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Abstract

In simple electrical flow problems the Dirichlet integral

of the potential function gives the electrical conductance.

Moreover the Dirichlet integral of an arbitrary function satis-

fying the boundary condition gives an upper bound for the

conductance. This last property (Dirichlet's principle) does

not hold if the boundary value problem is not self-adjoint.

This paper develops new algorithms for estimating the conductance

The proof of these algorithms replaces the Dirichlet principle

with the elliptic maximum principle. There is an analogous

discrete problem for conductance of electrical networks of the

non-reciprocal type. The conductance problem both for contin-

uous bodies and discrete networks can be treated by a single

postulational theory.
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Estimating Dirichlet!s Integral and Electrical Conductance
For Systems Which Are Not Self-Adjoint*

R. J. Duffin

1. Introduction

Let the function v(xJ?yJ,z) be harmonic in a region R and

be prescribed on the boundary of R. Then the Dirichlet integral

is the quadratic functional

a classical problem of numerical analysis is to estimate & from

a knowledge of the boundary values of v. The interest of this

problem in applied mathematics is that the value of & can be

used to determine electrical conductance of a uniform conducting

body in the shape R. (An equivalent problem concerns thermal

conductance). In previous papers [1^2,3] we treated this problem

by !lumping! the body R into an electrical network with a finite

number of junction points. By means of such lumped networks it

was possible to obtain upper and lower bounds for & .

This paper is also concerned with estimating quadratic

functionals such as & but now it is not required that the bound-

ary value problem be self-adjoint. The difficulty of the non

self-adjoint case is that it cannot be assumed that & is a mini-

mum as in self-adjoint problems. In other words^ Dirichlet1s

principle cannot be used. However the maximum principle solutions

of elliptic partial differential equations remains valid and proves
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effective in estimating $ • More precisely it is shown here

that there are simple formulae giving upper and lower bounds for

& in terms of a function v which satisfies the boundary condition

but is arbitrary otherwise. These formulae serve to give an approxi-

mate evaluation of the electrical conductance between two parts of

the conductor.

Lumped electrical networks which are not self-adjoint have

been termed !non-reciprocal.! In a previous paper [4] we analyzed

a class of non-reciprocal networks termed positively connected

networks. It is shown here that an analog of the maximum principle

applies to such networks. It is then seen that the maximum prin-

ciple can be employed to give estimation formulae for the joint

electrical conductance between two terminals of the network.

It seems desirable to have an abstract theory which would

lead to the above formulae both for continuous bodies and discrete

networks. To this end a postulational treatment^ is formulated.

We term this postulational system an * elliptic fluency.1

To motivate the analysis we first discuss a very common situ-

ation leading to a boundary value problem not in self-adjoint form.

It is common because the. earthTs magnetic field is ubiquitous.

2. Dirichlet!s principle is false on Earth

Let R be an isotropic and homogeneous conducting body and over

a part A of the surface of the body let the electrical potential

v be prescribed. Let C denote the rest of the surface of R

and let this part be insulated. Then on C the boundary condition

is Bv/dn = 0 wliere n denotes the exterior normal. In the steady



state the current density vector j satisfies

(1) j = -G Vv (Ohm!s law)

where the scalar G is the specific conductivity and v is a

harmonic function taking on the'prescribed boundary values.

This is a self-adjoint boundary value problem with mixed

Dirichlet and Neumann boundary conditions. According to

Dirichlet?s principle the solution can be obtained by minimizing the

Dirichlet integral & over the class of functions which satisfy

the boundary condition on A. It is not necessary to require that

the boundary condition on C be satisfied because this is a

natural boundary condition.

Now suppose the body is subjected to a uniform magnetic field

H in the z-direction. Then as Hall founds Ohm's law changes to

j = _G ̂  -C |2LJK ox

j = _o |
Jz oz

Here £ is a constant proportional to the magnetic field strength

By the conservation of electricity the divergence of the current
2

vanishes. Thus V • j = o and because of' (2) V v = 0. Thus v

is again harmonic inside R. The boundary condition on C, the

insulated part of the boundary, is that the normal component of j

vanishes, j = 0 . This is not the same as dv/dn == 0 unless

C = 0. This boundary condition for the Hall effect is not of the

standard self-adjoint form. It may be shown that the problem

adjoint to this one corresponds to replacing C t»y -£ . Tnis'



is equivalent to reversing the direction of the magnetic field.
2

The power supplied to a unit volume is -j • Vv = G(Vv) .

