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NORMAL BASE COMPACTIFICATIONS

by

Richard A. Alo and H. L. Shapiro

In 1964, Orrin Frink (see [2]) in his paper on !Compacti-

fications and semi-normal spaces1 introduced the notion of a

normal base Z to construct Hausdorff compactifications of

completely regular T. spaces. For a normal base Z of a

completely regular T.. space, he constructed for his compacti-

fication the space co(Z) of all Z - ultrafilers. He showed

that the Alexandroff and Stone-Cech compactifications of a space

X can be obtained as spaces co(Z) . He then raised the question

as to whether every Hausdorff compactification Y of a space X

can be obtained in this way.

Recently Olav Njastad ([3]) gave an affirmative answer to

this question for several important compactifications. His

approach utilized a condition on the unique proximity associated

with a Hausdorff compactification.

In another paper (see [1]) the authors gave a similar

answer for a wider class of compactifications. Our approach

utilized necessary and sufficient conditions on the normal base

Z(X) associated with the space X .

In this paper we consider another approach to the solution

of Frink1s problem. We consider the normal base Z(Y) associated

with the Hausdorff compactification Y of the space X . We
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give sufficient conditions on the base Z(Y) for the family Z(X)

of intersections of X with members of Z(Y) to be a normal

base,. We also give sufficient conditions for Y to be homeomorphic

to co(Z(X)) .

A normal base is said to be regular if each of its members

is a regular closed set^ that is a set which is the closure of

its interior. It will follow from our theorems that every

compactification which has a normal base that is also regular can

be obtained as a Frink compactification. Thus Frink*s problem

can be solved if it can be shown that every compactification has

a normal base that is also regular.

We have not shown this in general but we can show it for

particular cases like a closed cube - a product of closed intervals.

Thus we have shown that the closed cube is a Frink compactification

of each of its dense subspaces. In particular the unit disk is

such a compactification. In his paper [3] Njastad was not sure

if this was the case.

DEFINITIONS. A family Z of subsets of a space Y is a

ring if it is closed under finite unions and finite intersections.

It is disjunctive if for every closed set F in Y and for

every point x not in F there is a Z in Z such that x

is in Z and F D Z = fi . We say that Z is normal if disjoint

members A , B of Z are contained in disjoint complements of

members of Z .

We say that Z is space separating if whenever a member

Z of Z is disjoint from a subspace X of Y there is a



Z1 in Z that is disjoint from Z and contains S . We say

X is 7-dense in Y if cly(X n Z) = Z for all Z in Z .

A normal base for X is a base z for the closed subsets

of X that is a normal disjunctive ring of sets.

THEOREM 1. Suppose that X is a. subspace of Y , and that

2 (Y) is a normal base on Y . Ij. Z (Y) is space separating then

the trace z(X) of. zOO with X JL£ a. normal base on X .

Proof. It is easy to verify that z(X) is a ring of sets.

Let F be a closed set in Y whose trace in X is the closed

set F . If x in X is any point not in F then x is not

in F . The disjunctive property of z(Y) gives a Z in z(Y)

that is disjoint from F and does not contain x . Hence z(X)

is disjunctive.

Let Â ^ and B be subsets of z(Y) whose traces with

X give the disjoint subsets A and B of z(X) . Since

Ay H By Tl X = fi and since z(Y) is space separating there is

a Z in z(Y) such that X is included in Z and Z

is disjoint from Ay n By • Let Cy - Zy n Ay and Dy = Zy n By

The sets C and D are disjoint members of z(Y) and hence

must be contained in disjoint complements E T and F ! of

members of z(Y) . The traces of E ' and Fy
! with X are

Y Y

complements of members of z(x) which include A and B

respectively. Hence z(X) is normal and this completes the proof.

In trying to show that a normal base for a space Y is

hereditary to subspaces X 9 it is the property of normality which



produces the most difficulty. As with normal spaces, the property

that a family of subsets is a normal family is not hereditary.

It is interesting however, that if the subspace X is a member

of the normal base for the space Y , then the normality of

the family is inherited. This is given in the following corollary

of our theorem.

COROLLARY 1. JjE X JLs ja subspace of ji space Y and if

Z(Y) jLs <a normal base for Y which contains X then the trace

Z(X) ojf z(Y) with X jLj3 a. normal base for X .

COROLLARY 2 . Suppose that X jLs. a. dense subspace of Y

and that z(Y) is a normal base for Y . IjE X is^ 7 (Y) -dense

in Y then the trace z (X) JLJB ja normal base on X .

Proof. If X is dense in Y then X z(Y)-dense in Y

implies vacuously that z(Y) is space separating. Thus our

theorem holds.

COROLLARY 3# If X is a compact closed subset of a normal

(not necessarily T..) space Y and if z(Y) is a normal base

on Y , then the trace z(X) is a normal base on X .

Proof. If X satisfies the conditions of the hypothesis,

then z(Y) is space-separating with respect to the subspace X .

The conclusion follows from Theorem 1:

If Y is a closed real interval and X is any dense subspace

of Y , each having the usual topologies, Frink has found a normal

base for Y such that X is z(Y)-dense in Y . Let L and R

be the set of rationals and irrationals, respectively, in Y .



Then L and R are disjoint dense subsets of Y . A base for

the closed sets of Y is the family, z > of finite unions of

closed intervals [1 , r] where 1 and r are in L and R

respectively. The intervals [1 , r] are regular closed intervals

and it is easy to see that z is a normal base for Y which is

also regular. Since each interval contains an open set and X

is a dense subspace of Y , it follows that X is z-dense in Y

The following lemma gives an equivalent condition for a

subspace. X to be z ( Y ) ~ d e n s e in Y .

LEMMA. JLIL X JLŜ  _a subspace of Y and if . z i§. JL normal

base for Y , then the following statements are equivalent:

(1) X JLS z-dense in Y .

(2) For each Z jm z and for each open set V jLn Y 3

if V meets Z then V fl z meets X .

Proof. Suppose that condition (1) holds. Let V be any

open subset of Y that meets a Z in z an<^ le^ p be any

point in V fl Z . The point p is not in the closed set Y - V

and so by the disjunctive property there is a Z< in z

containing p and disjoint from Y - V . Then V n z Pi x is

non-empty since p is in Z1 n Z , cl (Z1 fl Z n X) = Z! n z. >

and Z! is included in V . Thus (1) implies (2) .

Finally, it is clear that cly(X n Z) is included in Z .

If p is any point of Z and V is any neighborhood of it, then

V D Z is non-empty. Assuming statement (2) it follows that p

is in cly(X n Z) and that cl (X n Z) = Z . This completes the

proof.
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In [1] the authors showed the following theorem. We state it

here so that we may refer to it in the proof of our final theorem.

THEOREM 2 . Let Y be a, Hausdorf f compactif ication of X.

Then Y JL_s homeomorphic to _a space to(Z(X)) if and only if X has

a. normal base Z(X) that satisfies:

(a) cl (A n B) = cl y A fl cl y B for aJA A, B _in ZX.

(b) For each y jm Y arid each neighborhood V ojE y

there is a. Z jln Z(X) such that y jLsi _in cl Z c V.

THEOREM 3. Let Y be a. Hausdorff compactification of ci

space X and let Z (Y) bjB ci normal base for X. Then Y is

homeomorphic to ja space cc(Z(X)) where Z(X) JL_S_ the trace of

Z (Y) in X if X is Z (Y) -dense rn Y.

Proof. First we note that by Corollary 2 if X is Z(Y)-dense

then Z(X) is indeed a normal base. We show that conditions (a)

and (b) of Theorem 2 hold for Z(X) .

Let E and F be members of Z(Y) whose traces in X are

the members E and F respectively of Z(X) . Then since X is

Z(Y)-dense in Y we have that cl y(E y D Fy fl X) = Ey OF =

cl y(E y n X) n cl y(F y n X) and condition (a) follows.

