NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Mixed Logical/Linear Programming
John N. Hooker and Maria A. Osorio

EDRC 7M0-96

Mixed Logica/Linear Programming *

J. N. HOOKER

Graduate School of Industrial Administration
Carnegie Mélon University, Pittsburgh, PA 15213 USA
M. A. OSORIO
School of Chemical Enginepring
University of Puebla, Puebla, Mexico 72550

July 1996

Abstract

Mixed logical/linear programming (MLLP) is an extension of mixed integer/linear pro-
gramming (MILP). It represents the discrete elements of a problem with logical propositions
and provides a more natural modeling framework than MILP. It can also have computa-
tional advantages, partly because it eliminates integer variables when they serve no purpose,
provides alternatives to the traditional continuous relaxation, and applies logic processing
algorithms. This paper surveys previous work and attempts to organize ideas associated
with MLLP, some old and some new, into a coherent framework. It articulates potential
advantages and disadvantages of MLLP and illustrates some of them with computational
experiments.

1 Introduction

Mixed logical/linear programming (MLLP) is a general approach to formulating and solving
optimization problems that have both discrete and continuous elements. Mixed integer/linear
programming (MILP), the traditional approach, is effective in many instances. But it un-
necessarily restricts the modeling and solution options available. MLLP allows naturally for
branching strategies, relaxations and logic processing algorithms that neither fit comfortably
into nor are suggested by MILP. In particular it counts the traditional strategies among ii>
options and should therefore be seen as an extension of MILP rather than an alternative to it.

Mixed discrete/continuous problems are traditionally conceived as continuous problem* in
which some of the variables are restricted to be integers. MLLP takes a completely different
view. It does not attempt an often unnatural and contrived embedding of the discrete aspects
of the problem within alinear programming model. Instead, it represents the discrete elements
by logical formulas and only the continuous element by linear inequalities. It therefore has the
option of dispensing with integer variables. Rather than require that a feasible solution satisfy
a fixed set of inequalities, MLLP provides several alternative sets of inequalities. The role of
the logical formulasis to govern which alternatives are acceptable.

*This research is partially supported by U.S. Office of Naval Research Grant N00014-95-1-0517 and by the
Engineering Design Research Center at Carnegie Mellon University, an Engineering Research Center of the
National Science Foundation, under grant EEC-8943164.

1.1 General Form of an MLLP

An introductory discussion is more meaningful if MLLP is given a brief mathematical descrip-
tion. An MLLP model has the form

min ex

st. Vi~ (A'X >—a')'1 J GJ gi{y’h), iel. i
The model has a logical part (on the right) and a continuous part (on the left). The logical
part consists of formulas <ft(y, h) that involve atomic propositionsy = (yi,..., Yn), Which are

either true or false. Such aformulamight be W V y<i, which saysthat W or y<i (or both) must
be true. There may also be some variables h = (/&i,..., hy) that take several discrete values.
The continuous part associates each atomic proposition yj with a system A*x > a* of linear
inequalities. The system is enforced when yj istrue. So the formula\ V y<i in effect requires
any solution x to satisfy A'x > a' or A% > a? (or both). In general, (x,y,/i) is feasble if
(v, h) makes all the logical formulas true and x satisfies the linear systems corresponding to
truejlj's.

The problem (1) can be solved by branching on the truth values of the y/s and the discrete
values of the hj’s. At each node of the search tree, one solves a linear programming problem
(LP) containing the constraintsthat correspond to true y/s, plus any cuts added to strengthen
the relaxation. A key element of MLLP is to apply alogical inference algorithm to the logical
formulas before solving the LP. This may generate further logical constraints and may fix some
additional y/s and hj's.

It is easy to show that every MLLP is equivalent to a disunctive programming problem
whose constraint is a disjunction of linear systems (i.e., the solution must satisfy at least one
of the systems). Its feasible set is therefore a union of finitely many polyhedra.

12 Aim of this Paper

The aim hereisto explore MLLP as a general and practical approach to solving problems with
both discrete and continuous elements. Previous work is drawn together, and an attempt is
made to order ideas associated with MLLP, some old and some new, in a coherent framework.
The potential advantages of MLLP are articulated, and several areillustrated by computational
experiments.

Because MLLP is a general approach to continuous/discrete problem solving, a thorough-
going experimental evaluation would be a massive undertaking, and it is not attempted here.
The task would be further complicated, both practically and conceptually, by the fact that
MLLP is not a single approach to problem solving but a framework within which several ap-
proaches can be used. As in MILP, its effectiveness depends on how carefully one designs
relaxations, cuts, and branching schemes to fit the problem at hand. The intent here is to
provide a broader range of options and to show by example that at least some of them can be
superior to the conventional ones.

The examples include chemical engineering network synthesis problems, war ehouse location
problems, flow shop scheduling problems, and the "progressive party problem,” which is a
scheduling problem posed by a yacht party. The last problem is rather frivolous but has
attracted a good deal of attention and illustrates several ideas associated with MLLP.

Experience with engineering design problems (e.g., [10, 64]) suggests that MLLP can be
usefully extended to mixed logical/nonlinear programming (MLNLP). This possibility is not
pursued here.

13

Advantages of MLLP

Several potential advantages of MLLP's broader framework, summarized below, should become
evident in the ensuing discussion. Some of the advantages are illustrated by the computational
experiments, as indicated.

Separation of branching and relaxation. In MILP, integer variables serve as both a branch-
ing and relaxation device. The problem is relaxed by removing the integrality constraint
on the variables, and one branches on integer variables that have a fractional valuein the
solution of the relaxation. But there are many other branching and relaxation schemes.
MLLP permits one to use any branching schemein combination with any relaxation, be-
cause the relaxation need not involve the discrete variables. The relaxation is generally
created by adding cuts to the continuous part of the model.

Smaller linear programming problems. Some combinatorial problems are formulated only
or most conveniently with a large number of discrete variables. MILP forces these vari-
ables to be included in the LP problems solved at each node, whereas MLLP puts only
continuous variables in the LP problems. This advantage is dramatically illustrated by
the party problem. In some cases, however, the advantage of removing integer variables
is offset by the necessity of adding cuts to achieve a good relaxation. This is discussed
below.

Faster and/or more effective processing of discrete variables. Logical variables can often
be fixed at a node by applying inference procedures to the logical constraints. In many
cases the same variables would have been fixed by solving the conventional continuous
relaxation. But in these cases logic processing is much faster because it can be achieved
by a unit resolution procedure. Thisisillustrated by the party problem. In other cases,
logic processing is more powerful than linear programming, because it fixes variables to
true or false when they would receive fractional values in a continuous relaxation.

Feasible solutions identified sooner. The conventional continuous relaxation of a 0-1 dis-
junctive formulation can have fractional solution values even when the digunction is
satisfied. This means that MILP can keep branching after a feasible solution is found.
MLLP avoids this defect and may therefore produce a smaller search tree. This is il-

- lustrated by the flow shop problem and instances of the process synthesis problem that

have semicontinuous variables.
Stronger relaxations. MLLP can provide stronger relaxations in three ways.

- Valid cuts can sometimes be found for a digunctive constraint that are stronger
than the continuous relaxation of any obvious 0-1 formulation.

- Logic processing can generatelogical constraints (logic cuts) whose linear relaxations
can be added to the linear model. The same logic cuts can be used as cutting
planes in a conventional branch-and-cut algorithm, but logic processing provides a
systematic way of generating them. This is illustrated by the warehouse location
and party problems.

- The idea of Benders cuts can be generalized to an MLLP setting to produce logic-
based cuts that may be useful when solution of LP relaxations is expensive.

 An alternative approach to identifying cuts. The logica point of view can suggest logic
cuts that follow easlly from an intuitive understanding of the problem but are not easlly
revealed by conventional polyhedral analysis. It can aso suggest nonvalid logic cuts,
which do not change the optimal value but are stronger because they exclude feasble
solutions. The chemica processing network problems will illustrate both points.

* More natural modeling. Integer variables, particularly 0-1 variables, are very often con-
trived to express what were originally concelved as logica constraints. In such cases
MLLP permits amore natural formulation. In other cases a problem is most readily ex-
pressed with multivalued discrete variables, as for example problems in which avariable's
value may indicate the machine to which ajob is assigned or an operation’s position in
a sequence. Constraints on such variables that are not easlly expressed in inequality
form may readily be formulated with predicates that are quite natural for logic process-
ing algorithms. A particularly useful predicate is the "al different” predicate, which
requires that a set of variables al have different values. The advantages of multivalued
variables have been exploited in the constraint satisfaction and constraint programming
literature, and the algorithms developed there may be used in the logic processing phase
of an MLLP solver.

The last point deserves expansion. A habit of writing models for the convenience of the
solver, as is common in operations research, can lead one to forget that the primary role of
modeling in science is explanatory. The modeling process should improve one's understand-
ing and should not be befuddlied by the necessity of writing a machine-friendly formulation.
On the other hand, if the modd is totally unsuited for solution, it will require a substantial
reformulation either by an automatic procedure or a human expert. It may be difficult to
relate the solution to the origina formulation. MLLP tries to steer a middle course. It makes
discrete/continuous modeling somewhat more natural by eliminating the necessity of integer
variables and introducing logica constraints and multivalent variables. But the solution ap-
proach is still cdosdy related to the problem statement because it branches on the discrete
variables that appear in the origina model. The moded generally requires additional prepa-
ration before solution, but preparation usually involves adding cuts rather than reformulating
the problem.

14 Mitigating Factors

The advantages of moving to MLLP's broader framework are mitigated by at least three
considerations.

* Relaxations must be explicitly generated. An MILP mode comes with a ready-made
linear relaxation, but MLLP obliges one to make a conscious choice of relaxation. It is
sometimes unobvious how to create a relaxation that is even as strong as the traditional
one (without reintroducing the traditional integer variables).

» The relaxation may be large. The cuts needed to build a useful relaxation may make the
linear constraint set larger than an MILP mode.

» More expertise is needed. MLLP generaly requires greater expertise than MILP because
of the greater range of choices it imposes on the user. It may therefore be suited to a
smaller circle of practitioners.

One might respond to the first two points as follows. Although a nontraditional relaxation
may be large or hard to identify in some cases, there are other cases in which it can solve an
otherwise intractable problem. The key is to be able to identify the appropriate relaxation
for a given constraint set. The following cases may be distinguished and are more rigoroudly
characterized in the remainer of the paper.

1. The congtraint(s) to be relaxed can have no good linear relaxation, because the convex
hull of the feasible set occupies most or al of the solution space. In these cases no
relaxation should be used. MLLP permits this, whereas MILP forces one to use integer
variables, which introduce usdless overhead.

2. A good relaxation is possible but the MILP relaxation is weak or useless. It may be
possible to replace the MILP relaxation with a reasonable number of cuts that produce
a stronger relaxation. Two generd methods, described below, that may be helpful are
tightening of MILP cuts and generation of "optimal separating cuts.”

3. The MILP relaxation is useful. In this case it may be easy to mimic the effect of the
MILP relaxation with afew cuts. If not, one can dways add integer variables to obtain
the classcd relaxation. Even here, one may wish to relax only a portion of the mode in
this fashion. The integer variables need not be used for branching purposes, so that the
distinction between branching and relaxation is maintained.

The final objection, that MLLP requires more expertise, can be partially overcome by
automating as many choices as posshle and by installing redundancy. Commercid MILP
solvers, for example, automatically apply a number of cuts and preproc ng devices that may
or may not be useful for a given problem.

Ultimately, however, alarge class of combinatorial problems may aways reqw re acertain
amount of expertise for their solution. The issue is how much user intervention is appropriate.
It seems unreasonable to restrict onesdf to automatic routines in general -purpose solvers when
some smple additional tricks may obtain solutions that are otherwise out of reach. At the
other extreme, it is impractical to invest in every new problem the years of research efort that
have been lavished on traveling salesman and job shop scheduling problems. MLLP is designed
to present a compromise between these two extremes.

15 Previous Work

A logic-based approach to operations research was discussed as early as 1968 in Hammer and
Rudeanu's treatise on boolean methods [25]. Granot and Hammer [23] suggested in 1971 the
possibility of using boolean methods for integer programming.

The MLLP approach described here was perhaps first clearly articulated by Jerodow [41],
who was primarily interested in issues of representability. He viewed discrete variables as
artifices for representing afeasible subset of continuous space, which in the case of an MLLP or
MILP mode is aunion of finitely many polyhedra. From thisit follows that MLLP and MILP
models are essentially digunctive programming models. Building on joint work with Lowe [42],
Jerodow proved that an MILP modd can represent a union of finitely many polyhedraif and
only if they have the same recesson cone.

In the meantime, Williams [66, 67, 68, 70], Blair [8, 9] and Hooker [28, 28, 29, 30, 31] ex-
plored connections betwen logic and optimization. Beaumont [6] undertook what is apparently

5

thefirst systematic study of MLLP as a solution technique for optimization problems. Drawing
on the semina work of Balas in digunctive programming [2, 3, 4], he described families of vaid
cuts that can be used to create relaxations of digunctive constraints.

More recently, Hooker argued in [32] that alogic-based approach to optimization, includ-
ing MLLP, can exploit problem structure in ways that are paralléel to traditional polyhedral
techniques. Wilson [71, 72, 73] studied logic cuts and logic-based formulations.

It is crucia to demonstrate the practical vaue of MLLP in a problem domain. This was
accomplished largely by Grossmann in the area of chemical process design in a series of papers
coauthored with Hooker, Turkay, Yan and particularly Raman [37, 49, 50, 51, 52, 64]. These
papers developed some of the key MLLP concepts discussed here. Bollapragada, Ghattas and
Hooker also obtained encouraging results in structural design [10].

1.6 Other Approaches

It isinstructive to contrast MLLP with other approaches that combine discrete and continuous
elements.

The mixed logical/linear programming approach of McAloon and Tretkoff [44, 45], which
is implemented in the system 2L P, combines procedura with declarative programming. The
discrete element is represented by a user-supplied script that controls the formulation and
solution of LP modéels that represent the continuous element. This contrasts with the approach
to MLLP described here, in which both elements are modeled in a declarative fashion. The
two agpproaches are not incompatible, however, and 2LP could in fact provide a framework in
which to implement the MLLP techniques presented here.

Even pure 0-1 optimization problems have a continuous eement in the sense that the
constraints are represented by linear inequalities, and it is not obvious how to apply logic-
based methods to them. An approach devised by Barth [5] is to derive formulas from the
inequalities that can be processed with logica inference methods. Barth's techniques can
enhance the logicd processing phase of MLLP agorithms.

The work of McAloon, Tretkoff and Barth is influenced by severa streams of research that
have historically focused on discrete problems but are experimenting with ways to incorporate
continuous variables. Logic programming models, introduced by Colmerauer [16] and Kowaski
[43], dlow oneto formulate aproblem in a subset of first-order logic (Horn clauselogic). Recent
versions of the logic programming language PROLOG [11, 61], such as PROLOG Il1 [17] (and
soon V), incorporate linear programming.

The integration of constraint solving with logic programming is formdized in the constraint
logic programming (CLP) scheme of Jaffar and Lassez [39]. It generdizesthe "unification” step
of logical inference methods to encompass constraint solving in genera [40].

CLP provides aframework for integrating constraint satisfaction methods developed in the
artificia intelligence community (and elsewhere) with logic programming ideas [20, 63, 65].
A number of systems aong this line have been developed in addition to Prolog I11, including
CLP(R) [39], CAL [1], CHIP [19, 59], the ILOG solver [46], and other packages [12, 57, 53].
Linear programming has a place in severa of these systems. Unlike MLLP, these methods rely
to some extent on procedural modeling. They aso lack MLLP's emphasis on exploiting problem
structure in the generation of cuts and relaxations, although the constraint programming
literature has shown some interest in exploiting structure (e.g., [21]).

1.7 Outline of the Paper

The remainder of the paper begins with a presentation of four example problems that illustrate
MLLP modding (Section 2). Section 3 presents the digunctive interpretation of MLLP, and
Section 4 summarizes the basc MLLP algorithm. Two long sections (5 and 6) respectively
discuss relaxations and logic processing algorithms. Some of these are illustrated in the last
section, which presents computational results for the four example problems.

Adgde from its survey and development of MLLP generaly, the specific contributions of
this paper include necessary and sufficient conditions for whether an elementary cut for a
digunction is supporting (Section 5.4), necessary and sufficient conditions for integrality of a
0-1 digunctive representation (Section 5.5), a definition of optimal separating cuts (Section
5.7), a completeness proof for multivalent resolution (Section 6.6), a unit resolution agorithm
for multivalent clauses (Section 6.6), and an application of logic-based Benders decomposition
to MLLP (Section 6.8).

2 Some Examples

Examples from four application areas are presented to illustrate some of the concepts, advan-
tages and disadvantages of MLLP. The first two problem classes concern flow shop scheduling
with zero-wait transfer and processing network design. They are important in chemica engi-
neering. The third, a warehouse location problem, was chosen partly because it is ill-suited
to logic modeling. The fourth problem, the progressive party problem, is chosen to represent
problems in which the discrete element dominates. An attempt was made to choose problems
with the flavor or complexity of real applications, although the warehouse location problem is
somewhat stylized.

2.1 A Flow Shop Problem

A scheduling problem that frequently occurs in chemical processing is aflow shop problem with
zero-wait transfer. There are several jobs, each representing a batch of some reagent. Each
job is processed on severa machines (reactors). The machines are dways visited in the same
order, but a given job may skip some of the machines. When ajob's processing is completed
on one machine, it must move immediately to the next machinein its sequence. The objective
is to minimize makespan.

Let J{ be the set of machines on which job i is processed, and dy; the processing time for
job i on machinej. If U is the start time for job t, the job is completed at time

u+£n
i

It is necessary to make sure that two jobs t, k are not scheduled to be in process at the same
time on the same machinej € J-nJ*. Thefinish time of job i on machinej is ty,-+ Dyj, where

D= Y dij,
? € Ji
i<
and its start timeis ty + Dy - dyj. To avoid clashes one must say that for each machine| on
which jobs i.k are processed, job k starts after job i has finished, or vice-versa. The natural

-
i

-

and obvious way to formulate this "or" constraint is with alogica disunction. For each pair
(i,fc),one writes the digunction, -

(U + Da_<ty + Dix - dig, Je-ﬁDJk) Vv (tk+ ij_< t{+ DIJ 'dih] € Ji an).

The inegqualities in either digunct are the same except for the right-hand side. It is therefore
necessary to write only one disunction in each digunct, using the tightest right-hand side.
The model to minimize makespan is therefore

min T
st. T2+ Y. dj, aljobst,
JEH
{tk -U>_1i) V {U -t> ry), alljobst, kK with t '+ fc,
t<=0, dlft,

where

ric = Jo8% {Dij - Di+du}.
This MLLP mode is easily put into the form (1) by introducing logical variables. Let yik be
true whenjob t is sdieduled before jobfcon each machine on which they are both processed.
The forma MLLP is therefore

min T
st. U0, TzU+ Y dij, all% (a) via Vi, allik, i#k. @
Jeh;
Vik — (t = & > ra) ()]
There is no need to represent constraints (a) with propositions {/t because they hold categori-

caly.
Formulating (2) as a traditional MILP model requires the additional step of introducing
big-M constraints to represent the digunctions.

min T
st. U=0, Tt + Y dji aili
J€J
b=t 2 ri — M(1 -y}
U-hzrg- My
y<ike{ 0,1}, altfc.

2.2 A Processing Network Design Problem

Another common problem in chemical engineering is the design ("synthesis') of processing
networks. For instance, one may wish to separate the components (A, B, C, D) of a mixture
by passing it through various distillation units, asillustrated in Fig. 1. Bach unit separates the
input mixture into two streams as indicated. The volumes of the outputs are fixed proportions
of the input. Clearly some of the units in the network of Fig. 1 are redundant. The problemis
to choose units and flow volumes so as to minimizefixed and variable costs, subject to capacity
and volume constraints. Such problems can involve processes other than distillation and are

8

/ ¥
A|BCD C[D

2]
ABCD ABICD B|C
] Yo

A[BC
ABCD ™ s AB
1”2 \ yio

"AB|C

74

Figure 1: A ~component separation network.

often complicated by recycling of streams and waste heat, the latter typically resulting in a
nonlinear model that is not discussed here. The volume of some streams into and out of the
network can be semicontinuous variables, and this possibility is considered.

Let E bethe set of directed arcs in the network. The network in general contains a set / of
unit nodes, which represent processing units, and a set J of structural nodes, at which no unit
is present and flow is simply conserved. The flow on arc (t,j) is xs- and incurs a unit cost of
Cij. Inputsto the network and outputsfrom it are represented by structural nodes, and ifj is
an output node, cy would typically be negative to indicate revenue from sale of the product.
The fixed cost of unit i is/». Theflow on arc (f,j) leaving unit j is a%j times the total input
to the unit.

The discrete element of the problem is the decision as to whether to install a unit i and its
incident arcs. Either fixed cost f, is incurred, or else there is no fixed cost and no flow leaves
the unit. If Z{ isthe fixed cost paid for unit i,

% O
«=Vf, *-°-0V
Ifyi is true when unit { is installed, the MLLP model can be written,

min 2 Cijdiy +Z?«'
(iJ)eE i
st Y mij=) ik, | €J WVY. ‘t6/
(iJ)eE (\k)EE
=0 Y. Tk (LI)EE iel
(kA)EE
0<zi;<hki, (1,j)€EE
vi—+(x=[), iel

z=0 .
{ — , t&el.
w ek Tis = 0)

- The MILP modd represents the digunctions in the usual way.

min 3 ez + 3 i

(iJ)eE i
8.t z Ti; = Z Tik, JEJ
(i)eE (ik)eE
Ty = oy I
(W)EE
Tij < kiyi, 1€1
(i5)€E

wn€{0,1}, il

Process synthesi s problems can involve semicontinuous variables, asdescribed in [52]. These
are variables whose values must lie within certain intervals. For example, an input to the
processing network may consist of a feedstock obtained from a small set of suppliers, each of
which can provide either nothing or a quantity within a certain range. Taking al possble
sums of these intervals yields the intervals within which the total input volume must fall.

A semicontinuous flow variable xiy must lie in one of the intervals [a, by] fort = 0,..., T.

The most straightforward digunctive representation is,
Vt-* (as*ijsM Vibowt

The proposition y; istrue when x¢- liesininterval t. An alternative formulationis the following.

%53-35"1‘ y!vﬁ$ t=1,...,T
¥ — (24 2 ar) (3)
vt = (2ij < be)

Here yt is true when the flow volume lies in interval t or higher, and y[is true when it liesin

interval t - 1 or lower.
An MILP representation is

T

*ij 2 <0+ X) 0.4y
tsl

T
zij < bo+) beme

tssl

:
Yus<

t=l
376{0,1}. t=1,...,T

2.3 A Warehouse Location Problem

A smple warehouse location problem will be useful to illustrate how cuts can be generated
from knapsack constraints. The problem is to choose a set of warehouses of limited capacity
S0 as to serve a set of demand points while minimizing fixed and transport costs. Let

10

Xij =flow from warehouse i to demand point j.
fi = fixed cost of warehouse i.

ki = capacity of warehouse i.

dj = demand at point j.

Cij = unit transport cost from i toj.

The fixed cost Z{ that is paid for warehouse i is either I; or zero, depending on whether the
flow out of the warehouse is positive. This poses the disunctions,

(z.-=f.-)v(2j;j°=o), all i.

The MLLP modd can therefore be written,
min Z Z + Zc;jz;j
i ij
s.t. Z:s,'j < fory ax ji* v all 4
7
Y zii>d;, all §
Xij >0, alli,j

Vi-e (H =19, alli
¥i— (L% =0), all 4

The traditional MILP modd is

min ~A2KM + 3 €ii%ij
¢ T

st. 5Z«tj < him, all i
j
JIxei 2dj, allj

Xy =20, dli,j,
KG {01}, allt.

24 The Progressive Party Problem

Thefinal problem to be considered is a scheduling problem posed by a "progressive party” that
was organized at ayachtingrally in England. The problem gained some notoriety when agroup
of mathematical programmers and constraint programmers found it to be intractable for the
former and soluble by the latter, albeit with some manual intervention [60]. It presents insur-
mountabl e difficulties for MILP primarily because there seems to be no economical formulation
of the problem within the MILP framework. The problem is much more easlly formulated in
the broader MLLP context and illustrates the advantages of multivalent discrete variables.

In a progressive party, the object is for the crews of a fleet of yachts to visit a subset of
yachts and mingle with the other crews. The visiting crews move to different boats at the end
of each phase of the party. Presumably to smplify the provision of refreshments and so forth,
the number of host yachts should be small.

11

The problem can be more precisely defined as follows. A set / of boats is given. Each boat
i occupied by a crew of ¢; persons and has space for K{ persons on board. The problem is to
minimize the number of host boats. Each crew i visits a different host boat ha in each period
t, unless it isitself a host, indicated by the truth of proposition £-. In the latter case ha = 2 for
all t. To encourage mingling, no pair of visiting crews are permitted to meet more than once.
The proposition rrtijt is true when non-host crews i and j visit the same boat in period t.

For checking capacity constraints it is convenient to define a proposition V{j; that is true
when ha = j. The only propositions that enforce linear inequality constraints are the tf;'s,
which force Z{ = 1 when true. The remaining propositions correspond to empty constraint
sets.

The problem can be stated as follows. The objective function counts the number of host
boats. The predicate alldiff means that all of its arguments have distinct values.

min EZ:

i€l
st. z>0, is| Vig—=(ha =j), iJelteT (@
b—(zi21), i€l 6; v alldiff(h;q,. ..,), 1€[1 (b}
$i = (ha =0, ieiteT (c)
D v <_Ki -¢, jei teT (d)
tel
i
Gvéivmg V(b rhjt), tjel, t<jl teT (e)
Y mi <1, djei<3 0
teT

hie € {1,...,|I]}, i€Lt€T

(4)

Formula (a) defines Vij;. Formula (b) says that crew i should visit a different boat in each

period unless it is a host crew. Formula (c) causes a crew to remain on its own boat if and
only if it are a host crew.

Formula (d) is the boat capacity constraint. It should be interpreted as a logical formula
rather than a linear inequality in O-1 variables. The summation means that ¢; is counted in
the sum for each true vyt- The inequality as a whole means that enough v*s should be false
so that the resulting sum is at most Kj — Cj. The interpretation of inequalities as logical
propositions is further discussed in Section 6.

Formula (e) saysthat if crewsi and j are both visiting crews (i.e., £ and 6] arefalse), then
either mij; is true or hit £ hj; i.e, rrtijt is trueif the two crews visit the same boat in period t.
The next formula (f) says that a pair of visiting crews should not meet more than once. Here
again the inequality should be interpreted as a logical proposition.

The entire model has O(|/|?|T|) variables and constraints. Note that the LP istrivial, asit
consists only of an objective function and constraints of the form Zj>l. The LP will become
more interesting when cuts are later added to strengthen the relaxation.

Formultion of an MILP model is much more difficult. The most challenging constraint is
the one that requires visiting crews to meet at most once. The authors of [60] remark that if
this is formulated using the variables V{j, O(|/|*|T|?) constraints are generated. Because this
is impractical, they introduce O(|/|*|T|) variables yijkt, which take the value 1 when crews jyk
meet on boat i in period t. But because there are 29 boats in the problem, this results in an
enormous number of binary variables.

A more compact MILP model is suggested here. It reinterprets the multivalent variables
ha as numeric variables and enforces the all-different constraintsin an awkward manner that is
characterigtic of MILP. The variables ha need not be explicitly constrained to be integral, be-
cause the remaining constraints enforce integrality. The model has O(|/|?|T|) integer variables
and constraints, many fewer than the model of [60]. Yet it will proveintractable.

The MILP model can be stated as follows.

min Y|% ()

st. Fe+ (1-ty« 21, iJelt€T (6)
(I-*)+t>Mt>l, *€/,t€T (c)
Vi + ay, + Pijt >_1, i,j€lteT (d)
-hu+3=1-|/|@A-ay,), ijel/,*GT (e)
k%t-j >_1 - |/|(2 -/3yt), ij ZIteT)

awt < Kj - CJ, jel tET (9)

ie/ (5)
i#j
Yowme<1, Gjeli#] (h)
teT)
Si+G +my +<t>ip+ frit>1, ij6/,i<jtGT (i)
fost +fcj* = 1 - |/|(1" <t>Ht) hi €/, t <]t €T)]
hit -fcjt> 1 - |/|(1 - 15ijt) ' h3e/, i<jt6T (K)
E’mjtsls 3,J€I,£<J (I)

The objective function (a) again counts the number of host boats. Constraints (b) and (c)
require to remain on their own boat if and only if they are a host crew. Constraints (d)-(f) use
a digunctive mechanism to relate v*t to ha. They say that if ha =j (i.e., -KXijt and -i/3yy,
which say that h; is neither less than nor greater than j), then vy = 1. Constraint (g) is
the same capacity constraint as before, interpreted this time as a 0-1 inequality. Constraint
(h) plays the role of the all-different constraint. Constraints (i)-(k) again use a digunctive
mechanism to say that if i and j are visiting crews and ha = /ijt, then my* = 1. As before, (1)
says that a pair of crews must meet at most once.

3 The Digunctive Interpretation of MLLP

Any instance of the MLLP model (1) can be written in the form of a digunctive programming
problem,

min ex (6)
st. \/ Alz>"a

where T is a finiteindex set. Thisis done by letting the digunction in (6) be

V{A'x >d |y istrue, j = 1,...,n}. ©)
y

Here y ranges over every value that satisfies the logical constraints; i.e., every valuey for which
there exists an h that makes every Oi(y, h) true.

13

Because every digunct of (6) represents a polyhedron in the a-space, the feasible set of (6)
and therefore any MLLP model is a union of finitely many polyhedra. Jerosow showed that
this union can be represented by an MILP constraint set if all the polyhedra have the same
recession cone. The recession cone of a polyhedron P is the set of all directions d such that for
some X € P, x +ad 6 P for all a > 0. This restriction on recession cones is of little practical
import, because if one places laxge upper bounds on all the variables, the recession cone of all
the polyhedra is the origin.

Conversdy, every MILP model can be written as a digunctive problem, because it can first
be transformed to a 0-1 problem,

min ex
st. Ax+By>a
NE{0,1}, allj,

which isin turn equivalent to a digunctive modd whose congraint set is

VAX > a-By,
y

where y ranges over all 0-1 vectors.

An individual logical formula gi(y,h) can also be given a disjunctive interpretation. Its
feasible set can be regarded as (7), where y ranges over all values that make gi(y,h) true for
some h. The feasible set of </(y, h) can therefore be regarded as a union of finitely many
polyhedra in the x-space. '

4 The Basic Algorithm

The basic MLLP algorithm branches on the truth value of propositional variables ys and on
values of the discrete variables hj. When branching fixesyj to true or false, the formulayj or
-ij/j becomes one of the logical formulas gi(y,h). When hj is fixed to v, the domain Dj of hj
(i.e., the set of its possible values) is reduced to {v}.

Next alogic processing algorithm is applied to the formulas. This may generate additional
formulas (logic cuts). It may also fix the values of additional j/j's or remove elements from
some JDJ'sS. If the formulas are unsatisfiable this may or may not be discovered, depending on
the strength of the algorithm, but if it is discovered the search backtracks. Section 6 below
discusses logic processing algorithms in greater detail.

Linear cuts may now be generated for some of the logical constraintsif desired, as discussed
in Section 5. A linear programming problem isformulated whose constraints are theinequalities
A’x > a’ that correspond to true j/j's, plus any additional cuts. If the LP is infeasible,
the algorithm backtracks. Otherwise the solution X of the LP will in general satisfy certain
constraint sets A*x > a’ and not others. If proposition yj is not already fixed to true or false,
it is temporarily assumed true if X satisfies A*x > a’ and false otherwise. If an unfixed yj
corresponds to an empty constraint set, it can be given a default value that applies until it is
fixed otherwise.

At thispoint the variablesyj aretrue or false and the discrete variables hj may have domains
of various sizes; a singleton domain fixes the variable. If these values make all formulas true,
X is a feasible solution. If some gi{y,h) is false or has no determinate truth value (because h

14

is not fully determined), one may try to generate a separating cut; i.e., a valid inequality for
9x(y, h) that x violates. The generation of separating cuts is treated in Section 5.7. If no such
inequality is generated, then gx(y, h) is regarded as an unsatisfied formula. It should be noted
that if X lies within the convex hull of the feasble set of gi(y, h) but not within the feasble
st itsdf, then no linear inequality can cut it of, and theflf(y, h) will inevitably be classfied
as unsatisfied.

Finaly, a variable yj or hj is chosen for branching. This should be a variable that when
st to at least one of its vaues satisfies an unsatisfied formula, or perhaps brings it closer to
satisfaction in some sense.

A more precise statement of the algorithm appears in Fig. 2.

5 Relaxations

The linear programming problem solved at each node of an MLLP search tree provides alower
bound on the optimal value at that node. However, the LP contains only those constraints
that are enforced by true propositional variables. Logica formulas that do not fix any of their
variables are not represented in the LP relaxation. The latter is therefore likely to provide
a week bound, and when possible it is important to augment it with additional cuts that
represent the logica formulas.

This section presents some techniques for obtaining linear relaxations of logica formulas by
generating valid cuts in the continuous variables. As noted earlier, some of these cuts mimic
the effect of the traditional continuous relaxation of a 0-1 model. But the strength and nature
of the traditional relaxation is remarkably ill understood, given the degree to which it is used.
An analysis of it will therefore comprise an important part of the discussion.

5.1 The Convex Hull

It was remarked earlier that any logical formulag%{y” h) is equivalent to adigunction of linear
constraint sets,
V A'x*aK ®
teT
Its feasible set is therefore a union of finitely many polyhedra, and a description of the convox
hull of this union is the best possible linear relaxation of the formula
In some cases the convex hull is so large that even the best possible relaxation is poor or
useless. If for example x is bounded 0 < x < m, it is not uncommon for the convex hull of (*)
to fill most or al of the box described by 0 < x < m. A notorious example of this aiss> in
scheduling problems. If operations 1 and 2 begin at times X\ and x, and last 2 minutes, one
imposes the digunctive constraint

(X22X%+2)V (Xi Z2x2+2)

to ensure that one occurs after the other. The upper bounds m represent the latest time at
which an operation could be scheduled and are therefore likely to be much larger than 2. The
dashed linein Fig. 3 encloses the convex hull when m = (10,10). In this case the best possble
relaxation is given by X\ + x, > 2, X\ + %, > 18 and 0 < Xj < 10. Thisis not much different
than 0 < Xj < 10 and is probably usdessin practice.

15

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Mixed Logical/Linear Programming
John N. Hooker and Maria A. Osorio

EDRC 7M0-96

Mixed Logica/Linear Programming *

J. N. HOOKER

Graduate School of Industrial Administration
Carnegie Mélon University, Pittsburgh, PA 15213 USA
M. A. OSORIO
School of Chemical Enginepring
University of Puebla, Puebla, Mexico 72550

July 1996

Abstract

Mixed logical/linear programming (MLLP) is an extension of mixed integer/linear pro-
gramming (MILP). It represents the discrete elements of a problem with logical propositions
and provides a more natural modeling framework than MILP. It can also have computa-
tional advantages, partly because it eliminates integer variables when they serve no purpose,
provides alternatives to the traditional continuous relaxation, and applies logic processing
algorithms. This paper surveys previous work and attempts to organize ideas associated
with MLLP, some old and some new, into a coherent framework. It articulates potential
advantages and disadvantages of MLLP and illustrates some of them with computational
experiments.

1 Introduction

Mixed logical/linear programming (MLLP) is a general approach to formulating and solving
optimization problems that have both discrete and continuous elements. Mixed integer/linear
programming (MILP), the traditional approach, is effective in many instances. But it un-
necessarily restricts the modeling and solution options available. MLLP allows naturally for
branching strategies, relaxations and logic processing algorithms that neither fit comfortably
into nor are suggested by MILP. In particular it counts the traditional strategies among ii>
options and should therefore be seen as an extension of MILP rather than an alternative to it.

Mixed discrete/continuous problems are traditionally conceived as continuous problem* in
which some of the variables are restricted to be integers. MLLP takes a completely different
view. It does not attempt an often unnatural and contrived embedding of the discrete aspects
of the problem within alinear programming model. Instead, it represents the discrete elements
by logical formulas and only the continuous element by linear inequalities. It therefore has the
option of dispensing with integer variables. Rather than require that a feasible solution satisfy
a fixed set of inequalities, MLLP provides several alternative sets of inequalities. The role of
the logical formulasis to govern which alternatives are acceptable.

*This research is partially supported by U.S. Office of Naval Research Grant N00014-95-1-0517 and by the
Engineering Design Research Center at Carnegie Mellon University, an Engineering Research Center of the
National Science Foundation, under grant EEC-8943164.

1.1 General Form of an MLLP

An introductory discussion is more meaningful if MLLP is given a brief mathematical descrip-
tion. An MLLP model has the form

min ex

st. Vi~ (A'X >—a')'1 J GJ gi{y’h), iel. i
The model has a logical part (on the right) and a continuous part (on the left). The logical
part consists of formulas <ft(y, h) that involve atomic propositionsy = (yi,..., Yn), Which are

either true or false. Such aformulamight be W V y<i, which saysthat W or y<i (or both) must
be true. There may also be some variables h = (/&i,..., hy) that take several discrete values.
The continuous part associates each atomic proposition yj with a system A*x > a* of linear
inequalities. The system is enforced when yj istrue. So the formula\ V y<i in effect requires
any solution x to satisfy A'x > a' or A% > a? (or both). In general, (x,y,/i) is feasble if
(v, h) makes all the logical formulas true and x satisfies the linear systems corresponding to
truejlj's.

The problem (1) can be solved by branching on the truth values of the y/s and the discrete
values of the hj’s. At each node of the search tree, one solves a linear programming problem
(LP) containing the constraintsthat correspond to true y/s, plus any cuts added to strengthen
the relaxation. A key element of MLLP is to apply alogical inference algorithm to the logical
formulas before solving the LP. This may generate further logical constraints and may fix some
additional y/s and hj's.

It is easy to show that every MLLP is equivalent to a disunctive programming problem
whose constraint is a disjunction of linear systems (i.e., the solution must satisfy at least one
of the systems). Its feasible set is therefore a union of finitely many polyhedra.

12 Aim of this Paper

The aim hereisto explore MLLP as a general and practical approach to solving problems with
both discrete and continuous elements. Previous work is drawn together, and an attempt is
made to order ideas associated with MLLP, some old and some new, in a coherent framework.
The potential advantages of MLLP are articulated, and several areillustrated by computational
experiments.

Because MLLP is a general approach to continuous/discrete problem solving, a thorough-
going experimental evaluation would be a massive undertaking, and it is not attempted here.
The task would be further complicated, both practically and conceptually, by the fact that
MLLP is not a single approach to problem solving but a framework within which several ap-
proaches can be used. As in MILP, its effectiveness depends on how carefully one designs
relaxations, cuts, and branching schemes to fit the problem at hand. The intent here is to
provide a broader range of options and to show by example that at least some of them can be
superior to the conventional ones.

The examples include chemical engineering network synthesis problems, war ehouse location
problems, flow shop scheduling problems, and the "progressive party problem,” which is a
scheduling problem posed by a yacht party. The last problem is rather frivolous but has
attracted a good deal of attention and illustrates several ideas associated with MLLP.

Experience with engineering design problems (e.g., [10, 64]) suggests that MLLP can be
usefully extended to mixed logical/nonlinear programming (MLNLP). This possibility is not
pursued here.

13

Advantages of MLLP

Several potential advantages of MLLP's broader framework, summarized below, should become
evident in the ensuing discussion. Some of the advantages are illustrated by the computational
experiments, as indicated.

Separation of branching and relaxation. In MILP, integer variables serve as both a branch-
ing and relaxation device. The problem is relaxed by removing the integrality constraint
on the variables, and one branches on integer variables that have a fractional valuein the
solution of the relaxation. But there are many other branching and relaxation schemes.
MLLP permits one to use any branching schemein combination with any relaxation, be-
cause the relaxation need not involve the discrete variables. The relaxation is generally
created by adding cuts to the continuous part of the model.

Smaller linear programming problems. Some combinatorial problems are formulated only
or most conveniently with a large number of discrete variables. MILP forces these vari-
ables to be included in the LP problems solved at each node, whereas MLLP puts only
continuous variables in the LP problems. This advantage is dramatically illustrated by
the party problem. In some cases, however, the advantage of removing integer variables
is offset by the necessity of adding cuts to achieve a good relaxation. This is discussed
below.

Faster and/or more effective processing of discrete variables. Logical variables can often
be fixed at a node by applying inference procedures to the logical constraints. In many
cases the same variables would have been fixed by solving the conventional continuous
relaxation. But in these cases logic processing is much faster because it can be achieved
by a unit resolution procedure. Thisisillustrated by the party problem. In other cases,
logic processing is more powerful than linear programming, because it fixes variables to
true or false when they would receive fractional values in a continuous relaxation.

Feasible solutions identified sooner. The conventional continuous relaxation of a 0-1 dis-
junctive formulation can have fractional solution values even when the digunction is
satisfied. This means that MILP can keep branching after a feasible solution is found.
MLLP avoids this defect and may therefore produce a smaller search tree. This is il-

- lustrated by the flow shop problem and instances of the process synthesis problem that

have semicontinuous variables.
Stronger relaxations. MLLP can provide stronger relaxations in three ways.

- Valid cuts can sometimes be found for a digunctive constraint that are stronger
than the continuous relaxation of any obvious 0-1 formulation.

- Logic processing can generatelogical constraints (logic cuts) whose linear relaxations
can be added to the linear model. The same logic cuts can be used as cutting
planes in a conventional branch-and-cut algorithm, but logic processing provides a
systematic way of generating them. This is illustrated by the warehouse location
and party problems.

- The idea of Benders cuts can be generalized to an MLLP setting to produce logic-
based cuts that may be useful when solution of LP relaxations is expensive.

 An alternative approach to identifying cuts. The logica point of view can suggest logic
cuts that follow easlly from an intuitive understanding of the problem but are not easlly
revealed by conventional polyhedral analysis. It can aso suggest nonvalid logic cuts,
which do not change the optimal value but are stronger because they exclude feasble
solutions. The chemica processing network problems will illustrate both points.

* More natural modeling. Integer variables, particularly 0-1 variables, are very often con-
trived to express what were originally concelved as logica constraints. In such cases
MLLP permits amore natural formulation. In other cases a problem is most readily ex-
pressed with multivalued discrete variables, as for example problems in which avariable's
value may indicate the machine to which ajob is assigned or an operation’s position in
a sequence. Constraints on such variables that are not easlly expressed in inequality
form may readily be formulated with predicates that are quite natural for logic process-
ing algorithms. A particularly useful predicate is the "al different” predicate, which
requires that a set of variables al have different values. The advantages of multivalued
variables have been exploited in the constraint satisfaction and constraint programming
literature, and the algorithms developed there may be used in the logic processing phase
of an MLLP solver.

The last point deserves expansion. A habit of writing models for the convenience of the
solver, as is common in operations research, can lead one to forget that the primary role of
modeling in science is explanatory. The modeling process should improve one's understand-
ing and should not be befuddlied by the necessity of writing a machine-friendly formulation.
On the other hand, if the modd is totally unsuited for solution, it will require a substantial
reformulation either by an automatic procedure or a human expert. It may be difficult to
relate the solution to the origina formulation. MLLP tries to steer a middle course. It makes
discrete/continuous modeling somewhat more natural by eliminating the necessity of integer
variables and introducing logica constraints and multivalent variables. But the solution ap-
proach is still cdosdy related to the problem statement because it branches on the discrete
variables that appear in the origina model. The moded generally requires additional prepa-
ration before solution, but preparation usually involves adding cuts rather than reformulating
the problem.

14 Mitigating Factors

The advantages of moving to MLLP's broader framework are mitigated by at least three
considerations.

* Relaxations must be explicitly generated. An MILP mode comes with a ready-made
linear relaxation, but MLLP obliges one to make a conscious choice of relaxation. It is
sometimes unobvious how to create a relaxation that is even as strong as the traditional
one (without reintroducing the traditional integer variables).

» The relaxation may be large. The cuts needed to build a useful relaxation may make the
linear constraint set larger than an MILP mode.

» More expertise is needed. MLLP generaly requires greater expertise than MILP because
of the greater range of choices it imposes on the user. It may therefore be suited to a
smaller circle of practitioners.

One might respond to the first two points as follows. Although a nontraditional relaxation
may be large or hard to identify in some cases, there are other cases in which it can solve an
otherwise intractable problem. The key is to be able to identify the appropriate relaxation
for a given constraint set. The following cases may be distinguished and are more rigoroudly
characterized in the remainer of the paper.

1. The congtraint(s) to be relaxed can have no good linear relaxation, because the convex
hull of the feasible set occupies most or al of the solution space. In these cases no
relaxation should be used. MLLP permits this, whereas MILP forces one to use integer
variables, which introduce usdless overhead.

2. A good relaxation is possible but the MILP relaxation is weak or useless. It may be
possible to replace the MILP relaxation with a reasonable number of cuts that produce
a stronger relaxation. Two generd methods, described below, that may be helpful are
tightening of MILP cuts and generation of "optimal separating cuts.”

3. The MILP relaxation is useful. In this case it may be easy to mimic the effect of the
MILP relaxation with afew cuts. If not, one can dways add integer variables to obtain
the classcd relaxation. Even here, one may wish to relax only a portion of the mode in
this fashion. The integer variables need not be used for branching purposes, so that the
distinction between branching and relaxation is maintained.

The final objection, that MLLP requires more expertise, can be partially overcome by
automating as many choices as posshle and by installing redundancy. Commercid MILP
solvers, for example, automatically apply a number of cuts and preproc ng devices that may
or may not be useful for a given problem.

Ultimately, however, alarge class of combinatorial problems may aways reqw re acertain
amount of expertise for their solution. The issue is how much user intervention is appropriate.
It seems unreasonable to restrict onesdf to automatic routines in general -purpose solvers when
some smple additional tricks may obtain solutions that are otherwise out of reach. At the
other extreme, it is impractical to invest in every new problem the years of research efort that
have been lavished on traveling salesman and job shop scheduling problems. MLLP is designed
to present a compromise between these two extremes.

15 Previous Work

A logic-based approach to operations research was discussed as early as 1968 in Hammer and
Rudeanu's treatise on boolean methods [25]. Granot and Hammer [23] suggested in 1971 the
possibility of using boolean methods for integer programming.

The MLLP approach described here was perhaps first clearly articulated by Jerodow [41],
who was primarily interested in issues of representability. He viewed discrete variables as
artifices for representing afeasible subset of continuous space, which in the case of an MLLP or
MILP mode is aunion of finitely many polyhedra. From thisit follows that MLLP and MILP
models are essentially digunctive programming models. Building on joint work with Lowe [42],
Jerodow proved that an MILP modd can represent a union of finitely many polyhedraif and
only if they have the same recesson cone.

In the meantime, Williams [66, 67, 68, 70], Blair [8, 9] and Hooker [28, 28, 29, 30, 31] ex-
plored connections betwen logic and optimization. Beaumont [6] undertook what is apparently

5

thefirst systematic study of MLLP as a solution technique for optimization problems. Drawing
on the semina work of Balas in digunctive programming [2, 3, 4], he described families of vaid
cuts that can be used to create relaxations of digunctive constraints.

More recently, Hooker argued in [32] that alogic-based approach to optimization, includ-
ing MLLP, can exploit problem structure in ways that are paralléel to traditional polyhedral
techniques. Wilson [71, 72, 73] studied logic cuts and logic-based formulations.

It is crucia to demonstrate the practical vaue of MLLP in a problem domain. This was
accomplished largely by Grossmann in the area of chemical process design in a series of papers
coauthored with Hooker, Turkay, Yan and particularly Raman [37, 49, 50, 51, 52, 64]. These
papers developed some of the key MLLP concepts discussed here. Bollapragada, Ghattas and
Hooker also obtained encouraging results in structural design [10].

1.6 Other Approaches

It isinstructive to contrast MLLP with other approaches that combine discrete and continuous
elements.

The mixed logical/linear programming approach of McAloon and Tretkoff [44, 45], which
is implemented in the system 2L P, combines procedura with declarative programming. The
discrete element is represented by a user-supplied script that controls the formulation and
solution of LP modéels that represent the continuous element. This contrasts with the approach
to MLLP described here, in which both elements are modeled in a declarative fashion. The
two agpproaches are not incompatible, however, and 2LP could in fact provide a framework in
which to implement the MLLP techniques presented here.

Even pure 0-1 optimization problems have a continuous eement in the sense that the
constraints are represented by linear inequalities, and it is not obvious how to apply logic-
based methods to them. An approach devised by Barth [5] is to derive formulas from the
inequalities that can be processed with logica inference methods. Barth's techniques can
enhance the logicd processing phase of MLLP agorithms.

The work of McAloon, Tretkoff and Barth is influenced by severa streams of research that
have historically focused on discrete problems but are experimenting with ways to incorporate
continuous variables. Logic programming models, introduced by Colmerauer [16] and Kowaski
[43], dlow oneto formulate aproblem in a subset of first-order logic (Horn clauselogic). Recent
versions of the logic programming language PROLOG [11, 61], such as PROLOG Il1 [17] (and
soon V), incorporate linear programming.

The integration of constraint solving with logic programming is formdized in the constraint
logic programming (CLP) scheme of Jaffar and Lassez [39]. It generdizesthe "unification” step
of logical inference methods to encompass constraint solving in genera [40].

CLP provides aframework for integrating constraint satisfaction methods developed in the
artificia intelligence community (and elsewhere) with logic programming ideas [20, 63, 65].
A number of systems aong this line have been developed in addition to Prolog I11, including
CLP(R) [39], CAL [1], CHIP [19, 59], the ILOG solver [46], and other packages [12, 57, 53].
Linear programming has a place in severa of these systems. Unlike MLLP, these methods rely
to some extent on procedural modeling. They aso lack MLLP's emphasis on exploiting problem
structure in the generation of cuts and relaxations, although the constraint programming
literature has shown some interest in exploiting structure (e.g., [21]).

1.7 Outline of the Paper

The remainder of the paper begins with a presentation of four example problems that illustrate
MLLP modding (Section 2). Section 3 presents the digunctive interpretation of MLLP, and
Section 4 summarizes the basc MLLP algorithm. Two long sections (5 and 6) respectively
discuss relaxations and logic processing algorithms. Some of these are illustrated in the last
section, which presents computational results for the four example problems.

Adgde from its survey and development of MLLP generaly, the specific contributions of
this paper include necessary and sufficient conditions for whether an elementary cut for a
digunction is supporting (Section 5.4), necessary and sufficient conditions for integrality of a
0-1 digunctive representation (Section 5.5), a definition of optimal separating cuts (Section
5.7), a completeness proof for multivalent resolution (Section 6.6), a unit resolution agorithm
for multivalent clauses (Section 6.6), and an application of logic-based Benders decomposition
to MLLP (Section 6.8).

2 Some Examples

Examples from four application areas are presented to illustrate some of the concepts, advan-
tages and disadvantages of MLLP. The first two problem classes concern flow shop scheduling
with zero-wait transfer and processing network design. They are important in chemica engi-
neering. The third, a warehouse location problem, was chosen partly because it is ill-suited
to logic modeling. The fourth problem, the progressive party problem, is chosen to represent
problems in which the discrete element dominates. An attempt was made to choose problems
with the flavor or complexity of real applications, although the warehouse location problem is
somewhat stylized.

2.1 A Flow Shop Problem

A scheduling problem that frequently occurs in chemical processing is aflow shop problem with
zero-wait transfer. There are several jobs, each representing a batch of some reagent. Each
job is processed on severa machines (reactors). The machines are dways visited in the same
order, but a given job may skip some of the machines. When ajob's processing is completed
on one machine, it must move immediately to the next machinein its sequence. The objective
is to minimize makespan.

Let J{ be the set of machines on which job i is processed, and dy; the processing time for
job i on machinej. If U is the start time for job t, the job is completed at time

u+£n
i

It is necessary to make sure that two jobs t, k are not scheduled to be in process at the same
time on the same machinej € J-nJ*. Thefinish time of job i on machinej is ty,-+ Dyj, where

D= Y dij,
? € Ji
i<
and its start timeis ty + Dy - dyj. To avoid clashes one must say that for each machine| on
which jobs i.k are processed, job k starts after job i has finished, or vice-versa. The natural

-
i

-

and obvious way to formulate this "or" constraint is with alogica disunction. For each pair
(i,fc),one writes the digunction, -

(U + Da_<ty + Dix - dig, Je-ﬁDJk) Vv (tk+ ij_< t{+ DIJ 'dih] € Ji an).

The inegqualities in either digunct are the same except for the right-hand side. It is therefore
necessary to write only one disunction in each digunct, using the tightest right-hand side.
The model to minimize makespan is therefore

min T
st. T2+ Y. dj, aljobst,
JEH
{tk -U>_1i) V {U -t> ry), alljobst, kK with t '+ fc,
t<=0, dlft,

where

ric = Jo8% {Dij - Di+du}.
This MLLP mode is easily put into the form (1) by introducing logical variables. Let yik be
true whenjob t is sdieduled before jobfcon each machine on which they are both processed.
The forma MLLP is therefore

min T
st. U0, TzU+ Y dij, all% (a) via Vi, allik, i#k. @
Jeh;
Vik — (t = & > ra) ()]
There is no need to represent constraints (a) with propositions {/t because they hold categori-

caly.
Formulating (2) as a traditional MILP model requires the additional step of introducing
big-M constraints to represent the digunctions.

min T
st. U=0, Tt + Y dji aili
J€J
b=t 2 ri — M(1 -y}
U-hzrg- My
y<ike{ 0,1}, altfc.

2.2 A Processing Network Design Problem

Another common problem in chemical engineering is the design ("synthesis') of processing
networks. For instance, one may wish to separate the components (A, B, C, D) of a mixture
by passing it through various distillation units, asillustrated in Fig. 1. Bach unit separates the
input mixture into two streams as indicated. The volumes of the outputs are fixed proportions
of the input. Clearly some of the units in the network of Fig. 1 are redundant. The problemis
to choose units and flow volumes so as to minimizefixed and variable costs, subject to capacity
and volume constraints. Such problems can involve processes other than distillation and are

8

/ ¥
A|BCD C[D

2]
ABCD ABICD B|C
] Yo

A[BC
ABCD ™ s AB
1”2 \ yio

"AB|C

74

Figure 1: A ~component separation network.

often complicated by recycling of streams and waste heat, the latter typically resulting in a
nonlinear model that is not discussed here. The volume of some streams into and out of the
network can be semicontinuous variables, and this possibility is considered.

Let E bethe set of directed arcs in the network. The network in general contains a set / of
unit nodes, which represent processing units, and a set J of structural nodes, at which no unit
is present and flow is simply conserved. The flow on arc (t,j) is xs- and incurs a unit cost of
Cij. Inputsto the network and outputsfrom it are represented by structural nodes, and ifj is
an output node, cy would typically be negative to indicate revenue from sale of the product.
The fixed cost of unit i is/». Theflow on arc (f,j) leaving unit j is a%j times the total input
to the unit.

The discrete element of the problem is the decision as to whether to install a unit i and its
incident arcs. Either fixed cost f, is incurred, or else there is no fixed cost and no flow leaves
the unit. If Z{ isthe fixed cost paid for unit i,

% O
«=Vf, *-°-0V
Ifyi is true when unit { is installed, the MLLP model can be written,

min 2 Cijdiy +Z?«'
(iJ)eE i
st Y mij=) ik, | €J WVY. ‘t6/
(iJ)eE (\k)EE
=0 Y. Tk (LI)EE iel
(kA)EE
0<zi;<hki, (1,j)€EE
vi—+(x=[), iel

z=0 .
{ — , t&el.
w ek Tis = 0)

- The MILP modd represents the digunctions in the usual way.

min 3 ez + 3 i

(iJ)eE i
8.t z Ti; = Z Tik, JEJ
(i)eE (ik)eE
Ty = oy I
(W)EE
Tij < kiyi, 1€1
(i5)€E

wn€{0,1}, il

Process synthesi s problems can involve semicontinuous variables, asdescribed in [52]. These
are variables whose values must lie within certain intervals. For example, an input to the
processing network may consist of a feedstock obtained from a small set of suppliers, each of
which can provide either nothing or a quantity within a certain range. Taking al possble
sums of these intervals yields the intervals within which the total input volume must fall.

A semicontinuous flow variable xiy must lie in one of the intervals [a, by] fort = 0,..., T.

The most straightforward digunctive representation is,
Vt-* (as*ijsM Vibowt

The proposition y; istrue when x¢- liesininterval t. An alternative formulationis the following.

%53-35"1‘ y!vﬁ$ t=1,...,T
¥ — (24 2 ar) (3)
vt = (2ij < be)

Here yt is true when the flow volume lies in interval t or higher, and y[is true when it liesin

interval t - 1 or lower.
An MILP representation is

T

*ij 2 <0+ X) 0.4y
tsl

T
zij < bo+) beme

tssl

:
Yus<

t=l
376{0,1}. t=1,...,T

2.3 A Warehouse Location Problem

A smple warehouse location problem will be useful to illustrate how cuts can be generated
from knapsack constraints. The problem is to choose a set of warehouses of limited capacity
S0 as to serve a set of demand points while minimizing fixed and transport costs. Let

10

Xij =flow from warehouse i to demand point j.
fi = fixed cost of warehouse i.

ki = capacity of warehouse i.

dj = demand at point j.

Cij = unit transport cost from i toj.

The fixed cost Z{ that is paid for warehouse i is either I; or zero, depending on whether the
flow out of the warehouse is positive. This poses the disunctions,

(z.-=f.-)v(2j;j°=o), all i.

The MLLP modd can therefore be written,
min Z Z + Zc;jz;j
i ij
s.t. Z:s,'j < fory ax ji* v all 4
7
Y zii>d;, all §
Xij >0, alli,j

Vi-e (H =19, alli
¥i— (L% =0), all 4

The traditional MILP modd is

min ~A2KM + 3 €ii%ij
¢ T

st. 5Z«tj < him, all i
j
JIxei 2dj, allj

Xy =20, dli,j,
KG {01}, allt.

24 The Progressive Party Problem

Thefinal problem to be considered is a scheduling problem posed by a "progressive party” that
was organized at ayachtingrally in England. The problem gained some notoriety when agroup
of mathematical programmers and constraint programmers found it to be intractable for the
former and soluble by the latter, albeit with some manual intervention [60]. It presents insur-
mountabl e difficulties for MILP primarily because there seems to be no economical formulation
of the problem within the MILP framework. The problem is much more easlly formulated in
the broader MLLP context and illustrates the advantages of multivalent discrete variables.

In a progressive party, the object is for the crews of a fleet of yachts to visit a subset of
yachts and mingle with the other crews. The visiting crews move to different boats at the end
of each phase of the party. Presumably to smplify the provision of refreshments and so forth,
the number of host yachts should be small.

11

The problem can be more precisely defined as follows. A set / of boats is given. Each boat
i occupied by a crew of ¢; persons and has space for K{ persons on board. The problem is to
minimize the number of host boats. Each crew i visits a different host boat ha in each period
t, unless it isitself a host, indicated by the truth of proposition £-. In the latter case ha = 2 for
all t. To encourage mingling, no pair of visiting crews are permitted to meet more than once.
The proposition rrtijt is true when non-host crews i and j visit the same boat in period t.

For checking capacity constraints it is convenient to define a proposition V{j; that is true
when ha = j. The only propositions that enforce linear inequality constraints are the tf;'s,
which force Z{ = 1 when true. The remaining propositions correspond to empty constraint
sets.

The problem can be stated as follows. The objective function counts the number of host
boats. The predicate alldiff means that all of its arguments have distinct values.

min EZ:

i€l
st. z>0, is| Vig—=(ha =j), iJelteT (@
b—(zi21), i€l 6; v alldiff(h;q,. ..,), 1€[1 (b}
$i = (ha =0, ieiteT (c)
D v <_Ki -¢, jei teT (d)
tel
i
Gvéivmg V(b rhjt), tjel, t<jl teT (e)
Y mi <1, djei<3 0
teT

hie € {1,...,|I]}, i€Lt€T

(4)

Formula (a) defines Vij;. Formula (b) says that crew i should visit a different boat in each

period unless it is a host crew. Formula (c) causes a crew to remain on its own boat if and
only if it are a host crew.

Formula (d) is the boat capacity constraint. It should be interpreted as a logical formula
rather than a linear inequality in O-1 variables. The summation means that ¢; is counted in
the sum for each true vyt- The inequality as a whole means that enough v*s should be false
so that the resulting sum is at most Kj — Cj. The interpretation of inequalities as logical
propositions is further discussed in Section 6.

Formula (e) saysthat if crewsi and j are both visiting crews (i.e., £ and 6] arefalse), then
either mij; is true or hit £ hj; i.e, rrtijt is trueif the two crews visit the same boat in period t.
The next formula (f) says that a pair of visiting crews should not meet more than once. Here
again the inequality should be interpreted as a logical proposition.

The entire model has O(|/|?|T|) variables and constraints. Note that the LP istrivial, asit
consists only of an objective function and constraints of the form Zj>l. The LP will become
more interesting when cuts are later added to strengthen the relaxation.

Formultion of an MILP model is much more difficult. The most challenging constraint is
the one that requires visiting crews to meet at most once. The authors of [60] remark that if
this is formulated using the variables V{j, O(|/|*|T|?) constraints are generated. Because this
is impractical, they introduce O(|/|*|T|) variables yijkt, which take the value 1 when crews jyk
meet on boat i in period t. But because there are 29 boats in the problem, this results in an
enormous number of binary variables.

A more compact MILP model is suggested here. It reinterprets the multivalent variables
ha as numeric variables and enforces the all-different constraintsin an awkward manner that is
characterigtic of MILP. The variables ha need not be explicitly constrained to be integral, be-
cause the remaining constraints enforce integrality. The model has O(|/|?|T|) integer variables
and constraints, many fewer than the model of [60]. Yet it will proveintractable.

The MILP model can be stated as follows.

min Y|% ()

st. Fe+ (1-ty« 21, iJelt€T (6)
(I-*)+t>Mt>l, *€/,t€T (c)
Vi + ay, + Pijt >_1, i,j€lteT (d)
-hu+3=1-|/|@A-ay,), ijel/,*GT (e)
k%t-j >_1 - |/|(2 -/3yt), ij ZIteT)

awt < Kj - CJ, jel tET (9)

ie/ (5)
i#j
Yowme<1, Gjeli#] (h)
teT)
Si+G +my +<t>ip+ frit>1, ij6/,i<jtGT (i)
fost +fcj* = 1 - |/|(1" <t>Ht) hi €/, t <]t €T)]
hit -fcjt> 1 - |/|(1 - 15ijt) ' h3e/, i<jt6T (K)
E’mjtsls 3,J€I,£<J (I)

The objective function (a) again counts the number of host boats. Constraints (b) and (c)
require to remain on their own boat if and only if they are a host crew. Constraints (d)-(f) use
a digunctive mechanism to relate v*t to ha. They say that if ha =j (i.e., -KXijt and -i/3yy,
which say that h; is neither less than nor greater than j), then vy = 1. Constraint (g) is
the same capacity constraint as before, interpreted this time as a 0-1 inequality. Constraint
(h) plays the role of the all-different constraint. Constraints (i)-(k) again use a digunctive
mechanism to say that if i and j are visiting crews and ha = /ijt, then my* = 1. As before, (1)
says that a pair of crews must meet at most once.

3 The Digunctive Interpretation of MLLP

Any instance of the MLLP model (1) can be written in the form of a digunctive programming
problem,

min ex (6)
st. \/ Alz>"a

where T is a finiteindex set. Thisis done by letting the digunction in (6) be

V{A'x >d |y istrue, j = 1,...,n}. ©)
y

Here y ranges over every value that satisfies the logical constraints; i.e., every valuey for which
there exists an h that makes every Oi(y, h) true.

13

Because every digunct of (6) represents a polyhedron in the a-space, the feasible set of (6)
and therefore any MLLP model is a union of finitely many polyhedra. Jerosow showed that
this union can be represented by an MILP constraint set if all the polyhedra have the same
recession cone. The recession cone of a polyhedron P is the set of all directions d such that for
some X € P, x +ad 6 P for all a > 0. This restriction on recession cones is of little practical
import, because if one places laxge upper bounds on all the variables, the recession cone of all
the polyhedra is the origin.

Conversdy, every MILP model can be written as a digunctive problem, because it can first
be transformed to a 0-1 problem,

min ex
st. Ax+By>a
NE{0,1}, allj,

which isin turn equivalent to a digunctive modd whose congraint set is

VAX > a-By,
y

where y ranges over all 0-1 vectors.

An individual logical formula gi(y,h) can also be given a disjunctive interpretation. Its
feasible set can be regarded as (7), where y ranges over all values that make gi(y,h) true for
some h. The feasible set of </(y, h) can therefore be regarded as a union of finitely many
polyhedra in the x-space. '

4 The Basic Algorithm

The basic MLLP algorithm branches on the truth value of propositional variables ys and on
values of the discrete variables hj. When branching fixesyj to true or false, the formulayj or
-ij/j becomes one of the logical formulas gi(y,h). When hj is fixed to v, the domain Dj of hj
(i.e., the set of its possible values) is reduced to {v}.

Next alogic processing algorithm is applied to the formulas. This may generate additional
formulas (logic cuts). It may also fix the values of additional j/j's or remove elements from
some JDJ'sS. If the formulas are unsatisfiable this may or may not be discovered, depending on
the strength of the algorithm, but if it is discovered the search backtracks. Section 6 below
discusses logic processing algorithms in greater detail.

Linear cuts may now be generated for some of the logical constraintsif desired, as discussed
in Section 5. A linear programming problem isformulated whose constraints are theinequalities
A’x > a’ that correspond to true j/j's, plus any additional cuts. If the LP is infeasible,
the algorithm backtracks. Otherwise the solution X of the LP will in general satisfy certain
constraint sets A*x > a’ and not others. If proposition yj is not already fixed to true or false,
it is temporarily assumed true if X satisfies A*x > a’ and false otherwise. If an unfixed yj
corresponds to an empty constraint set, it can be given a default value that applies until it is
fixed otherwise.

At thispoint the variablesyj aretrue or false and the discrete variables hj may have domains
of various sizes; a singleton domain fixes the variable. If these values make all formulas true,
X is a feasible solution. If some gi{y,h) is false or has no determinate truth value (because h

14

is not fully determined), one may try to generate a separating cut; i.e., a valid inequality for
9x(y, h) that x violates. The generation of separating cuts is treated in Section 5.7. If no such
inequality is generated, then gx(y, h) is regarded as an unsatisfied formula. It should be noted
that if X lies within the convex hull of the feasble set of gi(y, h) but not within the feasble
st itsdf, then no linear inequality can cut it of, and theflf(y, h) will inevitably be classfied
as unsatisfied.

Finaly, a variable yj or hj is chosen for branching. This should be a variable that when
st to at least one of its vaues satisfies an unsatisfied formula, or perhaps brings it closer to
satisfaction in some sense.

A more precise statement of the algorithm appears in Fig. 2.

5 Relaxations

The linear programming problem solved at each node of an MLLP search tree provides alower
bound on the optimal value at that node. However, the LP contains only those constraints
that are enforced by true propositional variables. Logica formulas that do not fix any of their
variables are not represented in the LP relaxation. The latter is therefore likely to provide
a week bound, and when possible it is important to augment it with additional cuts that
represent the logica formulas.

This section presents some techniques for obtaining linear relaxations of logica formulas by
generating valid cuts in the continuous variables. As noted earlier, some of these cuts mimic
the effect of the traditional continuous relaxation of a 0-1 model. But the strength and nature
of the traditional relaxation is remarkably ill understood, given the degree to which it is used.
An analysis of it will therefore comprise an important part of the discussion.

5.1 The Convex Hull

It was remarked earlier that any logical formulag%{y” h) is equivalent to adigunction of linear
constraint sets,
V A'x*aK ®
teT
Its feasible set is therefore a union of finitely many polyhedra, and a description of the convox
hull of this union is the best possible linear relaxation of the formula
In some cases the convex hull is so large that even the best possible relaxation is poor or
useless. If for example x is bounded 0 < x < m, it is not uncommon for the convex hull of (*)
to fill most or al of the box described by 0 < x < m. A notorious example of this aiss> in
scheduling problems. If operations 1 and 2 begin at times X\ and x, and last 2 minutes, one
imposes the digunctive constraint

(X22X%+2)V (Xi Z2x2+2)

to ensure that one occurs after the other. The upper bounds m represent the latest time at
which an operation could be scheduled and are therefore likely to be much larger than 2. The
dashed linein Fig. 3 encloses the convex hull when m = (10,10). In this case the best possble
relaxation is given by X\ + x, > 2, X\ + %, > 18 and 0 < Xj < 10. Thisis not much different
than 0 < Xj < 10 and is probably usdessin practice.

15

Let Ghe a set of logical fornulas, initially the formulas
g(y.h) in(1).
Let | be a set of linear inequalities, initially enpty,
Let T,F, U indicate true, false and undefined.
Let y be a vector of truth values for yg initially y=(£/,...,t/).
Let D= (Z?%,...,Dy) be the domains of hy..,hp,
Let Z be an upper bound on the optimal value, initially oo.
Let A be the set of active nodes, initially with A= {(GL,y;£>)}.
Vhile A is nonenpty:
Renmove a tuple (G L,y, D) fromA
Apply a logic processing algorithmto G possibly changing
the contents of G possibly changing sone yj's fromUto T
or F, and possibly removing el enents fromsone £5's.
If no logical contradiction is detected then
For each yj changed to T, add A*x >a’ to L.
Generate inequality cuts as desired for fornulas in G and
add themto L.
Let X minimize ex subject to L.
If eXx <z then
For each yj\
If yj e {T,F} then let § =Y.
Else let yj =T if A*x>a* and §j = F otherwise.
Let C, initially empty, be the set of unsatisfied formulas.
For each gi(y,h) 6 G:
If ft(y>&)is F or {/ then
If desired, try to generate a separating cut for
9i(y,h) with respect to (yh).
If a separating cut is generated then add it to |I.
Else add gi(y,h) to C
If C is empty then
If no separating cuts were generated then
% is feasible; let x* =% and z= ex.
Else add (G,X,y,D) to A.
Else
Choose a variable yj with j7j = (/ or a variable hj with
MDj| > 1, such that setting yj to T or F, or setting hj
to one of its discrete values, satisfies or tends
to satisfy one of the formulas in C.
If yj is chosen then
Ad (GU {%},!,5,0) and (Gu {"}.L.y.D) to A.
Else if /ij is chosen then
For each v G Dji
Set D-D, set Dj = {v}, and add (G,L,yD) to A,
If z< 0o then z* is an optimal solution.
Else the problem is infeasible.

Figure 2: A generic MLLP branching algorithm.
16

Figure 3: Convex hull of the feasible set of a scheduling disjunction.

An even more striking example is that of semicontinuous variables. 1f 0 < XJ < 4 and the
disjunction
0=Xj=sD)VEB=Xj=4
Isimposed, the convex hull is the entire interval [0,4]. Any conceivable relaxation is therefore
useless.

5.2 Digunctive and Dual Cuts

A relaxation of (8) can be obtained by generating vaid cuts that partially or completely
describe the convex hull. Baas [4] characterized vaid cuts for (8) as follows. First, note that
bx > 0 is a vaid cut for a feasible digunct Ax > a* if and only if it is dominated by a
nonnegative linear combination (or surrogate) of Ax > a*. A dominating surrogate can be
written UAX >_ tut, where 6 > UA, /3 < uaand u > 0. But bx > /? is avdid cut for the
digunction as awhole if it is vaid for each digunct; i.e., for each digunct a surrogate can be
found that dominates bx > ft.

Theorem 1 (Balas) Theinequalitybx > 0 isa valid cutfor (8) ifany only iffor eachfeasible
system A*x > a' thereisa u* > 0 such that b> rfA* and/? < ti*at.

Given any set of surrogates U'A'x > t+a, if x > 0 one can immediately write the vaid
digunctive cut
fmaxﬁtxtA‘}>) X > minima'} (9)
\uzT v oo- et v
for (8), where the maximum is componentwise. Theorem 1 clearly implies that if x > O, every
vaid cut is dominated by a digunctive cut (9).

The strength and usefulness of a digunctive cut (9) depends radically on the choice of
surrogates. One could in principle generate digunctive cuts to define every facet of the convex
hull, but this is often impractical. The task of obtaining a good relaxation for (8) isin essence
the task of choosing multipliers U judicioudly.

17

One initially attractive choice for U is given by the solution of a dual problem. Each
surrogate should idedlly give the best possible bound on the objective function ex. That is,
u' should be chosen so that the minimum value of ex subject to U'A'x > vta® is maximized.
The desired u* is easily seen to be the optimal solution of the LP dual of min{cx | A*x > a*},
where u* is the vector of dual variables. (To put it differently, the surrogate dua for linear
programming is identical to the LP dua [22].)

The difficulty with this approach is that because A'x > a* isonly asmall part of the original
constraint set, it may have no coupling with the objective function. That is, the variables XJ
that have nonzero cofficients in ex may have zero coefficients in A'x > &), and vice-versa
This means that ex provides no information to guide the choice of u\ a Situation that is in
fact common in practice.

A possible remedy is to include more constraints in the problem whose dual is solved, so as
to capture the link between ex and A'x >_a+. This can be done as follows. At any node of the
search tree a system Ax > a of certain linear constraints are enforced by true propositional
variables. If Ax > aisincluded in each term of the digunction (8), it becomes

V (A*z > a‘)
teT Az > a
For each t one solves the dual of

min ex
st. A*aza* (u*) ' (10
Ax>a (u)

where (U*u) are the dual variables as shown. An optima solution of the dua supplies a
reasonable set of multipliers U for the digunctive cut (9).

- Unfortunately this approach appears to be impractical, because (10) is generdly a large
LP, and it is time consuming to solve the dual of (10) for each digunct. In fact, if one branched
on the digunction by enforcing each digunct in turn, (10) is precisaly the LP one would solve
at each child node. So one might as well branch on the digunction rather than relax it. There
could be some advantagein relaxing severa digunctions simultaneously, but results reported in
Section 7.2 indicate that the time investment is impracticably large. The remaining discusson
will therefore focus on much faster mechanisms for choosing effective multipliers u*.

- 5.3 Elementary Cuts

The most common sort of digunctive constraint (8) is one in which each digunct is a .angle
inequality.
Va'z 2o (I
teT
Beaumont [6] showed how to generate a cut for (11) that is equivalent to the continuous
relaxation of the traditional 0-1 formulation of (11). The latter is

ax>a'-M{\-y), *€T
=1
Zyt (12)

teT
O=sx<m

je{o,i}, ter.

18

Each Mt is chosen so that & — Mt is alower bound on the value of a'x. The bounds0 < x < m
are imposed to ensure that such a lower bound exists. It can be assumed without loss of
generdity that Mt > 0, because otherwise the inequality is vacuous and can be dropped.
Beaumont obtains a cut by taking alinear combination of the inequalities in (12), where each
inequality t receives weight I/Aft. This yields what Beaumont cals the elementary cut for

(11),
(2%):22%-|1‘|+1. (13)

teT teT

Theorem 2 (Beaumont) The elementary cut (13) is equivalent to the continous relaxation
of (12). That is, thefeasible set of (13) and 0 < x < misequal to the projection of thefeasible
set of the continuous relaxation of (12) onto the x-space.

One can aso prove equivalence by applying Fourier elimination to (12) in order to eliminate
y. Itis easy to show that (13) and 0 < x < m are the resulting inequalities.
A similar technique obtains elementary cuts for al logica formulas that are expressible as
knapsack constraints,
dy=6
yi > (@*x=> &), t€T (14)
0<x<.TO,
where d > 0. It is true that (14) can be put in digunctive form using the schema (7), but this
may require alarge number of diguncts. (Digunctions are of course a specia case of dy > S
inwhich 6 = 1 and each dj € {0,1}.) The 0-1 representation of (14) is

a*rx > a* - My(l - yt), teT

dy> 6 (15)

A linear combination of the inequalities, using weights d/Mtj yields the elementary cut,

(Z at%) z .2 Za,% Z di+ 4. (16)

teT teT t terT

This is in general wesker than the continuous relaxation of (15), however. If 2d, = 6, for
example, (15) forces al the diguncts to hold, where (16) only forces alinear combination of
them to hold.

Beaumont obtains Mt soldly from the bounds 0 < x < m by setting

a - M; = 53mn{0,a$}m;. (17)

3

In many cases a better lower bound can be obtained for a'x, resulting in a stronger cut. One
method is to minimize a'x subject to each of the other disuncts and 0 < x < m and pick the
smalest of the minimum values. M is therefore chosen so that

_ - . " 1 T
at — Mt t[gltnlrr;ln{a X|a'x>a# 0<x< m}\j (18)

19

X2

of N

o) SN

<3

Figure 4: A supporting elementary cut (a) and a nonsupporting elementary cut (b).

The computation involved is negligible.
Consider for example the following constraint set, whose feasible set is the shaded areain
Fig. 4.
(Xi +2x2 22) V (3xi + X, 2 3)
0<Xjx2
The 0-1 formulation is
Ty +2x322-Mi(l-w0)
3z1 4+ x, > 3 - Ma(1 - y2)

Ji+v2=1
0<2; L2, y,-e{(l.l}

Beaumont puts (Afi, M;) = (2,3) which results in the cut |xi + |x, > 1. By contrast, (18)
puts (Mi,M;) = (1,2), which yields the stronger cut xi + X, > 1. Thisis a supporting cut in
the sense that it defines a supporting hyperplane for the feasible set.
Even when (18) isused to compute M*, theresulting cut may fail to be supporting. Consider
the constraints (Fig. 5),
(-XX + 2%, 2 2) V (2Xi - X, =2 2)
0<Xj<2

(17) sets (Mi, M,) = (4,4), which results in the useless cut xi +x, > 0. The cut can obviously
be strengthened to xi + x, > 1.

20

Ol B
@ (o

|

Figure 5: An elementary cut (a) and a strengthened elementary cut (b).

When the inequalities a*x > at in (14) are replaced by systems of inequalities A'x > a,
many elementary cuts are required to achieve the effect of the traditional relaxation. Let each
system A*x > a* consist of inequalities A’x > a\ for t € It- The 0-1 formulation is

A*x > a* - M*(l - y), teT
0<Xx<m

dy>S

y; e {0,1}, teT.

(19)

Here M* is an array such that for each i 6 /*, a\ — M\ is alower bound on A“X. Repeated
applications of Fourier eimination revea that the projection of the feasble set of (19) onto
the x-gpace is described by the set of inequalities of the form,

(ZA‘"M‘) Za:‘j-j_-t-i——-ng-}-ﬁ,
teT
for al possible vectors (fj,...,IW\) G /i X ... XI' A.

Elementary cuts may therefore be impractical when the y;'s correspond to systems of
inequalities. In such cases one can use optimal separating cuts (described below) or the tradi-
tional relaxation.

5.4 Supporting Elementary Cuts

The example of Fig. 5 shows that an elementary cut can fail to be supporting. In such cases
it is a ample matter to increase its right-hand side until it supports the feasble set, thus
obtaining a strengthened elementary cut. In fact there is a closed-form formula for the best
possible right-hand side. The formula alows one to check easily whether a given elementary
cut is supporting, and when it is not, to improve upon the traditional continuous relaxation
the cut represents.

21

\ (a)

(b)

£ |

Figure 6: A supporting elementary cut (a) and a facet-defining cut (b).

Figures 4 and 5 may suggest that two disjuncts a'x > c*i, a > ¢2 produce a supporting
elementary cut if and only if the vectors a', a®> subtend an acute angle, and that a similar
relationship might be discovered for more than two disuncts. A third example reveals that
the situation is more complicated than this. Figure 6 shows the feasible set for

(=321 + 32 2 -3) V(-22 2 ~1)
0<XI<3

The elementary cut is 3zi + 2x, < 12, which is supporting even though (-3,1) and (0,-1)
subtend an obtuse angle.

A more adequate analysis goes as follows. Let bx > (3 be the strengthened elementary cut,
where bx is the left-hand side of the elementary cut (16). Because bx>f3 defines a supporting
hyperplane for the feasible set of (11), /? is the smallest of the minimum values obtained by
minimixing bx subject to each of the disuncts ax > a. That is,

B= ramPo (20)

where 3
3t = min [bx \ alx > a, 0 <X <_1m}.

The computation of /3; is smplified if 6 > 0, because in this case the upper bounds x < m can
be ignored. To this end one can introduce the change of variable,

3 it6 20
77 1 mj —Xj otherwise

The strengthened elementary cut in terms of X, namely bX > /2, can now be computed, where
bj = |6j]. The right-hand side of bx > /3 can then be recovered from (20) by setting

Bi=Fe+ Y M. (21)
i

6 .

]

<0

22

It remains to compute

fit=min|bx|a%> d, %2 G, (22)

-where
-0 (23)
% ="\ .3 otherwise x <

and
a'.g = O — Z Mja}. (24)
3 .
b <0

Because 6 > 0, LP duality applied to (22) yields that

. 3N
fit = min \-Sr\max{ d;,0}. (25)

This proves,

Theorem 3 The elementary cut (16) for the digunction (11) is supporting if and only if its
right-hand side is equal to fi, as defined by (20), (21) and (25).

55 Integral O-1 Representations

The traditional continuous relaxation of a digunctive constraint actually has two liabilities. It
can be weak, as aready noted, but even when it is strong, it may permit fractional solutions
when the origina digunction is satisfied. This means that a traditional branch-and-bound
method can keep branching even when a feasible solution has been discovered. It is therefore
best to check digunctions (as well as other logical constraints) directly for feasibility, as done
in MLLP.

The 0-1 formulation of the digunction (8) is the following.

A**>a'-Mt(l-yy), £ T
O0<x<m

Zy‘=1 (26)
t€T
I/t€{0,1}, €T,

where M, is given by (18). The clam is that when X is fixed to some value X, an extreme
point solution y = ¥ of (26) can be nonintegral even when X satisfies (8). An example of this
is presented by a simple semi continuous variable, x 6 {0} U [di,A]* *

(-z = O)v(=s)
O0<X< s

The continuous relaxation of (26) is
-z —2(li—y)

Os X< 82
0<y<L 1

(27)

23

If x isfixed to X and (27) is projected onto y, the result is

1 —x—_< y<lI- z—, O<yx< 1l (28)
S\ S
If0< X <52 §y=1—1- isan extreme point solution of (28) and therefore (27), and it is
nonintegral whenever 0 <X < S2- So (27) can have extreme point solutions with fractional y
even when X G [51,62]? and even though (27) is the best possible (convex hull) relaxation of
(26). The extreme point solutions for X G [*1,62] are guaranteed to haveintegral y only when
$, = 52; i.e,, when x is essentially a rescaled binary variable.

The idea can be defined in general as follows. Let Py be the set of points y that satisfy
(26) when x is fixed to X. Let the continuous relaxation of (26) be integral if for every (X,y)
satisfying (26) such that yis an extreme point of Pg, V isintegral.

The following characterizes integral relaxations. A digunct of (8) is redundant when its
feasible set lies within that of another digunct. Obvioudy, redundant diguncts can be dropped
without effect.

Theorem 4 Suppose that the disjunction (8) contains no redundant disuncts. Fortt' G T
with t *t' define

yi(t) = maxji/t | Myy < Ax -al+ M, A'x >a\o<x<m, v < I}.

Then the continuous relaxation of (26) is integral if and only ify*{t') = O for every pair tf G T
with t A °,

Proof. It is clear that yf(t') can be written,
yW) = max [y \ A*x > a' - My(l - y% A% > g0 <x <m, yr <1} . (29)

It is convenient tolet S = {x \Ax > a, 0<x<m}fort G T.
Claim. For any X G Si and any t ',

y;(0 = myax{2/t|yG Px}. (30)

"Proof of claim. It suffices to show that any y; that is feasible in (30) is feasible in (29), and
viceversa. First suppose y; is feasble in (30). Then by letting x = X it is seen to be feasble
in (29), because A*'x > a*' by virtue of the fact that X G S/. Conversdy, let y; be feasible in
(29). To see that it is feasible in (30), set yi = 1 - y% and y» = 0 for t* ~ tt'. It is enough
to show

AtRNaNt Mt -ytt) (31)

for all t* G T. But (31) holds for t* =t by stipulation. It holds for t* =1t because X £ S,,
and it holds for t" ” tt' by definition of M. This proves the claim.

Now suppose that yJT(t) > O for somet,t' with t ~ t'. Because digunct t* is not redundant,
one can choosex G S,\S. Thisimplies that j£(f) < 1, which together with yf(t') > 0 means
that yt(t') is nonintegral. Also (30) implies that somey withy; = #(*') 'S extreme point
of Py It follows that (26) is not integral. '

24

For the converse, suppose that y; (<) = O for al pairs t,t* with t # t'. It suffices to show
that for any x satisfying (8), any given extreme point y of P$ isintegral. If it is supposed that
X G 5/, the following can be stated.

max {y* [yGP*} =1 (32)
max{y,|j]/GP*} =0, t*t*.

Thefirgt is due smply to the fact that xG S*. By the above claim, the second is equivaent to
Vi (t') = 0, which is given. But (32) implies that P$ is aline segment of unit length extending
from the origin in a positive direction adong the yit axis. Thus any extreme point y°G P* is
integral, which means that (26) is integral.

Corollary 1 Consider a disjuhction (11) with one inequality per disjunction and bounds0 <
x < m. If (11) contains no redundant diguncts, then (26) is integral if and only if

max{a'z|a"x>a,, 0<x<m}=a;- M, (33)
for every tt' £T with txt*.

The conditions in Theorem 4 and Corollary 1 are quite strict. In fact,

Corollary 2 The continuous relaxation of (26) isintegral only if thefeasible sets described by
the diguncts of (8) are digoint.

Proof. Suppose two of the feasble sets intersect, e.g. those corresponding to diguncts /
and t'. Then Hf(f) = 1, which violates the condition of the theorem. o
Not even digoint feasble sets are sufficient for integrality, as the above example shows.

56 Beaumont's Cuts

Beaumont [6] identified a class of facet-defining cuts for digunctive constraints in which each
digunct consists of a single inequality, as in (11). They are facet-defining in the sense that,
under certain conditions, they define facets of the convex hull of the feasble set of (11).
Unfortunately, the conditions are often unsatisfied, which limits the usefulness of the cuts.

Beaumont's approach is essentialy a reasonable method for choosing multipliers u* so a>
to generate a digunctive cut (9). He first incorporates the bounds x < m into the digunction
(11) to obtain

V , teT.
teT

The vector of nonnegative multipliers for each disiunct is u' = (v*,u;t), where Wt corresponds
to the last inequality in the digunct. The object is to derive a digunctive cut bx > | that
satifies

b= wta' —V

0 < wtat —v'm

for al t. For a given w; (yet undetermined), it is reasonable to make the components of 6 as
small as possible to get atight constraint. So let

b= rqinlma*}, (34)

25

where the minimum is taken componentwise. One can now set
vVei=uya -6 teT,

because (34) implies VV = 0. To make the right-hand side of the cut as tight as possible, set
? = in -
/7 tgr:]rlnl{utat vtm)\ . (35)

It remains to pick values for the wy's. Beaumont's choiceis equivaent to setting w, = M; when
Aft is derived from the variable bounds as in (17) and a < 0. Thus

W = o am (36)

The approach breaks down when the denominator is nonpositive, whereupon Beaumont sug-

gests letting .

a;— min{a*,0}m'

Theorem 5 (Beaumont) The cut bx > f3 given by (34)-(36) is facet-defining for (11) if
a-a’m>0foralltGT.

Beaumont's cut can therefore be superior to a supporting elementary cut. This isillustrated
in Fig. 6, where Beaumont's cut is the facet-defining cut 2x\ + x<i < 7.

Assuming at — a'm > 0 is equivalent to assuming that the point x = m is infeasible, in
which case it makes sense to separate this point from the feasible set. x = m is often feasble,
however, as in the example of Fig. 4. Here (W W2) = (—", —|), and one must revert to (37),
which yields the usdless cut 3xi + 22 > —2

The underlying difficulty is that Beaumont's approach has no mechanism for detecting
which corner of the box 0 < x < m should be cut of from the feasible set. An appropriate
corner could in effect be identified by using a change of variable similar to one discussed earlier,
namely _

FHn M —%j when convenient
TTLX otherwise.

A "convenient" transformation would be one that makes & — &”m > 0 for as many diguncts
t as possible, where & and & are given by (23) and (24). This poses an integer programming
problem that could be solved heuristically. However, because of the computation involved this
option will not be pursued further.

57 Optimal Separating Cuts

One way to identify an appropriate point to be cut off by a disunctive cut is smply to cut off
the solution of the current relaxation. This is also a mechanism for using information about
the objective function, because the current solution was obtained by minimizing the objective
function. Fortunately it is straightforward to state asmall LP problem whose solution identifies
an separating cut if and only if one exists. Thusif no cut isfound, the current solution is known
to lie within the convex hull of the feasible set, and branching is necessary to obtain afeasble
solution—unless of course the current solution is already feasible. The cut is optimal in the
sense that it is chosen to maximize the amount by which the current solution violates it.

26

Another attraction of optimal separating cuts is that they can be generated for the casein
which there are several inequalities in each digunct. A logical constraint gi(y,h) other than a
digunction must, however, be first put in digunctive form.

Suppose that the solution X of the current LP relaxation is to be separated from the feasible
set of the digunctive constraint (8). Any upper bounds x < m should be incorporated into
each disunct of (8). Because any disunctive cut is defined by a choice of multipliers u*, an LP
model can be formulated so as to find a set of u"s that define a cut bx > 0 that is maximally
violated by %X. Such a moddl is,

max f3-bx~ : (38)
st. P<ua t€T

b>uAl t6T

-e<b6ge

v >0 to6T

/?,6unrestricted.

Note that the variables in the model are f3,b,u. The objective function measures the amount
by which X violates the cut. If the objective function value is zero, there is no separating cut.
The constraint —e_< b_< e, where e is a vector of ones, ensures that the solution is bounded.
It results in no loss of generality because an optimal cut can always be rescaled to satisfy the
constraint. '

The model (38) has an interesting dual.

min (s+i)e
st. “x ~Nat= st (b)
teT
Aa* >aly, t6T (<) (39)
dm=1 (8)
teT

8!tszt1y120’ tET

If s—tisfixed to zero and X is a variable, the constraint set is Balas' convex hull representation
for the digunction (8) [4]. That is, when s—J = 0, the projection of the feasible set of (39) onto
the X-space is the convex hull of the feasible set of (8). (Thisis related to the fact, observed by
Williams [69], that the dual of the dual of a digunctive programming problem is the convex
hull representation of the problem.) The problem (39) therefore seeks a point YiteT** ™ 2
convex hull that is closest to X, as measured by the rectilinear distance.

An optimal separating cut can be superior to a supporting elementary cut. Consider the
example of Fig. 6, which becomes

=31 +222 -3 -2 2 =1
—z1 > -3 V]-z12> -3
—Z3 2 —3 -z3 2 =3
The solution of (38) is0 = -[, 6 = (-1,-1), u' = (3,0,!), u® = (»,1,0), which produces

the facet-defining cut 2xi + X2 < 7. _

The optimal separating cut need not be facet-defining, however. If the convex hull of the
digunction is the box defined by 0 < x3; < 1 for j = 1,2, the optimal separating cut for
R =(2,2) isxi +x; < 2.

27

6 Logic Processing

The logical aspect of MLLP revolves primarily around two issues. What repertory of logical
formulas are available to express discrete constraints? What logic processing algorithms can
be used to derive implications from a set of logica formulas? After a brief discusson of these
two questions, subsections will be devoted to several classes of logica formulas of increasing
generdity. Basic logic processing algorithms will be presented for each.

Logic cuts can aso be developed manually, based on insight into the problem structure.
Thisis discussed in Section 6.7. Finaly, it is shown how logic cuts can be obtained by gener-
aizing Benders decomposition to an MLLP context.

6.1 Logical Formulas

In theory alogical formula g%y, h) can represent any function of (y, h) that takes the values
true and false. But there are certain syntactic forms that have proved useful for expressing
constraints. A few basic ones will be discussed here.

Logical clauses. A logicd clauseisadigunction of literals, which are atomic propostions y; or
their negations-15/J. Thustheexpressony\V -132V y$ isaclause, where V isaninclusve
"or." In theory conjunctions of logica clauses can express any function of y done (i.e.,
any boolean function), but it may be convenient to use other forms as well. Implications
(eg. yi — jfe) and equivalences (Y\—= 112 *e readily defined in terms of clauses.

Extended clauses. These havethe form, "at leastfcof Li,..., |, aretrue,"” wherethe L/s are
literals. They, too, express boolean functions but are often more convenient than clauses
because they have an a quasi-arithmetical as well as alogica aspect.

Knapsack constraints. The familiar 0-1 knapsack constraint by > 13, whereeachyj G {0,1},
can aso be regarded as alogical formulathat is true when the sum over bj for which yj
istrueis a least /7. Boolean functions of this form are caled threshold functions and are
studied in the electrical engineering literature [58]. They are difficult to process logicdly,
but they can be used to generate logic cuts in the form of clauses and extended clauses,
which are easlly manipulated.

Multivalent clauses. These generalize clauses to accommodate multivalent variables and are
adequate to express any bivalent function of (y, h). They are digunctions of terms having
the form hj € H, where H is a subset of the domain of hj.

The all-different predicate. As in the case of bivalent clauses, it is useful to supplement
multivalent clauses with other types of syntax. One particularly useful formula states
that a set of variables hj al have different values, a condition that is awkward to capture
with MILP inequalities.

6.2 Logic Processing Algorithms

The god of logic processing is to extract information that is implicit in the logicd formulas
5«(j/M« It is essentidly an inference process that derives logic cuts, or implications, from the
formulas. It can be useful in two ways:

28

» The logic cuts may give rise to elementary or other inequality cuts that can strengthen
the LP relaxation.

» They may reduce backtracking by ruling out partial assignments that cannot be extended
to feasble solutions; these are known as redundant assignments in the constraint satis-
faction literature [63]. For instance, if there is no feasble solution (3/1,...,Y,) in which
(yuJd/i2) = (T, F), alogic cut -ij/i V y, would prevent one from exploring a subtree defined
by (yi,]b) = (TjF) in order to discover this.

As noted earlier, a large body of logic processing algorithms have been developed by the
research communities associated with logica inference, constraint satisfaction, constraint pro-
gramming and logic programming. The discusson here is limited to two basic types of ago-
rithms that can form thelogica basis of an MLLP solver. One agorithmisfast but incomplete
(i.e., does not derive al possible inferences), and one is a much dower, complete algorithm.

The incomplete algorithm is a smple constraint propagation technique and takes the form
of unit resolution ("forward chaining") in the case of logicd clauses. It is probably adequate
for most applications, but when a more powerful inference algorithm is required, the resolution
algorithm can be used. It is a wdl-known complete inference method for logicd clauses and
can be generdized to extended and multivalent clauses. Resolution can be quite dow and is
unsuitable for problems with alarge number of propositiona variables. There are many appli-
cations, however, in which the number of discrete variables is small relative to the continuous
part of the problem. In such cases it may be worthwhile to extract as much information as
possible from the logical formulas in order to avoid solving large LP problems.

6.3 Logical Clauses

In principle a logica formula that contains only bivalent variables yj can aways be written
as a conjunction of clauses, i.e., in conjunctive normal form (CNF). For example, the formula
(yi A 32V jfc, where A means "and,” can be written 31V 33 A (v, V 33). Alsotheimplication
Vi -* V2 (or 4 D 12 can be written -iyi V y,, and the equivaence 31 = y, is rendered
hVvi Vy,)A(yi V-.yy).

CNF is completely expressive because any formulain bivalent variables can be regarded as
a boolean (truefase) function f(y) = /(yi,...,ym). Ify = v*,..., V" are the vaues of y that
make f(y) fase, then the following CNF formulais equivaent to /(y),

AV).

where yj(®%) is -iyj if vi =trueand isyj if vj = fase.

This converson to CNF requires exponential time and space in the worst case. However, a
formulainvolving the connectives -1, V, A, —.= (and other connectives with linear-time trans-
formations to CNF) can be converted to CNF in linear time by adding new variables. The
agorithm goes asfallows. If agiven formulaF has the form AAB, where A and B are subformu-
las, then apply the algorithm to A and B separately, and conjoin the results. If F has the form
A —- B then rewriteit as -u4vB and apply the algorithm to the resulting formula, and smilarly
for A = B. If jPhas the form AVfl, then write it as (Yuit\ = A)A(Ym+2 = 22AYme1 Vilme2),
where y+i, ynt2 are variables that do not occur in F, and apply the algorithm to the resulting
formula (see [71] for refinements). The algorithm stops when CNF is achieved.

29

In practice an MLLP solver would accept severa connectives that are readily converted to
CNF and make the conversion. It should normally be unnecessary to introduce new variables,
because formulas are usualy short enough so that a CNF equivaent without them is also short.

A smple resolution agorithm [47, 48, $4] derives dl implications of a set of clauses. Let
clause C\ absorb clause C, when dl the literals of C\ occur in C,\ C\ implies C<i if and only
of C\ absorbs C<i* Two clauses have a (unique) resolvent when exactly one variable yj occurs
positively in one and negatively in the other. The resolvent is a digunction of al literas that
occur in either clause except yj and -iyj. For instance, 32 V -*3 is the resolvent of 31 V y, and
-jh V -1J3. Given aset 5 of clauses, the resolution agorithm picks a pair of clausesin 5 that
have a resolvent that is absorbed by no clause in 5, and adds the resolvent to 5. It repeats
until there is no such pair, which occurs after finitely many iterations.

Theorem 6 (Quine [47, 48]) A clause set S implies clause C if and only if the resolution
algorithm applied to S generates a clause that absorbs C. In particular, 5 is unsatisfiable if
and only if resolution generates the empty clause.

This theorem will falow from a more general result to be proved in Section 6.6.

Linear relaxations can be generated for clauses derived by resolution, if desired. A clause
issmply a digunction. So if the clause contains al positive literals, and each of its variables
corresponds to alinear constraint set, an elementary or other type of cut can be generated as
discussed in Section 5. If a derived clause is a unit clause, i.e., contains a single literal yj or
-ij/j, then yj can be fixed accordingly.

Resolution not only has exponential complexity in the worse case [24] but can be very
dow in practice [27]. A much faster inference algorithm that sacrifices the completeness of
resolution is unit resolution. It is the same as full resolution except that one of the parents of
aresolvent is dways a unit clause. Its incompleteness can be seen in the example,

wWooyy 33
yivowv oy
W Vs
NV Y2V

Resolution fixes W\ to true, but unit resolution does nothing because there are no unit clauses
to start with. Unit resolution is efficient, however, as it runs in O(nL) time, if there are n
variables and L literals, and it tends to be very fast in practice. A precise agorithm that is
adapted to the more genera case of extended clauses appearsin Fig. 7.

Unit resolution is a complete inference algorithm for certain classes of clauses, such as
Horn clauses, renamable Horn clauses, extended Horn clauses, etc. [13, 14, 15, 56, 62]. No
known structural property of a clause set is necessary and sufficient for the completeness of
unit resolution.

Unit resolution has the same inferential power as linear programming, in the following
sense. Suppose that the clauses of 5 are written as a system Ay > a of 0-1 inequalities in the
usua fashion; i.e., a clause \JjgLj is written YNelVjiLj) >_1, where yj(Lj) isy] if Lj = yj
andis1—yj ifLj = ~"Yyj. _

Theorem 7 (Blair, Jeroslow, