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Abstract

Mixed logical/linear programming (MLLP) is an extension of mixed integer/linear pro-
gramming (MILP). It represents the discrete elements of a problem with logical propositions
and provides a more natural modeling framework than MILP. It can also have computa-
tional advantages, partly because it eliminates integer variables when they serve no purpose,
provides alternatives to the traditional continuous relaxation, and applies logic processing
algorithms. This paper surveys previous work and attempts to organize ideas associated
with MLLP, some old and some new, into a coherent framework. It articulates potential
advantages and disadvantages of MLLP and illustrates some of them with computational
experiments.

1 Introduction
Mixed logical/linear programming (MLLP) is a general approach to formulating and solving
optimization problems that have both discrete and continuous elements. Mixed integer/linear
programming (MILP), the traditional approach, is effective in many instances. But it un-
necessarily restricts the modeling and solution options available. MLLP allows naturally for
branching strategies, relaxations and logic processing algorithms that neither fit comfortably
into nor are suggested by MILP. In particular it counts the traditional strategies among ii>
options and should therefore be seen as an extension of MILP rather than an alternative to it.

Mixed discrete/continuous problems are traditionally conceived as continuous problem* in
which some of the variables are restricted to be integers. MLLP takes a completely different
view. It does not attempt an often unnatural and contrived embedding of the discrete aspects
of the problem within a linear programming model. Instead, it represents the discrete elements
by logical formulas and only the continuous element by linear inequalities. It therefore has the
option of dispensing with integer variables. Rather than require that a feasible solution satisfy
a fixed set of inequalities, MLLP provides several alternative sets of inequalities. The role of
the logical formulas is to govern which alternatives are acceptable.

*This research is partially supported by U.S. Office of Naval Research Grant N00014-95-1-0517 and by the
Engineering Design Research Center at Carnegie Mellon University, an Engineering Research Center of the
National Science Foundation, under grant EEC-8943164.



1.1 General Form of an MLLP

An introductory discussion is more meaningful if MLLP is given a brief mathematical descrip-
tion. An MLLP model has the form

min ex , .
s.t. Vi - (A'x > a'), j G J gi{y,h), i e I. {1)

The model has a logical part (on the right) and a continuous part (on the left). The logical
part consists of formulas <ft(y, h) that involve atomic propositions y = ( y i , . . . , yn), which are
either true or false. Such a formula might be y\ V y<i, which says that y\ or y<i (or both) must
be true. There may also be some variables h = (/&i,..., hm) that take several discrete values.
The continuous part associates each atomic proposition yj with a system A^x > a* of linear
inequalities. The system is enforced when yj is true. So the formula y\ V y<i in effect requires
any solution x to satisfy Alx > a1 or A2x > a2 (or both). In general, (x,y,/i) is feasible if
(y, h) makes all the logical formulas true and x satisfies the linear systems corresponding to
true j/j's.

The problem (1) can be solved by branching on the truth values of the y / s and the discrete
values of the hjJs. At each node of the search tree, one solves a linear programming problem
(LP) containing the constraints that correspond to true y / s , plus any cuts added to strengthen
the relaxation. A key element of MLLP is to apply a logical inference algorithm to the logical
formulas before solving the LP. This may generate further logical constraints and may fix some
additional y / s and hj's.

It is easy to show that every MLLP is equivalent to a disjunctive programming problem
whose constraint is a disjunction of linear systems (i.e., the solution must satisfy at least one
of the systems). Its feasible set is therefore a union of finitely many polyhedra.

1.2 Aim of this Paper

The aim here is to explore MLLP as a general and practical approach to solving problems with
both discrete and continuous elements. Previous work is drawn together, and an attempt is
made to order ideas associated with MLLP, some old and some new, in a coherent framework.
The potential advantages of MLLP are articulated, and several are illustrated by computational
experiments.

Because MLLP is a general approach to continuous/discrete problem solving, a thorough-
going experimental evaluation would be a massive undertaking, and it is not attempted here.
The task would be further complicated, both practically and conceptually, by the fact that
MLLP is not a single approach to problem solving but a framework within which several ap-
proaches can be used. As in MILP, its effectiveness depends on how carefully one designs
relaxations, cuts, and branching schemes to fit the problem at hand. The intent here is to
provide a broader range of options and to show by example that at least some of them can be
superior to the conventional ones.

The examples include chemical engineering network synthesis problems, warehouse location
problems, flow shop scheduling problems, and the "progressive party problem," which is a
scheduling problem posed by a yacht party. The last problem is rather frivolous but has
attracted a good deal of attention and illustrates several ideas associated with MLLP.

Experience with engineering design problems (e.g., [10, 64]) suggests that MLLP can be
usefully extended to mixed logical/nonlinear programming (MLNLP). This possibility is not
pursued here.



1.3 Advantages of MLLP

Several potential advantages of MLLP's broader framework, summarized below, should become
evident in the ensuing discussion. Some of the advantages are illustrated by the computational
experiments, as indicated.

• Separation of branching and relaxation. In MILP, integer variables serve as both a branch-
ing and relaxation device. The problem is relaxed by removing the integrality constraint
on the variables, and one branches on integer variables that have a fractional value in the
solution of the relaxation. But there are many other branching and relaxation schemes.
MLLP permits one to use any branching scheme in combination with any relaxation, be-
cause the relaxation need not involve the discrete variables. The relaxation is generally
created by adding cuts to the continuous part of the model.

• Smaller linear programming problems. Some combinatorial problems are formulated only
or most conveniently with a large number of discrete variables. MILP forces these vari-
ables to be included in the LP problems solved at each node, whereas MLLP puts only
continuous variables in the LP problems. This advantage is dramatically illustrated by
the party problem. In some cases, however, the advantage of removing integer variables
is offset by the necessity of adding cuts to achieve a good relaxation. This is discussed
below.

• Faster and/or more effective processing of discrete variables. Logical variables can often
be fixed at a node by applying inference procedures to the logical constraints. In many
cases the same variables would have been fixed by solving the conventional continuous
relaxation. But in these cases logic processing is much faster because it can be achieved
by a unit resolution procedure. This is illustrated by the party problem. In other cases,
logic processing is more powerful than linear programming, because it fixes variables to
true or false when they would receive fractional values in a continuous relaxation.

• Feasible solutions identified sooner. The conventional continuous relaxation of a 0-1 dis-
junctive formulation can have fractional solution values even when the disjunction is
satisfied. This means that MILP can keep branching after a feasible solution is found.
MLLP avoids this defect and may therefore produce a smaller search tree. This is il-
lustrated by the flow shop problem and instances of the process synthesis problem that
have semi continuous variables.

• Stronger relaxations. MLLP can provide stronger relaxations in three ways.

- Valid cuts can sometimes be found for a disjunctive constraint that are stronger
than the continuous relaxation of any obvious 0-1 formulation.

- Logic processing can generate logical constraints (logic cuts) whose linear relaxations
can be added to the linear model. The same logic cuts can be used as cutting
planes in a conventional branch-and-cut algorithm, but logic processing provides a
systematic way of generating them. This is illustrated by the warehouse location
and party problems.

- The idea of Benders cuts can be generalized to an MLLP setting to produce logic-
based cuts that may be useful when solution of LP relaxations is expensive.



• An alternative approach to identifying cuts. The logical point of view can suggest logic
cuts that follow easily from an intuitive understanding of the problem but are not easily
revealed by conventional polyhedral analysis. It can also suggest nonvalid logic cuts,
which do not change the optimal value but are stronger because they exclude feasible
solutions. The chemical processing network problems will illustrate both points.

• More natural modeling. Integer variables, particularly 0-1 variables, are very often con-
trived to express what were originally conceived as logical constraints. In such cases
MLLP permits a more natural formulation. In other cases a problem is most readily ex-
pressed with multivalued discrete variables, as for example problems in which a variable's
value may indicate the machine to which a job is assigned or an operation's position in
a sequence. Constraints on such variables that are not easily expressed in inequality
form may readily be formulated with predicates that are quite natural for logic process-
ing algorithms. A particularly useful predicate is the "all different" predicate, which
requires that a set of variables all have different values. The advantages of multivalued
variables have been exploited in the constraint satisfaction and constraint programming
literature, and the algorithms developed there may be used in the logic processing phase
of an MLLP solver.

The last point deserves expansion. A habit of writing models for the convenience of the
solver, as is common in operations research, can lead one to forget that the primary role of
modeling in science is explanatory. The modeling process should improve one's understand-
ing and should not be befuddled by the necessity of writing a machine-friendly formulation.
On the other hand, if the model is totally unsuited for solution, it will require a substantial
reformulation either by an automatic procedure or a human expert. It may be difficult to
relate the solution to the original formulation. MLLP tries to steer a middle course. It makes
discrete/continuous modeling somewhat more natural by eliminating the necessity of integer
variables and introducing logical constraints and multivalent variables. But the solution ap-
proach is still closely related to the problem statement because it branches on the discrete
variables that appear in the original model. The model generally requires additional prepa-
ration before solution, but preparation usually involves adding cuts rather than reformulating
the problem.

1.4 Mitigating Factors

The advantages of moving to MLLP's broader framework are mitigated by at least three
considerations.

• Relaxations must be explicitly generated. An MILP model comes with a ready-made
linear relaxation, but MLLP obliges one to make a conscious choice of relaxation. It is
sometimes unobvious how to create a relaxation that is even as strong as the traditional
one (without reintroducing the traditional integer variables).

• The relaxation may be large. The cuts needed to build a useful relaxation may make the
linear constraint set larger than an MILP model.

• More expertise is needed. MLLP generally requires greater expertise than MILP because
of the greater range of choices it imposes on the user. It may therefore be suited to a
smaller circle of practitioners.



One might respond to the first two points as follows. Although a nontraditional relaxation
may be large or hard to identify in some cases, there are other cases in which it can solve an
otherwise intractable problem. The key is to be able to identify the appropriate relaxation
for a given constraint set. The following cases may be distinguished and are more rigorously
characterized in the remainer of the paper.

1. The constraint(s) to be relaxed can have no good linear relaxation, because the convex
hull of the feasible set occupies most or all of the solution space. In these cases no
relaxation should be used. MLLP permits this, whereas MILP forces one to use integer
variables, which introduce useless overhead.

2. A good relaxation is possible but the MILP relaxation is weak or useless. It may be
possible to replace the MILP relaxation with a reasonable number of cuts that produce
a stronger relaxation. Two general methods, described below, that may be helpful are
tightening of MILP cuts and generation of "optimal separating cuts."

3. The MILP relaxation is useful. In this case it may be easy to mimic the effect of the
MILP relaxation with a few cuts. If not, one can always add integer variables to obtain
the classical relaxation. Even here, one may wish to relax only a portion of the model in
this fashion. The integer variables need not be used for branching purposes, so that the
distinction between branching and relaxation is maintained.

The final objection, that MLLP requires more expertise, can be partially overcome by
automating as many choices as possible and by installing redundancy. Commercial MILP
solvers, for example, automatically apply a number of cuts and preprocessing devices that may
or may not be useful for a given problem.

Ultimately, however, a large class of combinatorial problems may always require a certain
amount of expertise for their solution. The issue is how much user intervention is appropriate.
It seems unreasonable to restrict oneself to automatic routines in general-purpose solvers when
some simple additional tricks may obtain solutions that are otherwise out of reach. At the
other extreme, it is impractical to invest in every new problem the years of research effort that
have been lavished on traveling salesman and job shop scheduling problems. MLLP is designed
to present a compromise between these two extremes.

1.5 Previous Work

A logic-based approach to operations research was discussed as early as 1968 in Hammer and
Rudeanu's treatise on boolean methods [25]. Granot and Hammer [23] suggested in 1971 the
possibility of using boolean methods for integer programming.

The MLLP approach described here was perhaps first clearly articulated by Jeroslow [41],
who was primarily interested in issues of representability. He viewed discrete variables as
artifices for representing a feasible subset of continuous space, which in the case of an MLLP or
MILP model is a union of finitely many polyhedra. From this it follows that MLLP and MILP
models are essentially disjunctive programming models. Building on joint work with Lowe [42],
Jeroslow proved that an MILP model can represent a union of finitely many polyhedra if and
only if they have the same recession cone.

In the meantime, Williams [66, 67, 68, 70], Blair [8, 9] and Hooker [28, 28, 29, 30, 31] ex-
plored connections betwen logic and optimization. Beaumont [6] undertook what is apparently



the first systematic study of MLLP as a solution technique for optimization problems. Drawing
on the seminal work of Balas in disjunctive programming [2, 3, 4], he described families of valid
cuts that can be used to create relaxations of disjunctive constraints.

More recently, Hooker argued in [32] that a logic-based approach to optimization, includ-
ing MLLP, can exploit problem structure in ways that are parallel to traditional polyhedral
techniques. Wilson [71, 72, 73] studied logic cuts and logic-based formulations.

It is crucial to demonstrate the practical value of MLLP in a problem domain. This was
accomplished largely by Grossmann in the area of chemical process design in a series of papers
coauthored with Hooker, Turkay, Yan and particularly Raman [37, 49, 50, 51, 52, 64]. These
papers developed some of the key MLLP concepts discussed here. Bollapragada, Ghattas and
Hooker also obtained encouraging results in structural design [10].

1.6 Other Approaches

It is instructive to contrast MLLP with other approaches that combine discrete and continuous
elements.

The mixed logical/linear programming approach of McAloon and Tretkoff [44, 45], which
is implemented in the system 2LP, combines procedural with declarative programming. The
discrete element is represented by a user-supplied script that controls the formulation and
solution of LP models that represent the continuous element. This contrasts with the approach
to MLLP described here, in which both elements are modeled in a declarative fashion. The
two approaches are not incompatible, however, and 2LP could in fact provide a framework in
which to implement the MLLP techniques presented here.

Even pure 0-1 optimization problems have a continuous element in the sense that the
constraints are represented by linear inequalities, and it is not obvious how to apply logic-
based methods to them. An approach devised by Barth [5] is to derive formulas from the
inequalities that can be processed with logical inference methods. Barth's techniques can
enhance the logical processing phase of MLLP algorithms.

The work of McAloon, Tretkoff and Barth is influenced by several streams of research that
have historically focused on discrete problems but are experimenting with ways to incorporate
continuous variables. Logic programming models, introduced by Colmerauer [16] and Kowalski
[43], allow one to formulate a problem in a subset of first-order logic (Horn clause logic). Recent
versions of the logic programming language PROLOG [11, 61], such as PROLOG III [17] (and
soon IV), incorporate linear programming.

The integration of constraint solving with logic programming is formalized in the constraint
logic programming (CLP) scheme of Jaffar and Lassez [39]. It generalizes the "unification" step
of logical inference methods to encompass constraint solving in general [40].

CLP provides a framework for integrating constraint satisfaction methods developed in the
artificial intelligence community (and elsewhere) with logic programming ideas [20, 63, 65].
A number of systems along this line have been developed in addition to Prolog III, including
CLP(R) [39], CAL [1], CHIP [19, 59], the ILOG solver [46], and other packages [12, 57, 53].
Linear programming has a place in several of these systems. Unlike MLLP, these methods rely
to some extent on procedural modeling. They also lack MLLP's emphasis on exploiting problem
structure in the generation of cuts and relaxations, although the constraint programming
literature has shown some interest in exploiting structure (e.g., [21]).



1.7 Outline of the Paper

The remainder of the paper begins with a presentation of four example problems that illustrate
MLLP modeling (Section 2). Section 3 presents the disjunctive interpretation of MLLP, and
Section 4 summarizes the basic MLLP algorithm. Two long sections (5 and 6) respectively
discuss relaxations and logic processing algorithms. Some of these are illustrated in the last
section, which presents computational results for the four example problems.

Aside from its survey and development of MLLP generally, the specific contributions of
this paper include necessary and sufficient conditions for whether an elementary cut for a
disjunction is supporting (Section 5.4), necessary and sufficient conditions for integrality of a
0-1 disjunctive representation (Section 5.5), a definition of optimal separating cuts (Section
5.7), a completeness proof for multivalent resolution (Section 6.6), a unit resolution algorithm
for multivalent clauses (Section 6.6), and an application of logic-based Benders decomposition
to MLLP (Section 6.8).

2 Some Examples

Examples from four application areas are presented to illustrate some of the concepts, advan-
tages and disadvantages of MLLP. The first two problem classes concern flow shop scheduling
with zero-wait transfer and processing network design. They are important in chemical engi-
neering. The third, a warehouse location problem, was chosen partly because it is ill-suited
to logic modeling. The fourth problem, the progressive party problem, is chosen to represent
problems in which the discrete element dominates. An attempt was made to choose problems
with the flavor or complexity of real applications, although the warehouse location problem is
somewhat stylized.

2.1 A Flow Shop Problem

A scheduling problem that frequently occurs in chemical processing is a flow shop problem with
zero-wait transfer. There are several jobs, each representing a batch of some reagent. Each
job is processed on several machines (reactors). The machines are always visited in the same
order, but a given job may skip some of the machines. When a job's processing is completed
on one machine, it must move immediately to the next machine in its sequence. The objective
is to minimize makespan.

Let J{ be the set of machines on which job i is processed, and dXJ the processing time for
job i on machine j. If U is the start time for job t, the job is completed at time

u + £ ^

It is necessary to make sure that two jobs t, k are not scheduled to be in process at the same
time on the same machine j € J, n J*. The finish time of job i on machine j is tx + DXJ, where

? € Ji
i' < i

and its start time is tx + DtJ - dxj. To avoid clashes one must say that for each machine j on
which jobs i.k are processed, job k starts after job i has finished, or vice-versa. The natural



and obvious way to formulate this "or" constraint is with a logical disjunction. For each pair
(i, fc), one writes the disjunction,

(U + Da <tk + Dik - iD Jk) V (tk + Dkj < t{ + Dij - dih j € Ji n Jk).

The inequalities in either disjunct are the same except for the right-hand side. It is therefore
necessary to write only one disjunction in each disjunct, using the tightest right-hand side.
The model to minimize makespan is therefore

min T

s.t. T j, all jobs t,

{tk -U> rik) V {U -tk> rki), all jobs t, k with t ± fc,

t<>0, allt,

rik = ij - Dik

where

This MLLP model is easily put into the form (1) by introducing logical variables. Let yik be
true when job t is sdieduled before job fc on each machine on which they are both processed.
The formal MLLP is therefore

min T
s.t. U > 0, T > U + ij, all % (a)

(2)

There is no need to represent constraints (a) with propositions t/t because they hold categori-
cally.

Formulating (2) as a traditional MILP model requires the additional step of introducing
big-M constraints to represent the disjunctions.

min T

s.t. U > 0, T > t{ + ji ail i

U - h > rki - Myik

y< i ke{0,l}, allt,fc.

2.2 A Processing Network Design Problem

Another common problem in chemical engineering is the design ("synthesis") of processing
networks. For instance, one may wish to separate the components (A, B, C, D) of a mixture
by passing it through various distillation units, as illustrated in Fig. 1. Bach unit separates the
input mixture into two streams as indicated. The volumes of the outputs are fixed proportions
of the input. Clearly some of the units in the network of Fig. 1 are redundant. The problem is
to choose units and flow volumes so as to minimize fixed and variable costs, subject to capacity
and volume constraints. Such problems can involve processes other than distillation and are
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Figure 1: A ^component separation network.

often complicated by recycling of streams and waste heat, the latter typically resulting in a
nonlinear model that is not discussed here. The volume of some streams into and out of the
network can be semicontinuous variables, and this possibility is considered.

Let E be the set of directed arcs in the network. The network in general contains a set / of
unit nodes, which represent processing units, and a set J of structural nodes, at which no unit
is present and flow is simply conserved. The flow on arc (t, j) is xtJ- and incurs a unit cost of
Cij. Inputs to the network and outputs from it are represented by structural nodes, and if j is
an output node, cy would typically be negative to indicate revenue from sale of the product.
The fixed cost of unit i is /». The flow on arc (t, j) leaving unit j is a%j times the total input
to the unit.

The discrete element of the problem is the decision as to whether to install a unit i and its
incident arcs. Either fixed cost fx is incurred, or else there is no fixed cost and no flow leaves
the unit. If Z{ is the fixed cost paid for unit i,

(« = /»)

If yi is true when unit t is installed, the MLLP model can be written,

«vfr *-,°.-oV

min

S.t. , j € J (, t 6 /

, t €



The MILP model represents the disjunctions in the usual way.

min

(W)€£

Process synthesis problems can involve semicontinuous variables, as described in [52]. These
are variables whose values must lie within certain intervals. For example, an input to the
processing network may consist of a feedstock obtained from a small set of suppliers, each of
which can provide either nothing or a quantity within a certain range. Taking all possible
sums of these intervals yields the intervals within which the total input volume must fall.

A semicontinuous flow variable xtJ must lie in one of the intervals [at, bt] for t = 0, . . . , T.
The most straightforward disjunctive representation is,

Vt -* (at < *ij < M VtLo Vt

The proposition yt is true when xt;- lies in interval t. An alternative formulation is the following.

(3)

Here yt is true when the flow volume lies in interval t or higher, and y[ is true when it lies in
interval t - 1 or lower.

An MILP representation is

T
*ij > <*o + X) o.tyt

tsl

tssl
T

7
2.3 A Warehouse Location Problem

A simple warehouse location problem will be useful to illustrate how cuts can be generated
from knapsack constraints. The problem is to choose a set of warehouses of limited capacity
so as to serve a set of demand points while minimizing fixed and transport costs. Let
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Xij = flow from warehouse i to demand point j.
fi = fixed cost of warehouse i.
ki = capacity of warehouse i.
dj = demand at point j.
Cij = unit transport cost from i to j.

The fixed cost Z{ that is paid for warehouse i is either /, or zero, depending on whether the
flow out of the warehouse is positive. This poses the disjunctions,

The MLLP model can therefore be written,

min
ij

f c * > ^ * yiv y'n

Xij > 0, all i, j

Vi - • (z{ = /,•), all i

The traditional MILP model is

min ^2 kM +
t ij

s.t. 5Z«tj < him, all i
j

J]x t i >dj, allj

xti > 0, all i, j ,
KG {0,1}, allt.

2.4 The Progressive Party Problem

The final problem to be considered is a scheduling problem posed by a "progressive party" that
was organized at a yachting rally in England. The problem gained some notoriety when a group
of mathematical programmers and constraint programmers found it to be intractable for the
former and soluble by the latter, albeit with some manual intervention [60]. It presents insur-
mountable difficulties for MILP primarily because there seems to be no economical formulation
of the problem within the MILP framework. The problem is much more easily formulated in
the broader MLLP context and illustrates the advantages of multivalent discrete variables.

In a progressive party, the object is for the crews of a fleet of yachts to visit a subset of
yachts and mingle with the other crews. The visiting crews move to different boats at the end
of each phase of the party. Presumably to simplify the provision of refreshments and so forth,
the number of host yachts should be small.

11



The problem can be more precisely defined as follows. A set / of boats is given. Each boat
i occupied by a crew of ct persons and has space for K{ persons on board. The problem is to
minimize the number of host boats. Each crew i visits a different host boat ha in each period
t, unless it is itself a host, indicated by the truth of proposition £,-. In the latter case ha = z for
all t. To encourage mingling, no pair of visiting crews are permitted to meet more than once.
The proposition rrtijt is true when non-host crews i and j visit the same boat in period t.