If p is in Y and G is any open set containing it then

there is Z in Z(Y) such that p is in Z and Z is dis-

joint from Y - G. Since Z is non-empty and X is Z(Y) -dense

then p is in Z = cl (Z n X) = cl Z which is included in G.

Thus condition (b) holds. This completes the proof.

If a subspace X is dense in a space Y then every non-empty

regular closed set in Y will meet X. Thus our Theorem 3 shows
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that every Hausdorff compactification Y which has a normal base

that is also regular is a compactification in the sense of Frink

of each of its dense subspaces. In particular, our example of a

closed real interval, as discussed previously, has this property.

Corollary. If the compact Hausdorff space Y has a regular

normal base then Y is a Frink type compactification of each of

its dense subspaces,

A space is zero-dimensional if it has a base for the closed

sets of closed and open (clopen) sets. In a compact Hausdorff

space this base is normal and thus it is a regular normal base.

THEOREM 4. Every zero dimensional Hausdorff compactification

is a. Frink type compactif ication of each of its dense subspaces.

Every cube Q, that is a product of closed real intervals,

has a normal base of regular closed sets. This normal base is

obtained in a manner similar to that for the closed interval. For

a and b in Q we define a £ b to mean a. £ b . for all j

in the indexing set J where a = (a.) . _ and b = (b.) . _.

A closed interval [a, b] in Q is the set of all x in Q

such that a <^ x <^ b. A base for the closed sets in Q is the

collection of all finite unions of closed intervals (see [4]).

Let L and R be two disjoint dense subsets of Q. For a finite

subset F of the indexing set J, let B(F) be the set of all

x in Q such that %, <. x. <. r. for j in F where 1 = (/.)
3 D D • D

and r = (r.) are members of L and R respectively. It is

easy to see that B (F) is the closure of the open set which con-

sists of all x such that Ji. < x. < r . for j in F. The
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collection of sets which are finite unions of sets of the form

B (F) also form a base for the closed sets in Q. In fact this

family forms a normal base that is also regular. Thus, as stated

in the following theorem, we have answered Frink!s question for

the cube.

THEOREM 5. The compact Hausdorff space Q which is the

arbitrary product of closed real intervals is _a Frink type

compactification of each of its dense subspaces.

Proof. Since Q has a normal base Z which is also regular,

each member of the base must meet any dense subspace X. This

implies that X is Z-dense in Q and our Theorem 3 applies.

Gillman and Jerison (see [5],, page 95) state that a space X

is pseudocompact if and only if every non-emtpy zero set in JSX

(the Stone-Cech compactification of X) meets X. It follows then

that if Y is any Hausdorff compactif ication of a pseudooompac t space X

then every non-empty zero set in Y meets X. The collection of

zero sets of a completely regular space X forms a normal base.

THEOREM 6. Every compact Hausdorff space Y iis ji Frink type

compactification of each of its dense pseudocompact (and therefore

countable compact and sequentially compact) subspaces X.

Proof. The theorem will follow from Theorem 3 if we show

that the pseudocompact space X is Z(Y) dense in Y where

Z(Y) is the normal base of zero sets of Y. Let Z be a non-

empty zero set in Y. Clearly c (Z D X) c Z. Let G be an open

set in Y such that G contains a point p of Z. Since the

complement of G is a closed set in Y, there is a member Z!



in Z(Y) such that p is in Z' and Z1 is contained in G.

The zero set Z' 0 z is non-emtpy and hence must meet the

pseudocompact space X. Thus the arbitrary open set G meets

X 0 z and cy(Z n X) = Z.

In a compact Hausdorff space, zero-dimension is equivalent to

totally disconnected (the component of each point of the space

consists of the- point alone), and strongly zero-dimensional

(every neighborhood of a closed set contains an open-closed

neighborhood of the set).

A metric space (X,d) is an ultrametric space if the metric

d satisfies the condition

d(x,y) < sup(d(x,z) ,d(y,z) }

for all x,y,zeX. In an ultrametric space the sets S(x,e) =

{yeX: d(x,y) < e] are closed and open. Hence every ultrametric

compactification is a Frink compactification of each of its

dense subspaces.
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