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ABSTRACT

We propose a quasi-Newton algorithm for solving large optimization problems with
nonlinear equality constraints. It is designed for problems with few degrees of free-
dom, and is motivated by the need to use sparse matrix factorizations. The algorithm
incorporates a correction vector that approximates the cross term ZTWYpy in or-
der to estimate the curvature in both the range and null spaces of the constraints.
The algorithm can be considered to be, in some sense, a practical implementation
of an algorithm of Coleman and Conn. We give conditions under which local and
superlinear convergence is obtained.

Key words: successive quadratic programming, reduced Hessian methods, constrained
optimization, quasi-Newton method, large-scale optimization.

Abbreviated title: A Reversed Coleman-Conn Method

1. Introduction.

We consider the nonlinear optimization problem

min/(a;) (1.1)

subject to c(x) = 0, (1.2)

where / : Rn -> R and c : Rn ->- Rm are smooth functions. We assume that the first
derivatives of / and c are available, but our algorithm does not require second derivatives.

The successive quadratic programming (SQP) method for solving (1.1)-(1.2) gener-
ates, at an iterate £*, a search direction d* by solving

nun g(xkfd + ̂ (fw^d (1.3)



subject to c(xk) + A(xk)
Td = 0, (1.4)

where g denotes the gradient of /, W denotes the Hessian of the Lagrangian function
L(x, A) = f(x) + \Tc(x), and A denotes the n x m matrix of constraint gradients

]. (1.5)

A new iterate is then computed as

(1.6)

where ak is a steplength parameter chosen so as to reduce the value of the merit function.
In this study we continue to use the £\ merit function

<l>fl(x)^f(x)+fi\\c(x)\\u (1.7)

where \i is a penalty parameter; see for example Conn (1973), Han (1977) or Fletcher
(1987). We could have used other merit functions, but the essential points we want to
convey in this article are not dependent upon the particular choice of the merit function.

The solution of the quadratic program (L3)-(1.4) can be written in a simple form if
we choose a suitable basis of Rn to represent the search direction dk. For this purpose,
we introduce a nonsingular matrix of dimension n, which we write as

[YkZk], (1.8)

where Yk e R n x m and Zk € R n x ( n - m ) , and assume that

A\Zk = 0. (1.9)

(From now on we abbreviate A(xk) as Aky g(xk) as gk, etc.) Thus Zk is a basis for the
tangent space of the constraints. We can now express dk, the solution to (1.3)-(1.4), as

dk = YkpY + ZkPz, (1.10)

for some vectors pY 6 Rm and pz e Rn~m. Due to (1.9) the linear constraints (1.4)
become

l = 0. • (1.11)

If we assume that Ak has full column rank then the nonsingularity of [Yk Zk) and equation
that the matrix AlYk is nonsingular, so that pY is determined by (1.11):

pY = -[A£ Yk]~
lck. (1.12)

Substituting this in (1.10) we have

dk = -Yk[AlYk]~
lck + Zkpz. (1.13)

Note that
Yk[AlYkY

l (1.14)

is a right inverse of A£, and that the first term in (1.13) represents a particular solution
of the linear equations (1.4).



We have thus reduced the size of the SQP sub-problem which can now be expressed
exclusively in terms of the variables pz. Indeed, substituting (1.10) into (1.3), considering
YkPy as constant, and ignoring constant terms, we obtain the unconstrained quadratic
problem

min (Z?gk + ZZWkYkpY)Tpz + yz
T(ZZWkZk)pz. (1.15)

Assuming that Z%WkZk is positive definite, the solution of (1.15) is

l[ti[gk + ZlWkYkpY). (1.16)

This determines the search direction of the SQP method.
We are particularly interested in the class of problems in which the number of variables

n is large, but n - m is small. In this case it is practical to approximate Z][\VkZk using
a variable metric formula such as BFGS. On the other hand, the matrix Z%WkYk, of
dimension (n — m) x m may be too expensive to compute directly when m is large.
For this reason several authors simply ignore the "cross term" Zj\VkYkpY in (1.16) and
compute only an approximation to the reduced Hessian Z^WkZk\ see Coleman and Conn
(1984), Nocedal and Overton (1985), and Xie (1991). This approach is quite adequate
when the basis matrices Yk and Zk in (1.8) are chosen to be orthonormal (Gurwitz and
Overton (1989)).

Therefore in this paper we approximate the cross term [Z^WkYk]pY by a vector wk,

\uk VvkYk\pY £3 wk, (1.17J

without computing the matrix Z][WkYk. Instead we consider a finite difference approxi-
mation given by either:

wk = Zl[VL(xk + YkpY, Xk) - VL(a*, A*)]. (1.18)

or
wk = Z{xk + YkpY)Tg(xk + YkpY) - Zlgk (1.19)

2. Development of the revised algorithm

We will see that addition of the 'cross term5 approximation can be done without sub-
stantially increasing the cost of the iteration, and we will show that the rate of conver-
gence of the new algorithm is 1-step Q-superlinear, as opposed to the 2-step superlinear
rate for methods that ignore the cross term (Byrd (1985) and Yuan (1985)). The null
space step (1.16) of our algorithm will be given by

pz = -{ZlWkZk)~
l[Zlgk + Obtifc], (2.1)

where 0 < Ok < 1 is a damping factor to be discussed later on.
To approximate the reduced Hessian matrix Z^WkZk, Wk+i = VlxL(xk+i, A*+i), we

have that

j - VxL{xk, Afc+1)]f (2.2)



when Xk+\ is close to xk- We use this relation to establish the following secant equation
for the quasi-Newton approximation to the reduced Hessian Z^WkZ^

Bk+iSk = yk, (2.3)

with Sk and y* defined by
Sk = OLkpz, (2.4)

and
yk = zZ\VxL(xk+u Ait-Hi) - VxL{xk, A*+i)] - wk, (2.5)

or
Vk = ZZ+igk+i - Zlgk - wk, (2.6)

Here we define

wk = a*[ZftVL(x* + npy, A*+1) - VL(s*,.A*+1)], (2.7)

or
wk = afc[Z(a:ib + YkpY)Tg(xk + YkpY) - Z%gk], (2.8)

We will update Bk by the BFGS formula (cf. Fletcher (1987))

(2.9)

provided 5̂ j/ib is sufficiently positive and use this matrix for the nullspace step:

Pz = -iBh)-l[2%gh + Cfctiifc], (2.10)

We would like to highlight a subtle, but important point. We have defined two correction
terms, wk and wk. Both are approximations to the cross term (ZTWY)py. The first
term, wki which is needed to define the null space step (2.1) - and thus the new iterate
Xjb+i. The second term, Wk, which is used in (2.5) to define the BFGS update of f?*, is
computed using the new multiplier A^+i, and also takes into account the steplength a*.

The Lagrange multiplier estimates A* needed in the definition (2.5) of y* will be
defined by

This formula is motivated by the fact that, at a solution x* of (1.1)-(1.2), we have
- j * = A*A«c, and since Y^jl^Yi]"1 is a right inverse of A£,

X. = -\Y?A.]-lY?g,.

Using the same right inverse (1.14) in the definitions of pY and A* will allow us a con-
venient simplification in the formulae presented in the following sections. We stress,
however, that other Lagrange multiplier estimates can be used, or multiplier estimates
may also be avoided if (1.19), (2.8) and (2.6) are used.

2.1. Update Criterion.

It is well known that the BFGS update (2.9) is well defined only if the curvature con-
dition s£yk > 0 is satisfied. This condition can always be enforced in the unconstrained



case by performing an appropriate line search; see for example Fletcher (1987). However
when constraints are present the curvature condition sj[yk > 0 can be difficult to obtain,
even near the solution.

To see this we first note from (2.5), (2.4) and from the Mean Value Theorem that

yk = Zl \J V
= ZlWkakdk-wk

= ZZWkZksk + akZ*£WkYkpY-wk, (2.12)

where we have defined

Wk = I1 V2
xxL(xk + rakdk, XM)dr. (2.13)

Jo

Thus
\ $k + otksk [Zk WkYk 1 pY — skwk. (2.14)

Near the solution, the first term on the right hand side will be positive since ZjWkZk

can be assumed positive definite. Nevertheless the last two terms are of uncertain sign
and can make s[yk negative. Several reduced Hessian methods in the literature set wk

equal to zero for all A;, and update Bk only if pY is small enough compared with sk that
the first term in the right hand side of (2.14) dominates the second term (see Nocedal
and Overton (1985), Gurwitz and Overton (1989), and Xie (1991)).

Also, skipping the BFGS update is desirable in some circumstances and we now
present a strategy for deciding when to do so. Here we define ak = max[\\ek\\, ||e*+i||
where ek = xk — #• and ak converges to zero if the iterates converge to x*.

Update Criterion I.

Choose a constant^ > 0 and a sequence of positive numbers {jk} such that Eg l^* < oo.

• Ifwk is set to zero and if both s^yk > 0 and

(2.15)
hold at iteration k, then update the matrix Bk by means of the BFGS formula (2.9)
with sk and yk given by (2.4) <^nd (2.5). Otherwise, set Bk+\ = Bk.

• Ifwkis computed by finite differencesf and if both s£yk > 0 and

||pv||<7rd||Pz||/ai/2 (2.16)

hold at iteration k, then update the matrix Bk by means of the BFGS formula (2.9)
with sk and yk given by (2.4) and (2.5). Otherwise, set Bk+i = Bk.

Note that ak requires knowledge of the solution vector x«, and is therefore not com-
putable. However we will later see that ak can be replaced by any quantity which is of
the same order as the error ek, for example the optimality conditions (||Zjpfc|| +
Nevertheless for convenience we will leave ak in (2.16).



We now closely consider the properties of the BFGS matrices Bk when Update Cri-
terion I is used. Let us define

cosfr = / * ? * * * , (2.17)
\\8k\\ \\Bk8k\\

which, as we will see, is a measure of the goodness of the null space step ZkVz- We begin
by restating a theorem from Byrd and Nocedal (1989) regarding the behavior of cos 6k
when the matrix £* is updated by the BFGS formula.

T h e o r e m 2 . 1 Let {Bk} be generated by the B F G S formula (2.9) where, for all k > \ ,
Sk ^ 0 and

%^ (2.18)

< M. (2.19)

Then, there exist constants / 3 i , 0 2 , ( h > 0 such that, for any k > l , the r e l a t i o n s

cosOj > fii (2.20)

< fh (2.21)

hold for at least \^k] values of j € [l,fe].

This theorem refers to the iterates for which BFGS updating takes place, but since for
the other iterates Bk+\ = B*, the theorem characterizes the whole sequence of matrices
{Bit}. Theorem 2.1 states that, if s\yk is always sufficiently positive, in the sense that
conditions (2.18) and (2.19) are satisfied, then at least half of the iterates at which
updating takes place are such that cosOj is bounded away from zero and BjSj = 0(||s;||).
Since it will be useful to refer easily to these iterates, we make the following definition.

Definition 2.1 We define J to be the set of iterates for which BFGS updating takes
place and for which (2.20) and (2.21) hold. We call J the set of "good iterates", and
define Jk = Jn {1,2, ...,*&}.

Note that if the matrices Bk are updated only a finite number of times, their condition
number is bounded, and (2.20)-(2.21) are satisfied for all k. Thus in this case all iterates
are good iterates.

We now study the case when BFGS updating takes place an infinite number of times.
Assume that all functions under consideration are smooth and bounded. If at a solution
point x* the reduced Hessian ZjW+Z* is positive definite, then for all x^ in a neigh-
borhood of x+ the smallest eigenvalue of Z^WkZk is bounded away from zero (W* is
defined in (2.13)). We now show that in such a neighborhood Update Criterion I implies
(2.18)-(2.19).

If Wk is computed by the finite difference formula (2.7), we see from (2.5) and the
Mean Value theorem that there is a matrix Wk such that

Vk = 2



(A slightly more involved relation follows from (2.6).)
Nevertheless, (2.18)-(2.19) are satisfied in the case when finite differences are used.

These arguments show that, in a neighborhood of the solution and whenever BFGS
updating of Bk takes place, sjjTy* is sufficiently positive, as stipulated by (2.18)-(2.19).

2.2. Choosing /J* and Ot-

We will now see that by appropriately choosing the penalty parameter \ik and the
damping parameter 0t for it;*, the search direction generated by our method is always
a descent direction for the merit function. Moreover, for the good iterates J, it is a
direction of strong descent.

Since dk satisfies the linearized constraint (1.11) it is easy to show (see eq. (2.24) of
Byrd and Nocedal (1991)) that the directional derivative of the l\ merit function in the
direction dk is given by

D4>pk(xk;dk) = gldk - Ai*ll<*||i. (2.22)

The fact that the same right inverse of A£ is used in (1.12) and (2.11) implies that

= \lck. (2.23)

Recalling the decomposition (1.10) and using (2.23) we obtain

- nk\\ck\\\ +
(2.24)

Now from (2.4) and (2.10) we have that

BkSk = -otk{Zlgk + 0kW*). (2.25)

Substituting this in (2.17) we obtain

cos0, - -(Zk9k+<;kwk)
Tpz

Recalling the inequality Aj[c/t < ||Ajb||oo||Qblli. and using (2.26) in (2.24) we obtain, for all
*,

D<f>^k(xk;dk) < -\\ZZgk + Okay ||pz||cos0* - Ckwfoz " (P* ~ l|A*lloo)llQk||i. (2.27)

Note also from (2.25) and (2.4) that

INI _

We now concentrate on the good iterates J, as given in Definition 2.1. If j e J, we have
from (2.28) and (2.21) that

±\\Zj9j + CjWjW < \\p?\\ < ±-\\ZTgj + CjWj\\. (2.29)



Using this and (2.20) in (2.27) we obtain, for j € J,

D<t>N(xy,dj) < -^f f

where we have dropped the non-positive term —Ĉ  c o s ̂ jlltjL;ill2//^3- Since we can assume
that /?3 > 1 (it is defined as an upper bound in (2.21)), we have

Dt^dj) < -^\\ZJgj\\
2 + ^cos^l^Z,^! - CjwfpP] - (H - IIA^UIIqHi.

It is now clear that if

2Cjcosej\gjZjwj\ - (jwjpP < pWcjWu (2.30)

for some constant p, and if
H>Ui\\oo + 2p, (2.31)

then for all j 6 J,

Dt^dj) < -2j-\\Zjgj\\
2 -PIIC^. (2.32)

This means that if (2.30) and (2.31) hold, then for the good iterates, j € J, the search
direction dj is a strong direction of descent for the t\ merit function in the sense that
the first order reduction is proportional to the KKT error.

We will choose C* so that (2.30) holds for all iterations. To see how to do this we
note from (2.10) that

so that for j = A; (2.30) can be written as

x l CkV$BZlwk] < p\\ckh. (2.33)

It is clear that this condition is satisfied for a sufficiently small and positive value of
Specifically, at the beginning of the algorithm we choose a constant p > 0 and, at every
iteration fc, define

a = min{l,&} (2.34)

where (k is the largest value that satisfies (2.33) as an equality.
The penalty parameter pk must satisfy (2.31), so we define it at every iteration of

the algorithm by

•I W - i if Mfc-i >
P*||oo + 3p otherwise.

The damping factor 0b and the updating formula for the penalty parameter fik have
been defined so as to give strong descent for the good iterates J. We now show that
they ensure that the search direction is also a direction of descent (but not necessarily of
strong descent) for the other iterates, k £ J. Since (2.30) holds for all iterations by our
choice of £fc, we have in particular



Using this and (2.35) in (2.27), we have

-pk\\ck\\i. (2.36)

The directional derivative is thus non-positive. Furthermore, since Wk = 0 whenever
Ck = 0, it is easy to show that this directional derivative can only be zero at a stationary
point of problem (1.1)-(1.2). Note, as shown in (Biegler et al (1996)) that the condition
on pk can also be replaced by a weaker condition:

.||i > \giYpy\ (2.37)

and the same results hold, without calculation of the multipliers.

2.3. The Algorithm

We can now give a complete description of the algorithm that incorporates all the
ideas discussed so far, and that specifies when to apply finite differences to approximate
the cross term. The idea is to consider the relative sizes of pY and pz. Update Criterion I
generates the three regions i2i,i?2 and R$ as shown in (Biegler et al (1995)). The
algorithm starts by calculating pY and pz with Wk = Wk = 0. If the search direction is
in iJi, we proceed. Otherwise we recompute Wk by finite differences, use this value to
recompute pz , and proceed. The reason for applying finite differences in this fashion is
that in the regions R2 and R3 the convergence path is not sufficiently tangential to the
constraints to give a superlinear step. Therefore we need to resort to finite differences to
obtain a good estimate of w^. The motivation behind this strategy will become clearer
when we study the rate of convergence of the algorithm in §5.

Note from Updating Criterion I that the BFGS update of Bk is skipped if the search
direction is in R$. A precise description of the algorithm follows.

Algorithm I

1. Choose constants q e (0,1/2), p > 0 and T,T* with 0 < r < r' < 1, and 7fd > 0
for (2.16). For (2.15), select a summable sequence of positive numbers {7*}. Set
k := 1 and choose a starting point x\, an initial value p.\ for the penalty parameter,
an (n - m) x (n - m) symmetric and positive definite starting matrix B\.

2. Evaluate /*,£*,<* and J4*, and compute V* and Z*.

3. Set findiff = false, Wk = tU* = 0 and compute pY by solving the system

(AlYk)pY = -c*. (range space step) (2.38)

4. Compute pz from

BkPz = -Z]z9k- (null space step) (2.39)

5. If (2.15) is not satisfied and <7k < S, a preset tolerance, set findiff = true and
recompute Wk from equation (1.18) or (1.19).

6. If findiff = true use this new value of Wk to choose the damping parameter (* from
equations (2.33) and (2.34) and recompute pz from equation (2.10).



7. Define the search direction by

dk = YkPY + Zkpz, (2.40)

and set ak = 1.

8. Test the line search condition

tfVijb(x* + akdk) < <t>nk(**) + V<*kD<f>nk{xk; dk). (2.41)

9. If (2.41) is not satisfied, choose a new a* € [rak,T
lak] and go to 9; otherwise set

xk+x=xk + akdk. (2.42)

10. Evaluate /*+ii0*+i>c*+ii Ak+U and compute Yk+X and Zfc+i-

11. Compute the Lagrange multiplier estimate

A*+i = -[Y^A^r'Y^g^u (2.43)

and update fik so as to satisfy (2.35).

12. Ufindiff = true calculate wk by (2.7) or (2.8).

13. If s^yk < 0 or if (2.16) is not satisfied, set £fc+i = Bk. Else, compute

sk = akpz, (2.44)

yk = zZ\yL{xk+u\M) - VL(x*, Afc+i)] - Wfc, (2.45)

and compute £fc+i by the BFGS formula (2.9).

14. Set k := A; + 1, and go to 3.

In the next sections we present several convergence results for Algorithm I. The
analysis, which does not assume that the BFGS matrices Bk are bounded, is based on the
results of Byrd and Nocedal (1991), who have studied the convergence of the Coleman-
Conn updating algorithm. We also make use of some results of Xie (1991), who has
analyzed the algorithm proposed by Nocedal and Overton (1985) using non-orthogonal
bases Y and Z. The main difference between this paper and that of Xie stems from our
use of the correction terms wk and wk, which are not employed in his method.

3. Semi-Local Behavior of the Algorithm.

We first show that the merit function <f> decreases significantly at the good iterates J,
and that this gives the algorithm a weak convergence property. To establish the results
of this section we make the following assumptions.

Assumptions 3.1 The sequence {xk} generated by Algorithm I is contained in a convex
set D with the following properties.

(I) The functions / : Rn -> R and c : Rn -> Rm and their first and second derivatives
are uniformly bounded in norm over D.
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(II) The matrix A(x) has full column rank for all x e D, and there exist constants 70
and Po such that

\\Y(x)[A(x)TY(x)]'l\\ < 70, ||Z(*)|| < A), (3.1)

for all x e D.

(III) The correction term Wk is chosen so that there is a constant K > 0 such that for all

IKII<*l|c*||. (3.2)

(IV) For all k > 1 for which Bk is updated, (2.18) and (2.19) hold.

Note that condition (I) is rather strong, since it would often be satisfied only if
D is bounded, and it is far from certain that the iterates will remain in a bounded
set. Nevertheless the convergence result of this section can be combined with the local
analysis of §4 to give a satisfactory semi-global result. Condition (II) requires that the
basis matrices Y and Z be chosen carefully, and is important to obtain good behavior in
practice. Note that (3.1) and (2.38) imply that

||nPY|j<7ol|c*||. (3.3)

Relation (3.2) holds for the finite difference approach, since (1.18) implies that wk =
O(YkPY), and since (I) ensures that {||cfc||} is uniformly bounded (see (4.19)). Condition
(IV) is justified in the last paragraphs of §2.1, where it is shown that (2.18) and (2.19)
are satisfied whenever BFGS updating takes place in a neighborhood of a solution point.
Condition (IV) and Theorem 2.1 ensure that at least half of the iterates at which BFGS
updating takes place are good iterates. The following result concerns the good iterates
J, as given in Definition 2.1.

Lemma 3.1 If Assumptions 3.1 hold and if\ij = /z is constant for all sufficiently large
j, then there is a positive constant 7^ such that for all large j G J,

ill2 + IMIi] • (3.4)

Proof. Follows exactly as in (Biegler et al (1995))
It is now easy to show that the penalty parameter settles down, and that the set of

iterates is not bounded away from stationary points of the problem.

Theorem 3.2 If Assumptions 3.1 hold, then the weights {/i*} are constant for all suffi-
ciently large k and

Proof. Follows exactly as in (Biegler et al (1995))

4. Local Convergence

In this section we show that if x* is a local minimizer that satisfies the second order
optimality conditions, and if the penalty parameter /i* is chosen large enough, then Z*
is a point of attraction for the sequence of iterates {z*} generated by Algorithm I. To

11



prove this result we will make the following assumptions. In what follows G denotes the
reduced Hessian of the Lagrangian function, i.e.

Gk = Z*[V2
xxL(xky\k)Zk. (4.1)

Assumptions 4.1 The point x+ is a local minimizer for problem (1.1)-(1.2) at which
the following conditions hold.

(1) The functions / : Rn -* R and c : Rn -+ Rm are twice continuously differentiable in
a neighborhood of x«, and their Hessians are Lipschitz continuous in a neighborhood
of x*.

(2) The matrix A(x*) has full column rank. This implies that there exists a vector
A* G Rm such that

VL(x*, A*) = g(x*) + A(x*)\m = 0.

(3) For all q G Rn"m, q ^ 0, we have qTG+q > 0.

(4) There exist constants 70, /?o and yc such that, for all rr in a neighborhood of x*,

\\Y(x)[A(x)TY(x)]-l\\ < 70, ||Z(*)|| < A), (4.2)

and
| | [y(x)Z(x)] - 1 | |< 7 c . (4.3)

(5) Z(x) and X(x) are Lipschitz continuous in a neighborhood of rr*, i.e. there exist
constants yz and 7A such that

- * I I , ( 4 . 4 )
\\Z(x) - Z(z)\\ < yt\\x-z\\, (4.5)

for all x,z near x».

Note that (1), (3) and (5) imply that for all (x,A) sufficiently near (x,,A,), and for all
q e Rn-m ,

m|M|2<9
rC?(x,A)9<M||g | |2 , (4.6)

for some positive constants m,M. We also note that Assumptions 4.1 ensure that the
conditions (2.18)-(2.19) required by Theorem 2.1 hold whenever BFGS updating takes
place in a neighborhood of x*y as argued at the end of §3.3. Therefore Theorem 2.1 can
be applied in the convergence analysis.

The following two lemmas are proved by Xie (1991) for very general choices of Y and
Z. Their result generalizes Lemmas 3.1 and 4.2 of Byrd and Nocedal (1991); see also
Powell (1978).

Lemma 4.1 If Assumptions J^.l hold, then for all x sufficiently near x+

Till* - x.\\ < ||c(x)|| + \\Z{x)Tg{x)\\ < 72 | |x - x,||, (4.7)

for some positive constants 71,72-

12



This result states that, near a;*, the quantities c(x) and Z(x)Tg(x) may be regarded
as a measure of the error at x. The next lemma states that, for a large enough weight,
the merit function may also be regarded as a measure of the error.

Lemma 4.2 Suppose that Assumptions 4-1 hold at xm. Then for any fi > ||A«||oo there
exist constants 73 > 0 and 74 > 0, such that for all x sufficiently near x«

73||x - x.||2 < 4,(x) - *„(«.) < 74 [||Z(z)T0(z)||2 + H*)h] • (4-8)

Note that the left inequality in (4.8) implies that for a sufficiently large value of the
penalty parameter, the merit function will have a strong local minimizer at 2*. We
will now use the descent property of Algorithm I to show convergence of the algorithm.
However, due to the non-convexity of the problem, the line search could generate a step
that decreases the merit function but that takes us away from the neighborhood of z».
To rule this out we make the following assumption.

Assumption 4.2 The line search has the property that, for all large k, ^ ( ( 1 — 0)xk +
0£fc+i) < <f>n{xk) for all 0 e [0,1]. In other words, Xk+i is in the connected component of
the level set {x : <£M(x) < <f>n(xk)} that contains xk.

There is no practical line search algorithm that can guarantee this condition, but it
is likely to hold close to rr«. Assumption 4.2 is made by Byrd, Nocedal and Yuan (1987)
when analyzing the convergence of variable metric methods for unconstrained problems,
as well as by Byrd and Nocedal (1991) in the analysis of Coleman-Conn updates for
equality constrained optimization.

Lemma 4.3 Suppose that the iterates generated by Algorithm I are contained in a convex
region D satisfying Assumptions 3.1 If an iterate xko is sufficiently close to a solution
point x* that satisfies Assumptions 4-1, and if the weight fiko is large enough, then the
sequence of iterates converges to x+.

Proof. Follows exactly as in (Biegler et al (1995)).

4.1. R-Linear Convergence.

For the rest of the paper we assume that the iterates generated by Algorithm I
converge to 2*, which implies that for all large A;, /z* = fi > ||A,||. The analysis that
follows depends on how often BFGS updating is applied, and to make this concept precise
we define U to be the set of iterates at which BFGS updating takes place,

(4.9)

and let
% = tfn{l, 2, . . . ,*} . (4.10)

The number of elements in Uk will be denoted by \Uk\.

Theorem 4.4 Suppose that the iterates {xk} generated by Algorithm I converge to a
point x, that satisfies Assumptions 4-1- Then for any k eU and any j >k

(4.11)

for some constants C > 0 and 0 < r < 1.
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Proof. Follows exactly as in (Biegler et al (1995)).
This result implies that if {| £/*!/&} is bounded away from zero, then Algorithm I is

R-linearly convergent. However, BFGS updating could take place only a finite number
of times, in which case this ratio would converge to zero. It is also possible for BFGS
updating to take place an infinite number of times, but every time less often, in such a
way that \Uk\/k -> 0. We therefore need to examine the iteration more closely.

We make use of the matrix function ip defined by

= tr(B) - ln(det(B)), (4.12)

where tr denotes the trace, and det the determinant. It can be shown that

lncond(B) < ^(B), (4.13)

for any positive definite matrix B (Byrd and Nocedal (1989)). We also make use of the
weighted quantities

yk = G7l/2yk, sk = GlJ2sk, (4.14)

Bk = G:1 / 2£*G;1 / 2 , (4.15)

- « . = ™V^J. (4-16)
and

(4.17)

One can show (see eq. (3.22) of Byrd and Nocedal (1989)) that if Bk is updated by
the BFGS formula then

+ l - - S 3 T + k - S r - • (418)

This expression characterizes the behavior of the BFGS matrices 'Bk, and will be
crucial to the analysis of this section. However before we can make use of this relation
we need to consider the accuracy of the correction terms. We begin by showing that when
finite differences are used to estimate Wk and tUjt, these are accurate to second order.

Lemma 4.5 // at the iterate Xk, the corrections Wk and Wk are computed by the finite
difference formulae (1.18)-(2.7) or (1.19)-(2.8)f and ifxk is sufficiently close to a solution
point x* that satisfies Assumptions 4-1, then

(4.19)

IK - Z?W.YkpY\\ = Ofollpvll) (4.20)

and
\\wk - ZjW.YtfrW = O(afc|lpv||). (4.21)

14



Proof. The proof for the formulae (1.18)-(2.7) follow exactly as in (Biegler et al (1995)),
while the proof for the formulae (1.19)-(2.8) follow exactly as in (Biegler et al (1996)).

Next we show that the condition number of the matrices Bk is bounded, and that
at the iterates U at which BFGS updating takes place the matrices Bk axe accurate
approximations of the reduced Hessian of the Lagrangian.

Theorem 4.6 Suppose that the iterates {xk} generated by Algorithm I converge to a
solution point x+ that satisfies Assumptions 4.1. Then {||£*||} and {H-B^1!!} are bounded,
and for all k €U

11(5* - Z?W.Z.)pz\\ = o(||<f*||). (4.22)

Proof. Here we consider only the definition of yk using (2.5). A similar proof using (2.6)
follows along the lines shown in (Biegler et al, 1996). We will only consider iterates k for
which BFGS updating of Bk takes place. We have from (2.45), (2.42), (2.40), (2.13) and
(2.44)

yk =

= Zj U V2
xxL{xk + Takdk, A*+1)<fTJ akdk - wk

(4.23)

Since wk is either zero or computed by finite differences, we need to consider these two
cases separately.

Part I. Let us first assume that Wk is zero. A simple computation shows that
j = O(ak). Using Assumptions 4.1 in (4.23) we have

(4.24)

Recalling (4.14) and noting that y^Sk = yjsk we have

yjs* = sT
k(ZlWkZk - G,)sk + \\skf + (<r*

since ||s"fc|| and ||s*|| are of the same order. Therefore

(^^) (4.25)

Similarly from (4.24) and (4.14) we have

fkyk < \\{zlwkzk-G.^lfllG;1!! + 2\\{zlwkzk-G.)sk\\ ||GT1/2|| pfc|| + pfc||
2

+2(ak + l)O(||afcpY||)||G;5|| (p*|| + \\{ZlWkZk - G.)sk\\\\G:l/2\\)

l)2O(||a f cPY | |)2 ,
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and thus

At this point we invoke the update criterion, and note from (2.15) that if BFGS
updating of Bk takes place at iteration fc, then ||afcpY|| < 7fc||sibl| where {7*} is summable.
Using this, the assumption that ak converges to zero, and (4.25) we see that for large k

(4.27)
n**ir

and using (4.26)

Therefore

llvfcll2 l l t f INI2
We now consider ip(Bk+\) given by (4.18). A simple expansion shows that for large

it, ln(l + 0(<jk +7*)) = 0{ak + 7*). Using this, (4.27) and (4.28) we have

O(ak + 7jb) + In cos2 0k 4- 11 - + In ^TI •
L ^ COS20fcJ

Note that for x > 0 the function 1 — x 4- lnx is non-positive, implying that the term in
square brackets is non-positive, and that In cos2 6^ is also non-positive. We can therefore
delete these terms to obtain

*{Bk+i) < *{Bk) + O(ak + 7fc). (4.30)

Before proceeding further we show that a similar expression holds when finite differences
are used.

Part II. Let us now consider the iterates k for which updating takes place and for which
wk is computed by finite differences. In this case (2.16) holds. Again we begin by
considering (4.23),

yk = Z£WkZksk + ak(ZlWk - Z?W*)YkpY + (akZjW*YkpY - wk).

Using (4.21) the last term is of order 0*(c*jfe||pY||)> and so is the second term. Thus

yk = ZlWkZksk + O{akak\\pY\\)
= {tfWkZk-G.)sk + G.8k + O{akak\\py\\). (4.31)

Noting that y£sk = y£sk and recalling the definition (4.14) we have

yT
ksk = sT

k[Z
T

kWkZk - G.)sk + \\h\\2 +

since ||s"fc|| and ||sfc|| are of the same order. Therefore

_ sl(zlwkzk G.)Sk
\\sk\?

^tel). (4,2)
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Similarly from (4.31) and (4.14) we have

\\G:l\\ + 2\\{zlwkzk - G)**II IIG:1/2II \\h\\ + P*ll2- G.)skf\\G:l\\ + 2\\{zlwkzk - G,)**II IIG:1/2II \\h\\ + P*l

+<rk0 (\\akPY\\\\G;h\ [foil + \\{ZlWkZk

and thus

We now invoke Update Criterion I, and note from (2.16) that if BFGS updating of
Bk takes place at iteration A:, then ||pY|| < 7fdlbz||/^ /2. Using this, (4.32) and the fact
that ak converges to zero, we see that for large k

lc,J|2

and using (4.33)

\\h\\>
Therefore

= -„ = 1 + O\GJ ). (4.34)
ylsk

 k }\\sk\ l

We now consider ip{Bk+i) given by (4.18). Noting that ln(l + O{G\12)) = O(a\12) for all
large A;, we see that if updating takes place at iteration A;

0{G\12) + In cos2 6k + [l - - ^ - + In - 2 * ] . (4.35)
[ COS 2 ^ COS2^J

Since both In cos2 6k as well as the term inside the square brackets are non-positive, we
can delete them to obtain

^(BM)<^(Bk) + O(Gl
k
/2). (4.36)

We now combine the results of Parts I and II of this proof. Let us subdivide the set of
iterates U for which BFGS updating takes place into two subsets: U' corresponds to the
iterates in which wk = 0, and U" to the iterates in which finite differences are used. We
also define U'k = U'D {1,2, ...A;} and U% = U" d {1,2, ...A;}.

Summing over the set of iterates in Uk, using (4.30) and (4.36), and noting that
= Bj for j £ Uk, we have

+{BM) < rP(Bx) + Cx £ G)12 + C2 £ Oi + C3 £ 7i, (4.37)
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for some constants Ci,C2,C$. By (4.11) and since \U![\ < \Uj\,

E aT ^ E
j€U" j€U"

jeu"
\U"\

1 = 1

< oo.

Similarly

E aJ

and since {7*} is summable we conclude from (4.37) that {i/)(Bk)} is bounded above. By
(4.12) t/j{Bk) = 5Z?=i(̂ t ~~ Ini*), where l{ are the eigenvalues of £?*, and it is easy to see
that this implies that both ||2?fc|| and HB^H are bounded.

To prove (4.22), we sum relations (4.29) and (4.35), recalling that o^, 7^ and a^ are
summable, to obtain

< C + E fin cos2 6fc + [l - - T J - + In

for some constant C. Since ip(Bk+\) > 0, and since both In cos2 0k and the term inside
the square brackets are non-positive we see that

lim In cos2 0* = 0,
fc-*oo
k€U

lim 1 -

Now, for x > 0 the function 1 — a; + In x is concave and has its unique maximizer at x = 1.
Therefore the relations above imply that

(4.38)

Now from (4-16)-(4.17)

\\G:l/2(Bk

lim cos 0*
fc-4OO

keu

- C ? 0 P Z I I 2

l|Gi/2pzll2

: = lim qk
fc-+oo

11(5*-

= 1.

I)h\\2

It is clear from (4.38) that the last term converges to 0 for k € U, which implies that
(4.22) holds.

18



This result immediately implies that the iterates are R-linearly convergent, regardless
of how often updating takes place.

Theorem 4.7 Suppose that the iterates {xk} generated by Algorithm I converge to a
solution point x* that satisfies Assumptions 4-1- Then the rate of convergence is at least
R-linear.

Proof. Theorem 4.6 implies that the condition number of the matrices {J3*} is bounded.
Therefore all the iterates are good iterates, and reasoning as in the proof of Theorem 4.4
we conclude that for all j

for some constants C > 0 and 0 < r < 1.
D

5. Superlinear Convergence

Without the correction terms wk and wk, and using appropriate update criteria, Al-
gorithm I is 2-step Q-superlinearly convergent. This was proved by Nocedal and Overton
(1985) assuming that Yk and Zk are orthogonal bases, and assuming that a good starting
matrix B\ is used. This result has been extended by Xie (1991) for more general bases
and for any starting matrix B\ > 0. In this section we will show that if the correction
terms are used in Algorithm I, the rate of convergence is 1-step Q superlinear. This re-
sult is possible by Update Criterion I and by the selected application of finite difference
approximations, which allow BFGS updating to occur more frequently.

Of course, to establish superlinear convergence we need to ensure that the steplengths
ak have the value 1 for all large k. We assume that the iterates generated by Algorithm I
converge R-linearly to a solution and that unit steplengths are taken for all large k. There
are a number of stepsize strategies (e.g., Watchdog, second order corrections) that will
ensure unit steps near the solution. We begin by showing that the damping parameter
Ofc, used in (2.39) to ensure that descent directions are always generated, has the value
of 1 for all large A;.

We have shown in Theorem 5.6 that H-B̂ *1!! is bounded above. Also (4.19), (4.2) and
(2.38) show that, when finite differences are used, wk = O(||pY||) = OflkkH). Noting that
II • II < II • 111, we therefore see that there is a constant C such that the left hand side of
(2.33) can be bounded by

since g%Zk = 0(||eik||). As the iterates converge to the solution, and since (k < 1, the
term inside the square brackets is less than the constant p given in (2.33), showing that
C* = 1 for all large k. This, and the remarks made at the end of §4 show that all the
safeguards included in Algorithm I become inactive asymptotically.

The accuracy of wk and Bk in a neighborhood close to the solution lead to the
following lemma, which is an application of the well-known result of Boggs, Tolle and
Wang (1982).
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Lemma 5,1 Suppose that the iterates generated by Algorithm I converge R-linearly to a
point x+ that satisfies Assumptions 4.1, and that ak = 1 for all large k. If, in addition

then the rate of convergence is l-step Q-superlinear.

Proof. The proof follows exactly as in (Biegler et ai (1995)).
We can now prove the final result of this section. The analysis is complicated by the

fact that BFGS updating may not always take place, and by the fact that the correction
terms are sometimes computed by finite differences. We therefore consider the following
three sets of iterates, based on Update Criterion I and illustrated in Figure 2.

R2 = {j i RX

and note that both 7* and a* are summable.

Theorem 5.2 Suppose that the iterates generated by Algorithm I converge R-linearly to
a point x* that satisfies Assumptions 4 1, and that ak = 1 for all large k. Then the rate
of convergence is l-step Q-superlinear.

Proof. Since d* = YkPY + ZkPz we have

Therefore assumption (4.3) implies that

IIPvll = O(||dfc||), IIPzll = 0(11411). (5.2)

Now

Since by (5.2) the last term is of order o(||pz||) = o(||rf/t||), the objective of the proof is
to show that

\\BkPz - %W.Z.p%\\ + \\wk - fiW.YkpyW = o(||4||), (5.3)

for this together with (5.1) will give the desired result. We consider the three regions
i?i,i?2 and H3 separately. Algorithm I is designed so that in R2 and #3, wk must be
computed by finite differences. On the other hand since pz is recomputed in step 7, after
which we can be in any of the three regions, we see that in i?i, wk = o(||pY||).
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