Thus the total power input is Q = G &(v), and hence proportional

to the Dirichlet integral * (v) . However A(v) is not a minimum

value or a stationary value relative to the class of functions

which satisfy the boundary conditions. This fact was known to

Maxwell [5]. However the power input Q is still an important

physical quantity not only because of its electrical significance

but also because it is transformed into heat. Consequently it

is desirable to have formulae which estimate &(v).

3.: The concept of an elliptic fluency

This paper treats estimation formulae which pertain to a

larg:e class of physical systems. In these systems there is a

steady flow of a "fluid" resulting from a distribution of "potential."

The system just described concerning the Hall effect is an example.

To bring out the salient features and to unify the proofs, an ab-

stract postulational treatment is now developed for such systems.

An elliptic fluency S is defined by the following conditions:

A. Let R be a region of space

B. There is a Borel measure /i defined on R.

C. There is a class of functions P termed "potentials" which

are continuous and bounded on R.

D. With each potential v there is associated an absolutely

integrable function w termed a "current source."

E. If a non-constant potential v has a global supremum (infi-

mum) M > 0 (M < 0) then there is a point t such that



M = v(t ) and in any neighborhood of t there are points

t where w(t) is positive (negative)•

F. There exists a related system S* satisfying A, B, C -j and

D such that

\ vW dju = \ Vw
R JR

where veP and VeP*, the class of potentials for S*.

System S* is termed the adjoint of S. Postulate E is termed

the maximum principle and postulate F is termed the reciprocity

principle. The current I entering R through the measurable set

A is defined to be

I = J w d/x.
A

The power input Q is defined to be

Q = ] vw dju.
R

Theorem 1. Suppose that a potential function v of an elliptic

fluency satisfies the relation E >̂  v >_ 0 on a measurable set

A for some constant E. Suppose that the corresponding current

source function w vanishes on the set K complementary to A.

Then the power input

Q = j v w d/x satisfies the following inequalities
R

) VWdJU + E ] W"d/Z < Q < ) VWdjLt + E J W+dfi
A K A K

Here W is the current source in the adjoint system corresponding

to a potential V such that V = v oil A but otherwise V is

arbitrary.



Proof. Here

W + = max (W,0) is the positive part of W.

W~ = min (W^O) is the negative part of W.

The potential v has a supremum M by postulate C. First

suppose that M > E then v is not constant. If follows from

the maximum principle that v(tQ) = M at a certain point tQ

and that w > 0 at points t. in any neighborhood of tQ. The

points t. are in A because w = 0 in K and so v(t^) < E.

By the continuity of v it results that v(tQ) < E < M. This

contradiction shows that v £ E in R. A similar argument shows

that v > 0 in R.

From the assumed conditions of the theorem it is seen that

Q = J vwdfl = \ vwdjiz = \ Vwd/i = \ Vwdp .
R JA A JR

Now from the reciprocity principle

Q = I VwdjU = ] vWdjLl .
R R

Thus by the bounds of v(t) in K we have

J vWd/2 + E j W " d / i < Q < ) v W d / i + . E I W + d f i
A K A . K

and this completes the proof.

Corollary 1. Let A and B be measurable sets of R. Suppose

that the potential v has the constant value E > 0 cm A

and that the potential v has the value zero on B. Suppose that

the current source w vanishes on the set K which is the comple-

ment of A U B. Then the total current entering A iŝ  I = j
A

and it satisfies the inequalities

J Wd/i + \ vT'aii < I < \ Wd̂ i + j Vi*c>u.
A J

 K "" J A J K



Here W is the current source in the adjoint system corresponding

to a potential V which is arbitrary except that V = E on A

and V =•0 on B . . .

Proof, This follows directly from Theorem 1 by noting that Q = El

A set where the potential is constant is called a terminal.

Thus A and B in the Corollary are terminals. The conductance

y between terminals A and B may be defined as

y = I
E

Thus the inequalities of Corollary 1 give an estimation of the

conductance.

Corollary 2. If a boundary value problem and its adjoint are

both solvable then the power input is the same in both systems

Proof. In Theorem 1 we may take V = v on A and W = 0

in K. This means that W = 0 in K and W~ = 0 in K and

.the inequality of Theorem 1 becomes the equality Q = j VWdji.
JA

However ( VWdjU• = \ VWdju so t h e p r o o f i s c o m p l e t e .
A JR

4. Non-reciprocal conductors

It is now to be shown that a body R which is a conductor

of electricity is an example of an elliptic fluency S. It is

not required that the body be isotropic or homogeneous. It is

. required that Ohm's law holds in the following form at interior

points of R

(1) j = _G Vy

Here G is the conductance tensor, v is the electric potential

in volts^and j is the current vector in amperes per cm 2. Thus
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the interior current source in amperes per cm is

(2) w = _ v. (G Vv)

2

The boundary current source in amperes per cm is

(3) w = n *(G Vv)

where n is the exterior normal to R.

