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Formal systems or theories must satisfy requirements that

are sharper than those imposed on the structure of theories by the

axiomatic-deductive method; that method can be traced back to

Euclid's Elements. The crucial additional requirement is the

regimentation of inferential steps in proofs: not only axioms have to

be given in advance, but also the logical rules representing

argumentative steps. To avoid a regress in the definition of proof

and to achieve intersubjectivity on a minimal basis, the rules are to

be "mechanical" and must take into account only the syntactic form

of statements. Thus, to exclude any ambiguity, a precise symbolic

language is needed and a logical calculus. Both the concept of a

"formula" (i.e., statement in the symbolic language) and that of a

"rule" (i.e., inference step in the logical calculus) have to be

effective; by the CHURCH-TURING THESIS that means they have to be

recursive.

Frege presented in his (1879) a symbolic language (with

relations and quantifiers) together with an adequate logical

calculus, thus providing the means for the completely formal

representation of mathematical proofs. The Fregean frame was

basic for the later development of mathematical logic; it influenced

the work of Whitehead and Russell that culminated in Principia

Mathematics. The next crucial step was taken most vigorously by



Hilbert; he built on Whitehead and Russell's work and used an

appropriate frame for the development of parts of mathematics, but

took it also as an object of mathematical investigation. The latter

metamathematical perspective proved to be extremely important.

Clearly, in a less rigorous way it goes back to the investigations

concerning non-Euclidean geometry and Hilbert's own early work on

independence questions in geometry in his (1899).

Hilbert's emphasis on the mathematical investigation of

formal systems really marked the beginning of mathematical logic.

In the lectures (1918), prepared in collaboration with Paul Bernays,

he isolated the language of first order logic as the central language

(together with an informal semantics) and developed a suitable

logical calculus. Central questions were raised and partially

answered; they concerned the completeness, consistency, and

decidability of such systems and are still central in mathematical

logic and other fields, where formal systems are being explored.

Some important results will be presented paradigmatically; for a

real impression of the richness and depth of the subject readers

have to turn to (classical) textbooks or to up-to-date handbooks

listed in the bibliography.

Completeness has been used in a number of different senses,

from the quasi-empirical completeness of Zermelo Fraenkel set

theory (being sufficient for the formal development of mathematics)

to the syntactic completeness of formal theories (shown to be

impossible by Godel's First Theorem for theories containing a

modicum of number theory). For logic the central concept is,

however, semantic completeness: a calculus is (semantically)



complete, if it allows to prove all statements that are true in all

interpretations (models) of the system. In sentential logic these

statements are the tautologies; for that logic Hilbert and Bernays in

(1918) and Post, independently in (1921), proved the completeness

of appropriate calculi; for first order logic completeness was

established by Godel (1930). Completeness expresses obviously the

adequacy of a calculus to capture all logical consequences and

entails almost immediately the logic's compactness: if every finite

subset of a system has a model, so does the system. Ironically, this

immediate consequence of its adequacy is at the root of real

inadequacies of first order logic: the existence of non-standard

models for arithmetic and the inexpressibility of important

concepts (like "finite", "well-order"). The relativity of "being

countable" (leading to the so-called Skolem paradox) is a direct

consequence of the proof of the completenes theorem.

Relative consistency proofs were obtained in geometry by

semantic arguments: given a model of Euclidean geometry one can

define a Euclidean model of, say, hyperbolic geometry; thus, if an

inconsistency could be found in hyperbolic geometry it could also be

found in Euclidean geometry. Hilbert formulated as the central goal

of his program to establish by elementary, so-called finitist means

the consistency of formal systems. This involved a direct

examination of formal proofs; the strongest results before 1931

were obtained by Ackermann, von Neumann, and Herbrand: they

established the consistency of number theory with a very restricted

induction principle. A basic limitation had indeed been reached, as

was made clear by Godel's Second Theorem; see GODEL'S THEOREMS.



