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For problems with discontinuities caused by a step change in the input functions, a
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1 Introduction

Differential Algebraic Equations (DAEs) occur frequently in a variety of engi-
neering problems. Here we consider the form:

F{x\xyy,t) = 0 (1)

where F € Rn ,x ,x' € Rn*,y € Rn~nd and x' is the time derivative of x.
DAEs are characterized by their index which is defined (Brenan et al., 1995) as
the minimum number of times F, or the equations derived from it, should be
differentiated to get a system of the form

v = /(iM) (2)

where

v = {x,y},v£Rn. (3)

Determination of consistent initial conditions for the DAE is a problem which
lias been of considerable interest among researchers dealing with systems of the
form (1). Differentiation of (1) could generate new algebraic equations. These
hidden algebraic equations in (1) impose constraints on the initial conditions of
variables which can be specified independently. Thus the consistent initializa-
tion problem requires identification of these constraints, implicitly or explicitly,
and their treatment along with the original set of equations.

Pantelides (1988) utilizes the property that the hidden or latent equations are
generated from those subsets of equations in whidi the number of variables
(x\y) present in the subset is less than the number of equations themselves. He
uses a graph-theoretical algorithm to locate the minimally structurally singular
subsets and differentiates them. However, the algorithm is structural and sub-
sets of equations which are numerically singular might escape detection.

Unger et al. (1995) also present an algorithm based on structural analysis. They
determine the structural rank and the structural index of the problem by using a
structural version of the symbolic algorithm for index reduction by Gear (1988).
Gear's algorithm is an extension of the algorithm by Bachmann et al. (1990)
for linear systems. Here the structural rank and index of the DAE (1) is solely
determined by the patterns of dF/dv1 and dF/dv. However the structurally
determined index and degrees of freedom will only provide a lower bound and
upper bound respectively for their corresponding differential quantities. They
also proposed a combination of structural methods with numerical/symbolic
methods to overcome these difficulties as a direction for future research.
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Campbell and Moore (1994) proposed a method for solving nonlinear, high index
problems for which BDF and Implicit RK methods might be inappropriate.
They define the derivative array equations

F"(a:,z,z', . . . ,*V) = 0 (4)

as the set of equations derived by differentiating the original DAE (1) v number
of times where v is the index of (1) and

* = {*',y} (5)

They solve F¥ = 0 by a least squares iterative solution. The method was found
to be computationally expensive especially for computing the singular value de-
composition of JF» (the Jacobian of the derivative array equations) used for the
least squares solution.

Leimkuhler et al. (1991) characterize the consistency requirement by posing a
set of equations which comprise the derivative array equations (4) (defined at
time to) and the set of user specified information on initial conditions (6).

£(*<>, z o , y o ) = 0 (6)

The higher derivatives are approximated by forward finite differences. The re-
sulting approximate system, however, might not have a solution and hence is
solved in a least squares sense. This is complicated as well because of the rank
deficiency of the Jacobian. The method is illustrated for index one and semi
explicit index 2 problems in the triangular form.

Chung and Westerberg (1990) and Chung (1991) proposed a numerical algo-
rithm for consistent initialization by identifying singular subsets of equations
from the Jacobian and symbolically differentiating them. Majer et al. (1995)
considers the problem of reinitialization of DAEs after discontinuities which we
also discuss in detail in section 3.

Leimkuhler et al. (1991) defines the consistent initialization problem as: given
specified information about the initial state of the problem Uiat is sufficient to
specify a unique solution to a DAE, determine the complete vector (t/(t<>), v'(to)).
However, for a particular problem, the user may not know which variables to
specify to sufficiently determine an exact solution for the initial condition vec-
tor. In other words, the user does not know the degrees of freedom a priori. On
the other hand, the user may know a certain set of specifications and we would
like our initial conditions to be as dose to those given by the user (whether it
is over or exactly specified). Many approaches analyze the set of equations and
ask the user for the initial conditions for a particular set of variables, which he
might not have. Hence, it would make sense to work the other way. Given the
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known set of initial conditions we would like to find a consistent initial vector
(x',x,y) closest to the known set. In many practical applications, the exact
numerical value of the initial conditions may not be known for satisfying the
relevant set of equations within the specified error criteria. The minimization
formulation which we present in section 2 has its significance in this context.
The method is also relevant when there are roundoff errors.

In die next section we develop a successive linear programming (SLP) formu-
lation for the consistent initialization of DAE systems. The motivation for this
approach is that the derivative array equations require solution of an under-
determined system, but roundoff errors and incomplete user specifications may
render this system inconsistent. An SLP formulation handles this underde-
termined nature efficiently and allows for reliable convergence strategies that
incorporate variable bounds and trust region concepts. Section 3 deals with the
related problem of reinitialization after input discontinuities are encountered
for the DAE system. Here an analysis on the continuity of the state profiles is
presented and compatible SLP formulations are derived for this problem. The
SLP formulations in both sections are illustrated with the successful treatment
of numerous high index examples. Section 4 concludes the paper and outlines
directions for future work.

2 Formulation for Consistent Initialization

2.1 The problem and its properties

To derive the SLP formulation we first consider properties of the general DAE
system (1) and the associated derivative array equations (4). Let A, B and C
be the Jacobian of F in (1) with respect to x,y and x' respectively. Thus

x y x* m
JF = [A B C] ( 7 )

On differentiating, F' will have terms of x,y,x',y' and x". Now the Jacobian
of F' with respect to these variables is related to the arrays A, B and C in JF
and the Jacobian with respect to x and y will be A' and B' respectively. With
respect to x\ the terms involving x' in F' come from terms involving x or x'
in F. Thus, the derivative of F' with respect to x' will be A + C. By similar
arguments it is not difficult to see that the derivative of F' with respect to y'
and x" will be B and C respectively. If we continue the same pattern, the
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Jacobian of the derivative array equations will look like:

y" x"'

B C
A'" B'" ZA" + C" ZB" 3A' + 3C" ZB' A + ZC B C

I

A
A
A"

y
B
B'
B"

C
A + C

2A + C"

v'
B

Iff

x"

C
A + 2C

Generalizing, the Jacobian of F^ with respect to x*m* (or y*m>) is the sum of
the element in the Jacobian of F^"1* with respect to x{m~l) (or y ( m ~ l ) ) and
the derivative of F(*"!) with respect to x ( m ) (or y ( m ) ) . Note also that for a
constant coefficient linear DAE, (8) simplifies to

F
F'
F" (8)

x y x' »' x" y" x1"
A B C

A B C
A B C

A B C

F
F'
F"
pm

(9)

The derivative array equations consist of an underdetermined system of (1/ +
l)n 4- rid variables and (v + l)n equations. The Jacobian of the derivative array
equations is rank deficient because of the algebraic equations which are implicit
within them.

We still need an efficient method for the solution of this nonlinear underdeter-
mined system which is rank deficient. Additional problems include inconsistent
linearizations, roundoff errors and poor starting points and user specifications.
To deal with this problem we propose the following optimization formulation
which we solve with SLP.

2.2 SLP Formulation

Consider the solution of a nonlinear system of equations subject to inequality
constraints and variable bounds (CSP).

h(x) = 0
9(*)<0
xL<x<xu

(CSP)

To solve (CSP), a merit function is defined as
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(10)

where jte(x')+ = maxfOj^x1)]. The function /x(x) is nondifferentiable and
attains its minimum value of zero if and only if (CSP) is solved. Using SLP we
minimize jx(x) directly subject to xL < x < xu. By adding auxiliary variables,
this problem can be written as :

Min ]C to + ni) + YlSk

i k

S.t. kj(x) = Pj - Tlj

9k{x)<sk (11)
xL < x < xu

It can be shown that (pj + tij) represents |/ij(x)| and 5^ represents gk(x)+. Lin-
earizing the constraints about x* leads to the following constrained simulation
linear program, CSLP.

x'fcf < 5fc (CSLP)
<xu

Hie solution of (CSLP) generates a search direction d\ Through the addition
of artificial variables for the constraints, the LP is always feasible and generates
a descent direction for every nonzero solution of the LP. A steplength algo-
rithm combining both line search and trust region methods has been shown to
enhance the computational efficiency and increase the robustness of the algo-
rithm. A complete description of the SLP strategy is presented in Gopal and
Biegler (1995). Zhang et al. (1985) and Duff et al. (1987) have also described
trust region based Successive Linear Programming approaches in the context of
nonlinear programming and nonlinear equation solving, respectively.

We can also extend problem (CSP) and the SLP approach by minimizing some
distance from the specified conditions for the initialization problem. Let the
specified initial conditions be X{ = A'*p for t = l , . . .niC where A' C { x , x \ y } .
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An optimization formulation for consistent initialization is

s.t.

-Si < Xi - Xfp <6{ i = l , . . . ,n t >

<Jt>0 t = l,..-,n<c

A'/" < Xi < X? (12)

where Ui are weights that scale the deviations from the specifications. The NLP
(12) is solved using Successive Linear Programming (SLP). The method gener-
ates a search direction from a linear program obtained from the linearization of
(12). If the given specification is exact, the solution of the problem will corre-
spond to a consistent set of initial conditions and a zero objective function. In
case of an inconsistent overspecification, the optimum solution of (12) will be a
positive value of the objective function, with a consistent set of initial conditions
for the problem, closest to the specified set.

Note that the formulation (12) involves minimization of the weighted 1-norm
of the violation of initial condition specifications. Hence the number of initial
conditions set equal to the specified values at the solution need not be equal
to the degrees of freedom for the specification of initial conditions (r) for the
problem. Nonetheless it should also be noted that the objective value at the so-
lution of the LP will be less than or equal to what it would have been if exactly
r of the variables were set equal to their specified values. This is because (12)
is not constrained to fix r initial conditions to their specified values but to find
a consistent set of initial conditions closest to their specified values.

However, the user might want to have r variables to be set equal to their speci-
fied values, if the solution of (12) fixes less than r specifications. In other words,
he may wish to pick the best set of r variables so that the specification vio-
lation of the rest of the variables is minimized. The degrees of freedom could
be determined from the rank analysis of the Jacobian of the derivative array
equations (Campbell and Moore, 1994). Once r is known, the following Mixed
Integer NonLinear Programming (MINLP) formulation (13) could be used for
consistent initialization. A,s are binary variables and M,s correspond to the
big-M constraints.

