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[]sconiuqacy'criteria for linear differential equations

Zeev Nehari

1. A linear honpgeneous n-th order differential equation is said

to be disconjugate on an interval | if none of its solution have
more than n - 1 =zeros on' | (where the zeros are counted with
their nmultiplicities). |If it is nmerely known that no solution

has an infinite nunber of zeros on I3 the equation is said to
be non-osci]latory pn the interval. The question as to how the
di sconj ugacy or.non-disconjugacy of an equation of order |arger
than 2 is reflected in its coefficients is of obvious interest,
and it has been studied by a nunber of authors [1-11] . VWhile
this work has resulted in sonme necessary conditions for the

di sconjugacy of certain classes of equations, no nontrivia
sufficient conditions seemto be known for equations of order

higher than 4 if | is an interval (a,00) (the case of principal

‘interest). The followi ng theorem furnishes conditions of this

type.

Theorem!. 1J7 R(x) JLs positive and non-increasing on [Q o00); and
0o jL n_,

(1) JRP(X) XP  dx < CD,

for any pe[l,n], then the equations

(2) yt" + R(x)y =0

and

(3) yt"™ - R(x)y =0

are non-oscillatory on [0,00) . Moreover, there exists a. positive

nunber c¢ such that the equations are disconjugate in (c, 00).

For given p, and n> 3 (and also -4 n =2 _and equation

(2)) , .condition (1) J.S_sharp_in_the sense that x* cannot, be
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reg'laced' QLQ 1 over _power Q‘ X.

W note here that, for n = 2,3,4 the non-oscillation of
equations (2) and (3) inplies the existence of a positive ¢ such
that the equations are disconjugate in (c,00). Wether or not

this is also true for n> 4 1is an open question.

Theorem | wll be a consequence of the follow ng stronger
result.
Theorem I I . £f_ p> 1, there exists _a_positive _constant A

whi ch @pends on n and p, but not on a and b, such that
(4) \H_Rp(x).(x-a)p dx > A (0<a<b< o)
if either (2) or; (3) has _a._solution which has n zeros in [a,b] .

It is easy to see that, except for the statenent concerning
shar pness, Th_eorem Il inplies Theoreml. If p < n and condition -
(1) holds, the left-hand si de-of (4) can be made snmaller than A
by taking ZL |arge enough. Accor di ng to TheoremlI I, no solution

of (2) or (3) can then have nore than n - 1 zeros in (a,co) . .

2. If 'y is a function of class Cn[O,oo) whi ch has a zero of
order k (1< k<. n- 1) at x =a and a zero of order n - Kk
at x =b (b> a)', we shall say that y satisfies the boundary
conditions U(y;a,b) =0. It is known [7,10] that, if (2) or
(3) has a solutionwith n zeros in [a,c], there exists a
nunber b in (a,c] and a solution y of the equation such that
y satisfies ;[he condi tions U,K(y;a,b) =0 for some k. It is
thus sufficient to prove (4) for the interval [a,b] corresponding
to this solution .

I'f g~¥tf) is the Gr:er\- function vf the differentia"’ ~peralLor

Mu H u"”" for the boundary conditions U , (u;a,b) = 0, then
n~"ic




(5) y(t) = £g(x, t)R(X)y(x)dx = Ly.
a
This formula holds for both equations (2) and (3) . The reason

a negative sign does not appear in one of the two representations
(5) is that, in the case of equation (2), n - k is an odd nunber”
while n - k is even for equation (3) [7,10]; the two Greenls
functions are thus different.

| f

(ox

(uv) = éu(x)v(x)dx

and we define the operator L* by

b.
(6) L*y = R(t) J g(t, x)y(x)dx,
a
we have (u,Lv): = (L*u,v), i.e., L* is the operator adjoint to L.

We now consider the integral equation

(7) w = AL*Lw
or, written explicitly,
b _
(8) Sw(t) = AKX, t)wix) dX
a
where K(x,t) is the symetric kernel
b
(9) K(x,t) = R(x)R(t) j g(x,*3)g(t,})dj = R(x) R(t) G(x,t) .
a :

The kernel K(x,t) is positive-definite, and the smallest eigen-

value A of (7)1is gi ven by
A

(10) —= sup(u, L*Lu) .= sup(Lu,Lu),
2
where u ranges over all functions in L (a/b) for which (u,u) = 1.
If y is the (normalized) solution of (5), it follows from (10) that
1 _

x> (Ly,LY) = (y,y) =1,
and thus

(11; A< 1.




We shall show that, under the assunptions nmade,

A> h | ' XL.!
(12) AP JRP(x) (x - a)” dx=A, (p>-1),
a
where A depends on p and n only. Inviewof (11) , this
will prove (4). \
I f we set w(x) =u(x)R(x)3

the integral equation (8) takes the form

b
(13) u(t) =A / &(x,t)R¥(x)u(x)dx
' a
where, according to (9), G x,t) is the symmetric kernel
by
(1) Gxt) = ) gtupateyal.
a

The integral equation (13) is equivalent to the differential
equati on
(15) ul2m - (-1)"AR(Xx)u = o
with the boundary conditions

(18) y - uleee—u . —u —u —..—u . —u, x—a
and
(17) v = u =..=u~r~r"tr ygm= ylntto = (nHk 1} =9 x = b,

