y. dearly CY(Z DX) ¢ Z Let G be an open
set in Y such that G contains a point p of Z Since the

complement of G is a closed set in Y, there is a nenber Z
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Q_c'.

in Z(Y) such that p is in Z and Z*

is contained in G

The zero set Z 0 z is non-enmpy and hence nust neet the

pseudoconpact space X. Thus the arbitrary open set G neets

X0z and cy(Z n X) = Z

In a conpact Hausdorff space, zero-dinmension is equivalent to

totally disconnected (the component of each point of the space

consi sts of the- point alone), and-strongly zero-di nensi ona

(every nei ghborhood of a closed set contains an open-cl osed

nei ghbor hood of the set).

A nmetric space (X d) is an ultranetric space if the netric

d satisfies the condition
d(x,y) < sup(d(x,z),d(y,z)}

for all x,y,zeX In an ultranetric space the sets S(x,e) =

{yeX: d(x,y) < e] are closed and open. Hence every ultranetric
conpactification is a Frink conpactification of each of its

dense subspaces.
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