In components.relation (1) is written

Here at each point t the matrix G , is assumed to be positive

definite but not necessarily symmetric. The adjoint tensor has

a matrix

(4) G*ab(t) = G b a ( t ) .

The adjoint system S* has the current vector J and the potential

V related by

(5) J = - G* VV

and the current source W is defined in terms of V by formulae

analogous to (2) and (3) .

The power supplied to a unit volume is -j*Vv = (G Vv)*Vv

so the total power is

(6) Q = 3\\> (G Vv) Vv dx dy dz .
R

The problem of concern is to estimate Q when there are no interior

sources of current. This will be done by appealing to Theorem 1

proved for an elliptic fluency.

To simplify the proof that such conductors give rise to an

elliptic fluency^rather restrictive assumptions are now imposed.



It is then possible to appeal to well known existence theorems:

A 1. Let R be a compact region of three-space having interior

R and boundary dR. Then R is to be connected and the
o o

boundary S R is to be a smooth surface with bounded curvature.

B! . The measure /i on R is defined as

J fdM = \ fdr + f da
P P ^ r̂ P

R RQ OR

there T is the ordinary volume measure in R and a is

the ordinary surface measure on dR.

The potential function class P is taken to be the class of
2

C functions in R.

Df. Given a potential v the current source function w is de-

fined as
w = -V • (G Vv) in R

w = n »(G Vv) in

Here G is termed the conductance tensor:

(a) G is continuously differentiable•

(b) G is positive definite.

It is not assumed that G is necessarily symmetric.

E 1 . Suppose that v is a non-constant potential. Let H be the

set where v takes on its global maximum M. Then let t

be a point on the boundary of H and first consider the case

that t is in the interior R
o o.

Suppose that w <̂  0 in a neighborhood of t . In other words

V*(G Vv) >L 0 in the neighborhood. Clearly V*Gv is an elliptic

operator and so it follows by the well known maximum principle
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for elliptic operators that v can not have a maximum at t

unless v is constant in a neighborhood of t . However this

contradicts the assumption that t was a boundary point of H.

Thus it must be so that w(t) < 0 at some points t in the

neighborhood of t .

Next consider the case that t is in H and also on the
o

boundary dR. Since v has a maximum at a boundary point t

it follows that the tangential derivatives vanish. We are now

making use of the assumption that dR has bounded curvature.

Thus Vv is in the normal direction and at t

w = n * (G Vv) = g

Since G is positive definite it follows that g is positive.

It is desired to show that w > 0 at some points in a neighbor-

hood N of t . The neighborhood N includes both points of

R and dR. Suppose that

V (G Vv) > 0 in N n R

Moreover v is not constant in N so the extension of the maxi-

mum principle due to E . Hopf states that dv/dn > 0 at the

boundary maximum point t . At this point w = gdv/dn > 0.

This verifies that t is a global maximizing point satisfying

the statement of postulate E. The verification of the statement

of E concerning a global minimizing point is treated analogously.

F!. The adjoint elliptic fluency is defined with the same class

of regular potentials,, i.e.,, P* = P. the conductance tensor G*

is the transpose of G. If v and V are regular potentials

Lhen clearly the following forr of Green's theorem is val !.<1 >
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1 (G Vv) > W dr = \ Vwdr + I Vwda =
J R R JSR J

vwd/i
R R JSR J R
o o

But clearly (G Vv) vVV = (G* Vv). Vv and so

J vWd/i = J Vwdjil .
R R

This completes the verification of the postulates.

We are now able to apply Theorem 1 to the case of non-

reciprocal conductors. In particular we have the following special

result.

Theorem 2. Suppose that v is a potential function such that

V.t (G Vv) = 0

in the interior of R. On a part A of the boundary of R suppose

... "•• 0 < v < E

for some constant E. On the part of the boundary C comple-

mentary to A suppose

n » (G Vv) = 0

where n is the normal. Then the power input Q satisfies

the inequalities \ '

Q < J V(n*VV)da + E J [n-(GVV) ] + d a + E f (V. (G*Vv) ] + d T .

A C R

Q > \ V(n*W) da + EJ [nt(GVV)]~da + E [ [V (G*VV) ] - dr .

2

Here V is any C function such that V = v on A.

