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A b s t r a c t 

Successive Quadratic Programming (SQP) has been the 
method of choice for the solution of nonlinear program­
ming problems. For the solution of large problems with 
SQP based codes, the combinatorial complexity associated 
with active set methods for the treatment of inequalities 
has been a bottleneck in exploiting the problem structure. 
In this paper, we examine the merits of incorporating an in­
terior point method within an SQP framework and the sig­
nificant computational savings are demonstrated on prob­
lems drawn from optimal control. We also provide a novel 
intepretation of the popularly used predictor-corrector in­
terior point method using the principles of reduced Hessian 
SQP (rSQP). 

I N T R O D U C T I O N 

With the widespread use of Successive Quadrat ic Pro­
gramming (SQP) for process optimization in design, 
operations and control, a variety of different imple­
mentations and strategies have been developed for this 
algorithm. One impor tan t benefit for S Q P is its ability 
to be modified in order t o take advantage of a partic­
ular problem st ructure . This is especially important 
for large, sparse systems t ha t include problems in pa­
rameter estimation [1], multiperiod optimization and 
model predictive control. 

However, one hurdle in exploiting the problem struc­
ture is an efficient s t ra tegy for t reat ing inequality con­
straints in t he Q P subproblem. Here, while most of 
the commonly used Q P codes use active set strategies, 
it has been observed t h a t they can become combina-
torially expensive for large problems. A popular al­
ternative has been to explore interior point methods. 
Previous studies in the application of interior point 
strategies t o S Q P have shown considerable promise 
for these strategies (Morales and Sargent [8], Kyri-
akopoulou and Kalitventzeff [6]). However, it is es­
pecially advantageous when applied to SQP strategies 
tha t exploit t he s t ruc ture of the optimality conditions 
(without inequality constraints) . 
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To develop this approach, we incorporate the char­
acteristics of the well studied Mehrotra [7] predictor-
corrector method, which is a pa th following algorithm 
within an SQP framework for the solution of nonlinear 
programming problems. T h e method could be used 
in a full space or reduced space for solving large Q P 
problems. Moreover, it has been tested on a bat tery 
of li terature examples (e.g., the netlib test set) t ha t 
involve LPs, Q P s and LCPs . In addition, this inte­
rior point scheme has been coupled to efficient sparse 
decomposition strategies t h a t can be modified to take 
advantage of a part icular problem structure. 

In this study, we consider a class of optimal control 
problems tha t have this characteristic. These prob­
lems arise in dynamic s ta te and parameter estima­
tion and in model predictive control. This approach 
is demonstrated on a wide range of s tructured opti­
mization problems between 10000 and 100000 vari­
ables. Applications are drawn from optimal control 
and nonlinear model predictive control for the Ten­
nessee Eas tman problem. 

D E V E L O P M E N T S I N I N T E R I O R P O I N T 
M E T H O D S 

Ever since the publication of the landmark paper by 
Karmarkar [5] in 1984, interior point methods have 
been an active research area in the optimization com­
munity. The 1990s have seen the emergence of primal 
dual methods as an impor tan t class of interior point 
algorithms from a computat ional as well as a theoret­
ical s tandpoint . Below, the concept behind primal-
dual methods is explained considering a linear pro­
gram (LP) (1) and its dual (2). 

min cTx, s.t. Ax = 6, x > 0 (1) 

max 6 T A, s.t. ATX + s = c, s > 0 (2) 

Primal-dual methods solve the optimality conditions 
(3) of the problem (1),(2) by applying variants of the 
Newton's method. Various methods differ in the way 
the search directions are generated and step lengths 
are enforced to ensure nonnegativity of x,s. 

Ax = 6 

ATX + s = 0 
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XiSi = 0 

(x,s)>0 (3) 

The monograph by Wright [10] gives an excellent de­
scription of primal- dual interior point methods. The 
extension to nonlinear problems is however nontrivial 
and has been receiving considerable at tent ion recently. 

