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1. A linear homogeneous n-th order differential equation is said

to be disconjugate on an interval I if none of its solution have

more than n - 1 zeros on I (where the zeros are counted with

their multiplicities). If it is merely known that no solution

has an infinite number of zeros on I3 the equation is said to

be non-oscillatory pn the interval. The question as to how the

disconjugacy or non-disconjugacy of an equation of order larger

than 2 is reflected in its coefficients is of obvious interest,

and it has been studied by a number of authors [1-11] . While

this work has resulted in some necessary conditions for the

disconjugacy of certain classes of equations, no nontrivial

sufficient conditions seem to be known for equations of order

higher than 4 if I is an interval (a,oo) (the case of principal

interest). The following theorem furnishes conditions of this

type.

Theorem I. IJ: R(x) JLs positive and non-increasing on [O,oo) 3 and
oo jL. n .

(1) J R P ( X ) X P dx < CD,

s

for any pe[l,n], then the equations

(2) y(n) + R(x)y = 0

and

(3) y(n) - R(x)y = 0

are non-oscillatory on [0,oo) . Moreover, there exists a. positive

number c such that the equations are disconjugate in (c,oo).

For given p, and n >_ 3 (and also :-wr n = 2 and equation

(2)) , condition (1) JLS; sharp in the sense that x^ cannot, be
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replaced by a. lower power of x.

We note here that, for n = 2,3,4 the non-oscillation of

equations (2) and (3) implies the existence of a positive c such

that the equations are disconjugate in (c,oo). Whether or not

this is also true for n > 4 is an open question.

Theorem I will be a consequence of the following stronger

result.

Theorem II. £f p >_ 1, there exists _a positive constant A,

which depends on n and p, but not on a and b, such that

(4) \ Rp(x) (x - a ) p dx >_ A (0 < a < b < oo )

a

if either (2) or; (3) h_as a. solution which has n zeros in [a,b] .

It is easy to see that, except for the statement concerning

sharpness, Theorem II implies Theorem I. If p <. n and condition

(1) holds, the left-hand side of (4) can be made smaller than A

by taking ZL large enough. According to Theorem II, no solution

of (2) or (3) can then have more than n - 1 zeros in (a,co) .

2. If y is a function of class C [0,oo) which has a zero of

order k (1 <_ k <. n - 1) at x = a and a zero of order n - k

at x = b (b > a) , we shall say that y satisfies the boundary

conditions Uk(y;a,b) = 0 . It is known [7,10] that, if (2) or

(3) has a solution with n zeros in [a,c], there exists a

number b in (a,c] and a solution y of the equation such that

y satisfies the conditions U, (y;a,b) = 0 for some k. It is

thus sufficient to prove (4) for the interval [a,b] corresponding

to this solution y.

If g^v
Tf) is the Gr;er\- function vf the differentia"1- ^peraLo

Mu H u^n' for the boundary conditions U , (u;a,b) = 0, then
n~" ic



(5) y(t) = £g(x,t)R(x)y(x)dx =~ Ly.
a

This formula holds for both equations (2) and (3) . The reason

a negative sign does not appear in one of the two representations

(5) is that, in the case of equation (2), n - k is an odd number^

while n - k is even for equation (3) [7,10]; the two Green1s

functions are thus different.

If b

(u,v) = C u(x)v(x)dx
a

and we define the operator L* by
b

(6) L*y = R(t) f g(t,x)y(x)dx,

a

we have (u,Lv): = (L*u,v), i.e., L* is the operator adjoint to L.

We now consider the integral equation

(7) w = AL*Lw

or, written explicitly,
b
( K(x,t)w((8) w(t) = A \ K(x,t)w(x)dx

a

where K(x,t) is the symmetric kernel

b

(9) K(x,t) = R(x)R(t) j g(x,*>)g(t,})dj = R (x) R (t) G (x, t) .

a

The kernel K(x,t) is positive-definite, and the smallest eigen-

value A of (7) is given by

(10) — = sup(u,L*Lu) = sup(Lu,Lu),
2

where u ranges over all functions in L (a,b) for which (u,u) = 1.
If y is the (normalized) solution of (5), it follows from (10) that

~ > (Ly,LY) = (y,y) = 1,

and thus

(11; A < 1.



We shall show that, under the assumptions made,

A> b I XL.!
(12) A 2 p J RP(x) (x - a ) P dx > A, (p > 1),

a

where A depends on p and n only. In view of (11) , this

will prove (4). .

If we set w ( x ) = u ( x ) R ( x ) 3

. the integral equation (8) takes the form

b

(13) u(t) =A / G(x,t)R2(x)u(x)dx

a

where, according to (9), G(x,t) is the symmetric kernel
b

(14) G(x,t) =

a

The integral equation (13) is equivalent to the differential

equation

(15) u ( 2 n ) - (-l)nAR2(x)u = o

with the boundary conditions

u - u 1—•••— u — u — u —...— u — u, x— a

and

(17) u = u' =...= u ^ ^ " 1 ^ u ( n )= u(n+1=-..= u
( n + k- 1 } = 0 , x = b.