Theorem 2 can be used to estimate the conductance y between

a pair of terminal surfaces A and B. The statement is analo-

gous to Corollary 1.
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It should be recognized that the restrictions enforced on the

functions v and the region R are far more stringent than is

necessary or desirable. The relaxation of these restrictions leads

to various technical questions concerning mixed boundary value

problems. There does not seem to be a satisfactory reference for

such questions.

If the conducticity tensor G is symmetric then it is well

known that y satisfies the inequality

(7) y < \ (G Vv) « Vv dT
" - R

where v is arbitrary except that v = 1 on A and v = 0 on

B. The right hand side of this inequality is essentially the

Dirichlet integral and (7) is a formulation of Dirichlet's mini-

mum principle. It is not difficult to show that (7) is incorrect

if G. is not a symmetric tensor.

The elliptic maximum principle also applies to equations of

the form

2
-V v + Av = w

where A is a positive constant. The term Av is interpreted

as a »leakage current to ground1 in reference [3]. It is seen

that this generalization satisfies the postulates for an elliptic

fluency.

5. The discrete elliptic fluency.

The postulates for an elliptic fluency when R is a finite

set are given the following interpretation.

A discrete elliptic fluency S is defined by the following

conditions:
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A Q . Let R be a set of n +1 distinct points designated as

(0,1,2, . . .,n) .

B Q. Each point is given unit measure.

CQ. There is a class of functions P termed potentials. A

function v is a set of n+1 numbers (v ,v,,...,v ) .

D • Each potential v has an associated 'current source' function

a set of n + 1 numbers -(w ^ w ^ . . -*w
n) •

E . If a non-constant potential v has a global maximum (minimum)

value M > 0 (M < 0) then there is a point i where 'v . = M

and w i > 0 (w± < 0) .

F • There exists another elliptic fluency S* satisfying A, B,

C, and D. Let P* be the class of potentials for

S* then

n n
£ v.W. = £ V.w.

i=0 X X X \ *

where veP and

Postulate E is teinned the maximum principle and postulate F

is termed the reciprocity principle. The current I entering R

through the set A is defined to be

The power Q is defined to be

n
Q = E v ^ .

i=o

The points of R are called terminals. The discrete elliptic

fluency ^ill ru-̂ : oe rela^ ". to electric networks,

ffUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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6. Non-reciprocal networks

Here we are concerned with a black box S with electric

terminals on the outside. It is desired to specify conditions

on S so that it is an elliptic fluency. First consider the

case when there are only two terminals on the box and suppose

Ohm's law holds. Then

W l = g v l "" g V 2

(1)

W 2 = " g V l + g V 2 #

where w, is the current (in amperes) entering terminal 1 and

w 9 is the current in amperes entering terminal 2. The electric

potentials (in volts) at terminals 1 and 2 are v, and v' . The

power input to the black box is •

(2) Q = w 1 v 1 + w 2 v 2 = giv^ - v 2 )
2 .

According to Ohm !s law g is a positive constant so power is

non-negative.

Next suppose that the box has n•+ 1 terminals and take"as

a generalization of Ohm's law

n
(3) w. = - 2 g v. i = 0,. 1, 2, ..., n.

1 j=0 J J

These equations define the steady flow of current into the black

box. It is assumed that the g.. are real constants. Here the

variable v^ is the potential of the ith terminal and w. is

the current entering the ith terminal from outside the box.

There are two physical laws which any time invariant system

must surely satisfy:
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I. The net current entering the system vanishes.

II. The level of potential has no significance.

If we suppose that current can enter only at terminals then I

n
demands that £ w. = 0. Since the potentials can be given

arbitrary values it follows that

n
(4) £ g. . = 0 j = 0, 13

J

According to II increasing all v. by a constant amount cannot

change w.. Thus

n
(5) £ g . . = 0 i = 0 j l , . . . j " n .

j=0 ±J

Relation (5) may be used to eliminate the diagonal elements of

the matrix g.. . Thus

n
(6) w. = S g. . (v. - v.) i = 0, 13 . . ., n

1 j=0 . J x J

is seen to be equivalent to (3).

If .the matrix g. . is symmetric it is possible to interpret

(6) as a statement of KirchhoffTs first law for a network of

conductors. Then g.. is interpreted as the conductance of the

branch of the network connecting terminals i and j .

The principle of reciprocity concerns an adjoint system

with matrix g*.. = g... Obviously the adjoint system also

satisfies (4) and (5). If V. and W. are the potential and

current for the ith terminal of the adjoint system then

(3*) w± = - S. .g| V / j = 0, 1, ...n .
o J J

Thus (3) and (3*) give

Ln v.W. = L n V.w. .
x x x x
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This is the principle of reciprocity.