For checking capacity constraints it is convenient to define a proposition V{jt that is true
when ha = j. The only propositions that enforce linear inequality constraints are the tft's,
which force Z{ = 1 when true. The remaining propositions correspond to empty constraint
sets.

The problem can be stated as follows. The objective function counts the number of host
boats. The predicate alldiff means that all of its arguments have distinct values.

min

s.t. z t > 0 , is I vijt = (ha = j ) , iJeI,teT (a)

i = (ha = 0, iei.teT (c)

civijt < Ki - C j , j e i , t e T (d)

t ^ h j t ) , t , j € / , t < j , t € T ( e )

€l,i<3 ( / )

i€l,t€T
(4)

Formula (a) defines Vijt. Formula (b) says that crew i should visit a different boat in each
period unless it is a host crew. Formula (c) causes a crew to remain on its own boat if and
only if it are a host crew.

Formula (d) is the boat capacity constraint. It should be interpreted as a logical formula
rather than a linear inequality in 0-1 variables. The summation means that ct is counted in
the sum for each true vyt- The inequality as a whole means that enough v^s should be false
so that the resulting sum is at most Kj — Cj. The interpretation of inequalities as logical
propositions is further discussed in Section 6.

Formula (e) says that if crews i and j are both visiting crews (i.e., £t and 6j are false), then
either mijt is true or hit £ hjt; i.e., rrtijt is true if the two crews visit the same boat in period t.
The next formula (f) says that a pair of visiting crews should not meet more than once. Here
again the inequality should be interpreted as a logical proposition.

The entire model has O(|/|2 |T|) variables and constraints. Note that the LP is trivial, as it
consists only of an objective function and constraints of the form Zi>l. The LP will become
more interesting when cuts are later added to strengthen the relaxation.

Formultion of an MILP model is much more difficult. The most challenging constraint is
the one that requires visiting crews to meet at most once. The authors of [60] remark that if
this is formulated using the variables V{jU O(|/|4 |T|2) constraints are generated. Because this
is impractical, they introduce O(|/|3 |T|) variables yijkt, which take the value 1 when crews jyk
meet on boat i in period t. But because there are 29 boats in the problem, this results in an
enormous number of binary variables.

12



A more compact MILP model is suggested here. It reinterprets the multivalent variables
ha as numeric variables and enforces the all-different constraints in an awkward manner that is
characteristic of MILP. The variables ha need not be explicitly constrained to be integral, be-
cause the remaining constraints enforce integrality. The model has O(|/|2 |T|) integer variables
and constraints, many fewer than the model of [60]. Yet it will prove intractable.

The MILP model can be stated as follows.

min Yl6* (a)
s.t. *,• + (1 - t>y«) > 1, iJeI,t€T (6)

( l - * ) + t>Mt>l, * € / , t € T (c)
vijt + a y , + Pijt > 1, i,j€l,teT (d)
-hu + 3 > 1 - |/|(1 - ay t) , ij e / ,* G T (e)
hit-j > 1 - |/|(1 -/3yt), ij Zl,teT ( / )

avut < Kj - CJ, jeI,t£T (g)

/

Si + Sj + miit + <t>iit + frjt > 1, ij 6 /, i < j,t G T (i)
-fc<t + fcj* > 1 - | / | ( 1 " <t>Ht) hi € /, t < j , t € T (j)
hit - fcjt > 1 - |/|(1 - 1>ijt) h3 e /, i < j,t 6 T (k)

The objective function (a) again counts the number of host boats. Constraints (b) and (c)
require to remain on their own boat if and only if they are a host crew. Constraints (d)-(f) use
a disjunctive mechanism to relate v^t to ha. They say that if ha = j (i.e., -KXijt and -i/3yy,
which say that hxt is neither less than nor greater than j ) , then vtjt = 1. Constraint (g) is
the same capacity constraint as before, interpreted this time as a 0-1 inequality. Constraint
(h) plays the role of the all-different constraint. Constraints (i)-(k) again use a disjunctive
mechanism to say that if i and j are visiting crews and ha = /ijt, then my* = 1. As before, (1)
says that a pair of crews must meet at most once.

3 The Disjunctive Interpretation of MLLP
Any instance of the MLLP model (1) can be written in the form of a disjunctive programming
problem,

min ex (6)

s.t. \ / Afz > a\

where T is a finite index set. This is done by letting the disjunction in (6) be

V{A'x > aj | Vj is true, j = l , . . . , n } . (7)
y

Here y ranges over every value that satisfies the logical constraints; i.e., every value y for which
there exists an h that makes every 0t(y, h) true.
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Because every disjunct of (6) represents a polyhedron in the a-space, the feasible set of (6)
and therefore any MLLP model is a union of finitely many polyhedra. Jeroslow showed that
this union can be represented by an MILP constraint set if all the polyhedra have the same
recession cone. The recession cone of a polyhedron P is the set of all directions d such that for
some x € P, x + ad 6 P for all a > 0. This restriction on recession cones is of little practical
import, because if one places laxge upper bounds on all the variables, the recession cone of all
the polyhedra is the origin.

Conversely, every MILP model can be written as a disjunctive problem, because it can first
be transformed to a 0-1 problem,

min ex

s.t. Ax + By > a
^ € { 0 , 1 } , allj,

which is in turn equivalent to a disjunctive model whose constraint set is

\/Ax > a-By,
y

where y ranges over all 0-1 vectors.
An individual logical formula gi(y,h) can also be given a disjunctive interpretation. Its

feasible set can be regarded as (7), where y ranges over all values that make gi(y,h) true for
some h. The feasible set of </t(y, h) can therefore be regarded as a union of finitely many
polyhedra in the x-space.

4 The Basic Algorithm

The basic MLLP algorithm branches on the truth value of propositional variables y3 and on
values of the discrete variables hj. When branching fixes yj to true or false, the formula yj or
-ij/j becomes one of the logical formulas gi(y,h). When hj is fixed to v, the domain Dj of hj
(i.e., the set of its possible values) is reduced to {v}.

Next a logic processing algorithm is applied to the formulas. This may generate additional
formulas (logic cuts). It may also fix the values of additional j/j's or remove elements from
some JDJ'S. If the formulas are unsatisfiable this may or may not be discovered, depending on
the strength of the algorithm, but if it is discovered the search backtracks. Section 6 below
discusses logic processing algorithms in greater detail.

Linear cuts may now be generated for some of the logical constraints if desired, as discussed
in Section 5. A linear programming problem is formulated whose constraints are the inequalities
AJx > a-7 that correspond to true j/j's, plus any additional cuts. If the LP is infeasible,
the algorithm backtracks. Otherwise the solution x of the LP will in general satisfy certain
constraint sets A*x > aJ and not others. If proposition yj is not already fixed to true or false,
it is temporarily assumed true if x satisfies A^x > aJ and false otherwise. If an unfixed yj
corresponds to an empty constraint set, it can be given a default value that applies until it is
fixed otherwise.

At this point the variables yj are true or false and the discrete variables hj may have domains
of various sizes; a singleton domain fixes the variable. If these values make all formulas true,
x is a feasible solution. If some gi{y,h) is false or has no determinate truth value (because h
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is not fully determined), one may try to generate a separating cut; i.e., a valid inequality for
9x(y, h) that x violates. The generation of separating cuts is treated in Section 5.7. If no such
inequality is generated, then gx(y, h) is regarded as an unsatisfied formula. It should be noted
that if x lies within the convex hull of the feasible set of gi(y, h) but not within the feasible
set itself, then no linear inequality can cut it off, and the flft(y, h) will inevitably be classified
as unsatisfied.

Finally, a variable yj or hj is chosen for branching. This should be a variable that when
set to at least one of its values satisfies an unsatisfied formula, or perhaps brings it closer to
satisfaction in some sense.

A more precise statement of the algorithm appears in Fig. 2.

5 Relaxations

The linear programming problem solved at each node of an MLLP search tree provides a lower
bound on the optimal value at that node. However, the LP contains only those constraints
that are enforced by true propositional variables. Logical formulas that do not fix any of their
variables are not represented in the LP relaxation. The latter is therefore likely to provide
a weak bound, and when possible it is important to augment it with additional cuts that
represent the logical formulas.

This section presents some techniques for obtaining linear relaxations of logical formulas by
generating valid cuts in the continuous variables. As noted earlier, some of these cuts mimic
the effect of the traditional continuous relaxation of a 0-1 model. But the strength and nature
of the traditional relaxation is remarkably ill understood, given the degree to which it is used.
An analysis of it will therefore comprise an important part of the discussion.

5.1 The Convex Hull

It was remarked earlier that any logical formula g%{y^ h) is equivalent to a disjunction of linear
constraint sets,

V A'x^aK (8)

Its feasible set is therefore a union of finitely many polyhedra, and a description of the con vox
hull of this union is the best possible linear relaxation of the formula.

In some cases the convex hull is so large that even the best possible relaxation is poor or
useless. If for example x is bounded 0 < x < m, it is not uncommon for the convex hull of (*)
to fill most or all of the box described by 0 < x < m. A notorious example of this aris<»> in
scheduling problems. If operations 1 and 2 begin at times x\ and x2 and last 2 minutes, one
imposes the disjunctive constraint

(x2 > xx + 2) V (xi > x2 + 2)

to ensure that one occurs after the other. The upper bounds m represent the latest time at
which an operation could be scheduled and are therefore likely to be much larger than 2. The
dashed line in Fig. 3 encloses the convex hull when m = (10,10). In this case the best possible
relaxation is given by x\ + x2 > 2, X\ + x2 > 18 and 0 < Xj < 10. This is not much different
than 0 < Xj < 10 and is probably useless in practice.
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Abstract

Mixed logical/linear programming (MLLP) is an extension of mixed integer/linear pro-
gramming (MILP). It represents the discrete elements of a problem with logical propositions
and provides a more natural modeling framework than MILP. It can also have computa-
tional advantages, partly because it eliminates integer variables when they serve no purpose,
provides alternatives to the traditional continuous relaxation, and applies logic processing
algorithms. This paper surveys previous work and attempts to organize ideas associated
with MLLP, some old and some new, into a coherent framework. It articulates potential
advantages and disadvantages of MLLP and illustrates some of them with computational
experiments.

1 Introduction
Mixed logical/linear programming (MLLP) is a general approach to formulating and solving
optimization problems that have both discrete and continuous elements. Mixed integer/linear
programming (MILP), the traditional approach, is effective in many instances. But it un-
necessarily restricts the modeling and solution options available. MLLP allows naturally for
branching strategies, relaxations and logic processing algorithms that neither fit comfortably
into nor are suggested by MILP. In particular it counts the traditional strategies among ii>
options and should therefore be seen as an extension of MILP rather than an alternative to it.

Mixed discrete/continuous problems are traditionally conceived as continuous problem* in
which some of the variables are restricted to be integers. MLLP takes a completely different
view. It does not attempt an often unnatural and contrived embedding of the discrete aspects
of the problem within a linear programming model. Instead, it represents the discrete elements
by logical formulas and only the continuous element by linear inequalities. It therefore has the
option of dispensing with integer variables. Rather than require that a feasible solution satisfy
a fixed set of inequalities, MLLP provides several alternative sets of inequalities. The role of
the logical formulas is to govern which alternatives are acceptable.

*This research is partially supported by U.S. Office of Naval Research Grant N00014-95-1-0517 and by the
Engineering Design Research Center at Carnegie Mellon University, an Engineering Research Center of the
National Science Foundation, under grant EEC-8943164.



1.1 General Form of an MLLP

An introductory discussion is more meaningful if MLLP is given a brief mathematical descrip-
tion. An MLLP model has the form

min ex , .
s.t. Vi - (A'x > a'), j G J gi{y,h), i e I. {1)

The model has a logical part (on the right) and a continuous part (on the left). The logical
part consists of formulas <ft(y, h) that involve atomic propositions y = ( y i , . . . , yn), which are
either true or false. Such a formula might be y\ V y<i, which says that y\ or y<i (or both) must
be true. There may also be some variables h = (/&i,..., hm) that take several discrete values.
The continuous part associates each atomic proposition yj with a system A^x > a* of linear
inequalities. The system is enforced when yj is true. So the formula y\ V y<i in effect requires
any solution x to satisfy Alx > a1 or A2x > a2 (or both). In general, (x,y,/i) is feasible if
(y, h) makes all the logical formulas true and x satisfies the linear systems corresponding to
true j/j's.

The problem (1) can be solved by branching on the truth values of the y / s and the discrete
values of the hjJs. At each node of the search tree, one solves a linear programming problem
(LP) containing the constraints that correspond to true y / s , plus any cuts added to strengthen
the relaxation. A key element of MLLP is to apply a logical inference algorithm to the logical
formulas before solving the LP. This may generate further logical constraints and may fix some
additional y / s and hj's.

It is easy to show that every MLLP is equivalent to a disjunctive programming problem
whose constraint is a disjunction of linear systems (i.e., the solution must satisfy at least one
of the systems). Its feasible set is therefore a union of finitely many polyhedra.

1.2 Aim of this Paper

The aim here is to explore MLLP as a general and practical approach to solving problems with
both discrete and continuous elements. Previous work is drawn together, and an attempt is
made to order ideas associated with MLLP, some old and some new, in a coherent framework.
The potential advantages of MLLP are articulated, and several are illustrated by computational
experiments.

Because MLLP is a general approach to continuous/discrete problem solving, a thorough-
going experimental evaluation would be a massive undertaking, and it is not attempted here.
The task would be further complicated, both practically and conceptually, by the fact that
MLLP is not a single approach to problem solving but a framework within which several ap-
proaches can be used. As in MILP, its effectiveness depends on how carefully one designs
relaxations, cuts, and branching schemes to fit the problem at hand. The intent here is to
provide a broader range of options and to show by example that at least some of them can be
superior to the conventional ones.

The examples include chemical engineering network synthesis problems, warehouse location
problems, flow shop scheduling problems, and the "progressive party problem," which is a
scheduling problem posed by a yacht party. The last problem is rather frivolous but has
attracted a good deal of attention and illustrates several ideas associated with MLLP.

Experience with engineering design problems (e.g., [10, 64]) suggests that MLLP can be
usefully extended to mixed logical/nonlinear programming (MLNLP). This possibility is not
pursued here.



1.3 Advantages of MLLP

Several potential advantages of MLLP's broader framework, summarized below, should become
evident in the ensuing discussion. Some of the advantages are illustrated by the computational
experiments, as indicated.

• Separation of branching and relaxation. In MILP, integer variables serve as both a branch-
ing and relaxation device. The problem is relaxed by removing the integrality constraint
on the variables, and one branches on integer variables that have a fractional value in the
solution of the relaxation. But there are many other branching and relaxation schemes.
MLLP permits one to use any branching scheme in combination with any relaxation, be-
cause the relaxation need not involve the discrete variables. The relaxation is generally
created by adding cuts to the continuous part of the model.

• Smaller linear programming problems. Some combinatorial problems are formulated only
or most conveniently with a large number of discrete variables. MILP forces these vari-
ables to be included in the LP problems solved at each node, whereas MLLP puts only
continuous variables in the LP problems. This advantage is dramatically illustrated by
the party problem. In some cases, however, the advantage of removing integer variables
is offset by the necessity of adding cuts to achieve a good relaxation. This is discussed
below.

• Faster and/or more effective processing of discrete variables. Logical variables can often
be fixed at a node by applying inference procedures to the logical constraints. In many
cases the same variables would have been fixed by solving the conventional continuous
relaxation. But in these cases logic processing is much faster because it can be achieved
by a unit resolution procedure. This is illustrated by the party problem. In other cases,
logic processing is more powerful than linear programming, because it fixes variables to
true or false when they would receive fractional values in a continuous relaxation.

• Feasible solutions identified sooner. The conventional continuous relaxation of a 0-1 dis-
junctive formulation can have fractional solution values even when the disjunction is
satisfied. This means that MILP can keep branching after a feasible solution is found.
MLLP avoids this defect and may therefore produce a smaller search tree. This is il-
lustrated by the flow shop problem and instances of the process synthesis problem that
have semi continuous variables.

• Stronger relaxations. MLLP can provide stronger relaxations in three ways.

- Valid cuts can sometimes be found for a disjunctive constraint that are stronger
than the continuous relaxation of any obvious 0-1 formulation.

- Logic processing can generate logical constraints (logic cuts) whose linear relaxations
can be added to the linear model. The same logic cuts can be used as cutting
planes in a conventional branch-and-cut algorithm, but logic processing provides a
systematic way of generating them. This is illustrated by the warehouse location
and party problems.

- The idea of Benders cuts can be generalized to an MLLP setting to produce logic-
based cuts that may be useful when solution of LP relaxations is expensive.



• An alternative approach to identifying cuts. The logical point of view can suggest logic
cuts that follow easily from an intuitive understanding of the problem but are not easily
revealed by conventional polyhedral analysis. It can also suggest nonvalid logic cuts,
which do not change the optimal value but are stronger because they exclude feasible
solutions. The chemical processing network problems will illustrate both points.

• More natural modeling. Integer variables, particularly 0-1 variables, are very often con-
trived to express what were originally conceived as logical constraints. In such cases
MLLP permits a more natural formulation. In other cases a problem is most readily ex-
pressed with multivalued discrete variables, as for example problems in which a variable's
value may indicate the machine to which a job is assigned or an operation's position in
a sequence. Constraints on such variables that are not easily expressed in inequality
form may readily be formulated with predicates that are quite natural for logic process-
ing algorithms. A particularly useful predicate is the "all different" predicate, which
requires that a set of variables all have different values. The advantages of multivalued
variables have been exploited in the constraint satisfaction and constraint programming
literature, and the algorithms developed there may be used in the logic processing phase
of an MLLP solver.

The last point deserves expansion. A habit of writing models for the convenience of the
solver, as is common in operations research, can lead one to forget that the primary role of
modeling in science is explanatory. The modeling process should improve one's understand-
ing and should not be befuddled by the necessity of writing a machine-friendly formulation.
On the other hand, if the model is totally unsuited for solution, it will require a substantial
reformulation either by an automatic procedure or a human expert. It may be difficult to
relate the solution to the original formulation. MLLP tries to steer a middle course. It makes
discrete/continuous modeling somewhat more natural by eliminating the necessity of integer
variables and introducing logical constraints and multivalent variables. But the solution ap-
proach is still closely related to the problem statement because it branches on the discrete
variables that appear in the original model. The model generally requires additional prepa-
ration before solution, but preparation usually involves adding cuts rather than reformulating
the problem.

1.4 Mitigating Factors

The advantages of moving to MLLP's broader framework are mitigated by at least three
considerations.

• Relaxations must be explicitly generated. An MILP model comes with a ready-made
linear relaxation, but MLLP obliges one to make a conscious choice of relaxation. It is
sometimes unobvious how to create a relaxation that is even as strong as the traditional
one (without reintroducing the traditional integer variables).

• The relaxation may be large. The cuts needed to build a useful relaxation may make the
linear constraint set larger than an MILP model.

• More expertise is needed. MLLP generally requires greater expertise than MILP because
of the greater range of choices it imposes on the user. It may therefore be suited to a
smaller circle of practitioners.



One might respond to the first two points as follows. Although a nontraditional relaxation
may be large or hard to identify in some cases, there are other cases in which it can solve an
otherwise intractable problem. The key is to be able to identify the appropriate relaxation
for a given constraint set. The following cases may be distinguished and are more rigorously
characterized in the remainer of the paper.

1. The constraint(s) to be relaxed can have no good linear relaxation, because the convex
hull of the feasible set occupies most or all of the solution space. In these cases no
relaxation should be used. MLLP permits this, whereas MILP forces one to use integer
variables, which introduce useless overhead.

2. A good relaxation is possible but the MILP relaxation is weak or useless. It may be
possible to replace the MILP relaxation with a reasonable number of cuts that produce
a stronger relaxation. Two general methods, described below, that may be helpful are
tightening of MILP cuts and generation of "optimal separating cuts."

3. The MILP relaxation is useful. In this case it may be easy to mimic the effect of the
MILP relaxation with a few cuts. If not, one can always add integer variables to obtain
the classical relaxation. Even here, one may wish to relax only a portion of the model in
this fashion. The integer variables need not be used for branching purposes, so that the
distinction between branching and relaxation is maintained.

The final objection, that MLLP requires more expertise, can be partially overcome by
automating as many choices as possible and by installing redundancy. Commercial MILP
solvers, for example, automatically apply a number of cuts and preprocessing devices that may
or may not be useful for a given problem.

Ultimately, however, a large class of combinatorial problems may always require a certain
amount of expertise for their solution. The issue is how much user intervention is appropriate.
It seems unreasonable to restrict oneself to automatic routines in general-purpose solvers when
some simple additional tricks may obtain solutions that are otherwise out of reach. At the
other extreme, it is impractical to invest in every new problem the years of research effort that
have been lavished on traveling salesman and job shop scheduling problems. MLLP is designed
to present a compromise between these two extremes.

1.5 Previous Work

A logic-based approach to operations research was discussed as early as 1968 in Hammer and
Rudeanu's treatise on boolean methods [25]. Granot and Hammer [23] suggested in 1971 the
possibility of using boolean methods for integer programming.

The MLLP approach described here was perhaps first clearly articulated by Jeroslow [41],
who was primarily interested in issues of representability. He viewed discrete variables as
artifices for representing a feasible subset of continuous space, which in the case of an MLLP or
MILP model is a union of finitely many polyhedra. From this it follows that MLLP and MILP
models are essentially disjunctive programming models. Building on joint work with Lowe [42],
Jeroslow proved that an MILP model can represent a union of finitely many polyhedra if and
only if they have the same recession cone.

In the meantime, Williams [66, 67, 68, 70], Blair [8, 9] and Hooker [28, 28, 29, 30, 31] ex-
plored connections betwen logic and optimization. Beaumont [6] undertook what is apparently



the first systematic study of MLLP as a solution technique for optimization problems. Drawing
on the seminal work of Balas in disjunctive programming [2, 3, 4], he described families of valid
cuts that can be used to create relaxations of disjunctive constraints.

More recently, Hooker argued in [32] that a logic-based approach to optimization, includ-
ing MLLP, can exploit problem structure in ways that are parallel to traditional polyhedral
techniques. Wilson [71, 72, 73] studied logic cuts and logic-based formulations.

It is crucial to demonstrate the practical value of MLLP in a problem domain. This was
accomplished largely by Grossmann in the area of chemical process design in a series of papers
coauthored with Hooker, Turkay, Yan and particularly Raman [37, 49, 50, 51, 52, 64]. These
papers developed some of the key MLLP concepts discussed here. Bollapragada, Ghattas and
Hooker also obtained encouraging results in structural design [10].

1.6 Other Approaches

It is instructive to contrast MLLP with other approaches that combine discrete and continuous
elements.

The mixed logical/linear programming approach of McAloon and Tretkoff [44, 45], which
is implemented in the system 2LP, combines procedural with declarative programming. The
discrete element is represented by a user-supplied script that controls the formulation and
solution of LP models that represent the continuous element. This contrasts with the approach
to MLLP described here, in which both elements are modeled in a declarative fashion. The
two approaches are not incompatible, however, and 2LP could in fact provide a framework in
which to implement the MLLP techniques presented here.

Even pure 0-1 optimization problems have a continuous element in the sense that the
constraints are represented by linear inequalities, and it is not obvious how to apply logic-
based methods to them. An approach devised by Barth [5] is to derive formulas from the
inequalities that can be processed with logical inference methods. Barth's techniques can
enhance the logical processing phase of MLLP algorithms.