Nonl inear p rog raming prob lems 

Consider the nonlinear programming problem 

mm 

s.t. 

h(z) < 0 (4) 

Bounds on variables are not explicitly t reated in (4) 
as they are a special case of the inequality constraints. 
The SQP method for solving (4) solves the following 
Q P subproblem (5) at the current point to generate 
a search direction z*. 

min c(zk)Tx + -xTQx 
** 

s.t. g(zk) + Ax = 0 
h(zk) + Cx < 0 (5) 

c = V / , Q is the Hessian of the Lagrangian or a 
positive definite approximation to it, A = V</ T and 
C = Vf t T . Expressing the constants in each subprob­
lem on the right hand side and introducing slack vari­
ables s, (5) can be written as 

mm 

s.t. 

T 1 T s~ 
c x + -x Qx 

Ax = b 

Cx + s = d 

a>0 (6) 

The optimality conditions of (6) a re given by (7 ) - ( l l ) . 

Qx + ATX + CTu + c = 0 (7) 

Ax = b (8) 

Cx + s = d (9) 

SVe = 0 (10) 

{*,»)> 0 (11) 

A and v are the multipliers of the equalities and in­
equalities respectively. 5 and V are diagonal matrices 
of s and v. 

This system of equations could be solved iteratively 
by applying Newton's method to a linearization of (7)-
(10) and carrying out a line search to enforce the non-
negativity constraints (11). However, this could result 
in some of the components of (s,v) from getting too 
close to the boundary of the nonnegative or thant , and 
subsequent iterates making little progress towards the 

solution. This limitation has given rise to the concept 
of what is known as the central path in interior point 
l i terature. I t is an arc which keeps the i terates biased 
towards the interior of the nonnegative region (s, v) > 
0, following which forces all the complementarity pairs 
to converge a t a similar ra te . The complementarity gap 
p is a measure of the average value of the products S{Vi 
and is defined as: 

/x = s
Ti//n (12) 

A typical strategy used to keep the iterates in the in­
terior is to replace (10) with (13) where 0 < a < 1 is 
a parameter . 

SVe = o\ie (13) 

a = 1 corresponds to a pure centering direction, ie . 
moving all the pairwise products to the current aver­
age value fi. On the other hand, a = 0 gives a s tandard 
Newton step. Various path following methods differ in 
the way the search direction is modified and a is cho­
sen. In the following section we will adapt it to an 
SQP framework and provide a novel, intuitive inter­
pretat ion of this procedure in this context. 

I N T E R I O R P O I N T S Q P 

SQP has been the method of choice for the solution 
of nonlinear programming problems. The superlinear 
convergence properties and the ability to exploit the 
problem structure have been well studied by many re­
searchers in the past decade. For process engineering 
problems, in the absence of inequality constraints, var­
ious decomposition strategies can be applied to greatly 
improve the efficiency for large scale problems. On the 
other hand, application of active set strategies to the 
imposition of inequality constraints can make these 
problems much more expensive to solve. The motiva­
tion to incorporate an interior point strategy within 
an SQP framework arises from this handicap of the 
active set strategies. We would like to integrate the 
interior point method and S Q P in such a way tha t 
we still retain fast linear performance as well as the 
structured decomposition. 

To develop this approach, we apply certain char­
acteristics of the well studied Mehrotra [7] predictor-
corrector algorithm. Each Mehrotra i terate solves an 
affine scaling predictor s tep (14) and a corrector step 
(15) alternately. r\, r2 , r$ are the residuals of the equa­
tions a t the current point. The predictor step helps 
in reducing the complementarity gap and centering is 
accomplished through the corrector step which also 
incorporates a second order correction term. 
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To interpret the predictor-corrector method, let us 
pose the subproblem (6) as (16) with the optimali ty 
conditions (7)-(9) as constraints. Note t h a t t he com­
plementarity constraint is different from (10) and (13). 

min f(q) 

s.t Qx + ATX + Crv + c = 0 
Ax = 6 
Cx + s = d 

SVe = qe (16) 

Since (16) has just 1 degree of freedom (g), consider 
the iterative solution of (16) in the context of a re­
duced Hessian SQP framework [3]. Linearization of 
the constraints give: 

Q 
A 
C 
0 

AT 

0 
0 
0 

CT 

0 
0 
s 

0 0 
0 0 
/ 0 
V -e 

Ax 
AA 
Ai/ 
As 

L *Q 

ri 
T2 

SkVke --Qke 
(17) 

Following the analysis in [3] it could be shown tha t 

Ag = - / ' ( g ) / / " ( g ) (18) 

The null space and range space steps a re given by (19) 
and (20). 