Modern proof theory, by using stronger than finitist, but still

"constructive" means, has been able to prove the consistency of

significant parts of analysis. In pursuing this generalized

consistency program, important insights have been gained into

structural properties of proofs in special calculi ("normal form" of

proofs in sequent and natural deduction calculi).

Hilbert's Entscheidungsproblem, the decision problem for first

order logic, was one issue that required a precise characterization

of "effective methods"; see CHURCH-TURING THESIS. Though partial

positive answers were found during the 1920s, Church and Turing

proved in 1936 that the general problem is undecidable. The result

and the techniques involved in its proof (not to mention the very

mathematical notions) inspired the investigation of the recursion

theoretic complexity of sets that led at first to the classification

of the arithmetical, hyper-arithmetical, and analytical hierarchies,

and later to that of the computational complexity classes.

Some general questions and results were described for

particular systems; as a matter of fact, questions and results that

led to three branches of modern logic: model theory, proof theory,

and computability theory. However, to re-emphasize, from an

abstract recursion theoretic point of view any system of "syntactic

configurations" whose "formulas" and "proofs" are effectively

decidable (by a Turing machine) is a formal system. In a footnote to

his 1931 paper added in 1963, Godel made this point most strongly:

"In my opinion the term 'formal system1 or 'formalism1 should never

be used for anything but this notion. In a lecture at Princeton [[in

1946]] I suggested certain transfinite generalizations of



formalisms; but these are something radically different from formal

systems in the proper sense of the term, whose characteristic

property is that reasoning in them, in principle, can be completely

replaced by mechanical devices."
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Church proposed at a meeting of the American Mathematical

Society in April 1935, "that the notion of an effectively calculable

function of positive integers should be identified with that of a

recursive function ...". This proposal of identifying an informal

notion, effectively calculable function, with a mathematically

precise one, recursive function, has been called Church's Thesis

since Kleene used that name in his (1952). Turing independently

made in 1936 a related proposal, Turing's Thesis, suggesting the

identification of effectively calculable functions with functions

whose values can be computed by a particular idealized computing

device, a Turing machine. As the two mathematical notions are

provably equivalent, the theses are "equivalent", and are jointly

referred to as the Church-Turing Thesis.

The reflective, partly philosophical and partly mathematical,

work around and in support of the thesis concerns one of the

fundamental notions of mathematical logic. Its proper understanding

is crucial for making informed and reasoned judgments on the

significance of limitative results - like Godel's Theorems or

Church's Theorem. The work is equally crucial for computer science,

artificial intelligence, and cognitive psychology as it provides also

for these subjects a basic theoretical notion. For example, the



thesis is the cornerstone for Newell's delimitation of the class of

physical symbol systems, i.e. universal machines with a particular

architecture. Newell views this delimitation in his (1980) "as the

most fundamental contribution of artificial intelligence and

computer science to the joint enterprise of cognitive science". In a

turn that had almost been taken by Turing in (1948) and (1950),

Newell points to the basic role physical symbol systems have in the

study of the human mind: "... the hypothesis is that humans are

instances of physical symbol systems, and, by virtue of this, mind

enters into the physical universe. ... this hypothesis sets the terms

on which we search for a scientific theory of mind." The restrictive

"almost" in Turing's case is easily motivated: he viewed the precise

mathematical notion as a crucial ingredient for the investigation of

the mind, but did not subscribe to a "mechanist" theory of mind. It is

precisely for an understanding of such, sometimes controversial,

claims that (the background for) Church's and Turing's work has to be

presented carefully.

The informal notion of an effectively calculable function,

effective procedure, or algorithm had been used in 19th century

mathematics and logic, when indicating that a class of problems is

solvable in a "mechanical fashion", by following fixed elementary

rules. Hilbert suggested in 1904 to take formally presented theories

as objects of mathematical study, and metamathematics has been

pursued vigorously and systematically since the 1920s. In its

pursuit concrete issues arose that required for their resolution a

precise characterization of the class of effective procedures.