This follows from the observation that, by the definition of

g(x,t), the function ,

W(t) = ( g(x,t)w(x)dx

a

satisfies the boundary conditions tL (W;a,b) = 0 and the relation

W ( n ) (t) = w(t) .

Similarly, if g..(x,t) is the Green's function of Mv 2 v^n^ for

the 'adjoint1 boundary conditions U v(v;a,b) = 0, the function

S(t) = f g1(x,t)s(x)dx

satisfies S (t) = s(t) and the boundary conditions u
n_fc(S;a/b/ = 0.



It is well known (and easily confirmed with the help of Green1s

identity for the operator M) that g^x^t) = (-1) ng (t,x) . In

view of the definition (14) of G(x,t) it follows therefore that

the function b

T(t) •= f G(x,t)R2 (x)u(x)dx

a

satisfies the boundary conditions (16)-(17) and the identity

T ( 2 n ) (t) = (-l)nR2(t)u(t) .

Since by (13), u(t) = AT (t) , this establishes the equivalence of

the integral equation (13) and the differential system (15)- (16)- (17) .

3. By classical results, the lowest eigenvalue A of this system

may also be defined by -^

(18) T = sup f R2(x)y2(x)dx,

where the functions y satisfy the boundary conditions (16)-(17),

are normalized by ,

(19) J [y(n)]2dx = 1,
a

and possess continuous derivatives of the order max[2n - k - 1,

n + k - 1]. Hence, the number A defined by (18) is subject to

the inequality (11) .

We now make use of the fact that any non-negative non-increasing

function on [a,b] can be approximated by finite sums of the form

(20)

where r (x) is the characteristic function of the interval

[a,x ] and a < x, < x2 < • • •< x <. b. We apply this, in particular,

to the non-negative, non-increasing function R^(x) (p >. 1). If
i
RP is of the "crm (20) we have, by Minkowski!s inequality,



b J L b m _1_

J ^ t/=l " v

a a

m b 1 m

<Z^.,[('r,/
2Vdx]

2P< X ^ ,

where

(22)

a

1 / 2p 2 , f 2,±— = sup \ r̂  ̂ y dx = sup J y dx.

y

Since (21) holds for all the functions y admissible in (18),
m */

we thus have 1 ^

Hence, if <T(x) is a non-decreasing function in [a,b], it follows
b

that

A

whence

2p

, in view

A i jV,f(x)
a

of
m b

=1 ^ r / d j X

a

To i
Rpd<T(x)

and

JL b l.
A 2 p ( RP df(x) > inf A 2p [S{x.) - /(a)],

o y \/

n •

If we set o (x) = (x - a ) p , we thus obtain the inequality

JL b 1 n x _1_ ji

,2p f Rp(x - a ) p " dx > £ inf A 2 p (x. - a ) p .
J — n y v vA'

a

Accordingly, (i:2> will be proved if we can show that there exists

a positive constant B such that



(23) A / x , - a ) 2 n > B,

where A is defined in (22) (and the admissibility conditions

for the functions y are the same as in the definition of A

in (18)).

The value of the right-hand side of (22) cannot decrease if

we enlarge the class of admissible functions y by dropping the

boundary condition (17), and we may thus conclude that

(24) ~ < ̂  ,

where ~ is the lowest eigenvalue of the differential equation

y(2n) - (-1)% y = 0

with the boundary condition (16) at x = a and the 'free1 boundary

condition
(n) _ (n+1) _ _ w(2n-l) _ o

y = y y - 0
at x = xy . From the way the value of

a y dx
l a .= sup

T[y ( n )]2dx
a

changes under the coordinate transformation x - a -* x (x - a),

it is evident that the expression A (xy - a) is independent

of xy . If its value is denoted by B, (24) is seen to imply (23)

4. This completes the proof of Theorem II. As shown above, the

main assertion of Theorem I is a direct consequence of Theorem II.

All that remains to be shown is that equations (2) and (3) can

have oscillatory solutions if the coefficient R(x) satisfies

the condition -_ ,
9rp JL ii ,

(25) j RP(x)xP dx < CD , € > 0.

That this Az indeed the caso is shovn 1^ the Euler equati-.;*
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(26) y(n) + ^ y = O,

x

which has the solutions x , where V is a solution of the algebraic

equation

(27) (V -. 1) (V - 2) • • • (y - n + 1) + <* = 0.

If n is even, this equation evidently has precisely two real

solutions if ^ is chosen sufficiently small, and it has no real

solution if x£ is taken large enough. Hence, (27) has complex

solutions for sufficiently large positive ^, and it has complex

solutions if n > 2 and ^ is a negative number of large enough

modulus. For odd n, (27) has precisely one ral solution if

|ĉ » | is sufficiently large and ^ is either negative or positive;

the remaining roots of the equation are complex. A complex root

of (27) corresponds to an oscillating solution of (26). Since,

for equation (26) ,

RP(x)xP~ " = x 1- 6 ,

the existence of oscillating solutions is thus seen to be compatible

with condition (25).

This argument fails if n = 2 and the equation is of the

form (3). However, in this case the equation is trivially non-

oscillatory, and there is nothing to prove.
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