This follows fromthe observation that, by the definition of

g(x,t), the function D
!
Wt) = § g(x, t)wx)dx
a
satisfies the boundary conditions tlg(Wa,b) = 0 and the relation
WM (1) =w(t) .
Simlarly, if g,.(x,t) is the Geen's function of M 2 v*"™ for
the 'adjoint® boundary conditions U ,(v;a,b) = 0, the function
S(t) = Sgl(x,t)S(X)dX
Y _

satisfies Sm)(t) = s(t) and the boundary conditions Y _fe(S;alb/*




It is well known (and easily confirmed with the hel p of Green's
identity for the operator M thét gr"xMt) = (-)"g(t,x) . In
vi ew of the definition (14) of G x,t) it follows therefore that

the function b
T(t) = f G x, t) R? (x) u(x) dx
‘ a
satisfies the boundary conditions (16)-(17) and the identity

T2 (t) = (-1)"R(t)u(t) .
Since)by (13), u(t) = AT(t) , this establishes the equivalencé of

t he integral equétion (13) and the differential system (15)- (16)- (17) .

3. By classical results, the lowest eigenvalue A of this system

may al so be defined by -
(18) t=swp R YAx)dx,

fA

where the functions y satisfy the boundary conditions (16)-(17),
are normalized by o
(19) J [y %dx = 1,

a
and possess continuous derivatives of the order max[2n - k - 1,

n+ k- 1]. Hence, the nunmber A defined by (18) is subject to
the inequality (11) .

We now make use of the fact that any non-negative non-increasing
function on [a,b] can be approxinmated by finite sunms of the form
(20) oLz, () +oeebnr (x), fk’v> 0, V=1,...,m,
wher e ru(x) is the characteristic function of the interva
[a,xv]_ and a < X, < Xz <o o< X < b. W applylthis, in particular,

tP the non-negative, non-increasing function Fﬁz}) (p>_1). If

R° is of the “crm (20) we have, by M nkowski's inequality,




b, JL b' m 5 1_
ey [ R%%ax1®P = [ (5 o r ) ?Pylax) P
J ~Not/= Y
i a | a
m b T m
- <ZA 1{(' r!/ZVdX]2P<_U=X /\\’V’
a _
wher e b Xy
— —= sup ( r,@Ryde = sup nyzd’x.
(22) r ‘ ' |
y a £ a _ _
Since (21) holds for all the functions y admssible in (18),
we thus have ) 1 N Y
1 = 1
oy y=1. 5=
7\2}_) ?\v2p
Hence, if <T(x) is a non-decreasing function in [a,b], it follows
b .
t hat m bz'v’frl’d{(x)
-—1'-1—'5__ ..2.- 2
2p v=L . Db ’
A Al JV,(X)
a
) whence, in view of _
m ? To i
L =
gll\r/djg() ngd<T(x)
a a
and b X,
Srvd((x) = f af(x) = S(x,) - §(a),
a a
JL b I_ L
2p P ; 2p _
A (o R™ df(x) > |ynf AV [ S{x.), /(a)_] :
a H [
If we set o/(x) = (x - a)®?, we thus obtain the inequality
" ' JL b 21 n 1 ji_
' 2p P _ p £ ; 2p _ p
) A fR(x a) dBnlrg}‘AV( a)

a

Accordingly, (i:22 will be proved if we can show that there exists

a positive constant B such that




(23) ) Al x, - a)?'"> B,
where A is defined in (22) (aﬁd the adm ssibility conditions
for the functions y are the same as in the definition of A
in (18)).

The val ue of the right-hand side of (22) cannot decrease if
we enlarge the class of adﬁissible functions vy 'by dfopping t he
boundary condition (17), and we may thus concl ude that

(24) T =",

. Voo -
where 4, is the |owest eigenvalue of the differential equation
y(2M - (-1) %y =0

with the boundary condition (16) at x = a and the 'free! boundary

condi tion
tn) _ (n+l) _ _W(2n-1) _,
- y =y y -0
at X = Xy . Fronlthexway t he val ue of
v
ay dx
£ 2 sp— |
T[y™]%dx
a

changes under the coordinate transformation x --a-* xvx - a),
it is evident that the expression Av(xy - a)2n I s i ndependent

of xy, . If its value is denoted by B, (24) is seen to inply (23).
4. This conpletes the proof of Theoren1||. As shown above, the.
mai n assertion of Theorem!| is a direct consequence of Theoreml|.

Al'l that remains to be shown is that equations (2) and (3) can
have oscillatory solutions if the coefficient R(x) satisfies

the condition -_ |,
9rp X Ti- L-€ o
(25) j RFx)xF  dx< CD, € > 0.

That this *z indeed the caso is shovn 1* the Euler equati-.;*




(26) oy ery=o0

X
whi ch has the solutions x , where V is a solution of the algebraic
equation . | | |
(27) (V- 1) (V- 2)ees(y-n+ 1)y +<t=0.
If n is even, this equation evidéntly has precisely two real
solutions if A is chosen sufficiently small, and it has no rea
solution if xE is taken |arge enough. Hence, (27) has conpl ex
solutions for sufficiently large positive », and jt has conpl ex
solutions if n> 2 and ™ is a negative nunber of |arge enough
nmodul us. For odd n, (27) has precisely one ral solution if
[c™» | is sufficiently large and ~» is either negative or positive;

the remaining roots of the equation are conplex. A conplex root

of (27) corresponds to an oscillating solution of (26). Since,
for equation (26) ,Y Lo
RP(x) xP~ " = xt-¢ |

the existence of oscillating solutions is thus seen to be conpatible
with condition (25).

This argunment fails if n =2 and the equation is of the
form (3). However, in this case the equation is trivially non-

oscillatory, and there is nothing to prove.
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