Hilbert's Entscheidungsproblem, the decision problem for first order

logic, was one such issue. It was solved negatively - relative to

the precise notion of recursiveness, respectively Turing machine

computabilty; though obtained independently by Church and Turing,

this result is usually called Church's Theorem. A second significant

issue was the formulation of Godel's Incompleteness Theorems as

applying to all formal theories (satisfying certain representability

and derivability conditions), see GODEL'S THEOREMS. Godel had

established the theorems in his ground-breaking 1931 paper for

specific formal systems like type theory of Principia Mathematica

or Zermelo-Fraenkel set theory. The general formulation required a

convincing characterization of "formality"; see FORMAL SYSTEMS.

According to Kleene and Rosser, Church proposed in late 1933

the identification of effective calculability with ^-definability.

That proposal was not published at the time, but in 1934 Church

mentioned it in conversation to Godel who judged it to be

"thoroughly unsatisfactory". In his Princeton Lectures of the same

year Godel later defined the concept of a (general) recursive

function using an equational calculus, but he was not convinced that

all effectively calculable functions would fall under it. The proof of

the equivalence between X-definability and recursiveness (found by

Church and Kleene in early 1935) led to Church's first published

formulation of the thesis as quoted above. The thesis was

reiterated in Church's 1936 paper. Turing introduced also in 1936

his notion of computability by machines. Post's 1936 paper contains

a model of computation that is strikingly similar to Turing's, but he



did not provide any analysis in support of the generality of his

model. On the contrary, he suggested considering the identification

of effective calculability with his concept as a working-hypothesis

that should be verified by investigating ever wider formulations and

reducing them to his basic formulation. The classical papers of

Godel, Church, Turing, Post, and Kleene are all reprinted in (Davis

1965), and good historical accounts can be found in (Davis 1982),

(Gandy 1988) and (Sieg 1997).

(Church 1936) presented one central reason for the proposed

identification, namely that other plausible explications of the

informal notion lead to mathematical concepts weaker than or

equivalent to recursiveness. Two paradigmatic explications,

calculability of a function via algorithms and in a logic, were

considered by Church. In either case, the steps taken in determining

function values have to be effective; if the effectiveness of steps is

taken to mean recursiveness, then the function can be proved to be

recursive. This requirement on steps in Church's argument

corresponds to one of the "recursiveness conditions" formulated by

Hilbert and Bernays (1939). That condition is used in their

characterization of functions that are evaluated according to rules

in a deductive formalism: it requires the proof predicate for a

deductive formalism to be primitive recursive. Hilbert and Bernays

show that all such "reckonable" functions are recursive and can

actually be evaluated in a very restricted number theoretic

formalism. Thus, in any formalism that (satisfies the recursiveness

conditions and) contains this minimal number theoretic system, one



can compute exactly the recursive functions: recursiveness or

computability consequently has, as Godel emphasized, an

absoluteness property not shared by other metamathematical

notions like provability or definability; the latter notions depend on

the formalism considered.

All such indirect and ultimately unsatisfactory considerations

were bypassed by Turing. He focused directly on the fact that human

mechanical calculability on symbolic configurations was the

intended notion. Analyzing the processes that underly such

calculations (by a computer), Turing was led to certain boundednes

and locality conditions. To start with, he demanded the immediate

recognizability of symbolic configurations so that basic

computation steps need not be further subdivided. This demand and

the evident limitation of the computer's sensory apparatus motivate

the conditions. Turing also required that the computor proceed

deterministically. The above conditions, somewhat hidden in

Turing's 1936 paper, are formulated now following (Sieg 1994);

first the boundedness conditions:

( B . 1 ) there is a fixed bound for the number of symbolic

configurations a computor can immediately recognize;

(B.2) there is a fixed bound for the number of a computer's internal

states that need to be taken into account.

Since the behavior of the computor is uniquely determined by the

finitely many combinations of symbolic configurations and internal

states, he can carry out only finitely many different operations.

These operations are restricted by the locality conditions:



(L.1) only elements of observed configurations can be changed;

(L.2) the computor can shift his attention from one symbolic

configuration to another only if the second is within a bounded

distance from the first.

Thus, on closer inspection, Turing's Thesis is seen as the result of a

two part analysis. The first part yields the above conditions and

Turing's central thesis, that any mechanical procedure can be carried

out by a computor satisfying these conditions. The second part

argues that any number theoretic function calculable by such a

computor is computable by a Turing machine. Both Church and Godel

found Turing's analysis convincing; indeed, Church wrote in (1937)

that Turing's notion makes "the identification with effectiveness in

the ordinary (not explicitly defined) sense evident immediately".

From a strictly mathematical point, the analysis leaves out

important steps, and the claim that is actually established is the

more modest one that Turing machines operating on strings can be

simulated by machines operating on single letters; a way of

generalizing Turing's argument is presented in (Sieg and Byrnes

1996).

Two final remarks are in order. First, all the arguments for

the thesis take for granted that the effective procedures are being

carried out by human beings. Gandy, by contrast, analyzed in his

1980 paper machine computability; that notion involves crucially

parallelism. Gandy's mathematical model computes nevertheless

only recursive functions. Second, the effective procedures are

taken, in addition, to be mechanical, not general cognitive ones - as

claimed by Webb and many others. Also Godel was wrong when



asserting In a brief note from 1972 that Turing intended to show in

his 1936 paper that "mental procedures cannot go beyond mechanical

procedures". Turing, quite explicitly, had no such intentions; even

after having been engaged in the issues surrounding machine

intelligence, he emphasized in his 1953 paper that the precise

concepts (recursiveness, Turing computability) are to capture the

mechanical processes that can be carried out by human beings.
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Kurt Godel was undoubtedly one of the most influential

logicians of the 20th century. A number of absolutely central facts

were established by him, among them the completeness of first

order logic and the relative consistency of the axiom of choice and

of the generalized continuum hypothesis. However, the theorems

which have been most significant (for the general discussion

concerning the foundations of mathematics) are his two

Incompleteness Theorems published in 1931; they are also referred

to simply as Godel's Theorems or the Godel Theorems.

The early part of the 20th century saw a dramatic development

of logic in the context of deep problems in the foundations of

mathematics. This development provided for the first time the

basic means to reflect mathematical practice in formal theories;

see FORMAL SYSTEMS. One fundamental question was: Is there a

formal theory such that mathematical truth is co-extensive with

provability in that theory? Russell's type theory P of Principia

Mathematica and axiomatic set theory as formulated by Zermelo

seemed to make a positive answer plausible. A second question

emerged from the research program that had been initiated by

Hilbert around 1920 (with roots going back to the turn of the

century): Is the consistency of mathematics in its formalized

presentation provable by restricted mathematical, so-called finitist



means? - The Incompleteness Theorems gave negative answers to

both questions for the particular theories mentioned. To be more

precise, a negative answer to the second question is given only, if

finitist mathematics is considered to be formalizable in these

theories; that was not clear to Godel in 1931, only in his (1933) did

he assert it with great force.

The First Incompleteness Theorem states (making use of an

improvement due to Rosser):

If P is consistent, then there is a sentence o in the language of

P, such that neither a nor its negation -ia is provable in P.

a is thus independent of P. As a is a number theoretic statement it

is either true or false for the natural numbers; in either case, we

have a statement that is true and not provable in P. This

incompleteness of P cannot be remedied by adding the true

statement to P as an axiom: for the theory so expanded, the same

incompleteness phenomenon arises. — Godel's Second Theorem

claims the unprovability of a (meta-) mathematically meaningful

statement:

If P is consistent, then cons, the statement in the language of

P that expresses the consistency of P, is not provable in P.

Some, for example Church, raised the question, whether the

proofs in some way depended on special features of P. In his

Princeton lectures of 1934 Godel tried to present matters in a more

general way; he succeeded in addressing Church's concerns, but

continued to strive for even greater generality in the formulation of

the theorems. To understand in what direction, we review the very

basic ideas underlying the proofs.



Crucial are the effective presentation of P's syntax and its

(internal) representation. Godel uses a presentation by primitive

recursive functions, i.e., the basic syntactic objects (strings of

letters of P's alphabet and strings of such strings) are "coded" as

natural numbers, and the subsets corresponding to formulas and

proofs are given by primitive recursive characteristic functions.

Representability conditions are established for all syntactic notions

R, i.e., really for all primitive recursive sets (and relations): if R(m)

holds then P proves r(m), and if not R(m) holds then P proves -ir(m),

where r is a formula in the language of P and m the numeral for the

natural number m. Thus, the metamathematical talk about the

theory can be represented within it. Then the self-referential

statement a (in the language of P) is constructed expressing of

itself that it is not provable in P. An argument analogous to that

showing the liar sentence not to be true establishes that a is not

provable in P, thus we have part of the First Theorem. The Second

Theorem is obtained, very roughly speaking, by formalizing the proof

of the First Theorem concerning a, but additional derivability

conditions are needed: this yields a proof in P of (cons -> a). Now,

clearly, cons cannot be provable in P, otherwise a were provable,

contradicting the part of the First Theorem we just established. The

proof of the Second Theorem was given in detail only by Hilbert and

Bernays (1939). A gem of an informal presentation of this material

is (Godel 1931 A); for a good introduction to the mathematical

details see (Smorynski 1977).

Godel viewed in (1934) the primitive recursiveness of the

syntactic notions as "a precise condition which in practice suffices



as a substitute for the unprecise requirement ... that the class of

axioms and relation of immediate consequence be constructive", i.e.,

have an effectively calculable characteristic function. What was

needed, in principle, was a precise concept capturing the informal

notion of an effectively calculable function. Only that would allow a

perfectly general characterization of formal theories. Such a notion

emerged from the investigations of Church and Turing; see CHURCH-

TURING THESIS. Finally it was possible to state and prove the

Incompleteness Theorems for all formal theories satisfying

representability (for all recursive relations) and derivability

conditions. In the above statement of the theorems, the premise "P

is consistent" can now be replaced by "P is any consistent formal

theory satisfying the representability conditions", respectively "P is

any consistent formal theory satisfying the representability and

derivability conditions". It is this generality of his results, Godel

emphasized again and again; for example, in (1964): "In consequence

of later advances, in particular of the fact that, due to A.M. Turing's

work, a precise and unquestionably adequate definition of the

general concept of formal system can now be given, the existence of

undecidable arithmetical propositions and the non-demonstrability

of the consistency of a system in the same system can now be

proved rigorously for every consistent formal system containing a

certain amount of finitary number theory."

Godel analyzed the broader significance of his theorems for

the philosophy of mathematics (and mind) most carefully in (1951).

The first section is devoted to a discussion of the Incompleteness

Theorems, in particular of the Second Theorem, and argues for a



"mathematically established fact" which seems to be of "great

philosophical interest" to Godel: either the humanly evident axioms

of mathematics cannot be comprised by a finite rule (given by a

Turing machine), or they can be and allow the successive

development of all of demonstrable mathematics; but in the latter

case there will be absolutely undecidable problems. That's indeed

all that can be strictly inferred, counter to Lucas, Penrose, e.a..

Godel thought that the first disjunct held and emphasized

repeatedly, for example in (1964), that his results do not establish

"any bounds for the powers of human reason, but rather for the

potentialities of pure formalism in mathematics". Indeed, in the

Gibbs lecture Godel turned the first disjunct into the following

dramatic and vague statement: "the human mind (even within the

realm of pure mathematics) infinitely surpasses the powers of any

finite machine".
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