The work of McAloon, Tretkoff and Barth is influenced by several streams of research that
have historically focused on discrete problems but are experimenting with ways to incorporate
continuous variables. Logic programming models, introduced by Colmerauer [16] and Kowalski
[43], allow one to formulate a problem in a subset of first-order logic (Horn clause logic). Recent
versions of the logic programming language PROLOG [11, 61], such as PROLOG III [17] (and
soon IV), incorporate linear programming.

The integration of constraint solving with logic programming is formalized in the constraint
logic programming (CLP) scheme of Jaffar and Lassez [39]. It generalizes the "unification" step
of logical inference methods to encompass constraint solving in general [40].

CLP provides a framework for integrating constraint satisfaction methods developed in the
artificial intelligence community (and elsewhere) with logic programming ideas [20, 63, 65].
A number of systems along this line have been developed in addition to Prolog III, including
CLP(R) [39], CAL [1], CHIP [19, 59], the ILOG solver [46], and other packages [12, 57, 53].
Linear programming has a place in several of these systems. Unlike MLLP, these methods rely
to some extent on procedural modeling. They also lack MLLP's emphasis on exploiting problem
structure in the generation of cuts and relaxations, although the constraint programming
literature has shown some interest in exploiting structure (e.g., [21]).



1.7 Outline of the Paper

The remainder of the paper begins with a presentation of four example problems that illustrate
MLLP modeling (Section 2). Section 3 presents the disjunctive interpretation of MLLP, and
Section 4 summarizes the basic MLLP algorithm. Two long sections (5 and 6) respectively
discuss relaxations and logic processing algorithms. Some of these are illustrated in the last
section, which presents computational results for the four example problems.

Aside from its survey and development of MLLP generally, the specific contributions of
this paper include necessary and sufficient conditions for whether an elementary cut for a
disjunction is supporting (Section 5.4), necessary and sufficient conditions for integrality of a
0-1 disjunctive representation (Section 5.5), a definition of optimal separating cuts (Section
5.7), a completeness proof for multivalent resolution (Section 6.6), a unit resolution algorithm
for multivalent clauses (Section 6.6), and an application of logic-based Benders decomposition
to MLLP (Section 6.8).

2 Some Examples

Examples from four application areas are presented to illustrate some of the concepts, advan-
tages and disadvantages of MLLP. The first two problem classes concern flow shop scheduling
with zero-wait transfer and processing network design. They are important in chemical engi-
neering. The third, a warehouse location problem, was chosen partly because it is ill-suited
to logic modeling. The fourth problem, the progressive party problem, is chosen to represent
problems in which the discrete element dominates. An attempt was made to choose problems
with the flavor or complexity of real applications, although the warehouse location problem is
somewhat stylized.

2.1 A Flow Shop Problem

A scheduling problem that frequently occurs in chemical processing is a flow shop problem with
zero-wait transfer. There are several jobs, each representing a batch of some reagent. Each
job is processed on several machines (reactors). The machines are always visited in the same
order, but a given job may skip some of the machines. When a job's processing is completed
on one machine, it must move immediately to the next machine in its sequence. The objective
is to minimize makespan.

Let J{ be the set of machines on which job i is processed, and dXJ the processing time for
job i on machine j. If U is the start time for job t, the job is completed at time

u + £ ^

It is necessary to make sure that two jobs t, k are not scheduled to be in process at the same
time on the same machine j € J, n J*. The finish time of job i on machine j is tx + DXJ, where

? € Ji
i' < i

and its start time is tx + DtJ - dxj. To avoid clashes one must say that for each machine j on
which jobs i.k are processed, job k starts after job i has finished, or vice-versa. The natural



and obvious way to formulate this "or" constraint is with a logical disjunction. For each pair
(i, fc), one writes the disjunction,

(U + Da <tk + Dik - iD Jk) V (tk + Dkj < t{ + Dij - dih j € Ji n Jk).

The inequalities in either disjunct are the same except for the right-hand side. It is therefore
necessary to write only one disjunction in each disjunct, using the tightest right-hand side.
The model to minimize makespan is therefore

min T

s.t. T j, all jobs t,

{tk -U> rik) V {U -tk> rki), all jobs t, k with t ± fc,

t<>0, allt,

rik = ij - Dik

where

This MLLP model is easily put into the form (1) by introducing logical variables. Let yik be
true when job t is sdieduled before job fc on each machine on which they are both processed.
The formal MLLP is therefore

min T
s.t. U > 0, T > U + ij, all % (a)

(2)

There is no need to represent constraints (a) with propositions t/t because they hold categori-
cally.

Formulating (2) as a traditional MILP model requires the additional step of introducing
big-M constraints to represent the disjunctions.

min T

s.t. U > 0, T > t{ + ji ail i

U - h > rki - Myik

y< i ke{0,l}, allt,fc.

2.2 A Processing Network Design Problem

Another common problem in chemical engineering is the design ("synthesis") of processing
networks. For instance, one may wish to separate the components (A, B, C, D) of a mixture
by passing it through various distillation units, as illustrated in Fig. 1. Bach unit separates the
input mixture into two streams as indicated. The volumes of the outputs are fixed proportions
of the input. Clearly some of the units in the network of Fig. 1 are redundant. The problem is
to choose units and flow volumes so as to minimize fixed and variable costs, subject to capacity
and volume constraints. Such problems can involve processes other than distillation and are
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Figure 1: A ^component separation network.

often complicated by recycling of streams and waste heat, the latter typically resulting in a
nonlinear model that is not discussed here. The volume of some streams into and out of the
network can be semicontinuous variables, and this possibility is considered.

Let E be the set of directed arcs in the network. The network in general contains a set / of
unit nodes, which represent processing units, and a set J of structural nodes, at which no unit
is present and flow is simply conserved. The flow on arc (t, j) is xtJ- and incurs a unit cost of
Cij. Inputs to the network and outputs from it are represented by structural nodes, and if j is
an output node, cy would typically be negative to indicate revenue from sale of the product.
The fixed cost of unit i is /». The flow on arc (t, j) leaving unit j is a%j times the total input
to the unit.

The discrete element of the problem is the decision as to whether to install a unit i and its
incident arcs. Either fixed cost fx is incurred, or else there is no fixed cost and no flow leaves
the unit. If Z{ is the fixed cost paid for unit i,

(« = /»)

If yi is true when unit t is installed, the MLLP model can be written,

«vfr *-,°.-oV

min

S.t. , j € J (, t 6 /

, t €



The MILP model represents the disjunctions in the usual way.

min

(W)€£

Process synthesis problems can involve semicontinuous variables, as described in [52]. These
are variables whose values must lie within certain intervals. For example, an input to the
processing network may consist of a feedstock obtained from a small set of suppliers, each of
which can provide either nothing or a quantity within a certain range. Taking all possible
sums of these intervals yields the intervals within which the total input volume must fall.

A semicontinuous flow variable xtJ must lie in one of the intervals [at, bt] for t = 0, . . . , T.
The most straightforward disjunctive representation is,

Vt -* (at < *ij < M VtLo Vt

The proposition yt is true when xt;- lies in interval t. An alternative formulation is the following.

(3)

Here yt is true when the flow volume lies in interval t or higher, and y[ is true when it lies in
interval t - 1 or lower.

An MILP representation is

T
*ij > <*o + X) o.tyt

tsl

tssl
T

7
2.3 A Warehouse Location Problem

A simple warehouse location problem will be useful to illustrate how cuts can be generated
from knapsack constraints. The problem is to choose a set of warehouses of limited capacity
so as to serve a set of demand points while minimizing fixed and transport costs. Let
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Xij = flow from warehouse i to demand point j.
fi = fixed cost of warehouse i.
ki = capacity of warehouse i.
dj = demand at point j.
Cij = unit transport cost from i to j.

The fixed cost Z{ that is paid for warehouse i is either /, or zero, depending on whether the
flow out of the warehouse is positive. This poses the disjunctions,

The MLLP model can therefore be written,

min
ij

f c * > ^ * yiv y'n

Xij > 0, all i, j

Vi - • (z{ = /,•), all i

The traditional MILP model is

min ^2 kM +
t ij

s.t. 5Z«tj < him, all i
j

J]x t i >dj, allj

xti > 0, all i, j ,
KG {0,1}, allt.

2.4 The Progressive Party Problem

The final problem to be considered is a scheduling problem posed by a "progressive party" that
was organized at a yachting rally in England. The problem gained some notoriety when a group
of mathematical programmers and constraint programmers found it to be intractable for the
former and soluble by the latter, albeit with some manual intervention [60]. It presents insur-
mountable difficulties for MILP primarily because there seems to be no economical formulation
of the problem within the MILP framework. The problem is much more easily formulated in
the broader MLLP context and illustrates the advantages of multivalent discrete variables.

In a progressive party, the object is for the crews of a fleet of yachts to visit a subset of
yachts and mingle with the other crews. The visiting crews move to different boats at the end
of each phase of the party. Presumably to simplify the provision of refreshments and so forth,
the number of host yachts should be small.

11



The problem can be more precisely defined as follows. A set / of boats is given. Each boat
i occupied by a crew of ct persons and has space for K{ persons on board. The problem is to
minimize the number of host boats. Each crew i visits a different host boat ha in each period
t, unless it is itself a host, indicated by the truth of proposition £,-. In the latter case ha = z for
all t. To encourage mingling, no pair of visiting crews are permitted to meet more than once.
The proposition rrtijt is true when non-host crews i and j visit the same boat in period t.

For checking capacity constraints it is convenient to define a proposition V{jt that is true
when ha = j. The only propositions that enforce linear inequality constraints are the tft's,
which force Z{ = 1 when true. The remaining propositions correspond to empty constraint
sets.

The problem can be stated as follows. The objective function counts the number of host
boats. The predicate alldiff means that all of its arguments have distinct values.

min

s.t. z t > 0 , is I vijt = (ha = j ) , iJeI,teT (a)

i = (ha = 0, iei.teT (c)

civijt < Ki - C j , j e i , t e T (d)

t ^ h j t ) , t , j € / , t < j , t € T ( e )

€l,i<3 ( / )

i€l,t€T
(4)

Formula (a) defines Vijt. Formula (b) says that crew i should visit a different boat in each
period unless it is a host crew. Formula (c) causes a crew to remain on its own boat if and
only if it are a host crew.

Formula (d) is the boat capacity constraint. It should be interpreted as a logical formula
rather than a linear inequality in 0-1 variables. The summation means that ct is counted in
the sum for each true vyt- The inequality as a whole means that enough v^s should be false
so that the resulting sum is at most Kj — Cj. The interpretation of inequalities as logical
propositions is further discussed in Section 6.

Formula (e) says that if crews i and j are both visiting crews (i.e., £t and 6j are false), then
either mijt is true or hit £ hjt; i.e., rrtijt is true if the two crews visit the same boat in period t.
The next formula (f) says that a pair of visiting crews should not meet more than once. Here
again the inequality should be interpreted as a logical proposition.

The entire model has O(|/|2 |T|) variables and constraints. Note that the LP is trivial, as it
consists only of an objective function and constraints of the form Zi>l. The LP will become
more interesting when cuts are later added to strengthen the relaxation.

Formultion of an MILP model is much more difficult. The most challenging constraint is
the one that requires visiting crews to meet at most once. The authors of [60] remark that if
this is formulated using the variables V{jU O(|/|4 |T|2) constraints are generated. Because this
is impractical, they introduce O(|/|3 |T|) variables yijkt, which take the value 1 when crews jyk
meet on boat i in period t. But because there are 29 boats in the problem, this results in an
enormous number of binary variables.

12



A more compact MILP model is suggested here. It reinterprets the multivalent variables
ha as numeric variables and enforces the all-different constraints in an awkward manner that is
characteristic of MILP. The variables ha need not be explicitly constrained to be integral, be-
cause the remaining constraints enforce integrality. The model has O(|/|2 |T|) integer variables
and constraints, many fewer than the model of [60]. Yet it will prove intractable.

The MILP model can be stated as follows.

min Yl6* (a)
s.t. *,• + (1 - t>y«) > 1, iJeI,t€T (6)

( l - * ) + t>Mt>l, * € / , t € T (c)
vijt + a y , + Pijt > 1, i,j€l,teT (d)
-hu + 3 > 1 - |/|(1 - ay t) , ij e / ,* G T (e)
hit-j > 1 - |/|(1 -/3yt), ij Zl,teT ( / )

avut < Kj - CJ, jeI,t£T (g)

/

Si + Sj + miit + <t>iit + frjt > 1, ij 6 /, i < j,t G T (i)
-fc<t + fcj* > 1 - | / | ( 1 " <t>Ht) hi € /, t < j , t € T (j)
hit - fcjt > 1 - |/|(1 - 1>ijt) h3 e /, i < j,t 6 T (k)

The objective function (a) again counts the number of host boats. Constraints (b) and (c)
require to remain on their own boat if and only if they are a host crew. Constraints (d)-(f) use
a disjunctive mechanism to relate v^t to ha. They say that if ha = j (i.e., -KXijt and -i/3yy,
which say that hxt is neither less than nor greater than j ) , then vtjt = 1. Constraint (g) is
the same capacity constraint as before, interpreted this time as a 0-1 inequality. Constraint
(h) plays the role of the all-different constraint. Constraints (i)-(k) again use a disjunctive
mechanism to say that if i and j are visiting crews and ha = /ijt, then my* = 1. As before, (1)
says that a pair of crews must meet at most once.

3 The Disjunctive Interpretation of MLLP
Any instance of the MLLP model (1) can be written in the form of a disjunctive programming
problem,

min ex (6)

s.t. \ / Afz > a\

where T is a finite index set. This is done by letting the disjunction in (6) be

V{A'x > aj | Vj is true, j = l , . . . , n } . (7)
y

Here y ranges over every value that satisfies the logical constraints; i.e., every value y for which
there exists an h that makes every 0t(y, h) true.
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Because every disjunct of (6) represents a polyhedron in the a-space, the feasible set of (6)
and therefore any MLLP model is a union of finitely many polyhedra. Jeroslow showed that
this union can be represented by an MILP constraint set if all the polyhedra have the same
recession cone. The recession cone of a polyhedron P is the set of all directions d such that for
some x € P, x + ad 6 P for all a > 0. This restriction on recession cones is of little practical
import, because if one places laxge upper bounds on all the variables, the recession cone of all
the polyhedra is the origin.

Conversely, every MILP model can be written as a disjunctive problem, because it can first
be transformed to a 0-1 problem,

min ex

s.t. Ax + By > a
^ € { 0 , 1 } , allj,

which is in turn equivalent to a disjunctive model whose constraint set is

\/Ax > a-By,
y

where y ranges over all 0-1 vectors.
An individual logical formula gi(y,h) can also be given a disjunctive interpretation. Its

feasible set can be regarded as (7), where y ranges over all values that make gi(y,h) true for
some h. The feasible set of </t(y, h) can therefore be regarded as a union of finitely many
polyhedra in the x-space.

4 The Basic Algorithm

The basic MLLP algorithm branches on the truth value of propositional variables y3 and on
values of the discrete variables hj. When branching fixes yj to true or false, the formula yj or
-ij/j becomes one of the logical formulas gi(y,h). When hj is fixed to v, the domain Dj of hj
(i.e., the set of its possible values) is reduced to {v}.

Next a logic processing algorithm is applied to the formulas. This may generate additional
formulas (logic cuts). It may also fix the values of additional j/j's or remove elements from
some JDJ'S. If the formulas are unsatisfiable this may or may not be discovered, depending on
the strength of the algorithm, but if it is discovered the search backtracks. Section 6 below
discusses logic processing algorithms in greater detail.

Linear cuts may now be generated for some of the logical constraints if desired, as discussed
in Section 5. A linear programming problem is formulated whose constraints are the inequalities
AJx > a-7 that correspond to true j/j's, plus any additional cuts. If the LP is infeasible,
the algorithm backtracks. Otherwise the solution x of the LP will in general satisfy certain
constraint sets A*x > aJ and not others. If proposition yj is not already fixed to true or false,
it is temporarily assumed true if x satisfies A^x > aJ and false otherwise. If an unfixed yj
corresponds to an empty constraint set, it can be given a default value that applies until it is
fixed otherwise.

At this point the variables yj are true or false and the discrete variables hj may have domains
of various sizes; a singleton domain fixes the variable. If these values make all formulas true,
x is a feasible solution. If some gi{y,h) is false or has no determinate truth value (because h
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is not fully determined), one may try to generate a separating cut; i.e., a valid inequality for
9x(y, h) that x violates. The generation of separating cuts is treated in Section 5.7. If no such
inequality is generated, then gx(y, h) is regarded as an unsatisfied formula. It should be noted
that if x lies within the convex hull of the feasible set of gi(y, h) but not within the feasible
set itself, then no linear inequality can cut it off, and the flft(y, h) will inevitably be classified
as unsatisfied.

Finally, a variable yj or hj is chosen for branching. This should be a variable that when
set to at least one of its values satisfies an unsatisfied formula, or perhaps brings it closer to
satisfaction in some sense.

A more precise statement of the algorithm appears in Fig. 2.

5 Relaxations

The linear programming problem solved at each node of an MLLP search tree provides a lower
bound on the optimal value at that node. However, the LP contains only those constraints
that are enforced by true propositional variables. Logical formulas that do not fix any of their
variables are not represented in the LP relaxation. The latter is therefore likely to provide
a weak bound, and when possible it is important to augment it with additional cuts that
represent the logical formulas.

This section presents some techniques for obtaining linear relaxations of logical formulas by
generating valid cuts in the continuous variables. As noted earlier, some of these cuts mimic
the effect of the traditional continuous relaxation of a 0-1 model. But the strength and nature
of the traditional relaxation is remarkably ill understood, given the degree to which it is used.
An analysis of it will therefore comprise an important part of the discussion.

5.1 The Convex Hull

It was remarked earlier that any logical formula g%{y^ h) is equivalent to a disjunction of linear
constraint sets,

V A'x^aK (8)

Its feasible set is therefore a union of finitely many polyhedra, and a description of the con vox
hull of this union is the best possible linear relaxation of the formula.

In some cases the convex hull is so large that even the best possible relaxation is poor or
useless. If for example x is bounded 0 < x < m, it is not uncommon for the convex hull of (*)
to fill most or all of the box described by 0 < x < m. A notorious example of this aris<»> in
scheduling problems. If operations 1 and 2 begin at times x\ and x2 and last 2 minutes, one
imposes the disjunctive constraint

(x2 > xx + 2) V (xi > x2 + 2)

to ensure that one occurs after the other. The upper bounds m represent the latest time at
which an operation could be scheduled and are therefore likely to be much larger than 2. The
dashed line in Fig. 3 encloses the convex hull when m = (10,10). In this case the best possible
relaxation is given by x\ + x2 > 2, X\ + x2 > 18 and 0 < Xj < 10. This is not much different
than 0 < Xj < 10 and is probably useless in practice.
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Let G be a set of logical formulas, initially the formulas
gi(y,h) in (1).

Let I be a set of linear inequalities, initially empty,
Let T,F,U indicate true, false and undefined.
Let y be a vector of truth values for y9 initially y = (£/,...,t/).
Let D = (Z?i,...,Dm) be the domains of hu...,hm.
Let z be an upper bound on the optimal value, initially oo.
Let A be the set of active nodes, initially with A= {(G,L,y,£>)}.
While A is nonempty:

Remove a tuple (G, L,y, D) from A.
Apply a logic processing algorithm to G, possibly changing

the contents of G, possibly changing some yj's from U to T
or F, and possibly removing elements from some £>j's.

If no logical contradiction is detected then
For each yj changed to T, add A^x > aJ to L.
Generate inequality cuts as desired for formulas in G and

add them to L.
Let x minimize ex subject to L.
If ex < z then

For each yj\
If yj e {T,F} then le t yj = yj.
Else le t yj = T if A*x > a* and yj = F otherwise.

Let C, in i t ia l ly empty, be the set of unsatisfied formulas.
For each gi(y,h) 6 G:

If ft(y>&) is F or {/ then
If desired, try to generate a separating cut for

9i(y,h) with respect to (y,h).
If a separating cut is generated then add it to I.
Else add gi(y,h) to C

If C is empty then
If no separating cuts were generated then

x is feasible; l e t x* = x and z = ex.
Else add (G,X,y,D) to A.

Else
Choose a variable yj with j/j = (/ or a variable hj with

|JDj| > 1, such that setting yj to T or F, or setting hj
to one of i t s discrete values, sat isf ies or tends
to satisfy one of the formulas in C.

If yj is chosen then
Add (GU {%},!,5,0) and (Gu {^yj},L,y,D) to A.

Else if /ij is chosen then
For each v G Dji

Set D-D, set Dj = {v}, and add (G,L,y,D) to A,
If z < oo then z* is an optimal solution.
Else the problem is infeasible.

Figure 2: A generic MLLP branching algorithm.
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Figure 3: Convex hull of the feasible set of a scheduling disjunction.

An even more striking example is that of semicontinuous variables. If 0 < XJ < 4 and the
disjunction

(0 < Xj < 1) V (3 < Xj < 4)

is imposed, the convex hull is the entire interval [0,4]. Any conceivable relaxation is therefore
useless.

5.2 Disjunctive and Dual Cuts

A relaxation of (8) can be obtained by generating valid cuts that partially or completely
describe the convex hull. Balas [4] characterized valid cuts for (8) as follows. First, note that
bx > 0 is a valid cut for a feasible disjunct Alx > a1 if and only if it is dominated by a
nonnegative linear combination (or surrogate) of Alx > a*. A dominating surrogate can be
written uAx > tut, where 6 > uA, /3 < ua and u > 0. But bx > /? is a valid cut for the
disjunction as a whole if it is valid for each disjunct; i.e., for each disjunct a surrogate can be
found that dominates bx > ft.

Theorem 1 (Balas) The inequality bx > 0 is a valid cut for (8) if any only if for each feasible
system A*x > a1 there is a u* > 0 such that b > rfA* and /? < ti*a*.

Given any set of surrogates utAtx > t**a*, if x > 0 one can immediately write the valid
disjunctive cut

fmax{txtAt}>) x > minima1} (9)
\UzT l V - t€TX J y J

for (8), where the maximum is componentwise. Theorem 1 clearly implies that if x > 0, every
valid cut is dominated by a disjunctive cut (9).

The strength and usefulness of a disjunctive cut (9) depends radically on the choice of
surrogates. One could in principle generate disjunctive cuts to define every facet of the convex
hull, but this is often impractical. The task of obtaining a good relaxation for (8) is in essence
the task of choosing multipliers ul judiciously.
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One initially attractive choice for ul is given by the solution of a dual problem. Each
surrogate should ideally give the best possible bound on the objective function ex. That is,
uf should be chosen so that the minimum value of ex subject to utAtx > vta1 is maximized.
The desired u* is easily seen to be the optimal solution of the LP dual of min{cx | A*x > a*},
where u* is the vector of dual variables. (To put it differently, the surrogate dual for linear
programming is identical to the LP dual [22].)

The difficulty with this approach is that because Alx > a* is only a small part of the original
constraint set, it may have no coupling with the objective function. That is, the variables XJ
that have nonzero coefficients in ex may have zero coefficients in Atx > a*, and vice-versa.
This means that ex provides no information to guide the choice of u\ a situation that is in
fact common in practice.