The power input to the system S is

n n n
(7) Q = £ w.v. = - £ £ g. .v.v. .v ' o i l o o 1̂3 1 j

It is an easy consequence of relations (4) and (5) that the

power input may also be written as

(8) Q = (1/2) S Q L Q g±^{v± - V j ) 2 .

It is then apparent from (8) that Q >. 0 if

(9) g±j + g j ± > 0 for i y j .

Thus (9) is a sufficient condition that Q be a semi-definite

quadratic form.

An interesting special case is a four-terminal box such that

w = 0 + 0 +"V2 - v3

w., = 0 + 0 - v2 + v3

w2 = -v + v, + 0 + 0

W3 - vo " vl + ° + ° '

This special sytem was termed a gyrator by Tellegen [6]. Clearly

the power input to a gyrator always vanishes. The gyrator has

application to vibration problems [7] and to the network synthesis

problem [8] .

In a previous paper [4] the writer introduced the concept

of a positively connected network. This may be defined as follows:

n
(i) £ ± = 0 g ± j = 0 j.= 0, 1, ..., n
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n ,
(ii) ^ _ n g±j = 0 i = 0, 1, ..., n

(iii) g±j > 0 i ̂  j

(iv) For each pair of integers i and f there is a sequence

of distinct integers i, a, b, *..., e^ f such that 9ia9ab••
#9ef

A positively connected network is an elliptic fluency. To prove

this we note by (ii) (iii) (iv) that g ^ < 0. Thus equation (3)

may be written in the form

gii Wi
(10) v. = L i ——Lj v. +.-—.

1 j^ilgiil 3 lgiil

By virtue of (ii) it is seen that the summation here is a weighted

average. Thus suppose that M is the maximum value of v. then

we have

v. < M + w./lg..I.

Thus the maximum cannot occur where w. < 0. Suppose v. = M at

terminal i and that wf > 0 at terminal f. Then if w. = 0

we have

and it follows,, according to (iv) , that v = M also. If w = 0

the same argument shows that v, = M. Repeating this process

shows that either there is a point d on the sequence

±, &, b, ...,, e, f where v, = M and' w. > 0 or else v,. = M.
d. a r

But f has been selected so that w- > 0. This proves the

maximum principle when there is a terminal where w > 0. Other-

wise w i = 0 and if follows from (10) that v. is constant.

It is now seen that a positively connected network satisfies a I1.
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the requirements for an elliptic fluency.

Theorem 3. Let y be the joint conductance between terminals 0

and 1 of a positively connected network. Then

n n +w1 + L w7 < y £ w + L9 w. .
l ^ i i ^ i

Here w. is the current flow resulting from a potential which

is arbitrary except that v = 0 and vn = 1.
. Q J_

Proof: This follows from Corollary 1 and Corollary 2.

7. A numerical example of the estimation algorithms

It is instructive to apply Theorem 3 to a particular network

such as the Wheatstone bridge

network shown in this figure.

In this example gn, = 0,

g02 = *•> g12 = 4' % 3 = 2^

gQ3 = 12, and 923
 = 6 # T h e

network is talcen to be reciprocal, g. . = g.. . It is easy to

solve the network equations and find that the joint conductance

between terminals 0 and 1 is y = 3.5. Now employ Theorem

3 with vQ = 0, V-L = 1, v2 = .6, v3 = .3. Then by the formula (3)

w, = 3, w2 = .8 and w^ = .4. This gives

- 3 < y < 3 + .8 + .4 = 4.2 .

Next try v = .5, v = .2 and so w = 3,6, w = .3, w3 = -1. •

This gives 2.6 = 3.6- 1 < 7 < 3 . 6 + .3= 3.9

Since this network is reciprocal, the Dirichlet integral

furnishes an upper bound. Thus

n
y < w., f E 2 v..w. .



19

In the first assignment of potentials this given

y < 3 + .48 4- .12 = 3.60 .

In the second assignment

y < 3.6 + .15 - .2 = 3.55

This .indicates that the Dirichlet principle given a better upper

bound for the joint conductance of reciprocal networks.

For each pair of terminals of a network there is a joint

conductance y . These joint conductances are related to each

other and to other properties of the network by simple equations

and inequalities. Such relations are treated in references [1]

and [4] .

The writer is indebted to Roger Pederson and Walter Noll

for helpful discussions concerning the concepts in this paper.
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