Q AT CT 0 ' ' Ax' ' • o • 

A 0 0 0 AA* 0 
(19) 

C 0 0 J Ai/* 0 (19) 

m 0 0 5 V As* - r&e -

\Q AT CT 0 " ' A x " " ri 1 
A 0 0 0 AA" T2 
C 0 0 / A j / » »"3 
0 0 5 V A s " . SkVke-•9*e 

Combining the null and range space steps and from 
(23) we get 

(20) 

We choose f(q) = j ^ q K where AT is a constant . 
Then, 

f" K - l 
(21) 

Define c as in (22). For c -> 0, K 2. (21) reduces 
to (23). 

2 - c 
1 - c 

J, = ( l - c ) g 

(22) 

(23) 

" <3 AT C T 0 " " A x " 
0 0 0 AA 

c 0 0 J Av 

0 0 s V As SfcVie - C9 te 

A second order correction on the constraints is then 
applied t o the s tep obtained from (24). It is impor­
t an t to note t ha t on the right hand side of (24) we have 
obtained the te rm cg^e, which does the centering and 
keeps the i terates in the interior of the nonnegative or-
than t . Compare this te rm with (13) with qk = /x and 
c = a. Note t ha t for c = 0 we get an affine scaling step 
(14). Hence, by an appropriate choice of the objective 
function, we have a framework which incorporates the 
characteristics of the concept of centering in interior 
point methods within an S Q P method for the solution 
of nonlinear programming problems. This procedure 
could be implemented within a full space or a reduced 
space method and the strong theoretical and superlin-
ear convergence properties which have been developed 
for these methods should apply in this case as well. We 
will henceforth refer to this framework as ISQP. 

A comparison of this approach to tha t of Mehrotra 
[7] for the solution of LPs and Linear Complementar­
ity Problems (LCPs) would be of interest. Mehrotra 's 
approach is two-pronged as explained a t the beginning 
of this section. It does not consider the centering term 
(7/i*e in the predictor s tep. In the implementations of 
this method, the centering parameter is chosen adap-
tively and incorporated along with the second order 
correction term in the corrector s tep. Testing of the 
performace of ISQP and Mehrotra 's method on the 
L P test problems from the Netlib directory gave sim­
ilar performances in terms of number of iterations as 
seen in Table 1. T h e number of iterations for different 
values of c for the ISQP approach are also shown, a 
in the third column corresponds to the fractional line 
search step taken in the penult imate iteration. Since 
the objective of this paper is to look a t structured pro­
cess optimization problems, we consider more of such 
examples in the following section. 

Problem Var/Ineq/Eq 
ISQP/c values PC 

Problem Var/Ineq/Eq .01 .01(l-a) .005 
PC 

recipe 180/275/90 13 13 13 14 
sierra 2036/4771/528 24 23 24 24 
80bau3b 9799/15047/498 65 57 58 57 

Table 1: Number of i terations of ISQP and Mehrotra 
predictor-corrector on LP test problems 



E X A M P L E S 

In this section, we consider two examples. The first is 
an optimal control problem which demonstrates tha t 
the number of i terations in interior point and active 
set methods could differ by orders of magnitude for a 
large number of t ime steps. The second example is the 
Tennessee Eas tman challenge problem [4]. 

An impor tant aspect of optimal control and dy­
namic optimization problems tha t causes difficulties 
is the presence of inequality constraints. Inequalities 
in these problems arise from safety considerations as 
well as physical limitations upon the control input. In 
the formulation the number of inequalities grows with 
the number of t ime steps. As a result the worst case 
scenario of an active set approach could considerably 
slow the solution t ime. Interior point methods hold 
promise not only because they tend to converge in a 
fixed number of iterations, but also because of their 
s t ructure. Unlike active set methods, interior point 
formulations have a fixed structure tha t is sparse and 
almost block diagonal. Because of this sparse fixed 
structure and the block diagonal form, sparse linear 
algebra solvers should be very efficient. 

E x a m p l e 1: I l lus t ra t ive Opt imal Contro l P r o b l e m 

In the test problems we considered, active set methods 
generally require a number of iterations tha t grows 
superlinearly with the size of the problem, whereas 
with interior point methods, the number of iterations 
is constant independent of the number of t ime steps. 
As an example, we compare the performance of the 
following quadrat ic optimal control problem: 

0.5-

-0.5-

Time 

Figure 1: Control profile for problem (25). 

1500 

1000 MINOS (rtnori i) 

(jPSOMwvniMi) 

mm 

s.t. 

i: (2i?(*) + xl(t) + 6u2(t))dt + 2 i f (1) + xf (1) 

* i (*) = * » ( * ) 

x'2(t) = -xl(t) + u(t) 

- 1 < « ( t ) < 1 

xi(0) = 15 

x2(0) = 5 (25) 

This problem has a control profile which is a t its bounds 
for about half of the t ime horizon as seen in figure 1. In 
figure 2 we compare the number of iterations for ISQP, 
and two active set based codes, MINOS and QPSOL. 
As seen from the figure, the number of iterations for 
MINOS and QPSOL increase with the number of t ime 
steps (active constraints), whereas the interior point 
method keeps a t a constant 6 iterations. 

E x a m p l e 2: M o d e l Pred ic t ive Cont ro l of t h e Ten­
nessee E a s t m a n Reac to r 

At each t ime step of a Model Predictive Control(MPC) 
algorithm an optimal control problem of output hori-

Time Steps 

Figure 2: Number of i terations for ISQP, MINOS and 
Q P S O L for problem (25). 

zon, ny , and input horizon n u must be solved. Con­
sequently any M P C algori thm must have an efficient 
means of solving the opt imal control problem. The 
efficiency is critical with the Tennessee Eastman Re­
actor because of its inherent nonlinearity. Solutions 
of opt imal control problems possessing nonlinear dif­
ferential algebraic models requires a Newton method 
to i terate t o t he final solution. Consequently the so­
lution of the linearized opt imal control problem must 
be efficient. I t ' w a s t h e goal of this example to inves­
t igate the viability of using interior point techniques 
for a simultaneous approach to solving the nonlinear 
optimal control problem. 

T h e Tennessee E a s t m a n challenge problem was orig­
inally presented by Downs and Vogel [4]. In this paper 
the authors describe the process, present a black box 
simulator, and purposely gave no model. The model 
of the Tennessee E a s t m a n Plant used in this example 
was taken from the work of Ricker and Lee [9]. Since 
the whole Tennessee plant has 26 differential equa­
tions, 83 algebraic constraints and 323 variables, this 
example confines its scope to the control of the un­
stable reactor. T h e reactor is a jacketed CSTR,two 
phase system, with the reaction dynamics occurring 
in the vapor phase. T h e DAE model of 8 differen­
tial and 28 algebraic equations is given in the Ap­
pendix. Wi th the inlet vapor compositions, j/j,6, down 
s t ream pressure, P 5 , activity coefficients, 7 i , r , vapor 
pressure P / a t , and parameters a* and 07 fixed there 
are 38 variables. T ight control of this reactor is nec-



essary because there exists a tendency for the pres­
sure to increase exponentially. The presence of this 
unstable mode can cause problems with stable inte­
gration due to the accumulation of round off error. 
In order t o guarantee stable integration an implicit 
Runge-Kutta/collocation method is needed as well as 
an addition of an endpoint constraint on the unsta­
ble mode, pressure. The endpoint constraint changes 
the problem from an unstable initial value problem to 
a stable two point boundary value problem(BVP)[2]. 
The solution of the B V P is trivial when a simulta­
neous approach is used where as sequential strategies 
require multiple shooting techniques to handle ill con­
ditioning. 

T h e differential system was discretized using col­
location on finite elements. The finite elements were 
chosen to be equally spaced with a length value of 6 
minutes. The step lengths for model predictive con­
troller were chosen to have this same time span. Within 
each finite element two collocation points were used. 
As a result the discretized system contains 110 vari­
ables and 108 equality constraints per time step. It is 
important to note t ha t the number of variables takes 
into consideration the fact tha t the control variables 
reactor temperature , TV, and inlet feed flow rate , F 6 , 
are constant throughout the finite element. 

No. Variable Min. Max A Max. 
1 F 6 (kmol/hr) 800 2200 20 
2 Tr (°K) 388 401 2 
3 Vlt (M*) to

 

30 1.0 
4 Pr (kPa) Ps 2900 -

Table 2: Operational Constraints 

The optimal control problem also imposed 14 in­
equality constraints per t ime step. They involve max­
imum and minimum bounds as well as ra te of change 
bounds on the inputs, Fe and T r , and the outputs , Vi> 
and P r . The values are given in Table 2. The control 
variable V/> represents the reactor volume and P r , 
the reactor pressure. The lower bound on P r forces 
the reactor pressure to be higher than the downstream 
pressure. During the control horizon,the first n u steps, 
the ra te of change is given by the table values while for 
the remaining ny-nu steps the change is set equal to 
zero. The remaining constraints of the optimal control 
problem include the initial conditions on the differen­
tial variables. The objective function is given by (26). 

The nonlinear system was solved using SQP with 
the Hessian approximated by the second derivative of 
the objective. The Q P subproblems were solved using 
the augmented equation form which is obtained by 
reducing (24) to the space of primal variables, equality 
multipliers, and inequality multipliers by substitution 
of the slacks by the relation As = -V~lSAv . The 

resulting system takes the form (27), where u = *3 + 
V-lS(SVe-cqe). 

min ] T 0.034(P r (t) - P r " ) 2 + 0.6(F 7(t) - F 7 " ) 2 

t a l 

+ £ 0 .2AF 6 ( j ) 2 + 0.4A7VO')2 (26) 

Q AT CT 

A O 0 
C 0 -V'lS 

" Ax ' " ri 
AA = — 

J . Ai/ . . r 4 . 
(27) 

The system can also be restructured by t ime steps 
to yield an almost block diagonal system(ABD) as il­
lustrated by the reordered matrix. 

Qi 
Ax 
Ci 
0 

AT cT 
0 0 
0 

AT 
Wi 

cT 

0 
Ax 

Cx 
Q2 

A2 

C2 

0 

AT 
0 
0 

cT o 
0 A-2 

W2 Cl 

AT cT 
Qn An Cn 
An 0 0 
Cn 0 Wn 

Where 

Both the almost block diagonal system and the orig­
inal ordered system forms were used for simulation 
studies. T h e simulation studies also compared the 
speed of bo th the sparse symmetric solver MA27 and 
unsymmetr ic solver MA28 from Harwell. In the so­
lution of the nonlinear optimal control problem the 
initial point was chosen close to the steady s ta te val­
ues. As a result relatively few Newton iterations were 
required. T h e input horizon for all cases was chosen 
to be 4. For all of the simulations the number of New­
ton i terations were the same. The number of interior 
point i terations for each simulation only varied by one 
or two. T h e results for a Mehrotra predictor-corrector 
implementation and ISQP are given in Table 3. This 
table also gives information about the problem size in­
cluding the number of primal variables, equality con­
straints , inequality constraints, the number of active 
inequalities a t the solution as well as the total cpu time 
in seconds t ha t it took to solve the nonlinear optimal 
control problem. Table 4 illustrates the time per iter­
ation for all of the simulations. The results show tha t 
the MA28 implementations were faster than the MA27 
versions. However, MA27 cpu times appeared to grow 
linearly with problem size while MA28s did not. The 
simulations also show tha t the sparse solvers were un­
able to take advantage of the almost block diagonal 
ordering. T h e use of a sparse multifrontal algorithm, 



Ny Var/Eq/Ineq/Act Time Newt/PC/ISQP 
10 1100/1081/140/24 8.1 2/16/17 
20 2200/2161/280/64 54.0 4/39/38 
40 4400/4321/560/144 178.2 3/31/36 
80 8800/8641/1120/304 566.7 3/33/36 
160 17600/17281/2240/624 1462 3/31/30 

derived in this paper . A framework for the adap­
tation of a pa th following primal dual interior point 

Table 3: Problem size, cpu seconds and iterations 
using MA28 and original ordering with Mehrotra 
predictor-corrector and ISQP implementations 

Ny Time 
MA2ft 

Time Time Time Ny Time 
MA2ft MA5ft-ART> MAS? MA57.ARH 

10 0.51 0.77 2.31 2.40 
20 1.39 1.90 4.64 4.71 
40 5.75 6.02 9.99 12.68 
80 17.17 16.79 23.13 24.99 
160 47.17 46.83 50.67 62.38 

Table 4: Time per interior point iteration for MA28, 
MA28 ABD Ordering, MA27 and MA27 ABD order­
ing 

such as MA42, is expected to take advantage of the 
ADB structure and provide improved cpu times. 

As is typical of interior point algorithms the num­
ber of iterations required to solve the quadrat ic pro­
gramming problems is independent of the number of 
inequalities in the problem. In fact the simulation ex­
amples revealed tha t approximately 10 interior point 
iterations are required per QP. The benefit of using 
interior point techniques becomes evident when the 
simulation with an ou tpu t horizon of 160 t ime steps is 
examined. In tha t problem the solution has 624 active 
constraints. If an active set method using the typical 
one constraint a t a t ime technique were used the solu­
tion would require a t least 624 iterations! Keeping this 
in mind, the 33 iterations taken by the interior point 
technique to solve the whole problem seems trivial. 
Thus, interior point techniques provide great promise 
for the solution of problems with a large number of 
inequality constraints. 

The question of whether or not the solution times 
are fast enough for online model predictive control is 
debatable. In an online implementation it is reason­
able tha t succeeding t ime steps will have nearly iden­
tical solutions. With such good s tar t ing points, the 
overall number of Newton steps should be small. Tak­
ing this into consideration and the fact t ha t the time 
steps for this problem are 6 minutes long, an output 
horizon of 20 or 40 t ime steps could be implementable. 

As demonstra ted on the example problems, 

methods t o take advantage of the problem structure 
a t the same t ime. 

Issues related to linear algebra are still under in­
vestigation and some of the results using the Harwell 
subroutines MA28 and MA27 are given in this paper. 
Detailed s tudy of the linear algebra is planned in the 
future. Solution of larger examples drawn from dy­
namic optimization problems in chemical engineering 
using this methodology is also under consideration. 
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C O N C L U S I O N S 

An intuitive interpretation of the predictor corrector 



= yA,*F6-yAjF7-Ri-R2-\R* 

dNB,r 
dt 

dNCtr 
dt 

dND,r 

dt 

= yce-Fe — ycjFj — Ri — R2 
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dNB,r „ _ _ 1 „ 

—— = yEjre - VEjri — J12 — -K3 

dNF,r dt 
dNG,r 

dt 
dNH,r 

dt 

yF^Fe — yFjFj + # 3 

ya.eFe - yo ,7F7 + R\ 

VH,6^6 - yj/,7*7 + # 2 

#t,r — __ u t — .D, 2 £ , £ f 

yij = «' = 4 , 

Pi,r = iirXiTPtat i = D,E, F, G, H 

Ri = a1VVrexp[44M-^r)P\?P$3rNP°dfJ* 

R2 = a3VVrexp[10.27-^^)PXfP^rP^ 

fla = a3Vvrexp[59.50 - Y^r)PAAOTTPD,T + PE,T) 

T 

Appendix: Model for Example 2 