Min

s.t.
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-6{ <Xi-Xfp<6i i = 1,..., n<c (13a)

0 < Si < M,(l - Xt) t = l nie (136)

= r (13c)

A<=O,1 t = l,...,flfc

A'/' < X{ < X? (13)

A value of A» = 1 => 6, = 0 which implies that variable Xi is set equal to its
specified value at the solution of the problem. The constraint Yl'£i A* = r serves
of purpose of setting at least r variables to their specified values. However, (13)
is an MINLP and could be expensive for the solution of the above problem. We
would like to simplify the above formulation to a form where it could be solved
using SLP.

If we rewrite (13a) as

Si + Xi - A'fp > 0 (14ai)

*«-A', + A ' F > 0 (Ma*)

The following inequalities are introduced in place of (13b).

Xi [{Si + Xi - X?) + (Si - Xi + X?)] < 0 (1460
0 < Xi < 1 (14fr2)

Note that A, in (14b) are continuous variables bounded between zero and one
as opposed to the binary A, used in (13b). (14b) could be simplified to:

0 < Xi < 1 (14c2)

Consider the case A, > 0. (14cO will be satisfied iff Si = 0 because of the
nonnegativity constraint on S{. ie. Xi = X'p. A nonzero A,* corresponds to the
variable X,- set equal to its specified value. Similarly a nonzero Si (Xi ^ Xt*

p)
implies A; = 0.

The summation equation (13c) is retained. (14ci) smd the nonnegativity con-
ditions At > 0 and Si > 0 reduces to the complementarity condition Aj<5» = 0.
The simplified formulation using continuous variables is given by (14).

t = i
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s.t.

0< A, < 1 t = l , . . . , n t c

<Jt>0 i = l , . . . t n< c

Ar,L < A't < A f (14)

The reformulation of the original MINLP problem to an NLP (14) constrained
by complementarity conditions presents us with an opportunity to use a vari-
ety of techniques suggested to solve complementarity problems (Billups et a/.,
1995). Chen and Mangasarian (1995) proposed a class of smoothing functions to
solve the complementarity problem approximately. A and 6 satisfy the comple-
mentarity condition if and only if A = (A - <$)+ where (A - <$)+ = max(0, A - S).
The max function is approximated using the smoothing function

max(O,q) «17 + 0 log(l + e - w ) (15)

As the parameter 0 approaches zero the smooth approximation approadies the
nonsmooth max function. Using the smooth approximation (15), (14) can be
reformulated as

A/in1

1=1

s.t. F"(x,zy;

Si-0 log(l

i = r

0 < A f < 1 t = l , . . . , n l c

Si > 0 t = 1 , . . . , n,-c

A'/' < A'f < A'/ (16)

Formulation (16) is an NLP and is solved using SLP since a vertex solution is
expected. (16) is less cumbersome to solve when compared to (13). We also
show in the Appendix that if the degrees of freedom (r) are specified exactly,
under certain conditions, a nonzero A, will take its upper bound value of 1,
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which is a solution of the MINLP formulation (13).

2.3 Examples
Below, we consider three example problems to illustrate the application of for-
mulations (12) and (16).

Example 1: Chemical Reactor Problem

Consider the problem described by (17) (Campbell and Moore, 1994; Pantelides,
1988).

C' + C + R = 4 + t + i1

T1 + 2T + R + Tc = 1 4- eTl

T~l+ln{R/C) = 0 (17)
C = cosh{t - 1)

The problem is index 3 and has a unique solution. There are no degrees of
freedom for specification of the initial conditions. However since there are two
differential equations, the user may be tempted to specify initial conditions cor-
responding to the differential variables. The formulation (12) should be able
to take care of any such inconsistent specifications and give us a consistent set
of initial conditions closest to the specified ones (in this case the unique initial
vector). In table 1 we consider two inconsistent specifications for the initial
conditions. In both cases the SLP method solved for the correct set of initial
conditions with a nonzero objective function at the solution. Note that the
second case corresponds to the commonly used steady state initial condition
specifications. D

Example 2: Pendulum Problem
This is the popular pendulum problem considered by various authors (Pan-
te lides, 1988; Gear, 1988; Unger et a/., 1995). The formulation is given by
(18).

x1 = t;

y' = w
v1 = - T x (18)
nf = -Ty - g

2 i 2 __ i
X "l 1 / ™" M.

The problem is of index 3 and has 2 degrees of freedom for specification of initial
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Table 1: Initial Conditions for the Chemical Reactor Problem

Specified ICs

C = l
7b = 0

C' = 0
T ' = 0

Actual ICs
(SLP Solution)

C = 1.5431
R = 3.6321

T =-1.1682
Tc = -0.5726

C = -1.1752
T = 1.2768

Number of SLP
Iterations

12

6

conditions. The two underlying algebraic equations (19) are derived from the
successive differentiation of (18).

xv + y w = 0
-T(x2 4- y2) + tr + ur - gy = 0 (19)

Table 2 shows how the proposed method solves for a consistent set of initial
conditions for three different specifications.

The number of specifications in the first two sets is equal to the degrees of free-
dom (2) and the sets (x,v) and (z,T) form a feasible pair (The Jacobian of the
original set of equations with respect to all the variables other than the specified
ones is nonsingular). As seen, applying SLP to (12) solves for the consistent
initial vector with the solution for the specified variables being equal to their
specified values. However, the third set is an overspecification. In this case SLP
finds the initial condition vector which is closest, in the 1-norm sense, to the
specified ones.

Now consider the application of (16) to this problem. As seen from the specifica-
tions in table 3, even though there are two degrees of freedom for this problem,
solution with (12) sets only one variable to its specified value. On the other
hand, the problem when solved with (16) and r = 2, sets x and w to their
specified values. The corresponding objective function is 0.3660 which is the
deviation in v. This objective is greater than the value of 0.3128 from (12). D
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Table 2: Initial Conditions for the pendulum problem

Specified ICs

i = 0.5
v = 1.0

x = 0.5
T = 0.5

i = 0.5
w=1.0
T = 0.5

Solution from
(12)

i = 0.5
i> = 1.0

i = 0.5
r = o.5

1 = 0.5
v = 1.012
T = 0.5

Number of LPs
solved

11

12

12

Table 3: Solution for the pendulum problem from inconsistent specifications
using (12) and (16)

Specified ICs

i = -0.5

« = 0.5
w = 0.5

Solution from (12)

i =-0.5463
y = 0.8376
v = 0.7665
u; = 0.5000
T = 0.0000

£<S, = 0.3128

Solution from (16)

x = -0.5000
y = 0.8660
v = 0.8660
w = 0.5000
T = 0.1340

Efc = 0.3660

Example 3: Trajectory Prescribed Path Control (TPPC) Problem
Here we consider a nonlinear example used in the simulation of space vehicles
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when the shape of the trajectory is prescribed. TPPC problems are treated
extensively in Brenan et al. (1995). (20) is an index 3 problem where the first
six equations are the equations of motion in relative coordinates and the last
equation is the algebraic path constraint.

A'

=

= V*sin7

rcosA
VR
—COS7COS/1

0sin7-ft£rcosA(sinAcos4cos7-cosAsii i7)
m

(20)

(sin A cos A sin 7 + cos A cos 7)

QircosAsinAsinX

Computations by Campbell and Moore (1994) using the initial values of the
state variables obtained from Brenan et al. (1995) found that their values were
not exact. Using these values as initial guesses, they generated new initial con-
ditions using a least squares method. There are two points to be noted in this
problem:
(1) Arbitrary specification of all 7 state variables will lead to problems even if
they are slightly inconsistent (as observed by Campbell and Moore (1995)) since
the degrees of freedom is 4.
(2) A different undesirable control history of 0 < 0 is possible for this problem.
0 must be positive in the given set of initial conditions.

The initialization problem when formulated using (12) and initialized using the
values from Brenan et al (1995), returned consistent initial conditions within
an accuracy of 10"12 in just 2 iterations. The SLP method has the added advan-
tage of an easy imposition of a lower bound of zero on 0 to avoid the undesirable
control history. •

hi summary, when the failure of the solver is due to inconsistent specification
of initial conditions by the user, it is advantageous that the user be presented



14 V. GOPAL AND L. T. BIEGLER

with a consistent set of initial conditions which is closest to what had been spec-
ified before and is numerically consistent. The two formulations, (12) and (16),
serves this purpose and give the user flexibility to use the available information
to the best advantage. Campbell and Moore (1994) point out that in practical
applications, one would expect that some initial values are known and there
are reasonable estimates for others. The method has relevance in this context
too, where the weights <J< in (12) and (16) could be chosen to help the user
determine a consistent initial vector reflecting his confidence level in the initial
value estimates.

3 Reinitialization after discontinuities
In this section, we look at the problem of reinitialization of DAEs after discon-
tinuities, some underlying principles for this problem and the application of the
minimization formulation.

3.1 Problem description
The task of finding a consistent set of initial conditions for the reinitializa-
tion of a DAE is often more complicated than the pure initialization problem.
The reason is that the reinitialization problem involves an additional exercise
of determining the variables which are continuous across a discontinuity. The
numerical values of the continuous variables at the point of discontinuity con-
tribute to the specifications for the reinitialization problem.

Majer et al. (1995) address the problem of reinitialization of DAEs after discon-
tinuities. They specifically look at index one linear-implicit DAEs of the form
(21), where there are discontinuous steps in the forcing function u.

T{v,u,t)v' = h(v,u,t) (21)

u is the vector corresponding to the input variables and an algebraic transfor-
mation of the form (22) exists

0 = M x , y , u ) (22)

They show that the continuity assumptions of state variables can be safely as-
sumed by default only when TV; = 0. For the case Tn £ 0, conditions are laud
out for the solvability of consistency equations.

Brull and Paliaske (1992) considered the same index one problem and derived
the necessary and sufficient condition for the above system to have a genuine
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initial value for the state variable vector v after a jump in the input variable u.

However, no work has been done for determining the validity of the continuity
assumptions of state variables for higher index nonlinear DAEs. In this section,
we consider a class of such problems in whidi the discontinuity is caused by a
step change in the input function u.

An assumption about this class of problems is that the index of the problem
remains the same at all times. Also, if we were to look at the discrete models at
any time as independent problems, the degrees of freedom for the specification
of initial conditions remain the same. Often it is assumed that the differential
variables are continuous if the composition of the differential variables appear-
ing in the describing equations remain unchanged across the discontinuity. This
is not always true as was shown by Majer et a/. (1995) and Brull and Pallaske
(1992) for hilly implicit index one systems. When considering problems of arbi-
trary index, what is missing are rigorous criteria to determine whidi variables
are continuous and whidi are not, across a discontinuity caused by a step diange
in one or more input functions.

3.2 Continuity assumptions for problems of arbitrary in-
dex

Consider a DAE of the form

F(x',x,Vlti,t) = 0 (23)

where u € Rn". The continuity assumptions hold for tliat subset of variables v0,
whose underlying ODEs do not depend on any of tlie derivatives of Hie function
u causing the discontinuity.

Let the system be of index v. Differentiation of (23) v times will yidd an
ODE of the form (24) whidi is termed as the underlying ODE for the DAE
(23). v is defined as in (3).

t/ = /(ti,ti,u' iiM.t) (24)

Denote tT = v(t9 - 0) and v+ = v(t* + 0), where tm is the time of discontinuity.
Let v{ be a variable which has an underlying ODE of the form (25) where u(k)

is tlie highest derivative of u explicitly present in the underlying ODE.

v'i = fi{v, t i f . . . f u<«ft) (25)

Let ust be a smoothed step for u defined for V <t<V+6t and vst be the
corresponding smoothed profiles of the variables. As in Majer et al. (1995),

/

t+tt
fi{v6t,u6t,...,u

(
6
k
t\t)dT} (26)
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The derivatives of u are not bounded for step changes in u. The integral will
vanish only when the derivatives of u do not form part of the integral, explicitly
or implicitly through the variables appearing in the underlying ODE. Thus, only
those variables whose underlying ODEs could be shown to be independent of
any derivative of the input function causing the discontinuity, are continuous
across it.

Let the set of continuous variables be v0. From the above analysis, it is clear
that there is no guarantee that all differential variables will fall in the set VQ.
Hence, the assumption of continuity of differential variables across the discon-
tinuity, often used in dynamic simulators, is not always true.

An underlying ODE can be determined using a symbolic algorithm, for ex-
ample by Gear (1988). However, the form of the ODE found depends on the
algebraic manipulation one carries out while deriving it. The above analysis
provides a framework for determining the variables which are continuous across
a discontinuity, but from a computational standpoint the issue of uniqueness of
the underlying ODE of a given DAE (1) is to be addressed.

Example 4
Consider the DAE described by (27).

y' + x = u\

y = ti2 (27)

Consider the following two forms of the underlying ODE, (28) and (29).

t i a
X =s U | — U«>

y' = u!2 (28)

x' = u\-u$

y' = ux - x (29)

In the event of a step change in u>, (28) gives a clear picture of the behavior
of y, whereas from (29), it is not clear because of the implicit dependence on x. O

However, in practical applications, one would not prefer to explicitly deter-
mine an underlying ODE and then validate the continuity assumptions. Given
all the constraining algebraic equations for a DAE and any particular under-
lying ODE, one could derive other forms of underlying ODEs. The derivative
array equations, in principle, contain the differential and all the constraining
algebraic equations for a given DAE. Hence, it would be easier to work with the
derivative array equations and determine the dependencies of the differential
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1 Introduction

Differential Algebraic Equations (DAEs) occur frequently in a variety of engi-
neering problems. Here we consider the form:

F{x\xyy,t) = 0 (1)

where F € Rn ,x ,x' € Rn*,y € Rn~nd and x' is the time derivative of x.
DAEs are characterized by their index which is defined (Brenan et al., 1995) as
the minimum number of times F, or the equations derived from it, should be
differentiated to get a system of the form

v = /(iM) (2)

where

v = {x,y},v£Rn. (3)

Determination of consistent initial conditions for the DAE is a problem which
lias been of considerable interest among researchers dealing with systems of the
form (1). Differentiation of (1) could generate new algebraic equations. These
hidden algebraic equations in (1) impose constraints on the initial conditions of
variables which can be specified independently. Thus the consistent initializa-
tion problem requires identification of these constraints, implicitly or explicitly,
and their treatment along with the original set of equations.

Pantelides (1988) utilizes the property that the hidden or latent equations are
generated from those subsets of equations in whidi the number of variables
(x\y) present in the subset is less than the number of equations themselves. He
uses a graph-theoretical algorithm to locate the minimally structurally singular
subsets and differentiates them. However, the algorithm is structural and sub-
sets of equations which are numerically singular might escape detection.

Unger et al. (1995) also present an algorithm based on structural analysis. They
determine the structural rank and the structural index of the problem by using a
structural version of the symbolic algorithm for index reduction by Gear (1988).
Gear's algorithm is an extension of the algorithm by Bachmann et al. (1990)
for linear systems. Here the structural rank and index of the DAE (1) is solely
determined by the patterns of dF/dv1 and dF/dv. However the structurally
determined index and degrees of freedom will only provide a lower bound and
upper bound respectively for their corresponding differential quantities. They
also proposed a combination of structural methods with numerical/symbolic
methods to overcome these difficulties as a direction for future research.
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Campbell and Moore (1994) proposed a method for solving nonlinear, high index
problems for which BDF and Implicit RK methods might be inappropriate.
They define the derivative array equations

F"(a:,z,z', . . . ,*V) = 0 (4)

as the set of equations derived by differentiating the original DAE (1) v number
of times where v is the index of (1) and

* = {*',y} (5)

They solve F¥ = 0 by a least squares iterative solution. The method was found
to be computationally expensive especially for computing the singular value de-
composition of JF» (the Jacobian of the derivative array equations) used for the
least squares solution.

Leimkuhler et al. (1991) characterize the consistency requirement by posing a
set of equations which comprise the derivative array equations (4) (defined at
time to) and the set of user specified information on initial conditions (6).

£(*<>, z o , y o ) = 0 (6)

The higher derivatives are approximated by forward finite differences. The re-
sulting approximate system, however, might not have a solution and hence is
solved in a least squares sense. This is complicated as well because of the rank
deficiency of the Jacobian. The method is illustrated for index one and semi
explicit index 2 problems in the triangular form.

Chung and Westerberg (1990) and Chung (1991) proposed a numerical algo-
rithm for consistent initialization by identifying singular subsets of equations
from the Jacobian and symbolically differentiating them. Majer et al. (1995)
considers the problem of reinitialization of DAEs after discontinuities which we
also discuss in detail in section 3.

Leimkuhler et al. (1991) defines the consistent initialization problem as: given
specified information about the initial state of the problem Uiat is sufficient to
specify a unique solution to a DAE, determine the complete vector (t/(t<>), v'(to)).
However, for a particular problem, the user may not know which variables to
specify to sufficiently determine an exact solution for the initial condition vec-
tor. In other words, the user does not know the degrees of freedom a priori. On
the other hand, the user may know a certain set of specifications and we would
like our initial conditions to be as dose to those given by the user (whether it
is over or exactly specified). Many approaches analyze the set of equations and
ask the user for the initial conditions for a particular set of variables, which he
might not have. Hence, it would make sense to work the other way. Given the
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known set of initial conditions we would like to find a consistent initial vector
(x',x,y) closest to the known set. In many practical applications, the exact
numerical value of the initial conditions may not be known for satisfying the
relevant set of equations within the specified error criteria. The minimization
formulation which we present in section 2 has its significance in this context.
The method is also relevant when there are roundoff errors.

In die next section we develop a successive linear programming (SLP) formu-
lation for the consistent initialization of DAE systems. The motivation for this
approach is that the derivative array equations require solution of an under-
determined system, but roundoff errors and incomplete user specifications may
render this system inconsistent. An SLP formulation handles this underde-
termined nature efficiently and allows for reliable convergence strategies that
incorporate variable bounds and trust region concepts. Section 3 deals with the
related problem of reinitialization after input discontinuities are encountered
for the DAE system. Here an analysis on the continuity of the state profiles is
presented and compatible SLP formulations are derived for this problem. The
SLP formulations in both sections are illustrated with the successful treatment
of numerous high index examples. Section 4 concludes the paper and outlines
directions for future work.

2 Formulation for Consistent Initialization

2.1 The problem and its properties

To derive the SLP formulation we first consider properties of the general DAE
system (1) and the associated derivative array equations (4). Let A, B and C
be the Jacobian of F in (1) with respect to x,y and x' respectively. Thus

x y x* m
JF = [A B C] ( 7 )

On differentiating, F' will have terms of x,y,x',y' and x". Now the Jacobian
of F' with respect to these variables is related to the arrays A, B and C in JF
and the Jacobian with respect to x and y will be A' and B' respectively. With
respect to x\ the terms involving x' in F' come from terms involving x or x'
in F. Thus, the derivative of F' with respect to x' will be A + C. By similar
arguments it is not difficult to see that the derivative of F' with respect to y'
and x" will be B and C respectively. If we continue the same pattern, the
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Jacobian of the derivative array equations will look like:

y" x"'

B C
A'" B'" ZA" + C" ZB" 3A' + 3C" ZB' A + ZC B C

I

A
A
A"

y
B
B'
B"

C
A + C

2A + C"

v'
B

Iff

x"

C
A + 2C

Generalizing, the Jacobian of F^ with respect to x*m* (or y*m>) is the sum of
the element in the Jacobian of F^"1* with respect to x{m~l) (or y ( m ~ l ) ) and
the derivative of F(*"!) with respect to x ( m ) (or y ( m ) ) . Note also that for a
constant coefficient linear DAE, (8) simplifies to

F
F'
F" (8)

x y x' »' x" y" x1"
A B C

A B C
A B C

A B C

F
F'
F"
pm

(9)

The derivative array equations consist of an underdetermined system of (1/ +
l)n 4- rid variables and (v + l)n equations. The Jacobian of the derivative array
equations is rank deficient because of the algebraic equations which are implicit
within them.