A possible remedy is to include more constraints in the problem whose dual is solved, so as
to capture the link between ex and Afx > a*. This can be done as follows. At any node of the
search tree a system Ax > a of certain linear constraints are enforced by true propositional
variables. If Ax > a is included in each term of the disjunction (8), it becomes

For each t one solves the dual of

min ex
s.t. A*a;>a* (u*) (10)

Ax > a (u)

where (u^u) are the dual variables as shown. An optimal solution of the dual supplies a
reasonable set of multipliers ul for the disjunctive cut (9).

Unfortunately this approach appears to be impractical, because (10) is generally a large
LP, and it is time consuming to solve the dual of (10) for each disjunct. In fact, if one branched
on the disjunction by enforcing each disjunct in turn, (10) is precisely the LP one would solve
at each child node. So one might as well branch on the disjunction rather than relax it. There
could be some advantage in relaxing several disjunctions simultaneously, but results reported in
Section 7.2 indicate that the time investment is impracticably large. The remaining discussion
will therefore focus on much faster mechanisms for choosing effective multipliers u*.

5.3 Elementary Cuts

The most common sort of disjunctive constraint (8) is one in which each disjunct is a .single
inequality.

II

Beaumont [6] showed how to generate a cut for (11) that is equivalent to the continuous
relaxation of the traditional 0-1 formulation of (11). The latter is

alx > a1 - Mt{\ - yt), * € T

(12)

0 < x < m
j,te{o,i}, ter.
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Each Mt is chosen so that a* — Mt is a lower bound on the value of alx. The bounds 0 < x < m
are imposed to ensure that such a lower bound exists. It can be assumed without loss of
generality that Mt > 0, because otherwise the inequality is vacuous and can be dropped.
Beaumont obtains a cut by taking a linear combination of the inequalities in (12), where each
inequality t receives weight I/Aft. This yields what Beaumont calls the elementary cut for

Theorem 2 (Beaumont) The elementary cut (13) is equivalent to the continous relaxation
of (12). That is, the feasible set of (13) and 0 < x < m is equal to the projection of the feasible
set of the continuous relaxation of (12) onto the x-space.

One can also prove equivalence by applying Fourier elimination to (12) in order to eliminate
y. It is easy to show that (13) and 0 < x < m are the resulting inequalities.

A similar technique obtains elementary cuts for all logical formulas that are expressible as
knapsack constraints,

dy>6
yt -> (a*x > at), t € T (14)
0 < x < TO,

where d > 0. It is true that (14) can be put in disjunctive form using the schema (7), but this
may require a large number of disjuncts. (Disjunctions are of course a special case of dy > S
in which 6 = 1 and each dj € {0,1}.) The 0-1 representation of (14) is

a*x > a* - Mt(l - y t ) , teT
0 < x < m
dy > 6 ( 1 5 )

yte{o,i}, teT.

A linear combination of the inequalities, using weights dt/Mtj yields the elementary cut,

This is in general weaker than the continuous relaxation of (15), however. If ^2tdt = 6, for
example, (15) forces all the disjuncts to hold, where (16) only forces a linear combination of
them to hold.

Beaumont obtains Mt solely from the bounds 0 < x < m by setting

at - Mt = 53mn{O,a$.}mj. (17)
3

In many cases a better lower bound can be obtained for alx, resulting in a stronger cut. One
method is to minimize alx subject to each of the other disjuncts and 0 < x < m and pick the
smallest of the minimum values. Mt is therefore chosen so that

at — Mt — min jmin{a*x | a1'x > a*#, 0 < x < m}\. (18)
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Figure 4: A supporting elementary cut (a) and a nonsupporting elementary cut (b).

The computation involved is negligible.
Consider for example the following constraint set, whose feasible set is the shaded area in

Fig. 4.
(xi + 2x2 > 2) V (3xi + x2 > 3)
0 < Xj < 2.

The 0-1 formulation is

x2 > 3 -
J/i + V2 = 1

Beaumont puts (Afi, M2) = (2,3) which results in the cut | x i + | x 2 > 1. By contrast, (18)
puts (Mi,M2) = (1,2), which yields the stronger cut xi + x2 > 1. This is a supporting cut in
the sense that it defines a supporting hyperplane for the feasible set.

Even when (18) is used to compute M*, the resulting cut may fail to be supporting. Consider
the constraints (Fig. 5),

(-xx + 2x2 > 2) V (2xi - x2 > 2)
0 < Xj < 2.

(17) sets (Mi, M2) = (4,4), which results in the useless cut xi + x 2 > 0. The cut can obviously
be strengthened to xi + x2 > 1.
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(a)

Figure 5: An elementary cut (a) and a strengthened elementary cut (b).

When the inequalities a*x > at in (14) are replaced by systems of inequalities Alx > a',
many elementary cuts are required to achieve the effect of the traditional relaxation. Let each
system A*x > a* consist of inequalities Aux > a\ for t € It- The 0-1 formulation is

A*x > a* - M*(l - yt),
0 < x < m
dy>S
yt e {0,1}, teT.

teT

(19)

Here M* is an array such that for each i 6 /*, a\ — M\ is a lower bound on Aux. Repeated
applications of Fourier elimination reveal that the projection of the feasible set of (19) onto
the x-space is described by the set of inequalities of the form,

for all possible vectors ( t j , . . . , i\x\) G /i X . . . X ^
Elementary cuts may therefore be impractical when the yt's correspond to systems of

inequalities. In such cases one can use optimal separating cuts (described below) or the tradi-
tional relaxation.

5.4 Supporting Elementary Cuts

The example of Fig. 5 shows that an elementary cut can fail to be supporting. In such cases
it is a simple matter to increase its right-hand side until it supports the feasible set, thus
obtaining a strengthened elementary cut. In fact there is a closed-form formula for the best
possible right-hand side. The formula allows one to check easily whether a given elementary
cut is supporting, and when it is not, to improve upon the traditional continuous relaxation
the cut represents.
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Figure 6: A supporting elementary cut (a) and a facet-defining cut (b).

Figures 4 and 5 may suggest that two disjuncts alx > c*i, a2x > c*2 produce a supporting
elementary cut if and only if the vectors a1, a2 subtend an acute angle, and that a similar
relationship might be discovered for more than two disjuncts. A third example reveals that
the situation is more complicated than this. Figure 6 shows the feasible set for

0 < XJ < 3

The elementary cut is 3zi + 2x2 < 12, which is supporting even though ( -3 ,1) and (0 , -1 )
subtend an obtuse angle.

A more adequate analysis goes as follows. Let bx > (3 be the strengthened elementary cut,
where bx is the left-hand side of the elementary cut (16). Because bx>f3 defines a supporting
hyperplane for the feasible set of (11), /? is the smallest of the minimum values obtained by
minimixing bx subject to each of the disjuncts alx > at. That is,

mm (20)

where
f3t = min Ibx \ alx > au 0 < x < 1

The computation of /3t is simplified if 6 > 0, because in this case the upper bounds x < m can
be ignored. To this end one can introduce the change of variable,

~.-fx3 if 6i > 0
— Xj otherwise

The strengthened elementary cut in terms of x, namely bx > /?, can now be computed, where
bj = |6j|. The right-hand side of bx > /3 can then be recovered from (20) by setting

Mjbj. (21)

6, <0
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It remains to compute
fit = min Ibx | afx > d, x > Oj , (22)

where

3 \ -a) otherwiotherwise * '

and
(24)

3
<0

Because 6 > 0, LP duality applied to (22) yields that

fit = min \-Jr\max{dt,0}. (25)

This proves,

Theorem 3 The elementary cut (16) for the disjunction (11) is supporting if and only if its
right-hand side is equal to fi, as defined by (20), (21) and (25).

5.5 Integral 0-1 Representations

The traditional continuous relaxation of a disjunctive constraint actually has two liabilities. It
can be weak, as already noted, but even when it is strong, it may permit fractional solutions
when the original disjunction is satisfied. This means that a traditional branch-and-bound
method can keep branching even when a feasible solution has been discovered. It is therefore
best to check disjunctions (as well as other logical constraints) directly for feasibility, as done
in MLLP.

The 0-1 formulation of the disjunction (8) is the following.

A * * > a ' - M t ( l - y t ) , t£ T
0 < x < m

t€T
! / t€{0, l} , t € T ,

where Mt is given by (18). The claim is that when x is fixed to some value x, an extreme
point solution y = y of (26) can be nonintegral even when x satisfies (8). An example of this
is presented by a simple semi continuous variable, x 6 {0} U [di,^]* or

(-z > 0)v(x>sx)
0 < x < s2.

The continuous relaxation of (26) is

—x > —^2(1 — y)
m> ^ c c- «i

(27)

-x > -«2( i - y)
x > S\ -

0 < X <
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If x is fixed to x and (27) is projected onto y, the result is

1 — — < y < l - —, 0 < y < 1. (28)
S\ S2

If 0 < x < 52, y = 1 — f- is an extreme point solution of (28) and therefore (27), and it is
nonintegral whenever 0 < x < S2- So (27) can have extreme point solutions with fractional y
even when x G [51,62]? and even though (27) is the best possible (convex hull) relaxation of
(26). The extreme point solutions for x G [̂ 1,62] are guaranteed to have integral y only when
$x = 52; i.e., when x is essentially a rescaled binary variable.

The idea can be defined in general as follows. Let Px be the set of points y that satisfy
(26) when x is fixed to x. Let the continuous relaxation of (26) be integral if for every (x,y)
satisfying (26) such that y is an extreme point of P s , V is integral.

The following characterizes integral relaxations. A disjunct of (8) is redundant when its
feasible set lies within that of another disjunct. Obviously, redundant disjuncts can be dropped
without effect.

Theorem 4 Suppose that the disjunction (8) contains no redundant disjuncts. For t,t' G T
with t ^t' define

y;(tf) = maxji/t | Mtyt < Alx - a1 + Mu A1'x > a'\ 0 < x < m, yt < l} .

Then the continuous relaxation of (26) is integral if and only ify*{t') = 0 for every pair t,tf G T
with t ^ t9.

Proof. It is clear that yf(t') can be written,

yW) = max [yt \ A*x > a1 - M t(l - y% Avx > a*',0 < x < m, yt < l } . (29)

It is convenient to let St = {x \ Alx > a*, 0 < x < m} for t G T.
Claim. For any x G Sti and any t ^t',

y ; ( 0 = max{2/t |yGPx}. (30)

Proof of claim. It suffices to show that any yt that is feasible in (30) is feasible in (29), and
vice-versa. First suppose yt is feasible in (30). Then by letting x = x it is seen to be feasible
in (29), because A*'x > a*' by virtue of the fact that x G St/. Conversely, let yt be feasible in
(29). To see that it is feasible in (30), set yti = 1 - y% and yt» = 0 for t" ^ t,tf. It is enough
to show

^ " x ^ a ^ ' - M t ^ l - y t " ) (31)

for all t" G T. But (31) holds for t" = t by stipulation. It holds for t" = t' because x £ St,,
and it holds for t" ^ t,t' by definition of Mt«. This proves the claim.

Now suppose that yJT(t') > 0 for some t,t' with t ^ tf. Because disjunct t1 is not redundant,
one can choose x G St,\St. This implies that j£(f) < 1, which together with yf(t') > 0 means
that yt(t') is nonintegral. Also (30) implies that some y with yt = #(*') is an extreme point
of Px. It follows that (26) is not integral.
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For the converse, suppose that y*(<') = 0 for all pairs t,t* with t # t'. It suffices to show
that for any x satisfying (8), any given extreme point y of P$ is integral. If it is supposed that
x G 5t/, the following can be stated.

yt* | y G P*} = 1
y, | j /GP*} = 0, t*t*.

The first is due simply to the fact that x G St*. By the above claim, the second is equivalent to
y*(t') = 0, which is given. But (32) implies that P$ is a line seqment of unit length extending
from the origin in a positive direction along the ytt axis. Thus any extreme point y G P* is
integral, which means that (26) is integral. •

Corollary 1 Consider a disjunction (11) with one inequality per disjunction and bounds 0 <
x < m. If (11) contains no redundant disjuncts, then (26) is integral if and only if

max {a'z | a1'x > av, 0 < x < m} = at - Mt (33)

for every t,t' £T with t±t*.

The conditions in Theorem 4 and Corollary 1 are quite strict. In fact,

Corollary 2 The continuous relaxation of (26) is integral only if the feasible sets described by
the disjuncts of (8) are disjoint.

Proof. Suppose two of the feasible sets intersect, e.g. those corresponding to disjuncts /
and t'. Then Hf(f) = 1, which violates the condition of the theorem. •

Not even disjoint feasible sets are sufficient for integrality, as the above example shows.

5.6 Beaumont's Cuts

Beaumont [6] identified a class of facet-defining cuts for disjunctive constraints in which each
disjunct consists of a single inequality, as in (11). They are facet-defining in the sense that,
under certain conditions, they define facets of the convex hull of the feasible set of (11).
Unfortunately, the conditions are often unsatisfied, which limits the usefulness of the cuts.

Beaumont's approach is essentially a reasonable method for choosing multipliers u* so a>
to generate a disjunctive cut (9). He first incorporates the bounds x < m into the disjunction
(11) to obtain

The vector of nonnegative multipliers for each disjunct is ul = (v*,u;t), where Wt corresponds
to the last inequality in the disjunct. The object is to derive a disjunctive cut bx > j that
satifies

b > wtat — vl

0 < wtat — vtm

for all t. For a given wt (yet undetermined), it is reasonable to make the components of 6 as
small as possible to get a tight constraint. So let

b = minima*}, (34)
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where the minimum is taken componentwise. One can now set

v% = uta
t - 6, t e T,

because (34) implies vl > 0. To make the right-hand side of the cut as tight as possible, set

/? = min {utat - vtm\ . (35)

It remains to pick values for the wt's. Beaumont's choice is equivalent to setting wt = Mt when
Aft is derived from the variable bounds as in (17) and a* < 0. Thus

— atm
(36)

The approach breaks down when the denominator is nonpositive, whereupon Beaumont sug-
gests letting

at — min{a*,0}m'

Theorem 5 (Beaumont) The cut bx > f3 given by (34)-(36) is facet-defining for (11) if
at - a

%m > 0 for all t G T.

Beaumont's cut can therefore be superior to a supporting elementary cut. This is illustrated
in Fig. 6, where Beaumont's cut is the facet-defining cut 2x\ + x<i < 7.

Assuming at — atm > 0 is equivalent to assuming that the point x = m is infeasible, in
which case it makes sense to separate this point from the feasible set. x = m is often feasible,
however, as in the example of Fig. 4. Here (w\yW2) = (— ,̂ —|), and one must revert to (37),
which yields the useless cut 3xi + 2^2 > —2.

The underlying difficulty is that Beaumont's approach has no mechanism for detecting
which corner of the box 0 < x < m should be cut off from the feasible set. An appropriate
corner could in effect be identified by using a change of variable similar to one discussed earlier,
namely

-. _f mj — xj when convenient
J 1 Xj otherwise.

A "convenient" transformation would be one that makes at — a%m > 0 for as many disjuncts
t as possible, where af and at are given by (23) and (24). This poses an integer programming
problem that could be solved heuristically. However, because of the computation involved this
option will not be pursued further.

5*7 Optimal Separating Cuts

One way to identify an appropriate point to be cut off by a disjunctive cut is simply to cut off
the solution of the current relaxation. This is also a mechanism for using information about
the objective function, because the current solution was obtained by minimizing the objective
function. Fortunately it is straightforward to state a small LP problem whose solution identifies
an separating cut if and only if one exists. Thus if no cut is found, the current solution is known
to lie within the convex hull of the feasible set, and branching is necessary to obtain a feasible
solution—unless of course the current solution is already feasible. The cut is optimal in the
sense that it is chosen to maximize the amount by which the current solution violates it.
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Another attraction of optimal separating cuts is that they can be generated for the case in
which there are several inequalities in each disjunct. A logical constraint gi(y,h) other than a
disjunction must, however, be first put in disjunctive form.

Suppose that the solution x of the current LP relaxation is to be separated from the feasible
set of the disjunctive constraint (8). Any upper bounds x < m should be incorporated into
each disjunct of (8). Because any disjunctive cut is defined by a choice of multipliers u1, an LP
model can be formulated so as to find a set of u"s that define a cut bx > 0 that is maximally
violated by x. Such a model is,

max f3-bx , (38)
s.t. /? < ula\ t € T

b > ulA\ t 6 T
- e < 6 < e

u* > 0, t 6 T

/?, 6 unrestricted.

Note that the variables in the model are f3,b,u. The objective function measures the amount
by which x violates the cut. If the objective function value is zero, there is no separating cut.
The constraint — e < b < e, where e is a vector of ones, ensures that the solution is bounded.
It results in no loss of generality because an optimal cut can always be rescaled to satisfy the
constraint.

The model (38) has an interesting dual.

min (s + i)e
s.t. x ^ = s-t

A'ar* > t 6 T («*) (39)

If s — tis fixed to zero and x is a variable, the constraint set is Balas' convex hull representation
for the disjunction (8) [4]. That is, when s —J = 0, the projection of the feasible set of (39) onto
the x-space is the convex hull of the feasible set of (8). (This is related to the fact, observed by
Williams [69], that the dual of the dual of a disjunctive programming problem is the convex
hull representation of the problem.) The problem (39) therefore seeks a point YlteT x* m ^
convex hull that is closest to x, as measured by the rectilinear distance.

An optimal separating cut can be superior to a supporting elementary cut. Consider the
example of Fig. 6, which becomes

The solution of (38) is 0 = - | , 6 = ( - 1 , - 1 ) , ul = (3 ,0 , ! ) , u2 = (^,1,0), which produces
the facet-defining cut 2xi + X2 < 7.

The optimal separating cut need not be facet-defining, however. If the convex hull of the
disjunction is the box defined by 0 < x3; < 1 for j = 1,2, the optimal separating cut for
x = (2,2) is xi + x2 < 2.
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6 Logic Processing

The logical aspect of MLLP revolves primarily around two issues: What repertory of logical
formulas are available to express discrete constraints? What logic processing algorithms can
be used to derive implications from a set of logical formulas? After a brief discussion of these
two questions, subsections will be devoted to several classes of logical formulas of increasing
generality. Basic logic processing algorithms will be presented for each.

Logic cuts can also be developed manually, based on insight into the problem structure.
This is discussed in Section 6.7. Finally, it is shown how logic cuts can be obtained by gener-
alizing Benders decomposition to an MLLP context.

6.1 Logical Formulas

In theory a logical formula g%(y, h) can represent any function of (y, h) that takes the values
true and false. But there are certain syntactic forms that have proved useful for expressing
constraints. A few basic ones will be discussed here.

Logical clauses. A logical clause is a disjunction of literals, which are atomic propostions y3 or
their negations -IJ/J. Thus the expression y\ V -13/2 V y$ is a clause, where V is an inclusive
"or." In theory conjunctions of logical clauses can express any function of y alone (i.e.,
any boolean function), but it may be convenient to use other forms as well. Implications
(e.g. yi —• jfe) and equivalences (y\ = 1/2) a*e readily defined in terms of clauses.

Extended clauses. These have the form, "at least fc of L i , . . . , Ip are true," where the L/s are
literals. They, too, express boolean functions but are often more convenient than clauses
because they have an a quasi-arithmetical as well as a logical aspect.

Knapsack constraints. The familiar 0-1 knapsack constraint by > 13, where each yj G {0,1},
can also be regarded as a logical formula that is true when the sum over bj for which yj
is true is at least /?. Boolean functions of this form are called threshold functions and are
studied in the electrical engineering literature [58]. They are difficult to process logically,
but they can be used to generate logic cuts in the form of clauses and extended clauses,
which are easily manipulated.

Multivalent clauses. These generalize clauses to accommodate multivalent variables and are
adequate to express any bivalent function of (y, h). They are disjunctions of terms having
the form hj € H, where H is a subset of the domain of hj.

The all-different predicate. As in the case of bivalent clauses, it is useful to supplement
multivalent clauses with other types of syntax. One particularly useful formula states
that a set of variables hj all have different values, a condition that is awkward to capture
with MILP inequalities.

6.2 Logic Processing Algorithms

The goal of logic processing is to extract information that is implicit in the logical formulas
5«(j/^)« It is essentially an inference process that derives logic cuts, or implications, from the
formulas. It can be useful in two ways:

28



• The logic cuts may give rise to elementary or other inequality cuts that can strengthen
the LP relaxation.

• They may reduce backtracking by ruling out partial assignments that cannot be extended
to feasible solutions; these are known as redundant assignments in the constraint satis-
faction literature [63]. For instance, if there is no feasible solution (3/1,..., yn) in which
(yu J/2) = (T, F), a logic cut -ij/i V y2 would prevent one from exploring a subtree defined
by (yi,]b) = (TjF) in order to discover this.

As noted earlier, a large body of logic processing algorithms have been developed by the
research communities associated with logical inference, constraint satisfaction, constraint pro-
gramming and logic programming. The discussion here is limited to two basic types of algo-
rithms that can form the logical basis of an MLLP solver. One algorithm is fast but incomplete
(i.e., does not derive all possible inferences), and one is a much slower, complete algorithm.

The incomplete algorithm is a simple constraint propagation technique and takes the form
of unit resolution ("forward chaining") in the case of logical clauses. It is probably adequate
for most applications, but when a more powerful inference algorithm is required, the resolution
algorithm can be used. It is a well-known complete inference method for logical clauses and
can be generalized to extended and multivalent clauses. Resolution can be quite slow and is
unsuitable for problems with a large number of propositional variables. There are many appli-
cations, however, in which the number of discrete variables is small relative to the continuous
part of the problem. In such cases it may be worthwhile to extract as much information as
possible from the logical formulas in order to avoid solving large LP problems.

6.3 Logical Clauses

In principle a logical formula that contains only bivalent variables yj can always be written
as a conjunction of clauses, i.e., in conjunctive normal form (CNF). For example, the formula
(yi A 3/2) V jfc, where A means "and," can be written (3/1 V 3/3) A (y2 V 3/3). Also the implication
Vi -* V2 (or 1/1 D 1/2) can be written -iyi V y2y and the equivalence 3/1 = y2 is rendered
hVi Vy2)A(yi V-.y2).

CNF is completely expressive because any formula in bivalent variables can be regarded as
a boolean (true-false) function f(y) = / (y i , . . . , ym). If y = v 1 , . . . , vN are the values of y that
make f(y) false, then the following CNF formula is equivalent to /(y),

N m

A V «(*}).

where yj(t>*) is -iyj if v* = true and is yj if vj = false.
This conversion to CNF requires exponential time and space in the worst case. However, a

formula involving the connectives -1, V, A, —•, = (and other connectives with linear-time trans-
formations to CNF) can be converted to CNF in linear time by adding new variables. The
algorithm goes as follows. If a given formula F has the form AAB, where A and B are subformu-
las, then apply the algorithm to A and B separately, and conjoin the results. If F has the form
A —• B then rewrite it as -u4vB and apply the algorithm to the resulting formula, and similarly
for A = B. If jPhas the form AVfl, then write it as (ym+\ = A)A(ym+2 = 2?)A(ym+1 Vj/m+2),
where ym+i, ym+2 are variables that do not occur in F, and apply the algorithm to the resulting
formula (see [71] for refinements). The algorithm stops when CNF is achieved.
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In practice an MLLP solver would accept several connectives that are readily converted to
CNF and make the conversion. It should normally be unnecessary to introduce new variables,
because formulas are usually short enough so that a CNF equivalent without them is also short.

A simple resolution algorithm [47, 48, 54] derives all implications of a set of clauses. Let
clause C\ absorb clause C2 when all the literals of C\ occur in C2\ C\ implies C<i if and only
of C\ absorbs C<i* Two clauses have a (unique) resolvent when exactly one variable yj occurs
positively in one and negatively in the other. The resolvent is a disjunction of all literals that
occur in either clause except yj and -iyj. For instance, 3/2 V -^3 is the resolvent of 3/1 V y2 and
-ijh V -1J/3. Given a set 5 of clauses, the resolution algorithm picks a pair of clauses in 5 that
have a resolvent that is absorbed by no clause in 5, and adds the resolvent to 5. It repeats
until there is no such pair, which occurs after finitely many iterations.

Theorem 6 (Quine [47, 48]) A clause set S implies clause C if and only if the resolution
algorithm applied to S generates a clause that absorbs C. In particular, 5 is unsatisfiable if
and only if resolution generates the empty clause.

This theorem will follow from a more general result to be proved in Section 6.6.
Linear relaxations can be generated for clauses derived by resolution, if desired. A clause

is simply a disjunction. So if the clause contains all positive literals, and each of its variables
corresponds to a linear constraint set, an elementary or other type of cut can be generated as
discussed in Section 5. If a derived clause is a unit clause, i.e., contains a single literal yj or
-ij/j, then yj can be fixed accordingly.

Resolution not only has exponential complexity in the worse case [24] but can be very
slow in practice [27]. A much faster inference algorithm that sacrifices the completeness of
resolution is unit resolution. It is the same as full resolution except that one of the parents of
a resolvent is always a unit clause. Its incompleteness can be seen in the example,

yxv y2y 3/3
yiV
y\V

Resolution fixes y\ to true, but unit resolution does nothing because there are no unit clauses
to start with. Unit resolution is efficient, however, as it runs in O(nL) time, if there are n
variables and L literals, and it tends to be very fast in practice. A precise algorithm that is
adapted to the more general case of extended clauses appears in Fig. 7.

Unit resolution is a complete inference algorithm for certain classes of clauses, such as
Horn clauses, renamable Horn clauses, extended Horn clauses, etc. [13, 14, 15, 56, 62]. No
known structural property of a clause set is necessary and sufficient for the completeness of
unit resolution.

Unit resolution has the same inferential power as linear programming, in the following
sense. Suppose that the clauses of 5 are written as a system Ay > a of 0-1 inequalities in the
usual fashion; i.e., a clause \JjejLj is written Y^jeJVjiLj) > 1, where yj(Lj) is yj if Lj = yj
and is 1 — yj if Lj = ~^yj.

Theorem 7 (Blair, Jeroslow, Lowe [9]) Unit resolution finds a contradiction in the clause
set S if and only if the linear relaxation of the corresponding system Ay > a of 0-1 inequalities
is infeasible.
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Ay > a is infeasible when unit resolution finds a contradiction because unit resolution (unlike
resolution in general) simply adds the inequality representations of clauses. So deriving the
empty clause is equivalent to obtaining 0 > 1 from a nonnegative linear combination of Ay > a.
Conversely, if unit resolution detects no contradiction, then the inequalities that represent the
remaining clauses can be satisfied by setting each y3 = 1/2.

Although LP duplicates the effect of unit resolution, the latter is preferable for logic pro-
cessing because of its speed.

6.4 Extended Clauses

Extended clauses seem a particularly useful compromise between arithmetic and logic because
they express the notions of "at least" and "at most" but can be efficiently processed as logical
formulas. In fact, Barth's constraint-based solver for 0-1 optimization problems [5] reasons
with 0-1 inequalities only after converting them to extended clauses.

An extended clause of degree k can be written

where each L3 is a literal. Here the sum is not an arithmetical sum but simply counts the
number of literals that are true. Ordinary clauses have degree 1. To say that at most k are
true, one can write

£ l,- > \J\ - fc,

and one can use two extended clauses to say exactly k are true.
A complete inference algorithm ("generalized resolution") for extended clauses was pre-

sented in [27, 30] and is refined by Barth in [5]. It uses resolution as well as a diagonal
summation, where the latter is defined as follows. An extended clause YljeJ Lj > k + I is the
diagonal sum of the set of extended inequalities {^j^ Lj > k \ i € J} if J = |J»€J ^ but ^or

each i e J, i & J%. The algorithm of [27] is applied to a set 5 of extended clauses as follows.
If there are two clauses C\,C2 of degree 1 with a resolvent C that is implied by no extended
clause in 5, such that C\ is implied by an extended clause in 5 and similarly for C2, then add
C to 5. If there is a set E of extended clauses with a diagonal sum D that is implied by no
extended clause in 5, such that each clause in E is implied by some clause in 5, then add D
to 5. The algorithm continues until no more clauses can be added to 5.

Theorem 8 ([27, 30]) A set S of extended clauses implies clause C if and only if the gener-
alized resolution algorithm applied to S generates a clause that implies C.

Implementation of the algorithm requires recognition of when one extended clause implies
another. YljeJi L\j > &i implies YLj€J2 ^V — ^ ^ an(* onty ^

l^il - \{j eJinJ2\ Lxj = L2j}\ < An - k2.

When all of the literals of a derived extended clause are positive and correspond to sets
of inequalities, a linear relaxation can be formulated using one of the methods described in
Section 5. A unit resolution algorithm for extended clauses appears in Fig. 7.
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Let 5 be a set { ^ e j , Ltj > k{ 11 G /} of extended clauses,
where each L{j is yj or -ryj.

Let P be a stack of unit clauses, in i t ia l ly empty.
For each i G / with |Jt| = fc,-:

For each j G J% add ItJ to U.
Let Jt = 0.

While U is nonempty:
Remove L{ from U.
For each f G / with t G J{\:

If I t̂ = L't then
Let fct = fc,-l, Jt = Ji\{t}.

Else
If fct = |Jt| then stop; 5 is unsatisfiable.
Else

If ki = \Ji\ + 1 then
For each j G J, \ {<} add ItJ to J7.
Let Ji = 0.

Else
Let Ji = Ji\{t}.

Figure 7: A unit resolution algorithm for extended clauses.

Linear programming is a stronger inference algorithm for extended clauses than unit resolu-
tion. For example, LP detects the infeasibility of the following inequalities, but unit resolution
can do nothing with the corresponding extended clauses.

V\ + 2/2 + 3/3 > 2
( l - i / i ) + ( i - y 2 ) + ( i - y 3 ) > 2

No known inference algorithm has exactly the same effect as LP on extended clauses, unless
one views LP algorithms as inference algorithms. Generalized resolution is of course stronger
than LP.

6.5 Knapsack Constraints

A complete inference algorithm for knapsack constraints appears in [30], and an analog of unit
resolution can easily be devised for them. But they are perhaps best used as a source of logic
cuts that are more easily processed, such as clauses and extended clauses. The implied clauses,
for example, are identical to the well-known "covering inequalities" for the constraint, and
their derivation is straightforward (e.g., [23]).

It may be more effective, however, to infer extended inequalities. Although it is hard to
derive all the extended inequalities that are implied by a constraint, it is easy to derive all
contiguous cuts. Consider a 0-1 inequality dy > 6 for which it is assumed, without loss of
generality, that d\ > d2 > . . . > dn > 0; if dj < 0, reverse its sign and add dj to 6. A
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Let k
For j

Let
If

= 1. * = £?=!<*;
= l , . . . ,n:

; s = s — dj.
5 < S then
While 5 + dk < S

Let 5 = s + dk
If k > fc^ then

Generate the
Let fciast = fc.

> Mast =

••

, k = k

cut y\

= 0.

+ 1.

+ ...+yj>k.

Figure 8: An algorithm for generating all 1-cuts for a knapsack constraint dy > 5 in which
di > d2 > . . . > dn > 0.

contiguous cut for dy > S is one of the form,

(40)

where k is the degree of the cut and w < n the "weakness" (tu = 0 indicates a cut that fixes
all of its variables). In particular (40) is a t-cut because the first term is yt. (40) is valid if and
only if

Furthermore,

Theorem 9 ([35]) Every t-cut of weakness wfordy>5is implied by a 1-cut of weakness w.

The power of all t-cuts can therefore be obtained by generating only 1-cuts. The algorithm of
Fig. 8, presented in [35], does this in linear time. By way of example, the knapsack constraint

13yi

gives rise to the 1-cuts,

- 8j/3 + 6V4 + 5y5 + 3y6 > 30

V\ + V2 > 1

yi + V2 + yz + y* + ys > 3.

The first cut could be deleted if desired, because it is redundant of the second.

6.6 Multivalent Clauses

Multivalent clauses provide a convenient and versatile syntax for expressing logical formulas
that involve multivalent variables. A multivalent clause has the form

(41)
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where each Hj is a subset of the domain Dj of hj. For notational simplicity, it is assumed that
bivalent variables yj are regarded as 2-valued variables hj that take a value of, say, 1 when yj
is true and 0 when yj is false. If Hj is empty, the term (hj G Hj) can be omitted from (41),
but it is convenient to suppose that (41) contains a term for each j.

Any true-false function f(h) = f(h\,..., hm) can be expressed as a conjunction of multiva-
lent clauses. In particular, -<(hj G Hj) can be written (hj G Dj \ Hj), and (hj G Hj) -+ (hk G
Hk) can be written (hj e Dj \ Hj) V (hk € Hk). One multivalent clause \Jj(hj G H\j) implies
another \Jj(hj G Jifyj) if and only if H\j C #2j for each j. As examples of a multivalent clause
consider the following formula (4a) from the progressive party problem.

vijt = (ha = j)

It is formally expressed as two multivalent clauses,

e {o» v (fc« e
e {i» v (fca e

Resolution can be generalized to obtain a complete inference method for multivalent clauses.
The resulting algorithm is related to Cooper's algorithm for obtaining fc-consistency for a set
of constraints [18]. Given a set of multivalent clauses,

eHa), is I, (42)

the resolvent on hk of these clauses is

Ordinary bivalent resolution is a special case. To apply the resolution algorithm to a set 5 of
multivalent clauses, find a subset of 5 whose resolvent M is implied by no clause in 5, and
add M to 5. Continue until no further clauses can be added to 5.

The multivalent resolution algorithm is a complete inference algorithm for multivalent
clauses. The proof of the theorem uses the idea of Quine's original proof for ordinary resolution.

Theorem 10 A set S of multivalent clauses implies a multivalent clause M if and only if the
multivalent resolution algorithm applied to S generates a clause that implies M.

Proof Multivalent resolution derives only implications of 5 because it is clearly valid. To
prove the converse, let S' be the result of applying the algorithm to S. Also define the length
of a clause (41) be £j \Hj\. Suppose the theorem is false, and let (41) be a longest clause
implied by 5 but by no clause in Sf.

Claim. At least one Hj in (41) is missing at least two elements; i.e., \Dj \Hj\ > 2 for
some j. First it is clear that no Hj = Dj, because otherwise (41) would be implied by a (in
fact, every) clause in S'. Suppose contrary to the claim that every Hj is missing exactly one
element, say VJ. Then h = v = (vi , . . .,t>m) violates (41) and must therefore violate some
clause \/j(hj G H'j) in 5', because 5' implies (41). This means each H'j C Dj \ {VJ}, so that
\Jj(hj G Hj) implies (41), contrary to hypothesis. This proves the claim.

Now suppose Vk,v'k are missing from Hk, and consider the multivalent clauses

(hk eHkU {vk}) V Vj^hj G Hj), (hk eHkU « } ) V Vi|Wk(fcj € Hj). (43)
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They must respectively be implied by clauses M\9 M2 6 S' because they are longer than (41).
This means that the resolvent of My, M2 on hk implies (41). So by construction of the resolution
algorithm, Sf contains a clause that implies (41), contrary to hypothesis. •

The proof of the theorem shows that it suffices in principle to generate resolvents only of
pairs of clauses.

A unit resolution algorithm for multivalent clauses appears in Fig. 9. The algorithm also
accommodates all-different predicates, which can serve as disjuncts of multivalent clauses along-
side terms of the form hj € Hj. Examples of the latter are constraints (4b) and (4e) of the
progressive party problem. The constraint (4e) is written,

Si V Sj V mijt V (ha # hjt)

but can be formally written as a multivalent clause as follows.

(*• e {1}) V (Sj € {1» V (mm € {1}) V

6.7 Valid and Nonvalid Logic Cuts

An intuitive understanding of a problem can suggest logic cuts, both valid and nonvalid, even
when no further polyhedral cuts are easily identified. The idea of a (possibly nonvalid) logic
cut was defined in [37], which gives the process synthesis example discussed here as an example.
Other examples include structural design problems [10], matching problems [32], and a series
of standard 0-1 problems discussed by Wilson [73].

A logic cut for an MLLP model (1) has heretofore been characterized as an implication
of the logical formulas in (1). Actually any logical formula implied by the constraint set as a
whole is a logic cut. That is, g(y,h) is a logic cut if it is true for every (x, y,h) that satisfies
the constraints of (1). For example, —13/3 is a logic cut for the problem

min xi + x2

s.t. yi — (xi > 1) yi V y2 , ,
V2 - (x2 > 1) ( }

V3 -> (*i + x2 < 0)

but is not implied by the formula y\ V y2.
Logic cuts can be defined in an even more general sense that permits them to be nonvalid.

Let (y,h) be feasible in (1) if (x,y,/i) is feasible in (1) for some x. Let (y',h') dominate (y,h)
if for any (x',y',h') that is feasible in (1), there is a feasible (x, j/,/i) for which ex < ex'. Then
g(y, h) is a logic cut if any feasible (y, h) that makes g(y, h) false is dominated by a feasible
(y',h') that makes g(y\h') true. The cut g(y,h) may be added to (1) without changing the
optimal solution, but it may exclude feasible solutions.

For example, the formulas -ij/i and -13/2 are (nonvalid) logic cuts for (44). They are nonvalid
because they exclude the feasible points (l,0,0),(l, 1,0).

6.8 Logic-Based Benders Cuts

The idea behind Benders decomposition is generalized to a logic-based setting in [33], which
applies the idea to 0-1 programming and the satisfiability problem. Here the idea is applied
to MLLP.
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Let 5 be a set {C{ | i E /} of multivalent clauses, where each Ct
has the form VjLi(fy € H{j) V \/t€Ti alldiff ({fy | j € Jt})

Let n% be the number of terms (hj € flj) of C% vith nonempty ifj.
Let U be a stack of indices representing active domains;

initially U = {1,... ,m}.
Let A be a list of enforced alldiff predicates, initially empty.
For each i € I:

If m = 0 and \Ti\ = 1 then
Add the alldiff predicate in Ct to A and remove i from /.

Else if nt = 1 and |Tt| = 0 then
Let H{j be nonempty.
Let Z5j = Dj n JFftj and remove % from /.

While U is nonempty:
Remove some index k from 17.
If Dk is empty then stop; S is unsatisfiable.
Eor all i € /:

If iftfc is nonempty then
If Dfc C J?t/b then remove i from /.
Else

Let Hik = HiknDk.
If Hik is empty then

Let rti = Ui — 1.
If nt = l and |Ti|=0 then

Let iTij be nonempty and remove i from /.
If Dj <£ Hij then

Let Dj = Dj H H^ and add j to U.
If nt = 0 and |Ti| = 1 then

Remove i from /.
Add the alldiff predicate in Ct to A.

For each predicate alldif f{{hj \ j € J}) in A with A; € J:
If |D*| = 1 then

For j € J \ {k}:
If D/k C 2>, then Let Dj = Dj \ Dk and add j to C7.

Figure 9: A tintt re^o/ufton algorithm for multivalent clauses.
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A Benders cut for (1) can be generated at each node of the search tree in the following
way. Let the logical formulas comprise the master problem. The subproblem consists of the
LP relaxation at that node; i.e., the linear constraint sets that are enforced by propositions
that are true at the node. Thus if yj is fixed to true for j G Ji, the LP relaxation is,

min ex
s.t. Ax>a (u) ( .

A>x > a*, jeJ ( t*0 { }

x>0.

where Ax > a represents cuts added at the root node. Let u, Uj be the dual variables as shown.
Then the following is a valid bound on the optimal value z of (1):

z > ua+

The bound can also be written
ujajyj (46)

if each yj takes its current value, namely 1 (for true). In fact (46) is a valid bound for any y
for which u remains feasible in the dual of (45), i.e., any y for which

ua+ ^2 ujAjyj <c (47)

This gives the Benders cut,
(47) -+ (46).

This cut can be generated at any leaf node and used at any subsequent node to obtain a lower
bound on the optimal value without solving the LP relaxation. If the bound is not large enough
to prune the true, the LP must be solved.

In practice it is convenient to work with reduced costs. If z is the optimal value of (45)
and r is the vector of reduced costs, then (46) and (47) respectively become

£ W ) (48)

and

W ) < r. (49)
i€Ji

The Benders cut is
(49) - (48).

The cut generated at each node is valid throughout the search tree. It does not strengthen
the LP relaxation but provides a bound on the optimal value that may obviate solution of the
relaxation. This can be useful when the LP is large or hard to solve.
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7 Computational Results

The aim of the computational experiments is not to compare the best possible MLLP algorithm
for a given problem with the best possible competing algorithm. Rather, the aim is to isolate
the effect on performance of the specific MLLP features that are illustrated by each problem.
To the end, the simplest possible MLLP algorithm is compared with the simplest possible
MILP algorithm.

The MLLP algorithm is that of Fig. 2, fleshed out as follows. The branching rule is to
branch on the first propositional variable in the first unsatisfied logical formula. The logic
processing algorithm is unit resolution. The relaxation of logical formulas varies from case to
case, as described below. The code is written in C and compiled with the Sun C compiler
version 1.1 with optimization. The tests were conducted on a SPARC Station 330 running
SUN OS version 4.1.1. The LP relaxations were solved by CPLEX version 3.0.

The MILP algorithm is a straightforward branch-and-bound procedure. The branching
rule is to branch on a variable whose value in the relaxation is nearest 1/2. The LP relaxations
were solved with the same CPLEX routine.

Run times and node counts for version 2.1 of the CPLEX MILP code are also reported.
It is argued in [34], however, that comparison with a commercial code may provide limited
insight. The details of commercial implementations are not public knowledge, and even if they
were, it would be difficult to isolate the factors that explain differences in performance.

MLLP has already been shown to have advantages on the chemical engineering problems,
and for these problems the computational experiments reported here confirm previous work.
They are reported because the confirmation of experimental results is a key element of empirical
science, one that is largely neglected in the algorithmic literature.

7.1 Flow Shop Problem

The flow shop problem illustrates two advantages of MLLP: a) it can result in a smaller search
tree than MILP, because the MILP representation is not integral, and b) the processing time
at each node is less, because the elimination of integer variables makes the LP relaxations
smaller.

As discussed in Section 5.1, there is little reason to introduce linear relaxations of the
disjunctive constraints typical of scheduling problems. They are therefore omitted. If there
are m jobs and n machines, this reduces the number of variables in the LP relaxation from
2rn + mn to 2m.

Furthermore, the MILP model is likely to create a larger search tree, because its continuous
relaxation is nonintegral. This can be seen from Corollary 1, which implies that the MILP
representation of the disjunction

(tk - U > rik) V (U - tk > rki)

is integral if and only if

*A: - U | U -tk> rki, (0,0) < (U,tk) < (mi,mk)} = rki - Mki

max{*t - tk I tk - U > rtfc, (0,0) < (U,tk) < (m,-,mfc)} = rik - Mik.

Defining Mki,Mik by (18) yields (Mki, Mik) = (rki + mfc, rik + mi). Also it is easy to see that
the two maxima in (50) are respectively equal to — rk{ and —rtfc. So (50) implies that the MILP
representation is integral if and only if (rki,rik) = (mfc,mt), which does not occur in practice.
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Number of
jobs

6
7
8

machines

5
5
5

nodes

407
1951

14573

MLLP
time

2.7
15.7

129.0

per
node

0.0066
0.0080
0.0089

nodes

689
3171

24181

MILP
time

10.1
52.2

546.4

per
node

0.0147
0.0165
0.0226

nodes

527
2647

16591

CPLEX
time

8.1
51.0

413.9

per
node

0.0154
0.0193
0.0249

Table 1: Computational results for flow shop problems with zero-time transfer, showing number
of nodes in the search tree, time in seconds, and seconds per node.

Three flow shop problems that represent process scheduling problems in a chemical plant
[52] were solved, and the results appear in Table 1. MLLP generated about 60% as many
nodes as MILP and used less than half as much time per node. It therefore ran 3 to 4 times
as fast as MILP on these problems.

7.2 Processing Network Design Problems

The chemical processing network problems illustrate the usefulness of (nonvalid) logic cuts as
well as the advantage of an MLLP approach to modeling semicontinuous variables.

First, elementary cuts can be generated for the disjunctions yt V y[. Because of upper and
lower bounds on the variables, the corresponding constraint sets can be written

K

This expands into two disjunctions that can be relaxed.

(* > fi) V (-«,- > 0)

(*i>fi)V\- £ *«£

V

(51)

(52)

Because fi is an upper bound on zt, the elementary cut (13) for (51) is simply 0 > 0, which is
useless. But the elementary cut for (52) is

£<>J-
f M

X" (53)

where Aft is an upper bound on the flow out of unit i. This cut is easily seen to define a facet
of the convex hull of the disjunction.

Furthermore, Theorem 4 implies the 0-1 formulation of the disjunction yt V y[ is integral.
It is easily checked that if 0-1 variables j/1,1/2 correspond to the two disjuncts &,yt', then
Widte) = 1/2(1/1) = 0. This suggests that the MLLP formulation with elementary cuts may
provide no advantage over the traditional continuous relaxation.

Even a cursory examination of the problem yields some useful logic cuts, however. On
examination of a processing network, such as the separation network of Fig. 1, it is clear that
one should not install a distillation unit unless at least one adjacent upstream unit is installed,
and all adjacent downstream units are installed. For example, unit 3 should not be installed
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unless unit 1 is installed, nor should unit 5 be installed unless both units 8 and 10 are present.
This produces the logic cuts

which can be written as three clauses,

J/i V -.jfc, -*y$ V tfe, ->ys V yio. (54)

These cuts are nonvalid because there is nothing infeasible about installing a unit that carries
no flow. One might suspect that a branch-and-bound search would not consider such spurious
solutions, so that the cuts (54) would have no effect. Experience reported in [37, 50], however,
shows that the cuts can be very effective, a fact that is confirmed here.

It is possible to concoct network design problems in which unit resolution is incomplete for
the logical formulas in the model when logic cuts are added. But none of the problems solved
have this property, and for this reason unit resolution alone was used for logic processing.

The relaxation of the logic cuts illustrates two points. One is that the cut y\ V -13/3, for
example, has no relaxation because 3/3 is negated. However, because y$ V y'3 is given in the
model, the cut implies y\ V 3/3, which can be written as two disjunctions,

They respectively generate the elementary cuts,

Zl - * ^ - (56)

The second point is that (56) can be dropped because it is implied by (53) and (55).
The synthesis problems can be modified by fixing the number of units to be installed. This

is accomplished with the formula,

To generate elementary cuts, the formula is written as two inequalities.