We still need an efficient method for the solution of this nonlinear underdeter-
mined system which is rank deficient. Additional problems include inconsistent
linearizations, roundoff errors and poor starting points and user specifications.
To deal with this problem we propose the following optimization formulation
which we solve with SLP.

2.2 SLP Formulation

Consider the solution of a nonlinear system of equations subject to inequality
constraints and variable bounds (CSP).

h(x) = 0
9(*)<0
xL<x<xu

(CSP)

To solve (CSP), a merit function is defined as
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(10)

where jte(x')+ = maxfOj^x1)]. The function /x(x) is nondifferentiable and
attains its minimum value of zero if and only if (CSP) is solved. Using SLP we
minimize jx(x) directly subject to xL < x < xu. By adding auxiliary variables,
this problem can be written as :

Min ]C to + ni) + YlSk

i k

S.t. kj(x) = Pj - Tlj

9k{x)<sk (11)
xL < x < xu

It can be shown that (pj + tij) represents |/ij(x)| and 5^ represents gk(x)+. Lin-
earizing the constraints about x* leads to the following constrained simulation
linear program, CSLP.

x'fcf < 5fc (CSLP)
<xu

Hie solution of (CSLP) generates a search direction d\ Through the addition
of artificial variables for the constraints, the LP is always feasible and generates
a descent direction for every nonzero solution of the LP. A steplength algo-
rithm combining both line search and trust region methods has been shown to
enhance the computational efficiency and increase the robustness of the algo-
rithm. A complete description of the SLP strategy is presented in Gopal and
Biegler (1995). Zhang et al. (1985) and Duff et al. (1987) have also described
trust region based Successive Linear Programming approaches in the context of
nonlinear programming and nonlinear equation solving, respectively.

We can also extend problem (CSP) and the SLP approach by minimizing some
distance from the specified conditions for the initialization problem. Let the
specified initial conditions be X{ = A'*p for t = l , . . .niC where A' C { x , x \ y } .
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An optimization formulation for consistent initialization is

s.t.

-Si < Xi - Xfp <6{ i = l , . . . ,n t >

<Jt>0 t = l,..-,n<c

A'/" < Xi < X? (12)

where Ui are weights that scale the deviations from the specifications. The NLP
(12) is solved using Successive Linear Programming (SLP). The method gener-
ates a search direction from a linear program obtained from the linearization of
(12). If the given specification is exact, the solution of the problem will corre-
spond to a consistent set of initial conditions and a zero objective function. In
case of an inconsistent overspecification, the optimum solution of (12) will be a
positive value of the objective function, with a consistent set of initial conditions
for the problem, closest to the specified set.

Note that the formulation (12) involves minimization of the weighted 1-norm
of the violation of initial condition specifications. Hence the number of initial
conditions set equal to the specified values at the solution need not be equal
to the degrees of freedom for the specification of initial conditions (r) for the
problem. Nonetheless it should also be noted that the objective value at the so-
lution of the LP will be less than or equal to what it would have been if exactly
r of the variables were set equal to their specified values. This is because (12)
is not constrained to fix r initial conditions to their specified values but to find
a consistent set of initial conditions closest to their specified values.

However, the user might want to have r variables to be set equal to their speci-
fied values, if the solution of (12) fixes less than r specifications. In other words,
he may wish to pick the best set of r variables so that the specification vio-
lation of the rest of the variables is minimized. The degrees of freedom could
be determined from the rank analysis of the Jacobian of the derivative array
equations (Campbell and Moore, 1994). Once r is known, the following Mixed
Integer NonLinear Programming (MINLP) formulation (13) could be used for
consistent initialization. A,s are binary variables and M,s correspond to the
big-M constraints.

Min

s.t.
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-6{ <Xi-Xfp<6i i = 1,..., n<c (13a)

0 < Si < M,(l - Xt) t = l nie (136)

= r (13c)

A<=O,1 t = l,...,flfc

A'/' < X{ < X? (13)

A value of A» = 1 => 6, = 0 which implies that variable Xi is set equal to its
specified value at the solution of the problem. The constraint Yl'£i A* = r serves
of purpose of setting at least r variables to their specified values. However, (13)
is an MINLP and could be expensive for the solution of the above problem. We
would like to simplify the above formulation to a form where it could be solved
using SLP.

If we rewrite (13a) as

Si + Xi - A'fp > 0 (14ai)

*«-A', + A ' F > 0 (Ma*)

The following inequalities are introduced in place of (13b).

Xi [{Si + Xi - X?) + (Si - Xi + X?)] < 0 (1460
0 < Xi < 1 (14fr2)

Note that A, in (14b) are continuous variables bounded between zero and one
as opposed to the binary A, used in (13b). (14b) could be simplified to:

0 < Xi < 1 (14c2)

Consider the case A, > 0. (14cO will be satisfied iff Si = 0 because of the
nonnegativity constraint on S{. ie. Xi = X'p. A nonzero A,* corresponds to the
variable X,- set equal to its specified value. Similarly a nonzero Si (Xi ^ Xt*

p)
implies A; = 0.

The summation equation (13c) is retained. (14ci) smd the nonnegativity con-
ditions At > 0 and Si > 0 reduces to the complementarity condition Aj<5» = 0.
The simplified formulation using continuous variables is given by (14).

t = i
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s.t.

0< A, < 1 t = l , . . . , n t c

<Jt>0 i = l , . . . t n< c

Ar,L < A't < A f (14)

The reformulation of the original MINLP problem to an NLP (14) constrained
by complementarity conditions presents us with an opportunity to use a vari-
ety of techniques suggested to solve complementarity problems (Billups et a/.,
1995). Chen and Mangasarian (1995) proposed a class of smoothing functions to
solve the complementarity problem approximately. A and 6 satisfy the comple-
mentarity condition if and only if A = (A - <$)+ where (A - <$)+ = max(0, A - S).
The max function is approximated using the smoothing function

max(O,q) «17 + 0 log(l + e - w ) (15)

As the parameter 0 approaches zero the smooth approximation approadies the
nonsmooth max function. Using the smooth approximation (15), (14) can be
reformulated as

A/in1

1=1

s.t. F"(x,zy;

Si-0 log(l

i = r

0 < A f < 1 t = l , . . . , n l c

Si > 0 t = 1 , . . . , n,-c

A'/' < A'f < A'/ (16)

Formulation (16) is an NLP and is solved using SLP since a vertex solution is
expected. (16) is less cumbersome to solve when compared to (13). We also
show in the Appendix that if the degrees of freedom (r) are specified exactly,
under certain conditions, a nonzero A, will take its upper bound value of 1,
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which is a solution of the MINLP formulation (13).

2.3 Examples
Below, we consider three example problems to illustrate the application of for-
mulations (12) and (16).

Example 1: Chemical Reactor Problem

Consider the problem described by (17) (Campbell and Moore, 1994; Pantelides,
1988).

C' + C + R = 4 + t + i1

T1 + 2T + R + Tc = 1 4- eTl

T~l+ln{R/C) = 0 (17)
C = cosh{t - 1)

The problem is index 3 and has a unique solution. There are no degrees of
freedom for specification of the initial conditions. However since there are two
differential equations, the user may be tempted to specify initial conditions cor-
responding to the differential variables. The formulation (12) should be able
to take care of any such inconsistent specifications and give us a consistent set
of initial conditions closest to the specified ones (in this case the unique initial
vector). In table 1 we consider two inconsistent specifications for the initial
conditions. In both cases the SLP method solved for the correct set of initial
conditions with a nonzero objective function at the solution. Note that the
second case corresponds to the commonly used steady state initial condition
specifications. D

Example 2: Pendulum Problem
This is the popular pendulum problem considered by various authors (Pan-
te lides, 1988; Gear, 1988; Unger et a/., 1995). The formulation is given by
(18).

x1 = t;

y' = w
v1 = - T x (18)
nf = -Ty - g

2 i 2 __ i
X "l 1 / ™" M.

The problem is of index 3 and has 2 degrees of freedom for specification of initial
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Table 1: Initial Conditions for the Chemical Reactor Problem

Specified ICs

C = l
7b = 0

C' = 0
T ' = 0

Actual ICs
(SLP Solution)

C = 1.5431
R = 3.6321

T =-1.1682
Tc = -0.5726

C = -1.1752
T = 1.2768

Number of SLP
Iterations

12

6

conditions. The two underlying algebraic equations (19) are derived from the
successive differentiation of (18).

xv + y w = 0
-T(x2 4- y2) + tr + ur - gy = 0 (19)

Table 2 shows how the proposed method solves for a consistent set of initial
conditions for three different specifications.

The number of specifications in the first two sets is equal to the degrees of free-
dom (2) and the sets (x,v) and (z,T) form a feasible pair (The Jacobian of the
original set of equations with respect to all the variables other than the specified
ones is nonsingular). As seen, applying SLP to (12) solves for the consistent
initial vector with the solution for the specified variables being equal to their
specified values. However, the third set is an overspecification. In this case SLP
finds the initial condition vector which is closest, in the 1-norm sense, to the
specified ones.

Now consider the application of (16) to this problem. As seen from the specifica-
tions in table 3, even though there are two degrees of freedom for this problem,
solution with (12) sets only one variable to its specified value. On the other
hand, the problem when solved with (16) and r = 2, sets x and w to their
specified values. The corresponding objective function is 0.3660 which is the
deviation in v. This objective is greater than the value of 0.3128 from (12). D
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Table 2: Initial Conditions for the pendulum problem

Specified ICs

i = 0.5
v = 1.0

x = 0.5
T = 0.5

i = 0.5
w=1.0
T = 0.5

Solution from
(12)

i = 0.5
i> = 1.0

i = 0.5
r = o.5

1 = 0.5
v = 1.012
T = 0.5

Number of LPs
solved

11

12

12

Table 3: Solution for the pendulum problem from inconsistent specifications
using (12) and (16)

Specified ICs

i = -0.5

« = 0.5
w = 0.5

Solution from (12)

i =-0.5463
y = 0.8376
v = 0.7665
u; = 0.5000
T = 0.0000

£<S, = 0.3128

Solution from (16)

x = -0.5000
y = 0.8660
v = 0.8660
w = 0.5000
T = 0.1340

Efc = 0.3660

Example 3: Trajectory Prescribed Path Control (TPPC) Problem
Here we consider a nonlinear example used in the simulation of space vehicles
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when the shape of the trajectory is prescribed. TPPC problems are treated
extensively in Brenan et al. (1995). (20) is an index 3 problem where the first
six equations are the equations of motion in relative coordinates and the last
equation is the algebraic path constraint.

A'

=

= V*sin7

rcosA
VR
—COS7COS/1

0sin7-ft£rcosA(sinAcos4cos7-cosAsii i7)
m

(20)

(sin A cos A sin 7 + cos A cos 7)

QircosAsinAsinX

Computations by Campbell and Moore (1994) using the initial values of the
state variables obtained from Brenan et al. (1995) found that their values were
not exact. Using these values as initial guesses, they generated new initial con-
ditions using a least squares method. There are two points to be noted in this
problem:
(1) Arbitrary specification of all 7 state variables will lead to problems even if
they are slightly inconsistent (as observed by Campbell and Moore (1995)) since
the degrees of freedom is 4.
(2) A different undesirable control history of 0 < 0 is possible for this problem.
0 must be positive in the given set of initial conditions.

The initialization problem when formulated using (12) and initialized using the
values from Brenan et al (1995), returned consistent initial conditions within
an accuracy of 10"12 in just 2 iterations. The SLP method has the added advan-
tage of an easy imposition of a lower bound of zero on 0 to avoid the undesirable
control history. •

hi summary, when the failure of the solver is due to inconsistent specification
of initial conditions by the user, it is advantageous that the user be presented
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with a consistent set of initial conditions which is closest to what had been spec-
ified before and is numerically consistent. The two formulations, (12) and (16),
serves this purpose and give the user flexibility to use the available information
to the best advantage. Campbell and Moore (1994) point out that in practical
applications, one would expect that some initial values are known and there
are reasonable estimates for others. The method has relevance in this context
too, where the weights <J< in (12) and (16) could be chosen to help the user
determine a consistent initial vector reflecting his confidence level in the initial
value estimates.

3 Reinitialization after discontinuities
In this section, we look at the problem of reinitialization of DAEs after discon-
tinuities, some underlying principles for this problem and the application of the
minimization formulation.

3.1 Problem description
The task of finding a consistent set of initial conditions for the reinitializa-
tion of a DAE is often more complicated than the pure initialization problem.
The reason is that the reinitialization problem involves an additional exercise
of determining the variables which are continuous across a discontinuity. The
numerical values of the continuous variables at the point of discontinuity con-
tribute to the specifications for the reinitialization problem.

Majer et al. (1995) address the problem of reinitialization of DAEs after discon-
tinuities. They specifically look at index one linear-implicit DAEs of the form
(21), where there are discontinuous steps in the forcing function u.

T{v,u,t)v' = h(v,u,t) (21)

u is the vector corresponding to the input variables and an algebraic transfor-
mation of the form (22) exists

0 = M x , y , u ) (22)

They show that the continuity assumptions of state variables can be safely as-
sumed by default only when TV; = 0. For the case Tn £ 0, conditions are laud
out for the solvability of consistency equations.

Brull and Paliaske (1992) considered the same index one problem and derived
the necessary and sufficient condition for the above system to have a genuine
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initial value for the state variable vector v after a jump in the input variable u.

However, no work has been done for determining the validity of the continuity
assumptions of state variables for higher index nonlinear DAEs. In this section,
we consider a class of such problems in whidi the discontinuity is caused by a
step change in the input function u.

An assumption about this class of problems is that the index of the problem
remains the same at all times. Also, if we were to look at the discrete models at
any time as independent problems, the degrees of freedom for the specification
of initial conditions remain the same. Often it is assumed that the differential
variables are continuous if the composition of the differential variables appear-
ing in the describing equations remain unchanged across the discontinuity. This
is not always true as was shown by Majer et a/. (1995) and Brull and Pallaske
(1992) for hilly implicit index one systems. When considering problems of arbi-
trary index, what is missing are rigorous criteria to determine whidi variables
are continuous and whidi are not, across a discontinuity caused by a step diange
in one or more input functions.

3.2 Continuity assumptions for problems of arbitrary in-
dex

Consider a DAE of the form

F(x',x,Vlti,t) = 0 (23)

where u € Rn". The continuity assumptions hold for tliat subset of variables v0,
whose underlying ODEs do not depend on any of tlie derivatives of Hie function
u causing the discontinuity.

Let the system be of index v. Differentiation of (23) v times will yidd an
ODE of the form (24) whidi is termed as the underlying ODE for the DAE
(23). v is defined as in (3).

t/ = /(ti,ti,u' iiM.t) (24)

Denote tT = v(t9 - 0) and v+ = v(t* + 0), where tm is the time of discontinuity.
Let v{ be a variable which has an underlying ODE of the form (25) where u(k)

is tlie highest derivative of u explicitly present in the underlying ODE.

v'i = fi{v, t i f . . . f u<«ft) (25)

Let ust be a smoothed step for u defined for V <t<V+6t and vst be the
corresponding smoothed profiles of the variables. As in Majer et al. (1995),

/

t+tt
fi{v6t,u6t,...,u

(
6
k
t\t)dT} (26)
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The derivatives of u are not bounded for step changes in u. The integral will
vanish only when the derivatives of u do not form part of the integral, explicitly
or implicitly through the variables appearing in the underlying ODE. Thus, only
those variables whose underlying ODEs could be shown to be independent of
any derivative of the input function causing the discontinuity, are continuous
across it.

Let the set of continuous variables be v0. From the above analysis, it is clear
that there is no guarantee that all differential variables will fall in the set VQ.
Hence, the assumption of continuity of differential variables across the discon-
tinuity, often used in dynamic simulators, is not always true.

An underlying ODE can be determined using a symbolic algorithm, for ex-
ample by Gear (1988). However, the form of the ODE found depends on the
algebraic manipulation one carries out while deriving it. The above analysis
provides a framework for determining the variables which are continuous across
a discontinuity, but from a computational standpoint the issue of uniqueness of
the underlying ODE of a given DAE (1) is to be addressed.

Example 4
Consider the DAE described by (27).

y' + x = u\

y = ti2 (27)

Consider the following two forms of the underlying ODE, (28) and (29).

t i a
X =s U | — U«>

y' = u!2 (28)

x' = u\-u$

y' = ux - x (29)

In the event of a step change in u>, (28) gives a clear picture of the behavior
of y, whereas from (29), it is not clear because of the implicit dependence on x. O

However, in practical applications, one would not prefer to explicitly deter-
mine an underlying ODE and then validate the continuity assumptions. Given
all the constraining algebraic equations for a DAE and any particular under-
lying ODE, one could derive other forms of underlying ODEs. The derivative
array equations, in principle, contain the differential and all the constraining
algebraic equations for a given DAE. Hence, it would be easier to work with the
derivative array equations and determine the dependencies of the differential
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variables on the derivatives of u rather than deriving the required form of the
underlying ODE explicitly.

In the following section we describe two approaches for finding these depen-
dencies for linear DAEs.

3.3 Identification of the continuous set
Consider the derivative array equations (30) of the DAE (23). Let us consider
the linear case.

(30)

/. Analysis of the Jacobian of the derivative army equations
An analysis of the Jacobian (coefficient matrix in the linear case) of the deriva-
tive array equations can be used to determine the set of variables for which the
continuity assumption is valid. Construct the Jacobian of (30). Note that the
higher derivatives of u are treated as independent variables here. Consider the
example where a Gauss-Jordan elimination gives us the following sub-matrix
(31) within the Jacobian where &, &, (3,... are the incidences in the columns
corresponding to the derivatives of u.

tt' «" . . u<

1

(31)

The continuous set, t*>, could be easily identified from (31). The state variables
corresponding to the rows whidi do not contain incidences of u', ..., u ( i / ) are
continuous across the discontinuity caused by the forcing function u. However
we need to safeguard against implicit dependencies. This could be done by
choosing an appropriate pivoting strategy while doing symbolic elimination on
the Jacobian of the derivative array equations. A verification of this can be
carried out from the structure of the Jacobian after performing the elimination.
If a particular variable t/* is found to be continuous, we should not be able to
trace a path from an incidence in the column under v'k to an incidence in the
derivatives of u. That is, the set of reachable nodes from vk should not contain
any of the derivatives of u, if v* is continuous. If such a path is found, further
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pivoting can give us the desired structure. Pivoting is straightforward in the
case of linear systems. Below we illustrate how this approach solves the example
of (27).

We could determine the implicit dependehdes from a form like (29) by path
tracing on the corresponding Jacobian of the derivative array equations (32).

y' + x =

y = (32)

Consider the Jacobian (33) of (32).

y"

1

l

y
l

l

x'

1 1

F (32).

f X

1

1

y'
y"

1
1
1
1
1

=

ti l
- 1

u'i

«1

-1 1
- 1

- 1
- 1

(33)

Manipulations on the Jacobian (33) will give the following incidence matrix for
the form (29).

y' x' y x
l - 1

- 1
l

- I
1 I

- 1
- 1

- 1

(34)

We can trace a path from an incidence in the column y' to that in u'> show-
ing that there is dependence on u^ which is implicit in (29). Further pivoting
in the column under x will give the desired form (35) which corresponds to (28).

y" y' x' y x

1 I

- 1
- 1

- 1

- 1

- 1
- 1

(35)
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t Sensitivity analysis of the derivative array equations
An alternate approach suggested to find the dependencies of the variable deriva-
tives on the derivatives of the input function is to do a sensitivity analysis on
the derivative array equations. Caracotsios and Stewart (1985) and Maly and
Petzold (1995) describe sensitivity analysis for DAEs. However, since we are not
interested in finding the sensitivity of the entire profile, but just on the depen-
dencies at the point of discontinuity, we consider the following SLP formulation:

s.t. F/(x<"+l>,...x,y(l/),...,y,ul»K...u,t) = Pj - n j j = 1 , . . . , ( * + l)n

u ( * ) = t i ( * ) - ik = 0, . . . , i /

Xt < Xi < X? (36)

where uw~ = u^(tm - 0). The numerical value of the variables at the point of
discontinuity is the optimal solution to (36). Sensitivity analysis is carried out
with u and its higher derivatives being treated as independent variables and by
linearizing (36) at the variables values before the discontinuity. If a particular
derivative x'j is seen to be insensitive to the parameters u', , u ( l " H \ it is be-
cause it has no local dependence on any of the derivatives of the input variables
te. it is continuous across a discontinuity caused by a step change in u. However,
one should be aware tiiat the test is local and the analysis provides a framework
which is necessary but not sufficient for determining the continuities. The sensi-
tivity analysis is performed using LP sensitivity, which is computationally cheap.

Nonlinear DAEs
The current approach we use for determining the dependencies for nonlinear
DAEs is the sensitivity analysis described above. Since (36) is solved using SLP,
it could be used for nonlinear systems as well. The sensitivity analysis would
effectively be performed on the linearized form of the equations at (tm - 0 ) . The
method has been applied to the example problems solved in section 3.5.

Application of pivoting strategies on the Jacobian of the derivative array equa-
tions for the nonlinear case is limited as one can only determine, in graph theory
notation, a maximal set of reachable nodes. If this maximal set does not contain
any nodes corresponding to the implicit dependencies, the sets determined thus
far are correct. Hence, analysis on the Jacobian may not give the desired result
for nonlinear DAEs.
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3.4 Applications of the LP Method for Reinitialization
A certain number of specifications for the initial conditions is required for
restarting the problem after the discontinuity. Some of these are obtained from
the criterion laid out for the validity of continuity assumptions of the variables
across the discontinuity. However, the number of variables which are continuous
across the discontinuity could be less than, equal to or greater than the degrees
of freedom for the specification of initial conditions. Let us analyze the three
cases and look at how the problem could be tackled in each of these cases.

/. Number of variables continuous across the discontinuity is greater than the
number of degrees of freedom.
Here the number of specifications is greater than the number of degrees of free-
dom, the specifications being the numerical values of the variables which are
found to be continuous across the discontinuity. This is an overspecified prob-
lem. It is quite likely that if we fix the values of these variables and solve the
equations for consistent initialization, we might not be able to converge it within
the required error criterion. One of the reasons for this is the roundoff errors
arising from integration in the previous time domain. It is well known that if the
initial conditions are not sufficiently accurate, further solution of the problem
could be difficult and inaccurate. For this reason we would like to determine
the initial conditions such that the equations are solved within a desired error
criterion. The following formulation, which is similar to (12), is introduced for
this purpose.

M in

s.t.

- vfitc
f ...u.t) = 0

v0

6i>0 i € VQ

Xt < Xi < X? (37)

VQ is the set of variables which are found to be continuous across the disconti-
nuity and vfttc are their numerical values at the point of discontinuity.

2. The number of continuous variables is equal to the degrees of freedom.
This is the easiest case where we have the exact number of specifications. (37)
could be applied to determine the values of the remaining variables and the
solution will correspond to a zero objective function.

3. The number of continuity conditions is less tJian the degrees of freedom.
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This is an underspecified problem. However, in process engineering problems
there may be discontinuity constraints which are known along with a step change
in the input functions (For example, correlations for computing impulse forces
in the case of collision of nonpenetrating rigid bodies). Let ff(v) = 0 be the dis-
continuity relations for the profiles. Assuming that the discontinuity constraints
provide at least the minimum required information to cover the remaining de-
grees of freedom, the following formulation could be used for consistent reini-
tialization.

A/in 5>M? +
t€v0

s.t. "{i"

Xt < X{ < Af (38)

The same formulation could be applied to cases 1 and 2 as well. One of the ma-
jor difficulties associated with reinitialization problems is to determine whether
a particular discontinuity presents an under, exact or over specified problem and
then the associated clumsy process of the selection of that subset of equations
which has to be solved. (38) presents a single consistent formulation to handle
all of these cases.

One question still unanswered is the presence of the input function u and its
higher derivatives in the derivative array equations used in (38). While state
profiles cannot be calculated that capture the exact discontinuities, profiles can
be determined to reinitialize the problem in the next time domain. Here we let

t>t- (39>

Using the Heaviside function (40), u is written as (41)

) (41)

tth derivative of (41) could be written as
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FVom the theory of distributions (Banros-Neto, 1973), the first derivative of
the Heaviside function corresponds to the Dirac delta function and its higher
derivatives in (42) are the higher derivatives of this function. These functions
are defined only at f.

Our problem is to find initial conditions for the derivatives of u for the solution
of the problem in the time domain after the discontinuity. This is different
from tracing the solution from one side of the discontinuity to the other where
the derivatives of u are unbounded at the point of discontinuity. Here the idea
is to find the initial conditions for the derivatives of u which will enable us to
correctly trace the solution trajectory after the discontinuity. This is obtained
by finding the limit of (42) when t -+tm from the rhs. The limit is given by

lim v{i)(tm + €) = Urn V(«•)(/* - f*){i){tm + *)
o+ o+

= An (43)
All the terms containing the higher derivatives of Y vanish as they are zero at
any point (tm + c) however small e may be. Thus for the reinitialization prob-
lem, the higher derivatives of it present in the derivative array equations take
the fonn of the higher derivatives of their functional fonns defined in the region
after the discontinuity.

Let us consider a simple example to illustrate the point. Consider the index
three DAE of the form

x\ = y-xi
X2 = X\ — X2

x2 = «(t) (44)

where

«<•> - {? J I?
The problem is of zero degrees of freedom and the constraining algebraic equa-
tions are

X'l = U(t)

xx = u'(t)+ti(t)
y = u"(t) + 2u'(t)+u(t) (45)

The profiles can be plotted as in Figure 1.
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y i

X . j i
Deka function

Derivative of
Delia function

Figure 1: Variable profiles

As seen from Figure 1, x\ and y are described by unbounded functions at t". Our
problem is not to solve the problem at tm

y but to solve for the initial conditions
of x i , x-2 and y for the further solution of the problem after the discontinuity,
u = 1 (and hence u* = 0 and u" = 0) will give us values of xi = x-2 = y = 1
which are the correct initial conditions for the further solution of the problem
in the region after the discontinuity.

Below we consider some example problems to illustrate the ideas described in
this section.

3.5 Examples

We us consider four examples, two where the continuity assumption for the dif-
ferential variables is valid and the other two where it is not. .The first three are
nonlinear.

Example 5
This example looks at an implicit index-1 problem (46) considered by Brull
and Pallaske(1992). This is a case where the continuity assumptions are not
necessarily valid after the discontinuity.

Vi

= 0
= UX{t)

= u2(t)
(46)

After making reductions and simplifications, it is clear that the underlying ODE
for (46) is
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yi = txf2(t)

As seen from (47), none of the variables are continuous after a step change in
the input functions tti and u2- However, if u\ is the only function causing the
discontinuity, t/i is found to be continuous across the discontinuity. Similarly,
xi and x-i are continuous across a discontinuity caused by a step change in the
input function u>. D

Example 6: Pendulum problem revisited
Consider the pendulum problem from (18) in a slightly different context. Let the
pendulum be subject to time dependent input forces with the g in (18) replaced
by an input function u. Below, we examine the continuity of the variables when
there is a step change in the forcing function u. The underlying ODE is

z' = t;

y' = w
v' = ( y u - t r - t i r ) x (48)
vf = (yu — v1 — ti/2)y — it
T = Zwu + yu1

FVom (48), it is clear that V depends on the first derivative of u whereas the
derivatives of the other variables depend only on u.

«o = {x,y,v,ti;} (49)

The position and velocity variables are continuous but the string tension exhibits
a step change in the event of a step change in the forcing function. Similar result
is obtained from the sensitivity analysis. O

Example 7
Consider the DAE (50) for which the continuity assumption is valid. This prob-
lem was considered previously by Majer et a/.(1995)

*' = y i - 1
0 = x-yt + yi+u (50)

0 = 2y{/3
 + » ^ - 4

Consider the solution of the reinitialization problem of (50). The problem has
a steady state solution of yi = 1, y2 = 4 and x = 3 for u = 0. At time t = f, a
step change is applied to u from 0 to 5.
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Table 4: Reinitialization of Example 7

Initial
Guesses

Vi =1
»2=4
i = 3

Vi =0
yj=o
i' = 0

Solution

x = 3.0000
yi = 0.1975
yi = 8.0390

x' = -0.8025

Number of
iterations

10

12

From the sensitivity analysis, we find that x is continuous across the discon-
tinuity caused by a step change in the input variable u. Setting v0 = {z} , the
initialization problem was solved using (38). Table 4 reports the solution of the
problem for two sets of initial guesses.

The first set of initial guesses correspond to the values of the variables immedi-
ately before a step change in u was applied. This is probably the most logical
initial guess to be diosen when carrying out dynamic simulation of the above
system.

The second set is the initial guess used by Majer tt a/. (1995) for the solu-
tion of the problem. They point out that (50) cannot be solved by Newton's
method from this set of initial guesses because of the limited region of con-
vergence. They use a more expensive continuation method for the solution of
the problem. However, it should be noted that the LP based formulation (38)
encountered no difficulty in solving the problem.

Apart from being an efficient way for dealing with difficult nonlinear reinitializa-
tion problems, the method has been successfully applied to high index problems
as well. Below we consider a high index example problem.

Example 8: The CSTR problem
Bachmann tt al. (1989) describe a problem of Ar Continuous Stirred Tank Re-
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actors (CSTRs) in series without reaction which constitutes a system of index
N + 1. The equations are

CN = u(t)

Consider the case of 10 CSTRs. The problem is of index 11. Define u as

u(t) = J 10 + t
t

t < 10
t > 10

(51)

(52)

First the continuity assumptions were checked from the analysis of the Jacobian
of the derivative array equations and from sensitivity analysis. It was found
that none of the variables are continuous across a discontinuity caused by a
step change in the u. The problem was then solved using the formulation (38).
No variables were found to satisfy the continuity assumptions and there arc no
explicitly specified discontinuity constraints. Note that this problem is exactly
specified as the degrees of freedom and the number of continuous variables is
zero.

The problem, which has 164 variables, 132 equalities and 22 inequalities was
solved in 2 iterations. It was initialized at the solution of the problem before
the discontinuity. The initial value for any ct was found to be

Anitial __ on - - — n (53)

4 Conclusions
Overspecification of initial conditions, which occurs mainly due to the lack of
knowledge of the degrees of freedom for the specification of initial conditions,
could lead to convergence failures in the initialization problem. Most existing
methods expect the user to supply the exact number of initial conditions. In-
stead a minimization formulation is presented here for initialization as well as
for reintialization in the case of problems with discontinuity, which takes care of
the overspecifications. This ensures that the initial conditions are determined
within a required accuracy; failure to do so may result in convergence to poor
or inaccurate solutions on further integration.

In section 3 we presented a criterion for checking the validity of the assumption
of continuity of differential variables across a discontinuity caused by a step
change in the input variables. Such criteria have not been reported in the lit-
erature for problems of general index. The popular assumption of continuity of
all differential variables across a discontinuity (Pantelides and Barton, 1993) is
shown to be not necessarily valid.
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The applications of the ideas outlined in these sections have been demonstrated
on small problems, of low and high index. The concepts apply irrespective of the
size and index of the problem and application to larger problems is expected to
be straightforward. Also, the proposed LP based approach is easily interfacable
to DAE solvers like DASSL. This will make the treatment of the initialization
and reinitialization problems easier and more user friendly within these solvers.
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Appendix - Properties of Smooth Formulation

Conditions for which Si = 0 =» A* = 1

The smooth formulation presented in Section 2 is:

s.t. F*{x,z,z\...%zi¥\t)=Q (16a)

Si t = l , . . . , n l c (166)
A ' ^ ) ^ ) = 0 t = l , . . . ,n t . c (16c)

(16d)

0 < Ai < 1 t = l , . . . ,nfc (16c)

Si>0 t = l , . . . , n t c (16/)

Xt < Xi < X? (16$)
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The Karush-Kuhn-TVicker conditions of (16) arc

= 0 (55)
= 0 (56)

where &, 7 and & are the multipliers of (16c), (16d) and (16e) respectively.
FVom (16c),

(57)

(54) could be simplified as

A e - ^ + 7-6 l+€? = 0 (58)

The smoothing constraint (16c) could be written as

e -* /* + c - V * - - i (59)

When <J = 0, € - * " = 1. FVom (59),

For any /? > 0, A* -* 00. Choosing 0 small will allow A* < 00, in order to satisfy
e-Xi/0 < et a nonzero tolerance. FVom (60) and (55),

tf = 0 (61)

FVom (58), (60) and (61), we have when 6< = 0,

7 + tf = 0 (62)

To show that A» goes to its upper bound (ie. £j £ 0) we need to show that 7
is nonzero. The following conditions are considered based on the application of
(16).

• Consider initial condition specifications where the number of specifications
is greater than or equal to r and any subset of these specifications with
number of elements greater than r is inconsistent.

(16a) has r degrees of freedom. Hence, for the above case, the number of
initial condition specifications which could be enforced at the solution of
the problem will be at most r. ie. the number of <5jS which can be zeros
at the solution will be less than or equal to r. Let r0 be the cardinality of
the set of <5,s which are zero at the solution of the problem. Then

r0 < r (63)
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If we assume 7 = 0 , from (62), £} = 0. The complementarity condition
(56) gives A, < 1. Summing up all the A,s, we have

ro rp

^ Aj < ro < r =» ^ 2 A< < r (64)
l I

This is clearly a contradiction to (16d).

For (16d) to be satisfied, the A,s corresponding to all nonzero <5,s will
have to go to their upper bounds and the cardinality of the corresponding
set of SiS, r*o = r. ie. exactly r of the initial condition specifications are
set equal to their specified values at the solution of the problem.

• Consider the case when the number of specifications is greater than r,
there exists a subset of greater than r elements, or the entire set of speci-
fications, which when specified simultaneously is consistent.

In these cases, the number of specifications which could be enforced at
the solutions could be greater than r because there exists a set of cardi-
nality greater than r which is consistent. A could take fractional values in
this case and the corresponding solution with (16) could fix greater than
r variables at their specified values. The formulation, nevertheless, serves
the purpose of choosing the best set of r or greater than r specifications.
The form of the solution will be different from (13) in this case.
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pivoting can give us the desired structure. Pivoting is straightforward in the
case of linear systems. Below we illustrate how this approach solves the example
of (27).

We could determine the implicit dependehdes from a form like (29) by path
tracing on the corresponding Jacobian of the derivative array equations (32).

y' + x =

y = (32)

Consider the Jacobian (33) of (32).

y"

1

l

y
l

l

x'

1 1

F (32).

f X

1

1

y'
y"

1
1
1
1
1

=

ti l
- 1

u'i

«1

-1 1
- 1

- 1
- 1

(33)

Manipulations on the Jacobian (33) will give the following incidence matrix for
the form (29).

y' x' y x
l - 1

- 1
l

- I
1 I

- 1
- 1

- 1

(34)

We can trace a path from an incidence in the column y' to that in u'> show-
ing that there is dependence on u^ which is implicit in (29). Further pivoting
in the column under x will give the desired form (35) which corresponds to (28).

y" y' x' y x

1 I

- 1
- 1

- 1

- 1

- 1
- 1

(35)
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t Sensitivity analysis of the derivative array equations
An alternate approach suggested to find the dependencies of the variable deriva-
tives on the derivatives of the input function is to do a sensitivity analysis on
the derivative array equations. Caracotsios and Stewart (1985) and Maly and
Petzold (1995) describe sensitivity analysis for DAEs. However, since we are not
interested in finding the sensitivity of the entire profile, but just on the depen-
dencies at the point of discontinuity, we consider the following SLP formulation:

s.t. F/(x<"+l>,...x,y(l/),...,y,ul»K...u,t) = Pj - n j j = 1 , . . . , ( * + l)n

u ( * ) = t i ( * ) - ik = 0, . . . , i /

Xt < Xi < X? (36)

where uw~ = u^(tm - 0). The numerical value of the variables at the point of
discontinuity is the optimal solution to (36). Sensitivity analysis is carried out
with u and its higher derivatives being treated as independent variables and by
linearizing (36) at the variables values before the discontinuity. If a particular
derivative x'j is seen to be insensitive to the parameters u', , u ( l " H \ it is be-
cause it has no local dependence on any of the derivatives of the input variables
te. it is continuous across a discontinuity caused by a step change in u. However,
one should be aware tiiat the test is local and the analysis provides a framework
which is necessary but not sufficient for determining the continuities. The sensi-
tivity analysis is performed using LP sensitivity, which is computationally cheap.

Nonlinear DAEs
The current approach we use for determining the dependencies for nonlinear
DAEs is the sensitivity analysis described above. Since (36) is solved using SLP,
it could be used for nonlinear systems as well. The sensitivity analysis would
effectively be performed on the linearized form of the equations at (tm - 0 ) . The
method has been applied to the example problems solved in section 3.5.

Application of pivoting strategies on the Jacobian of the derivative array equa-
tions for the nonlinear case is limited as one can only determine, in graph theory
notation, a maximal set of reachable nodes. If this maximal set does not contain
any nodes corresponding to the implicit dependencies, the sets determined thus
far are correct. Hence, analysis on the Jacobian may not give the desired result
for nonlinear DAEs.
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3.4 Applications of the LP Method for Reinitialization
A certain number of specifications for the initial conditions is required for
restarting the problem after the discontinuity. Some of these are obtained from
the criterion laid out for the validity of continuity assumptions of the variables
across the discontinuity. However, the number of variables which are continuous
across the discontinuity could be less than, equal to or greater than the degrees
of freedom for the specification of initial conditions. Let us analyze the three
cases and look at how the problem could be tackled in each of these cases.

/. Number of variables continuous across the discontinuity is greater than the
number of degrees of freedom.
Here the number of specifications is greater than the number of degrees of free-
dom, the specifications being the numerical values of the variables which are
found to be continuous across the discontinuity. This is an overspecified prob-
lem. It is quite likely that if we fix the values of these variables and solve the
equations for consistent initialization, we might not be able to converge it within
the required error criterion. One of the reasons for this is the roundoff errors
arising from integration in the previous time domain. It is well known that if the
initial conditions are not sufficiently accurate, further solution of the problem
could be difficult and inaccurate. For this reason we would like to determine
the initial conditions such that the equations are solved within a desired error
criterion. The following formulation, which is similar to (12), is introduced for
this purpose.

M in

s.t.

- vfitc
f ...u.t) = 0

v0

6i>0 i € VQ

Xt < Xi < X? (37)

VQ is the set of variables which are found to be continuous across the disconti-
nuity and vfttc are their numerical values at the point of discontinuity.

2. The number of continuous variables is equal to the degrees of freedom.
This is the easiest case where we have the exact number of specifications. (37)
could be applied to determine the values of the remaining variables and the
solution will correspond to a zero objective function.

3. The number of continuity conditions is less tJian the degrees of freedom.
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This is an underspecified problem. However, in process engineering problems
there may be discontinuity constraints which are known along with a step change
in the input functions (For example, correlations for computing impulse forces
in the case of collision of nonpenetrating rigid bodies). Let ff(v) = 0 be the dis-
continuity relations for the profiles. Assuming that the discontinuity constraints
provide at least the minimum required information to cover the remaining de-
grees of freedom, the following formulation could be used for consistent reini-
tialization.

A/in 5>M? +
t€v0

s.t. "{i"

Xt < X{ < Af (38)

The same formulation could be applied to cases 1 and 2 as well. One of the ma-
jor difficulties associated with reinitialization problems is to determine whether
a particular discontinuity presents an under, exact or over specified problem and
then the associated clumsy process of the selection of that subset of equations
which has to be solved. (38) presents a single consistent formulation to handle
all of these cases.

One question still unanswered is the presence of the input function u and its
higher derivatives in the derivative array equations used in (38). While state
profiles cannot be calculated that capture the exact discontinuities, profiles can
be determined to reinitialize the problem in the next time domain. Here we let

t>t- (39>

Using the Heaviside function (40), u is written as (41)

) (41)

tth derivative of (41) could be written as
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FVom the theory of distributions (Banros-Neto, 1973), the first derivative of
the Heaviside function corresponds to the Dirac delta function and its higher
derivatives in (42) are the higher derivatives of this function. These functions
are defined only at f.

Our problem is to find initial conditions for the derivatives of u for the solution
of the problem in the time domain after the discontinuity. This is different
from tracing the solution from one side of the discontinuity to the other where
the derivatives of u are unbounded at the point of discontinuity. Here the idea
is to find the initial conditions for the derivatives of u which will enable us to
correctly trace the solution trajectory after the discontinuity. This is obtained
by finding the limit of (42) when t -+tm from the rhs. The limit is given by

lim v{i)(tm + €) = Urn V(«•)(/* - f*){i){tm + *)
o+ o+

= An (43)
All the terms containing the higher derivatives of Y vanish as they are zero at
any point (tm + c) however small e may be. Thus for the reinitialization prob-
lem, the higher derivatives of it present in the derivative array equations take
the fonn of the higher derivatives of their functional fonns defined in the region
after the discontinuity.

Let us consider a simple example to illustrate the point. Consider the index
three DAE of the form

x\ = y-xi
X2 = X\ — X2

x2 = «(t) (44)

where

«<•> - {? J I?
The problem is of zero degrees of freedom and the constraining algebraic equa-
tions are

X'l = U(t)

xx = u'(t)+ti(t)
y = u"(t) + 2u'(t)+u(t) (45)

The profiles can be plotted as in Figure 1.
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y i

X . j i
Deka function

Derivative of
Delia function

Figure 1: Variable profiles

As seen from Figure 1, x\ and y are described by unbounded functions at t". Our
problem is not to solve the problem at tm

y but to solve for the initial conditions
of x i , x-2 and y for the further solution of the problem after the discontinuity,
u = 1 (and hence u* = 0 and u" = 0) will give us values of xi = x-2 = y = 1
which are the correct initial conditions for the further solution of the problem
in the region after the discontinuity.

Below we consider some example problems to illustrate the ideas described in
this section.

3.5 Examples

We us consider four examples, two where the continuity assumption for the dif-
ferential variables is valid and the other two where it is not. .The first three are
nonlinear.

Example 5
This example looks at an implicit index-1 problem (46) considered by Brull
and Pallaske(1992). This is a case where the continuity assumptions are not
necessarily valid after the discontinuity.

Vi

= 0
= UX{t)

= u2(t)
(46)

After making reductions and simplifications, it is clear that the underlying ODE
for (46) is
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yi = txf2(t)

As seen from (47), none of the variables are continuous after a step change in
the input functions tti and u2- However, if u\ is the only function causing the
discontinuity, t/i is found to be continuous across the discontinuity. Similarly,
xi and x-i are continuous across a discontinuity caused by a step change in the
input function u>. D

Example 6: Pendulum problem revisited
Consider the pendulum problem from (18) in a slightly different context. Let the
pendulum be subject to time dependent input forces with the g in (18) replaced
by an input function u. Below, we examine the continuity of the variables when
there is a step change in the forcing function u. The underlying ODE is

z' = t;

y' = w
v' = ( y u - t r - t i r ) x (48)
vf = (yu — v1 — ti/2)y — it
T = Zwu + yu1

FVom (48), it is clear that V depends on the first derivative of u whereas the
derivatives of the other variables depend only on u.

«o = {x,y,v,ti;} (49)

The position and velocity variables are continuous but the string tension exhibits
a step change in the event of a step change in the forcing function. Similar result
is obtained from the sensitivity analysis. O

Example 7
Consider the DAE (50) for which the continuity assumption is valid. This prob-
lem was considered previously by Majer et a/.(1995)

*' = y i - 1
0 = x-yt + yi+u (50)

0 = 2y{/3
 + » ^ - 4

Consider the solution of the reinitialization problem of (50). The problem has
a steady state solution of yi = 1, y2 = 4 and x = 3 for u = 0. At time t = f, a
step change is applied to u from 0 to 5.
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Table 4: Reinitialization of Example 7

Initial
Guesses

Vi =1
»2=4
i = 3

Vi =0
yj=o
i' = 0

Solution

x = 3.0000
yi = 0.1975
yi = 8.0390

x' = -0.8025

Number of
iterations

10

12

From the sensitivity analysis, we find that x is continuous across the discon-
tinuity caused by a step change in the input variable u. Setting v0 = {z} , the
initialization problem was solved using (38). Table 4 reports the solution of the
problem for two sets of initial guesses.

The first set of initial guesses correspond to the values of the variables immedi-
ately before a step change in u was applied. This is probably the most logical
initial guess to be diosen when carrying out dynamic simulation of the above
system.

The second set is the initial guess used by Majer tt a/. (1995) for the solu-
tion of the problem. They point out that (50) cannot be solved by Newton's
method from this set of initial guesses because of the limited region of con-
vergence. They use a more expensive continuation method for the solution of
the problem. However, it should be noted that the LP based formulation (38)
encountered no difficulty in solving the problem.

Apart from being an efficient way for dealing with difficult nonlinear reinitializa-
tion problems, the method has been successfully applied to high index problems
as well. Below we consider a high index example problem.

Example 8: The CSTR problem
Bachmann tt al. (1989) describe a problem of Ar Continuous Stirred Tank Re-
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actors (CSTRs) in series without reaction which constitutes a system of index
N + 1. The equations are

CN = u(t)

Consider the case of 10 CSTRs. The problem is of index 11. Define u as

u(t) = J 10 + t
t

t < 10
t > 10

(51)

(52)

First the continuity assumptions were checked from the analysis of the Jacobian
of the derivative array equations and from sensitivity analysis. It was found
that none of the variables are continuous across a discontinuity caused by a
step change in the u. The problem was then solved using the formulation (38).
No variables were found to satisfy the continuity assumptions and there arc no
explicitly specified discontinuity constraints. Note that this problem is exactly
specified as the degrees of freedom and the number of continuous variables is
zero.

The problem, which has 164 variables, 132 equalities and 22 inequalities was
solved in 2 iterations. It was initialized at the solution of the problem before
the discontinuity. The initial value for any ct was found to be

Anitial __ on - - — n (53)

4 Conclusions
Overspecification of initial conditions, which occurs mainly due to the lack of
knowledge of the degrees of freedom for the specification of initial conditions,
could lead to convergence failures in the initialization problem. Most existing
methods expect the user to supply the exact number of initial conditions. In-
stead a minimization formulation is presented here for initialization as well as
for reintialization in the case of problems with discontinuity, which takes care of
the overspecifications. This ensures that the initial conditions are determined
within a required accuracy; failure to do so may result in convergence to poor
or inaccurate solutions on further integration.

In section 3 we presented a criterion for checking the validity of the assumption
of continuity of differential variables across a discontinuity caused by a step
change in the input variables. Such criteria have not been reported in the lit-
erature for problems of general index. The popular assumption of continuity of
all differential variables across a discontinuity (Pantelides and Barton, 1993) is
shown to be not necessarily valid.
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The applications of the ideas outlined in these sections have been demonstrated
on small problems, of low and high index. The concepts apply irrespective of the
size and index of the problem and application to larger problems is expected to
be straightforward. Also, the proposed LP based approach is easily interfacable
to DAE solvers like DASSL. This will make the treatment of the initialization
and reinitialization problems easier and more user friendly within these solvers.
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Appendix - Properties of Smooth Formulation

Conditions for which Si = 0 =» A* = 1

The smooth formulation presented in Section 2 is:

s.t. F*{x,z,z\...%zi¥\t)=Q (16a)

Si t = l , . . . , n l c (166)
A ' ^ ) ^ ) = 0 t = l , . . . ,n t . c (16c)

(16d)

0 < Ai < 1 t = l , . . . ,nfc (16c)

Si>0 t = l , . . . , n t c (16/)

Xt < Xi < X? (16$)
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The Karush-Kuhn-TVicker conditions of (16) arc

= 0 (55)
= 0 (56)

where &, 7 and & are the multipliers of (16c), (16d) and (16e) respectively.
FVom (16c),

(57)

(54) could be simplified as

A e - ^ + 7-6 l+€? = 0 (58)

The smoothing constraint (16c) could be written as

e -* /* + c - V * - - i (59)

When <J = 0, € - * " = 1. FVom (59),

For any /? > 0, A* -* 00. Choosing 0 small will allow A* < 00, in order to satisfy
e-Xi/0 < et a nonzero tolerance. FVom (60) and (55),

tf = 0 (61)

FVom (58), (60) and (61), we have when 6< = 0,

7 + tf = 0 (62)

To show that A» goes to its upper bound (ie. £j £ 0) we need to show that 7
is nonzero. The following conditions are considered based on the application of
(16).

• Consider initial condition specifications where the number of specifications
is greater than or equal to r and any subset of these specifications with
number of elements greater than r is inconsistent.

(16a) has r degrees of freedom. Hence, for the above case, the number of
initial condition specifications which could be enforced at the solution of
the problem will be at most r. ie. the number of <5jS which can be zeros
at the solution will be less than or equal to r. Let r0 be the cardinality of
the set of <5,s which are zero at the solution of the problem. Then

r0 < r (63)
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If we assume 7 = 0 , from (62), £} = 0. The complementarity condition
(56) gives A, < 1. Summing up all the A,s, we have

ro rp

^ Aj < ro < r =» ^ 2 A< < r (64)
l I

This is clearly a contradiction to (16d).

For (16d) to be satisfied, the A,s corresponding to all nonzero <5,s will
have to go to their upper bounds and the cardinality of the corresponding
set of SiS, r*o = r. ie. exactly r of the initial condition specifications are
set equal to their specified values at the solution of the problem.

• Consider the case when the number of specifications is greater than r,
there exists a subset of greater than r elements, or the entire set of speci-
fications, which when specified simultaneously is consistent.

In these cases, the number of specifications which could be enforced at
the solutions could be greater than r because there exists a set of cardi-
nality greater than r which is consistent. A could take fractional values in
this case and the corresponding solution with (16) could fix greater than
r variables at their specified values. The formulation, nevertheless, serves
the purpose of choosing the best set of r or greater than r specifications.
The form of the solution will be different from (13) in this case.