E.-K>*. E;tf>*.
Elementary cuts of the form (14) for these are respectively,

where n is the number of potential units.
Experimental results for two 5-component and two 6-component problems studied in [50]

are displayed in Table 2. The second 5-component problem fixes the total number of units to
4, and the second 6-component problem fixes it to 5. The solution methods are grouped by the
strength of the formulation. The problems are first solved with pure MLLP branching, without
any relaxation of the disjunctive constraints. The very poor results in the first column of the
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Problem

Node count
5-component sep.
+ 4 unit restr.
6-component sep.
+ 5 unit restr.
Seconds
5-component sep.
+ 4 unit restr.
6-comporient sep.
+ 5 unit restr.

MLLP
No cuts

61

1659

0.91

33.3

MLLP
+dual

cuts

21

105

3.39

26.5

MLLP
+elem

cuts

15
15
97

9

0.41
0.45

2.3
0.8

MILP

17
49

191
163

0.31
1.01
5.6
5.9

CPLEX

11
29
94
56

0.33
0.82

3.5
2.0

MLLP
+elem.

cuts
+logic

cuts

9
13
63

5

0.35
0.52

2.6
0.6

MLLP
+elem.

cuts
+logic

cuts
+logic
relax.

3
3

97
3

0.40
0.42
8.1
0.9

MILP
+logic

cuts

3
3

33
3

0.18
0.23
3.3
0.4

CPLEX
+logic

cuts

7
4

40
15

0.40
0.28

3.5
1.4

Table 2: Node counts and computation times in seconds for separation network synthesis prob-
lems.

table indicate the importance of using relaxations. The next column illustrates the expense of
generating dual cuts, as discussed in Section 5.2.

The next three columns of the table compare MLLP, MILP and CPLEX using relaxations
that have the strength of the traditional continuous relaxation of the original problem; in
the MLLP case, this requires the elementary cuts (53). The next column adds the logic cuts
described above to the MLLP model but not their relaxations. The last three columns add
logic cuts to the MILP and CPLEX models and elementary relaxations of them to the MLLP
model.

The results suggest that adding nonvalid logic cuts can bring a substantial improvement
in an MILP context. They also reduce the number of nodes generated by the CPLEX MILP
routine, which indicates that their employment does not merely duplicate the action of the
CPLEX preprocessor. Experiments reported in [50] provide a similar indication for the OSL
preprocessor. The logic cuts reduce the number of nodes for MLLP, but this is not reflected
in the computation times. Comparison of methods within a group suggests that, as predicted,
the traditional 0-1 formulation is at least as effective as the MLLP formulation. In fact, the
addition of relaxations for the logic cuts makes the MLLP approach mode sluggish than MILP.

This is an instance in which the logical point of view provides useful cuts, but logic-based
modeling confers no computational advantage.

The use of propositional variables is highly advantageous, however, when semicontinuous
variables are added to the problem. It is inefficient to represent semicontinuity with inte-
ger variables, for two reasons, both noted earlier: the continuous relaxation, like any linear
relaxation of semicontinuity, is useless, and the 0-1 representation is nonintegral.

The 10-process and a 38-process problem described in [55] were solved. The MLLP repre-
sentation (3) for the semicontinous variables was used. No relaxation was used for the resulting
disjunctions because, as just noted, any relaxation is useless. Elementary cuts were generated
for the disjunctions yt- V y{. The nonvalid logic cuts described above were used in the MLLP,
MILP and CPLEX models, but no relaxations were generated for them in the MLLP model.
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Problem

10 processes, version 1
10 processes, version 2
38 processes, version 1
38 processes, version 2
38 processes, version 3
38 processes, version 4
38 processes, version 5

MLLP
5

13
729

1907
1161
1901
1081

Nodes
MILP

29
35

1083
3237
1999
2861
1561

CPLEX
24
52

677
868
345
747
296

MLLP
0.24
0.41
199
559
306
514
287

Seconds
MILP

0.82
0.88
376

1173
836

1093
551

5

CPLEX
0.65
1.47
178
271
104
229

89

Table 3: Node counts and computation times in seconds for 10-process and 38-process network
synthesis problems.

The results appear in Table 3. The 10-process problem has 3 semicontinuous variables, and
the 38-process problem has 7. Different versions of the problem were obtained by varying the
time horizon and the placement of intervals.

The results show that a logical representation of semicontinuity roughly halves the com-
putation time, even though semicontinuity accounts for only about half the discrete variables.
A reasonable approach for these problems would therefore be a) to create a relaxation with
traditional 0-1 variables to represent processing units, and b) to represent semicontinuity with
prepositional variables without adding further cuts to the LP relaxation. The MLLP frame-
work provides this kind of flexibility.

The CPLEX preprocessor eliminated most of the rows and columns of the 38-process prob-
lems (but not the 10-process problems) and therefore obtained superior performance on these
problems. It is impossible to analyze this result without detailed knowledge of the preproces-
sor. Perhaps the operation that proved so effective could be added to the MLLP algorithm. In
any case the object here is to isolate the effect of using a logic-based versus a 0-1 representation
of semicontinuity.

7.3 Warehouse Location Problems

The warehouse location problems illustrate the generation of logic cuts from a knapsack con-
straint. It is also a case where a logic-based formulation is less efficient than the traditional
0-1 formulation.

The formulation of elementary cuts for the disjunctive constraints yi V y[ is the same as in
the network synthesis problems. These cuts are again facet-defining, and the 0-1 representation
is again integral. The MLLP is also a little larger than the MILP model, because it contains
elementary cuts for the disjunctions, and furthermore because the MILP model combines the
capacity constraints with the big-M constraints, variables Z{. One would therefore expect an
MILP formulation to have a small advantage over an MLLP formulation.

The fact that total installed warehouse capacity must accommodate total demand gives
rise to the valid knapsack constraint,

(57)

It can be viewed as a logical formula whose elementary relaxation can be added to the LP
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Problem

CAP41
CAP42
CAP43
CAP44
CAP51
CAP61
CAP71
1
2
3
4
5
6

No.
whse

16
16
16
16
16
16
16
10
10
10
10
10
10

Cap.
ratio
1.37
1.29
1.29
1.37
2.75
3.86

16.00
6.12
5.10
4.08
3.06
2.04
1.02

MLLP
57
59
61
43

1239
2147
3481

61
63
71
49
19
3

Nodes
MILP

81
81
83
61

1429
2631
4495

147
45
73

173
31
21

CPLEX
62
57
42
40

1134
3017
8830

31
25
59

138
27
20

MLLP
8.6
8.9
9.1
7.1
172
266
409
1.21
1.34
1.54
1.11
0.45
0.16

Seconds
MILP

8.8
8.6
8.9
6.8
135
237
398

0.70
0.67
1.14
2.61
0.45
0.30

CPLEX
5.5
5.5
4.4
4.3
92

235
658

0.57
0.52
1.17
2.50
0.55
0.32

Seconds pei
MLLP

0.15
0.15
0.15
0.17
0.14
0.12
0.12

0.020
0.021
0.022
0.023
0.024
0.053

MILP
0.11
0.11
0.11
0.11
0.09
0.09
0.09

0.015
0.015
0.016
0.015
0.015
0.014

node
CPLEX

0.09
0.10
0.10
0.11
0.08
0.08
0.07

0.018
0.021
0.020
0.018
0.020
0.016

Table 4: Node counts, computation times in seconds, and seconds per node for warehouse
location problems.

model:

Contiguous cuts can be derived from (57) as described in Section 6.5. These clauses have the
form Vie/ V* **"& n a v e elementary relaxations,

Seven warehouse location problems from [7] were solved, and the results appear in Table 4.
Each problem has 50 demand points with a total demand of 58,268. Bach warehouse has the
same capacity, and the ratio of total warehouse capacity to total demand is shown.

The contiguous cuts were used in the MLLP model but not the MILP model. They result
in a 20-30% reduction in the number of nodes but contributed to a 30-50% increase in the*
amount of time per node, because of they enlarge the LP model. The net result is that MLLP
is slightly slower than MILP. The contiguous logic cuts are therefore useful, but as predicts!.
one should use them in a traditional MILP relaxation.

Problems 1-6 in the table were solved to test the hypothesis that contiguous cuts have
greater effect when the problem is more tightly constrained, as roughly indicated by the ratio of
total warehouse capacity to total demand. The problems are identical except for the warehouse*
capacity. There are 7 demand points with demands 4,5,6,7,8,9,10. The data tend to confirm
the hypothesis.

7.4 T h e Progressive Party Problem

MLLP has substantial modeling and computational advantages for this problem. Its logical
notation permits a simpler statement of the constraints, as already seen in Section 2.4. The
computational advantage stems primarily from the huge number of discrete variables, only
a few of which correspond to linear constraints. MLLP can process them logically without
enlarging the LP relaxation, which contains only a handful of constraints at each node.
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The MLLP formtdation was augmented with a simple logic cut that constrains the number
of host boats to be no less than the number of periods:

t € /

This was represented by an elementary cut in the LP relaxation at each node. As in the
warehouse location problem, there is a valid knapsack constraint that ensures there is enough
capacity to meet total demand:

£ 5 > (59)

An elementary cut for this was added to the LP relaxation. Contiguous cuts were also generated
for (59) and their relaxations added to the LP. Elementary cuts were not generated for the
knapsack constraints (4d). The logic processing was achieved by a section of code that in effect
implements the unit resolution algorithm of Fig. 9.

The MILP model was also augmented with the logic cuts (58). There was no need to add
(59) because it is a linear combination of the other constraints.

The computational results appear in Table 5. Due to the difficulty of the problem, only
the CPLEX implementation of MILP was used. It was run with a feature that identifies
specially ordered sets (sosscan), because MLLP's processing of propositional variables that
are not associated with linear constraint sets can be viewed as incorporating the advantage of
using type 1 specially ordered sets.

The original problem described in [60] had 29 boats and 6 periods and was solved by the
ILOG Solver, but only after specifying exactly which boats were to serve as hosts, and even
then only after manual intervention. The authors of [60] report that XPRESSMP solved an
MILP model of the problem with 15 boats and 4 periods, but only after specifying that only
boats 1-8 (in descending order of K% — a) could serve as hosts and only crews 5-15 could
visit other boats (the optimal solution uses 5 hosts). The problems were solved here in their
original form. When the problem contains | / | boats, they are the | / | largest boats as measured
by Ki - ct.

Both solution methods could no doubt be improved with more intelligent branching and
other devices. But the underlying computational advantage of MLLP is clear and is due
primarily to a much smaller LP relaxation and the speed of logic processing.
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Figure 3: Convex hull of the feasible set of a scheduling disjunction.

An even more striking example is that of semicontinuous variables. If 0 < XJ < 4 and the
disjunction

(0 < Xj < 1) V (3 < Xj < 4)

is imposed, the convex hull is the entire interval [0,4]. Any conceivable relaxation is therefore
useless.

5.2 Disjunctive and Dual Cuts

A relaxation of (8) can be obtained by generating valid cuts that partially or completely
describe the convex hull. Balas [4] characterized valid cuts for (8) as follows. First, note that
bx > 0 is a valid cut for a feasible disjunct Alx > a1 if and only if it is dominated by a
nonnegative linear combination (or surrogate) of Alx > a*. A dominating surrogate can be
written uAx > tut, where 6 > uA, /3 < ua and u > 0. But bx > /? is a valid cut for the
disjunction as a whole if it is valid for each disjunct; i.e., for each disjunct a surrogate can be
found that dominates bx > ft.

Theorem 1 (Balas) The inequality bx > 0 is a valid cut for (8) if any only if for each feasible
system A*x > a1 there is a u* > 0 such that b > rfA* and /? < ti*a*.

Given any set of surrogates utAtx > t**a*, if x > 0 one can immediately write the valid
disjunctive cut

fmax{txtAt}>) x > minima1} (9)
\UzT l V - t€TX J y J

for (8), where the maximum is componentwise. Theorem 1 clearly implies that if x > 0, every
valid cut is dominated by a disjunctive cut (9).

The strength and usefulness of a disjunctive cut (9) depends radically on the choice of
surrogates. One could in principle generate disjunctive cuts to define every facet of the convex
hull, but this is often impractical. The task of obtaining a good relaxation for (8) is in essence
the task of choosing multipliers ul judiciously.
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One initially attractive choice for ul is given by the solution of a dual problem. Each
surrogate should ideally give the best possible bound on the objective function ex. That is,
uf should be chosen so that the minimum value of ex subject to utAtx > vta1 is maximized.
The desired u* is easily seen to be the optimal solution of the LP dual of min{cx | A*x > a*},
where u* is the vector of dual variables. (To put it differently, the surrogate dual for linear
programming is identical to the LP dual [22].)

The difficulty with this approach is that because Alx > a* is only a small part of the original
constraint set, it may have no coupling with the objective function. That is, the variables XJ
that have nonzero coefficients in ex may have zero coefficients in Atx > a*, and vice-versa.
This means that ex provides no information to guide the choice of u\ a situation that is in
fact common in practice.

A possible remedy is to include more constraints in the problem whose dual is solved, so as
to capture the link between ex and Afx > a*. This can be done as follows. At any node of the
search tree a system Ax > a of certain linear constraints are enforced by true propositional
variables. If Ax > a is included in each term of the disjunction (8), it becomes

For each t one solves the dual of

min ex
s.t. A*a;>a* (u*) (10)

Ax > a (u)

where (u^u) are the dual variables as shown. An optimal solution of the dual supplies a
reasonable set of multipliers ul for the disjunctive cut (9).

Unfortunately this approach appears to be impractical, because (10) is generally a large
LP, and it is time consuming to solve the dual of (10) for each disjunct. In fact, if one branched
on the disjunction by enforcing each disjunct in turn, (10) is precisely the LP one would solve
at each child node. So one might as well branch on the disjunction rather than relax it. There
could be some advantage in relaxing several disjunctions simultaneously, but results reported in
Section 7.2 indicate that the time investment is impracticably large. The remaining discussion
will therefore focus on much faster mechanisms for choosing effective multipliers u*.

5.3 Elementary Cuts

The most common sort of disjunctive constraint (8) is one in which each disjunct is a .single
inequality.

II

Beaumont [6] showed how to generate a cut for (11) that is equivalent to the continuous
relaxation of the traditional 0-1 formulation of (11). The latter is

alx > a1 - Mt{\ - yt), * € T

(12)

0 < x < m
j,te{o,i}, ter.
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Each Mt is chosen so that a* — Mt is a lower bound on the value of alx. The bounds 0 < x < m
are imposed to ensure that such a lower bound exists. It can be assumed without loss of
generality that Mt > 0, because otherwise the inequality is vacuous and can be dropped.
Beaumont obtains a cut by taking a linear combination of the inequalities in (12), where each
inequality t receives weight I/Aft. This yields what Beaumont calls the elementary cut for

Theorem 2 (Beaumont) The elementary cut (13) is equivalent to the continous relaxation
of (12). That is, the feasible set of (13) and 0 < x < m is equal to the projection of the feasible
set of the continuous relaxation of (12) onto the x-space.

One can also prove equivalence by applying Fourier elimination to (12) in order to eliminate
y. It is easy to show that (13) and 0 < x < m are the resulting inequalities.

A similar technique obtains elementary cuts for all logical formulas that are expressible as
knapsack constraints,

dy>6
yt -> (a*x > at), t € T (14)
0 < x < TO,

where d > 0. It is true that (14) can be put in disjunctive form using the schema (7), but this
may require a large number of disjuncts. (Disjunctions are of course a special case of dy > S
in which 6 = 1 and each dj € {0,1}.) The 0-1 representation of (14) is

a*x > a* - Mt(l - y t ) , teT
0 < x < m
dy > 6 ( 1 5 )

yte{o,i}, teT.

A linear combination of the inequalities, using weights dt/Mtj yields the elementary cut,

This is in general weaker than the continuous relaxation of (15), however. If ^2tdt = 6, for
example, (15) forces all the disjuncts to hold, where (16) only forces a linear combination of
them to hold.

Beaumont obtains Mt solely from the bounds 0 < x < m by setting

at - Mt = 53mn{O,a$.}mj. (17)
3

In many cases a better lower bound can be obtained for alx, resulting in a stronger cut. One
method is to minimize alx subject to each of the other disjuncts and 0 < x < m and pick the
smallest of the minimum values. Mt is therefore chosen so that

at — Mt — min jmin{a*x | a1'x > a*#, 0 < x < m}\. (18)
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Figure 4: A supporting elementary cut (a) and a nonsupporting elementary cut (b).

The computation involved is negligible.
Consider for example the following constraint set, whose feasible set is the shaded area in

Fig. 4.
(xi + 2x2 > 2) V (3xi + x2 > 3)
0 < Xj < 2.

The 0-1 formulation is

x2 > 3 -
J/i + V2 = 1

Beaumont puts (Afi, M2) = (2,3) which results in the cut | x i + | x 2 > 1. By contrast, (18)
puts (Mi,M2) = (1,2), which yields the stronger cut xi + x2 > 1. This is a supporting cut in
the sense that it defines a supporting hyperplane for the feasible set.

Even when (18) is used to compute M*, the resulting cut may fail to be supporting. Consider
the constraints (Fig. 5),

(-xx + 2x2 > 2) V (2xi - x2 > 2)
0 < Xj < 2.

(17) sets (Mi, M2) = (4,4), which results in the useless cut xi + x 2 > 0. The cut can obviously
be strengthened to xi + x2 > 1.
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(a)

Figure 5: An elementary cut (a) and a strengthened elementary cut (b).

When the inequalities a*x > at in (14) are replaced by systems of inequalities Alx > a',
many elementary cuts are required to achieve the effect of the traditional relaxation. Let each
system A*x > a* consist of inequalities Aux > a\ for t € It- The 0-1 formulation is

A*x > a* - M*(l - yt),
0 < x < m
dy>S
yt e {0,1}, teT.

teT

(19)

Here M* is an array such that for each i 6 /*, a\ — M\ is a lower bound on Aux. Repeated
applications of Fourier elimination reveal that the projection of the feasible set of (19) onto
the x-space is described by the set of inequalities of the form,

for all possible vectors ( t j , . . . , i\x\) G /i X . . . X ^
Elementary cuts may therefore be impractical when the yt's correspond to systems of

inequalities. In such cases one can use optimal separating cuts (described below) or the tradi-
tional relaxation.

5.4 Supporting Elementary Cuts

The example of Fig. 5 shows that an elementary cut can fail to be supporting. In such cases
it is a simple matter to increase its right-hand side until it supports the feasible set, thus
obtaining a strengthened elementary cut. In fact there is a closed-form formula for the best
possible right-hand side. The formula allows one to check easily whether a given elementary
cut is supporting, and when it is not, to improve upon the traditional continuous relaxation
the cut represents.
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Figure 6: A supporting elementary cut (a) and a facet-defining cut (b).

Figures 4 and 5 may suggest that two disjuncts alx > c*i, a2x > c*2 produce a supporting
elementary cut if and only if the vectors a1, a2 subtend an acute angle, and that a similar
relationship might be discovered for more than two disjuncts. A third example reveals that
the situation is more complicated than this. Figure 6 shows the feasible set for

0 < XJ < 3

The elementary cut is 3zi + 2x2 < 12, which is supporting even though ( -3 ,1) and (0 , -1 )
subtend an obtuse angle.

A more adequate analysis goes as follows. Let bx > (3 be the strengthened elementary cut,
where bx is the left-hand side of the elementary cut (16). Because bx>f3 defines a supporting
hyperplane for the feasible set of (11), /? is the smallest of the minimum values obtained by
minimixing bx subject to each of the disjuncts alx > at. That is,

mm (20)

where
f3t = min Ibx \ alx > au 0 < x < 1

The computation of /3t is simplified if 6 > 0, because in this case the upper bounds x < m can
be ignored. To this end one can introduce the change of variable,

~.-fx3 if 6i > 0
— Xj otherwise

The strengthened elementary cut in terms of x, namely bx > /?, can now be computed, where
bj = |6j|. The right-hand side of bx > /3 can then be recovered from (20) by setting

Mjbj. (21)

6, <0
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It remains to compute
fit = min Ibx | afx > d, x > Oj , (22)

where

3 \ -a) otherwiotherwise * '

and
(24)

3
<0

Because 6 > 0, LP duality applied to (22) yields that

fit = min \-Jr\max{dt,0}. (25)

This proves,

Theorem 3 The elementary cut (16) for the disjunction (11) is supporting if and only if its
right-hand side is equal to fi, as defined by (20), (21) and (25).

5.5 Integral 0-1 Representations

The traditional continuous relaxation of a disjunctive constraint actually has two liabilities. It
can be weak, as already noted, but even when it is strong, it may permit fractional solutions
when the original disjunction is satisfied. This means that a traditional branch-and-bound
method can keep branching even when a feasible solution has been discovered. It is therefore
best to check disjunctions (as well as other logical constraints) directly for feasibility, as done
in MLLP.

The 0-1 formulation of the disjunction (8) is the following.

A * * > a ' - M t ( l - y t ) , t£ T
0 < x < m

t€T
! / t€{0, l} , t € T ,

where Mt is given by (18). The claim is that when x is fixed to some value x, an extreme
point solution y = y of (26) can be nonintegral even when x satisfies (8). An example of this
is presented by a simple semi continuous variable, x 6 {0} U [di,^]* or

(-z > 0)v(x>sx)
0 < x < s2.

The continuous relaxation of (26) is

—x > —^2(1 — y)
m> ^ c c- «i

(27)

-x > -«2( i - y)
x > S\ -

0 < X <
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If x is fixed to x and (27) is projected onto y, the result is

1 — — < y < l - —, 0 < y < 1. (28)
S\ S2

If 0 < x < 52, y = 1 — f- is an extreme point solution of (28) and therefore (27), and it is
nonintegral whenever 0 < x < S2- So (27) can have extreme point solutions with fractional y
even when x G [51,62]? and even though (27) is the best possible (convex hull) relaxation of
(26). The extreme point solutions for x G [̂ 1,62] are guaranteed to have integral y only when
$x = 52; i.e., when x is essentially a rescaled binary variable.

The idea can be defined in general as follows. Let Px be the set of points y that satisfy
(26) when x is fixed to x. Let the continuous relaxation of (26) be integral if for every (x,y)
satisfying (26) such that y is an extreme point of P s , V is integral.

The following characterizes integral relaxations. A disjunct of (8) is redundant when its
feasible set lies within that of another disjunct. Obviously, redundant disjuncts can be dropped
without effect.

Theorem 4 Suppose that the disjunction (8) contains no redundant disjuncts. For t,t' G T
with t ^t' define

y;(tf) = maxji/t | Mtyt < Alx - a1 + Mu A1'x > a'\ 0 < x < m, yt < l} .

Then the continuous relaxation of (26) is integral if and only ify*{t') = 0 for every pair t,tf G T
with t ^ t9.

Proof. It is clear that yf(t') can be written,

yW) = max [yt \ A*x > a1 - M t(l - y% Avx > a*',0 < x < m, yt < l } . (29)

It is convenient to let St = {x \ Alx > a*, 0 < x < m} for t G T.
Claim. For any x G Sti and any t ^t',

y ; ( 0 = max{2/t |yGPx}. (30)

Proof of claim. It suffices to show that any yt that is feasible in (30) is feasible in (29), and
vice-versa. First suppose yt is feasible in (30). Then by letting x = x it is seen to be feasible
in (29), because A*'x > a*' by virtue of the fact that x G St/. Conversely, let yt be feasible in
(29). To see that it is feasible in (30), set yti = 1 - y% and yt» = 0 for t" ^ t,tf. It is enough
to show

^ " x ^ a ^ ' - M t ^ l - y t " ) (31)

for all t" G T. But (31) holds for t" = t by stipulation. It holds for t" = t' because x £ St,,
and it holds for t" ^ t,t' by definition of Mt«. This proves the claim.

Now suppose that yJT(t') > 0 for some t,t' with t ^ tf. Because disjunct t1 is not redundant,
one can choose x G St,\St. This implies that j£(f) < 1, which together with yf(t') > 0 means
that yt(t') is nonintegral. Also (30) implies that some y with yt = #(*') is an extreme point
of Px. It follows that (26) is not integral.
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For the converse, suppose that y*(<') = 0 for all pairs t,t* with t # t'. It suffices to show
that for any x satisfying (8), any given extreme point y of P$ is integral. If it is supposed that
x G 5t/, the following can be stated.

yt* | y G P*} = 1
y, | j /GP*} = 0, t*t*.

The first is due simply to the fact that x G St*. By the above claim, the second is equivalent to
y*(t') = 0, which is given. But (32) implies that P$ is a line seqment of unit length extending
from the origin in a positive direction along the ytt axis. Thus any extreme point y G P* is
integral, which means that (26) is integral. •

Corollary 1 Consider a disjunction (11) with one inequality per disjunction and bounds 0 <
x < m. If (11) contains no redundant disjuncts, then (26) is integral if and only if

max {a'z | a1'x > av, 0 < x < m} = at - Mt (33)

for every t,t' £T with t±t*.

The conditions in Theorem 4 and Corollary 1 are quite strict. In fact,

Corollary 2 The continuous relaxation of (26) is integral only if the feasible sets described by
the disjuncts of (8) are disjoint.

Proof. Suppose two of the feasible sets intersect, e.g. those corresponding to disjuncts /
and t'. Then Hf(f) = 1, which violates the condition of the theorem. •

Not even disjoint feasible sets are sufficient for integrality, as the above example shows.

5.6 Beaumont's Cuts

Beaumont [6] identified a class of facet-defining cuts for disjunctive constraints in which each
disjunct consists of a single inequality, as in (11). They are facet-defining in the sense that,
under certain conditions, they define facets of the convex hull of the feasible set of (11).
Unfortunately, the conditions are often unsatisfied, which limits the usefulness of the cuts.

Beaumont's approach is essentially a reasonable method for choosing multipliers u* so a>
to generate a disjunctive cut (9). He first incorporates the bounds x < m into the disjunction
(11) to obtain

The vector of nonnegative multipliers for each disjunct is ul = (v*,u;t), where Wt corresponds
to the last inequality in the disjunct. The object is to derive a disjunctive cut bx > j that
satifies

b > wtat — vl

0 < wtat — vtm

for all t. For a given wt (yet undetermined), it is reasonable to make the components of 6 as
small as possible to get a tight constraint. So let

b = minima*}, (34)
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where the minimum is taken componentwise. One can now set

v% = uta
t - 6, t e T,

because (34) implies vl > 0. To make the right-hand side of the cut as tight as possible, set

/? = min {utat - vtm\ . (35)

It remains to pick values for the wt's. Beaumont's choice is equivalent to setting wt = Mt when
Aft is derived from the variable bounds as in (17) and a* < 0. Thus

— atm
(36)

The approach breaks down when the denominator is nonpositive, whereupon Beaumont sug-
gests letting

at — min{a*,0}m'

Theorem 5 (Beaumont) The cut bx > f3 given by (34)-(36) is facet-defining for (11) if
at - a

%m > 0 for all t G T.

Beaumont's cut can therefore be superior to a supporting elementary cut. This is illustrated
in Fig. 6, where Beaumont's cut is the facet-defining cut 2x\ + x<i < 7.

Assuming at — atm > 0 is equivalent to assuming that the point x = m is infeasible, in
which case it makes sense to separate this point from the feasible set. x = m is often feasible,
however, as in the example of Fig. 4. Here (w\yW2) = (— ,̂ —|), and one must revert to (37),
which yields the useless cut 3xi + 2^2 > —2.

The underlying difficulty is that Beaumont's approach has no mechanism for detecting
which corner of the box 0 < x < m should be cut off from the feasible set. An appropriate
corner could in effect be identified by using a change of variable similar to one discussed earlier,
namely

-. _f mj — xj when convenient
J 1 Xj otherwise.

A "convenient" transformation would be one that makes at — a%m > 0 for as many disjuncts
t as possible, where af and at are given by (23) and (24). This poses an integer programming
problem that could be solved heuristically. However, because of the computation involved this
option will not be pursued further.

5*7 Optimal Separating Cuts

One way to identify an appropriate point to be cut off by a disjunctive cut is simply to cut off
the solution of the current relaxation. This is also a mechanism for using information about
the objective function, because the current solution was obtained by minimizing the objective
function. Fortunately it is straightforward to state a small LP problem whose solution identifies
an separating cut if and only if one exists. Thus if no cut is found, the current solution is known
to lie within the convex hull of the feasible set, and branching is necessary to obtain a feasible
solution—unless of course the current solution is already feasible. The cut is optimal in the
sense that it is chosen to maximize the amount by which the current solution violates it.
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Another attraction of optimal separating cuts is that they can be generated for the case in
which there are several inequalities in each disjunct. A logical constraint gi(y,h) other than a
disjunction must, however, be first put in disjunctive form.

Suppose that the solution x of the current LP relaxation is to be separated from the feasible
set of the disjunctive constraint (8). Any upper bounds x < m should be incorporated into
each disjunct of (8). Because any disjunctive cut is defined by a choice of multipliers u1, an LP
model can be formulated so as to find a set of u"s that define a cut bx > 0 that is maximally
violated by x. Such a model is,

max f3-bx , (38)
s.t. /? < ula\ t € T

b > ulA\ t 6 T
- e < 6 < e

u* > 0, t 6 T

/?, 6 unrestricted.

Note that the variables in the model are f3,b,u. The objective function measures the amount
by which x violates the cut. If the objective function value is zero, there is no separating cut.
The constraint — e < b < e, where e is a vector of ones, ensures that the solution is bounded.
It results in no loss of generality because an optimal cut can always be rescaled to satisfy the
constraint.

The model (38) has an interesting dual.

min (s + i)e
s.t. x ^ = s-t

A'ar* > t 6 T («*) (39)

If s — tis fixed to zero and x is a variable, the constraint set is Balas' convex hull representation
for the disjunction (8) [4]. That is, when s —J = 0, the projection of the feasible set of (39) onto
the x-space is the convex hull of the feasible set of (8). (This is related to the fact, observed by
Williams [69], that the dual of the dual of a disjunctive programming problem is the convex
hull representation of the problem.) The problem (39) therefore seeks a point YlteT x* m ^
convex hull that is closest to x, as measured by the rectilinear distance.

An optimal separating cut can be superior to a supporting elementary cut. Consider the
example of Fig. 6, which becomes

The solution of (38) is 0 = - | , 6 = ( - 1 , - 1 ) , ul = (3 ,0 , ! ) , u2 = (^,1,0), which produces
the facet-defining cut 2xi + X2 < 7.

The optimal separating cut need not be facet-defining, however. If the convex hull of the
disjunction is the box defined by 0 < x3; < 1 for j = 1,2, the optimal separating cut for
x = (2,2) is xi + x2 < 2.
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6 Logic Processing

The logical aspect of MLLP revolves primarily around two issues: What repertory of logical
formulas are available to express discrete constraints? What logic processing algorithms can
be used to derive implications from a set of logical formulas? After a brief discussion of these
two questions, subsections will be devoted to several classes of logical formulas of increasing
generality. Basic logic processing algorithms will be presented for each.

Logic cuts can also be developed manually, based on insight into the problem structure.
This is discussed in Section 6.7. Finally, it is shown how logic cuts can be obtained by gener-
alizing Benders decomposition to an MLLP context.

6.1 Logical Formulas

In theory a logical formula g%(y, h) can represent any function of (y, h) that takes the values
true and false. But there are certain syntactic forms that have proved useful for expressing
constraints. A few basic ones will be discussed here.

Logical clauses. A logical clause is a disjunction of literals, which are atomic propostions y3 or
their negations -IJ/J. Thus the expression y\ V -13/2 V y$ is a clause, where V is an inclusive
"or." In theory conjunctions of logical clauses can express any function of y alone (i.e.,
any boolean function), but it may be convenient to use other forms as well. Implications
(e.g. yi —• jfe) and equivalences (y\ = 1/2) a*e readily defined in terms of clauses.

Extended clauses. These have the form, "at least fc of L i , . . . , Ip are true," where the L/s are
literals. They, too, express boolean functions but are often more convenient than clauses
because they have an a quasi-arithmetical as well as a logical aspect.

Knapsack constraints. The familiar 0-1 knapsack constraint by > 13, where each yj G {0,1},
can also be regarded as a logical formula that is true when the sum over bj for which yj
is true is at least /?. Boolean functions of this form are called threshold functions and are
studied in the electrical engineering literature [58]. They are difficult to process logically,
but they can be used to generate logic cuts in the form of clauses and extended clauses,
which are easily manipulated.

Multivalent clauses. These generalize clauses to accommodate multivalent variables and are
adequate to express any bivalent function of (y, h). They are disjunctions of terms having
the form hj € H, where H is a subset of the domain of hj.

The all-different predicate. As in the case of bivalent clauses, it is useful to supplement
multivalent clauses with other types of syntax. One particularly useful formula states
that a set of variables hj all have different values, a condition that is awkward to capture
with MILP inequalities.

6.2 Logic Processing Algorithms

The goal of logic processing is to extract information that is implicit in the logical formulas
5«(j/^)« It is essentially an inference process that derives logic cuts, or implications, from the
formulas. It can be useful in two ways:
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• The logic cuts may give rise to elementary or other inequality cuts that can strengthen
the LP relaxation.

• They may reduce backtracking by ruling out partial assignments that cannot be extended
to feasible solutions; these are known as redundant assignments in the constraint satis-
faction literature [63]. For instance, if there is no feasible solution (3/1,..., yn) in which
(yu J/2) = (T, F), a logic cut -ij/i V y2 would prevent one from exploring a subtree defined
by (yi,]b) = (TjF) in order to discover this.

As noted earlier, a large body of logic processing algorithms have been developed by the
research communities associated with logical inference, constraint satisfaction, constraint pro-
gramming and logic programming. The discussion here is limited to two basic types of algo-
rithms that can form the logical basis of an MLLP solver. One algorithm is fast but incomplete
(i.e., does not derive all possible inferences), and one is a much slower, complete algorithm.

The incomplete algorithm is a simple constraint propagation technique and takes the form
of unit resolution ("forward chaining") in the case of logical clauses. It is probably adequate
for most applications, but when a more powerful inference algorithm is required, the resolution
algorithm can be used. It is a well-known complete inference method for logical clauses and
can be generalized to extended and multivalent clauses. Resolution can be quite slow and is
unsuitable for problems with a large number of propositional variables. There are many appli-
cations, however, in which the number of discrete variables is small relative to the continuous
part of the problem. In such cases it may be worthwhile to extract as much information as
possible from the logical formulas in order to avoid solving large LP problems.

6.3 Logical Clauses

In principle a logical formula that contains only bivalent variables yj can always be written
as a conjunction of clauses, i.e., in conjunctive normal form (CNF). For example, the formula
(yi A 3/2) V jfc, where A means "and," can be written (3/1 V 3/3) A (y2 V 3/3). Also the implication
Vi -* V2 (or 1/1 D 1/2) can be written -iyi V y2y and the equivalence 3/1 = y2 is rendered
hVi Vy2)A(yi V-.y2).

CNF is completely expressive because any formula in bivalent variables can be regarded as
a boolean (true-false) function f(y) = / (y i , . . . , ym). If y = v 1 , . . . , vN are the values of y that
make f(y) false, then the following CNF formula is equivalent to /(y),

N m

A V «(*}).

where yj(t>*) is -iyj if v* = true and is yj if vj = false.
This conversion to CNF requires exponential time and space in the worst case. However, a

formula involving the connectives -1, V, A, —•, = (and other connectives with linear-time trans-
formations to CNF) can be converted to CNF in linear time by adding new variables. The
algorithm goes as follows. If a given formula F has the form AAB, where A and B are subformu-
las, then apply the algorithm to A and B separately, and conjoin the results. If F has the form
A —• B then rewrite it as -u4vB and apply the algorithm to the resulting formula, and similarly
for A = B. If jPhas the form AVfl, then write it as (ym+\ = A)A(ym+2 = 2?)A(ym+1 Vj/m+2),
where ym+i, ym+2 are variables that do not occur in F, and apply the algorithm to the resulting
formula (see [71] for refinements). The algorithm stops when CNF is achieved.

29



In practice an MLLP solver would accept several connectives that are readily converted to
CNF and make the conversion. It should normally be unnecessary to introduce new variables,
because formulas are usually short enough so that a CNF equivalent without them is also short.

A simple resolution algorithm [47, 48, 54] derives all implications of a set of clauses. Let
clause C\ absorb clause C2 when all the literals of C\ occur in C2\ C\ implies C<i if and only
of C\ absorbs C<i* Two clauses have a (unique) resolvent when exactly one variable yj occurs
positively in one and negatively in the other. The resolvent is a disjunction of all literals that
occur in either clause except yj and -iyj. For instance, 3/2 V -^3 is the resolvent of 3/1 V y2 and
-ijh V -1J/3. Given a set 5 of clauses, the resolution algorithm picks a pair of clauses in 5 that
have a resolvent that is absorbed by no clause in 5, and adds the resolvent to 5. It repeats
until there is no such pair, which occurs after finitely many iterations.

Theorem 6 (Quine [47, 48]) A clause set S implies clause C if and only if the resolution
algorithm applied to S generates a clause that absorbs C. In particular, 5 is unsatisfiable if
and only if resolution generates the empty clause.

This theorem will follow from a more general result to be proved in Section 6.6.
Linear relaxations can be generated for clauses derived by resolution, if desired. A clause

is simply a disjunction. So if the clause contains all positive literals, and each of its variables
corresponds to a linear constraint set, an elementary or other type of cut can be generated as
discussed in Section 5. If a derived clause is a unit clause, i.e., contains a single literal yj or
-ij/j, then yj can be fixed accordingly.

Resolution not only has exponential complexity in the worse case [24] but can be very
slow in practice [27]. A much faster inference algorithm that sacrifices the completeness of
resolution is unit resolution. It is the same as full resolution except that one of the parents of
a resolvent is always a unit clause. Its incompleteness can be seen in the example,

yxv y2y 3/3
yiV
y\V

Resolution fixes y\ to true, but unit resolution does nothing because there are no unit clauses
to start with. Unit resolution is efficient, however, as it runs in O(nL) time, if there are n
variables and L literals, and it tends to be very fast in practice. A precise algorithm that is
adapted to the more general case of extended clauses appears in Fig. 7.

Unit resolution is a complete inference algorithm for certain classes of clauses, such as
Horn clauses, renamable Horn clauses, extended Horn clauses, etc. [13, 14, 15, 56, 62]. No
known structural property of a clause set is necessary and sufficient for the completeness of
unit resolution.

Unit resolution has the same inferential power as linear programming, in the following
sense. Suppose that the clauses of 5 are written as a system Ay > a of 0-1 inequalities in the
usual fashion; i.e., a clause \JjejLj is written Y^jeJVjiLj) > 1, where yj(Lj) is yj if Lj = yj
and is 1 — yj if Lj = ~^yj.

Theorem 7 (Blair, Jeroslow, Lowe [9]) Unit resolution finds a contradiction in the clause
set S if and only if the linear relaxation of the corresponding system Ay > a of 0-1 inequalities
is infeasible.
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Ay > a is infeasible when unit resolution finds a contradiction because unit resolution (unlike
resolution in general) simply adds the inequality representations of clauses. So deriving the
empty clause is equivalent to obtaining 0 > 1 from a nonnegative linear combination of Ay > a.
Conversely, if unit resolution detects no contradiction, then the inequalities that represent the
remaining clauses can be satisfied by setting each y3 = 1/2.

Although LP duplicates the effect of unit resolution, the latter is preferable for logic pro-
cessing because of its speed.

6.4 Extended Clauses

Extended clauses seem a particularly useful compromise between arithmetic and logic because
they express the notions of "at least" and "at most" but can be efficiently processed as logical
formulas. In fact, Barth's constraint-based solver for 0-1 optimization problems [5] reasons
with 0-1 inequalities only after converting them to extended clauses.

An extended clause of degree k can be written

where each L3 is a literal. Here the sum is not an arithmetical sum but simply counts the
number of literals that are true. Ordinary clauses have degree 1. To say that at most k are
true, one can write

£ l,- > \J\ - fc,

and one can use two extended clauses to say exactly k are true.
A complete inference algorithm ("generalized resolution") for extended clauses was pre-

sented in [27, 30] and is refined by Barth in [5]. It uses resolution as well as a diagonal
summation, where the latter is defined as follows. An extended clause YljeJ Lj > k + I is the
diagonal sum of the set of extended inequalities {^j^ Lj > k \ i € J} if J = |J»€J ^ but ^or

each i e J, i & J%. The algorithm of [27] is applied to a set 5 of extended clauses as follows.
If there are two clauses C\,C2 of degree 1 with a resolvent C that is implied by no extended
clause in 5, such that C\ is implied by an extended clause in 5 and similarly for C2, then add
C to 5. If there is a set E of extended clauses with a diagonal sum D that is implied by no
extended clause in 5, such that each clause in E is implied by some clause in 5, then add D
to 5. The algorithm continues until no more clauses can be added to 5.

Theorem 8 ([27, 30]) A set S of extended clauses implies clause C if and only if the gener-
alized resolution algorithm applied to S generates a clause that implies C.

Implementation of the algorithm requires recognition of when one extended clause implies
another. YljeJi L\j > &i implies YLj€J2 ^V — ^ ^ an(* onty ^

l^il - \{j eJinJ2\ Lxj = L2j}\ < An - k2.

When all of the literals of a derived extended clause are positive and correspond to sets
of inequalities, a linear relaxation can be formulated using one of the methods described in
Section 5. A unit resolution algorithm for extended clauses appears in Fig. 7.
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Let 5 be a set { ^ e j , Ltj > k{ 11 G /} of extended clauses,
where each L{j is yj or -ryj.

Let P be a stack of unit clauses, in i t ia l ly empty.
For each i G / with |Jt| = fc,-:

For each j G J% add ItJ to U.
Let Jt = 0.

While U is nonempty:
Remove L{ from U.
For each f G / with t G J{\:

If I t̂ = L't then
Let fct = fc,-l, Jt = Ji\{t}.

Else
If fct = |Jt| then stop; 5 is unsatisfiable.
Else

If ki = \Ji\ + 1 then
For each j G J, \ {<} add ItJ to J7.
Let Ji = 0.

Else
Let Ji = Ji\{t}.

Figure 7: A unit resolution algorithm for extended clauses.

Linear programming is a stronger inference algorithm for extended clauses than unit resolu-
tion. For example, LP detects the infeasibility of the following inequalities, but unit resolution
can do nothing with the corresponding extended clauses.

V\ + 2/2 + 3/3 > 2
( l - i / i ) + ( i - y 2 ) + ( i - y 3 ) > 2

No known inference algorithm has exactly the same effect as LP on extended clauses, unless
one views LP algorithms as inference algorithms. Generalized resolution is of course stronger
than LP.

6.5 Knapsack Constraints

A complete inference algorithm for knapsack constraints appears in [30], and an analog of unit
resolution can easily be devised for them. But they are perhaps best used as a source of logic
cuts that are more easily processed, such as clauses and extended clauses. The implied clauses,
for example, are identical to the well-known "covering inequalities" for the constraint, and
their derivation is straightforward (e.g., [23]).

It may be more effective, however, to infer extended inequalities. Although it is hard to
derive all the extended inequalities that are implied by a constraint, it is easy to derive all
contiguous cuts. Consider a 0-1 inequality dy > 6 for which it is assumed, without loss of
generality, that d\ > d2 > . . . > dn > 0; if dj < 0, reverse its sign and add dj to 6. A
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Let k
For j

Let
If

= 1. * = £?=!<*;
= l , . . . ,n:

; s = s — dj.
5 < S then
While 5 + dk < S

Let 5 = s + dk
If k > fc^ then

Generate the
Let fciast = fc.

> Mast =

••

, k = k

cut y\

= 0.

+ 1.

+ ...+yj>k.

Figure 8: An algorithm for generating all 1-cuts for a knapsack constraint dy > 5 in which
di > d2 > . . . > dn > 0.

contiguous cut for dy > S is one of the form,

(40)

where k is the degree of the cut and w < n the "weakness" (tu = 0 indicates a cut that fixes
all of its variables). In particular (40) is a t-cut because the first term is yt. (40) is valid if and
only if

Furthermore,

Theorem 9 ([35]) Every t-cut of weakness wfordy>5is implied by a 1-cut of weakness w.

The power of all t-cuts can therefore be obtained by generating only 1-cuts. The algorithm of
Fig. 8, presented in [35], does this in linear time. By way of example, the knapsack constraint

13yi

gives rise to the 1-cuts,

- 8j/3 + 6V4 + 5y5 + 3y6 > 30

V\ + V2 > 1

yi + V2 + yz + y* + ys > 3.

The first cut could be deleted if desired, because it is redundant of the second.

6.6 Multivalent Clauses

Multivalent clauses provide a convenient and versatile syntax for expressing logical formulas
that involve multivalent variables. A multivalent clause has the form

(41)
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where each Hj is a subset of the domain Dj of hj. For notational simplicity, it is assumed that
bivalent variables yj are regarded as 2-valued variables hj that take a value of, say, 1 when yj
is true and 0 when yj is false. If Hj is empty, the term (hj G Hj) can be omitted from (41),
but it is convenient to suppose that (41) contains a term for each j.

Any true-false function f(h) = f(h\,..., hm) can be expressed as a conjunction of multiva-
lent clauses. In particular, -<(hj G Hj) can be written (hj G Dj \ Hj), and (hj G Hj) -+ (hk G
Hk) can be written (hj e Dj \ Hj) V (hk € Hk). One multivalent clause \Jj(hj G H\j) implies
another \Jj(hj G Jifyj) if and only if H\j C #2j for each j. As examples of a multivalent clause
consider the following formula (4a) from the progressive party problem.

vijt = (ha = j)

It is formally expressed as two multivalent clauses,

e {o» v (fc« e
e {i» v (fca e

Resolution can be generalized to obtain a complete inference method for multivalent clauses.
The resulting algorithm is related to Cooper's algorithm for obtaining fc-consistency for a set
of constraints [18]. Given a set of multivalent clauses,

eHa), is I, (42)

the resolvent on hk of these clauses is

Ordinary bivalent resolution is a special case. To apply the resolution algorithm to a set 5 of
multivalent clauses, find a subset of 5 whose resolvent M is implied by no clause in 5, and
add M to 5. Continue until no further clauses can be added to 5.

The multivalent resolution algorithm is a complete inference algorithm for multivalent
clauses. The proof of the theorem uses the idea of Quine's original proof for ordinary resolution.

Theorem 10 A set S of multivalent clauses implies a multivalent clause M if and only if the
multivalent resolution algorithm applied to S generates a clause that implies M.

Proof Multivalent resolution derives only implications of 5 because it is clearly valid. To
prove the converse, let S' be the result of applying the algorithm to S. Also define the length
of a clause (41) be £j \Hj\. Suppose the theorem is false, and let (41) be a longest clause
implied by 5 but by no clause in Sf.

Claim. At least one Hj in (41) is missing at least two elements; i.e., \Dj \Hj\ > 2 for
some j. First it is clear that no Hj = Dj, because otherwise (41) would be implied by a (in
fact, every) clause in S'. Suppose contrary to the claim that every Hj is missing exactly one
element, say VJ. Then h = v = (vi , . . .,t>m) violates (41) and must therefore violate some
clause \/j(hj G H'j) in 5', because 5' implies (41). This means each H'j C Dj \ {VJ}, so that
\Jj(hj G Hj) implies (41), contrary to hypothesis. This proves the claim.

Now suppose Vk,v'k are missing from Hk, and consider the multivalent clauses

(hk eHkU {vk}) V Vj^hj G Hj), (hk eHkU « } ) V Vi|Wk(fcj € Hj). (43)
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They must respectively be implied by clauses M\9 M2 6 S' because they are longer than (41).
This means that the resolvent of My, M2 on hk implies (41). So by construction of the resolution
algorithm, Sf contains a clause that implies (41), contrary to hypothesis. •

The proof of the theorem shows that it suffices in principle to generate resolvents only of
pairs of clauses.

A unit resolution algorithm for multivalent clauses appears in Fig. 9. The algorithm also
accommodates all-different predicates, which can serve as disjuncts of multivalent clauses along-
side terms of the form hj € Hj. Examples of the latter are constraints (4b) and (4e) of the
progressive party problem. The constraint (4e) is written,

Si V Sj V mijt V (ha # hjt)

but can be formally written as a multivalent clause as follows.

(*• e {1}) V (Sj € {1» V (mm € {1}) V

6.7 Valid and Nonvalid Logic Cuts

An intuitive understanding of a problem can suggest logic cuts, both valid and nonvalid, even
when no further polyhedral cuts are easily identified. The idea of a (possibly nonvalid) logic
cut was defined in [37], which gives the process synthesis example discussed here as an example.
Other examples include structural design problems [10], matching problems [32], and a series
of standard 0-1 problems discussed by Wilson [73].

A logic cut for an MLLP model (1) has heretofore been characterized as an implication
of the logical formulas in (1). Actually any logical formula implied by the constraint set as a
whole is a logic cut. That is, g(y,h) is a logic cut if it is true for every (x, y,h) that satisfies
the constraints of (1). For example, —13/3 is a logic cut for the problem

min xi + x2

s.t. yi — (xi > 1) yi V y2 , ,
V2 - (x2 > 1) ( }

V3 -> (*i + x2 < 0)

but is not implied by the formula y\ V y2.
Logic cuts can be defined in an even more general sense that permits them to be nonvalid.

Let (y,h) be feasible in (1) if (x,y,/i) is feasible in (1) for some x. Let (y',h') dominate (y,h)
if for any (x',y',h') that is feasible in (1), there is a feasible (x, j/,/i) for which ex < ex'. Then
g(y, h) is a logic cut if any feasible (y, h) that makes g(y, h) false is dominated by a feasible
(y',h') that makes g(y\h') true. The cut g(y,h) may be added to (1) without changing the
optimal solution, but it may exclude feasible solutions.

For example, the formulas -ij/i and -13/2 are (nonvalid) logic cuts for (44). They are nonvalid
because they exclude the feasible points (l,0,0),(l, 1,0).

6.8 Logic-Based Benders Cuts

The idea behind Benders decomposition is generalized to a logic-based setting in [33], which
applies the idea to 0-1 programming and the satisfiability problem. Here the idea is applied
to MLLP.
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Let 5 be a set {C{ | i E /} of multivalent clauses, where each Ct
has the form VjLi(fy € H{j) V \/t€Ti alldiff ({fy | j € Jt})

Let n% be the number of terms (hj € flj) of C% vith nonempty ifj.
Let U be a stack of indices representing active domains;

initially U = {1,... ,m}.
Let A be a list of enforced alldiff predicates, initially empty.
For each i € I:

If m = 0 and \Ti\ = 1 then
Add the alldiff predicate in Ct to A and remove i from /.

Else if nt = 1 and |Tt| = 0 then
Let H{j be nonempty.
Let Z5j = Dj n JFftj and remove % from /.

While U is nonempty:
Remove some index k from 17.
If Dk is empty then stop; S is unsatisfiable.
Eor all i € /:

If iftfc is nonempty then
If Dfc C J?t/b then remove i from /.
Else

Let Hik = HiknDk.
If Hik is empty then

Let rti = Ui — 1.
If nt = l and |Ti|=0 then

Let iTij be nonempty and remove i from /.
If Dj <£ Hij then

Let Dj = Dj H H^ and add j to U.
If nt = 0 and |Ti| = 1 then

Remove i from /.
Add the alldiff predicate in Ct to A.

For each predicate alldif f{{hj \ j € J}) in A with A; € J:
If |D*| = 1 then

For j € J \ {k}:
If D/k C 2>, then Let Dj = Dj \ Dk and add j to C7.

Figure 9: A tintt re^o/ufton algorithm for multivalent clauses.
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A Benders cut for (1) can be generated at each node of the search tree in the following
way. Let the logical formulas comprise the master problem. The subproblem consists of the
LP relaxation at that node; i.e., the linear constraint sets that are enforced by propositions
that are true at the node. Thus if yj is fixed to true for j G Ji, the LP relaxation is,

min ex
s.t. Ax>a (u) ( .

A>x > a*, jeJ ( t*0 { }

x>0.

where Ax > a represents cuts added at the root node. Let u, Uj be the dual variables as shown.
Then the following is a valid bound on the optimal value z of (1):

z > ua+

The bound can also be written
ujajyj (46)

if each yj takes its current value, namely 1 (for true). In fact (46) is a valid bound for any y
for which u remains feasible in the dual of (45), i.e., any y for which

ua+ ^2 ujAjyj <c (47)

This gives the Benders cut,
(47) -+ (46).

This cut can be generated at any leaf node and used at any subsequent node to obtain a lower
bound on the optimal value without solving the LP relaxation. If the bound is not large enough
to prune the true, the LP must be solved.

In practice it is convenient to work with reduced costs. If z is the optimal value of (45)
and r is the vector of reduced costs, then (46) and (47) respectively become

£ W ) (48)

and

W ) < r. (49)
i€Ji

The Benders cut is
(49) - (48).

The cut generated at each node is valid throughout the search tree. It does not strengthen
the LP relaxation but provides a bound on the optimal value that may obviate solution of the
relaxation. This can be useful when the LP is large or hard to solve.
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7 Computational Results

The aim of the computational experiments is not to compare the best possible MLLP algorithm
for a given problem with the best possible competing algorithm. Rather, the aim is to isolate
the effect on performance of the specific MLLP features that are illustrated by each problem.
To the end, the simplest possible MLLP algorithm is compared with the simplest possible
MILP algorithm.

The MLLP algorithm is that of Fig. 2, fleshed out as follows. The branching rule is to
branch on the first propositional variable in the first unsatisfied logical formula. The logic
processing algorithm is unit resolution. The relaxation of logical formulas varies from case to
case, as described below. The code is written in C and compiled with the Sun C compiler
version 1.1 with optimization. The tests were conducted on a SPARC Station 330 running
SUN OS version 4.1.1. The LP relaxations were solved by CPLEX version 3.0.

The MILP algorithm is a straightforward branch-and-bound procedure. The branching
rule is to branch on a variable whose value in the relaxation is nearest 1/2. The LP relaxations
were solved with the same CPLEX routine.

Run times and node counts for version 2.1 of the CPLEX MILP code are also reported.
It is argued in [34], however, that comparison with a commercial code may provide limited
insight. The details of commercial implementations are not public knowledge, and even if they
were, it would be difficult to isolate the factors that explain differences in performance.

MLLP has already been shown to have advantages on the chemical engineering problems,
and for these problems the computational experiments reported here confirm previous work.
They are reported because the confirmation of experimental results is a key element of empirical
science, one that is largely neglected in the algorithmic literature.

7.1 Flow Shop Problem

The flow shop problem illustrates two advantages of MLLP: a) it can result in a smaller search
tree than MILP, because the MILP representation is not integral, and b) the processing time
at each node is less, because the elimination of integer variables makes the LP relaxations
smaller.

As discussed in Section 5.1, there is little reason to introduce linear relaxations of the
disjunctive constraints typical of scheduling problems. They are therefore omitted. If there
are m jobs and n machines, this reduces the number of variables in the LP relaxation from
2rn + mn to 2m.

Furthermore, the MILP model is likely to create a larger search tree, because its continuous
relaxation is nonintegral. This can be seen from Corollary 1, which implies that the MILP
representation of the disjunction

(tk - U > rik) V (U - tk > rki)

is integral if and only if

*A: - U | U -tk> rki, (0,0) < (U,tk) < (mi,mk)} = rki - Mki

max{*t - tk I tk - U > rtfc, (0,0) < (U,tk) < (m,-,mfc)} = rik - Mik.

Defining Mki,Mik by (18) yields (Mki, Mik) = (rki + mfc, rik + mi). Also it is easy to see that
the two maxima in (50) are respectively equal to — rk{ and —rtfc. So (50) implies that the MILP
representation is integral if and only if (rki,rik) = (mfc,mt), which does not occur in practice.
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Number of
jobs

6
7
8

machines

5
5
5

nodes

407
1951

14573

MLLP
time

2.7
15.7

129.0

per
node

0.0066
0.0080
0.0089

nodes

689
3171

24181

MILP
time

10.1
52.2

546.4

per
node

0.0147
0.0165
0.0226

nodes

527
2647

16591

CPLEX
time

8.1
51.0

413.9

per
node

0.0154
0.0193
0.0249

Table 1: Computational results for flow shop problems with zero-time transfer, showing number
of nodes in the search tree, time in seconds, and seconds per node.

Three flow shop problems that represent process scheduling problems in a chemical plant
[52] were solved, and the results appear in Table 1. MLLP generated about 60% as many
nodes as MILP and used less than half as much time per node. It therefore ran 3 to 4 times
as fast as MILP on these problems.

7.2 Processing Network Design Problems

The chemical processing network problems illustrate the usefulness of (nonvalid) logic cuts as
well as the advantage of an MLLP approach to modeling semicontinuous variables.

First, elementary cuts can be generated for the disjunctions yt V y[. Because of upper and
lower bounds on the variables, the corresponding constraint sets can be written

K

This expands into two disjunctions that can be relaxed.

(* > fi) V (-«,- > 0)

(*i>fi)V\- £ *«£

V

(51)

(52)

Because fi is an upper bound on zt, the elementary cut (13) for (51) is simply 0 > 0, which is
useless. But the elementary cut for (52) is

£<>J-
f M

X" (53)

where Aft is an upper bound on the flow out of unit i. This cut is easily seen to define a facet
of the convex hull of the disjunction.

Furthermore, Theorem 4 implies the 0-1 formulation of the disjunction yt V y[ is integral.
It is easily checked that if 0-1 variables j/1,1/2 correspond to the two disjuncts &,yt', then
Widte) = 1/2(1/1) = 0. This suggests that the MLLP formulation with elementary cuts may
provide no advantage over the traditional continuous relaxation.

Even a cursory examination of the problem yields some useful logic cuts, however. On
examination of a processing network, such as the separation network of Fig. 1, it is clear that
one should not install a distillation unit unless at least one adjacent upstream unit is installed,
and all adjacent downstream units are installed. For example, unit 3 should not be installed
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unless unit 1 is installed, nor should unit 5 be installed unless both units 8 and 10 are present.
This produces the logic cuts

which can be written as three clauses,

J/i V -.jfc, -*y$ V tfe, ->ys V yio. (54)

These cuts are nonvalid because there is nothing infeasible about installing a unit that carries
no flow. One might suspect that a branch-and-bound search would not consider such spurious
solutions, so that the cuts (54) would have no effect. Experience reported in [37, 50], however,
shows that the cuts can be very effective, a fact that is confirmed here.

It is possible to concoct network design problems in which unit resolution is incomplete for
the logical formulas in the model when logic cuts are added. But none of the problems solved
have this property, and for this reason unit resolution alone was used for logic processing.

The relaxation of the logic cuts illustrates two points. One is that the cut y\ V -13/3, for
example, has no relaxation because 3/3 is negated. However, because y$ V y'3 is given in the
model, the cut implies y\ V 3/3, which can be written as two disjunctions,

They respectively generate the elementary cuts,

Zl - * ^ - (56)

The second point is that (56) can be dropped because it is implied by (53) and (55).
The synthesis problems can be modified by fixing the number of units to be installed. This

is accomplished with the formula,

To generate elementary cuts, the formula is written as two inequalities.

E.-K>*. E;tf>*.
Elementary cuts of the form (14) for these are respectively,

where n is the number of potential units.
Experimental results for two 5-component and two 6-component problems studied in [50]

are displayed in Table 2. The second 5-component problem fixes the total number of units to
4, and the second 6-component problem fixes it to 5. The solution methods are grouped by the
strength of the formulation. The problems are first solved with pure MLLP branching, without
any relaxation of the disjunctive constraints. The very poor results in the first column of the
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Problem

Node count
5-component sep.
+ 4 unit restr.
6-component sep.
+ 5 unit restr.
Seconds
5-component sep.
+ 4 unit restr.
6-comporient sep.
+ 5 unit restr.

MLLP
No cuts

61

1659

0.91

33.3

MLLP
+dual

cuts

21

105

3.39

26.5

MLLP
+elem

cuts

15
15
97

9

0.41
0.45

2.3
0.8

MILP

17
49

191
163

0.31
1.01
5.6
5.9

CPLEX

11
29
94
56

0.33
0.82

3.5
2.0

MLLP
+elem.

cuts
+logic

cuts

9
13
63

5

0.35
0.52

2.6
0.6

MLLP
+elem.

cuts
+logic

cuts
+logic
relax.

3
3

97
3

0.40
0.42
8.1
0.9

MILP
+logic

cuts

3
3

33
3

0.18
0.23
3.3
0.4

CPLEX
+logic

cuts

7
4

40
15

0.40
0.28

3.5
1.4

Table 2: Node counts and computation times in seconds for separation network synthesis prob-
lems.

table indicate the importance of using relaxations. The next column illustrates the expense of
generating dual cuts, as discussed in Section 5.2.

The next three columns of the table compare MLLP, MILP and CPLEX using relaxations
that have the strength of the traditional continuous relaxation of the original problem; in
the MLLP case, this requires the elementary cuts (53). The next column adds the logic cuts
described above to the MLLP model but not their relaxations. The last three columns add
logic cuts to the MILP and CPLEX models and elementary relaxations of them to the MLLP
model.

The results suggest that adding nonvalid logic cuts can bring a substantial improvement
in an MILP context. They also reduce the number of nodes generated by the CPLEX MILP
routine, which indicates that their employment does not merely duplicate the action of the
CPLEX preprocessor. Experiments reported in [50] provide a similar indication for the OSL
preprocessor. The logic cuts reduce the number of nodes for MLLP, but this is not reflected
in the computation times. Comparison of methods within a group suggests that, as predicted,
the traditional 0-1 formulation is at least as effective as the MLLP formulation. In fact, the
addition of relaxations for the logic cuts makes the MLLP approach mode sluggish than MILP.

This is an instance in which the logical point of view provides useful cuts, but logic-based
modeling confers no computational advantage.

The use of propositional variables is highly advantageous, however, when semicontinuous
variables are added to the problem. It is inefficient to represent semicontinuity with inte-
ger variables, for two reasons, both noted earlier: the continuous relaxation, like any linear
relaxation of semicontinuity, is useless, and the 0-1 representation is nonintegral.

The 10-process and a 38-process problem described in [55] were solved. The MLLP repre-
sentation (3) for the semicontinous variables was used. No relaxation was used for the resulting
disjunctions because, as just noted, any relaxation is useless. Elementary cuts were generated
for the disjunctions yt- V y{. The nonvalid logic cuts described above were used in the MLLP,
MILP and CPLEX models, but no relaxations were generated for them in the MLLP model.
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Problem

10 processes, version 1
10 processes, version 2
38 processes, version 1
38 processes, version 2
38 processes, version 3
38 processes, version 4
38 processes, version 5

MLLP
5

13
729

1907
1161
1901
1081

Nodes
MILP

29
35

1083
3237
1999
2861
1561

CPLEX
24
52

677
868
345
747
296

MLLP
0.24
0.41
199
559
306
514
287

Seconds
MILP

0.82
0.88
376

1173
836

1093
551

5

CPLEX
0.65
1.47
178
271
104
229

89

Table 3: Node counts and computation times in seconds for 10-process and 38-process network
synthesis problems.

The results appear in Table 3. The 10-process problem has 3 semicontinuous variables, and
the 38-process problem has 7. Different versions of the problem were obtained by varying the
time horizon and the placement of intervals.

The results show that a logical representation of semicontinuity roughly halves the com-
putation time, even though semicontinuity accounts for only about half the discrete variables.
A reasonable approach for these problems would therefore be a) to create a relaxation with
traditional 0-1 variables to represent processing units, and b) to represent semicontinuity with
prepositional variables without adding further cuts to the LP relaxation. The MLLP frame-
work provides this kind of flexibility.

The CPLEX preprocessor eliminated most of the rows and columns of the 38-process prob-
lems (but not the 10-process problems) and therefore obtained superior performance on these
problems. It is impossible to analyze this result without detailed knowledge of the preproces-
sor. Perhaps the operation that proved so effective could be added to the MLLP algorithm. In
any case the object here is to isolate the effect of using a logic-based versus a 0-1 representation
of semicontinuity.

7.3 Warehouse Location Problems

The warehouse location problems illustrate the generation of logic cuts from a knapsack con-
straint. It is also a case where a logic-based formulation is less efficient than the traditional
0-1 formulation.

The formulation of elementary cuts for the disjunctive constraints yi V y[ is the same as in
the network synthesis problems. These cuts are again facet-defining, and the 0-1 representation
is again integral. The MLLP is also a little larger than the MILP model, because it contains
elementary cuts for the disjunctions, and furthermore because the MILP model combines the
capacity constraints with the big-M constraints, variables Z{. One would therefore expect an
MILP formulation to have a small advantage over an MLLP formulation.

The fact that total installed warehouse capacity must accommodate total demand gives
rise to the valid knapsack constraint,

(57)

It can be viewed as a logical formula whose elementary relaxation can be added to the LP
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Problem

CAP41
CAP42
CAP43
CAP44
CAP51
CAP61
CAP71
1
2
3
4
5
6

No.
whse

16
16
16
16
16
16
16
10
10
10
10
10
10

Cap.
ratio
1.37
1.29
1.29
1.37
2.75
3.86

16.00
6.12
5.10
4.08
3.06
2.04
1.02

MLLP
57
59
61
43

1239
2147
3481

61
63
71
49
19
3

Nodes
MILP

81
81
83
61

1429
2631
4495

147
45
73

173
31
21

CPLEX
62
57
42
40

1134
3017
8830

31
25
59

138
27
20

MLLP
8.6
8.9
9.1
7.1
172
266
409
1.21
1.34
1.54
1.11
0.45
0.16

Seconds
MILP

8.8
8.6
8.9
6.8
135
237
398

0.70
0.67
1.14
2.61
0.45
0.30

CPLEX
5.5
5.5
4.4
4.3
92

235
658

0.57
0.52
1.17
2.50
0.55
0.32

Seconds pei
MLLP

0.15
0.15
0.15
0.17
0.14
0.12
0.12

0.020
0.021
0.022
0.023
0.024
0.053

MILP
0.11
0.11
0.11
0.11
0.09
0.09
0.09

0.015
0.015
0.016
0.015
0.015
0.014

node
CPLEX

0.09
0.10
0.10
0.11
0.08
0.08
0.07

0.018
0.021
0.020
0.018
0.020
0.016

Table 4: Node counts, computation times in seconds, and seconds per node for warehouse
location problems.

model:

Contiguous cuts can be derived from (57) as described in Section 6.5. These clauses have the
form Vie/ V* **"& n a v e elementary relaxations,

Seven warehouse location problems from [7] were solved, and the results appear in Table 4.
Each problem has 50 demand points with a total demand of 58,268. Bach warehouse has the
same capacity, and the ratio of total warehouse capacity to total demand is shown.

The contiguous cuts were used in the MLLP model but not the MILP model. They result
in a 20-30% reduction in the number of nodes but contributed to a 30-50% increase in the*
amount of time per node, because of they enlarge the LP model. The net result is that MLLP
is slightly slower than MILP. The contiguous logic cuts are therefore useful, but as predicts!.
one should use them in a traditional MILP relaxation.

Problems 1-6 in the table were solved to test the hypothesis that contiguous cuts have
greater effect when the problem is more tightly constrained, as roughly indicated by the ratio of
total warehouse capacity to total demand. The problems are identical except for the warehouse*
capacity. There are 7 demand points with demands 4,5,6,7,8,9,10. The data tend to confirm
the hypothesis.

7.4 T h e Progressive Party Problem

MLLP has substantial modeling and computational advantages for this problem. Its logical
notation permits a simpler statement of the constraints, as already seen in Section 2.4. The
computational advantage stems primarily from the huge number of discrete variables, only
a few of which correspond to linear constraints. MLLP can process them logically without
enlarging the LP relaxation, which contains only a handful of constraints at each node.
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The MLLP formtdation was augmented with a simple logic cut that constrains the number
of host boats to be no less than the number of periods:

t € /

This was represented by an elementary cut in the LP relaxation at each node. As in the
warehouse location problem, there is a valid knapsack constraint that ensures there is enough
capacity to meet total demand:

£ 5 > (59)

An elementary cut for this was added to the LP relaxation. Contiguous cuts were also generated
for (59) and their relaxations added to the LP. Elementary cuts were not generated for the
knapsack constraints (4d). The logic processing was achieved by a section of code that in effect
implements the unit resolution algorithm of Fig. 9.

The MILP model was also augmented with the logic cuts (58). There was no need to add
(59) because it is a linear combination of the other constraints.

The computational results appear in Table 5. Due to the difficulty of the problem, only
the CPLEX implementation of MILP was used. It was run with a feature that identifies
specially ordered sets (sosscan), because MLLP's processing of propositional variables that
are not associated with linear constraint sets can be viewed as incorporating the advantage of
using type 1 specially ordered sets.

The original problem described in [60] had 29 boats and 6 periods and was solved by the
ILOG Solver, but only after specifying exactly which boats were to serve as hosts, and even
then only after manual intervention. The authors of [60] report that XPRESSMP solved an
MILP model of the problem with 15 boats and 4 periods, but only after specifying that only
boats 1-8 (in descending order of K% — a) could serve as hosts and only crews 5-15 could
visit other boats (the optimal solution uses 5 hosts). The problems were solved here in their
original form. When the problem contains | / | boats, they are the | / | largest boats as measured
by Ki - ct.

Both solution methods could no doubt be improved with more intelligent branching and
other devices. But the underlying computational advantage of MLLP is clear and is due
primarily to a much smaller LP relaxation and the speed of logic processing.
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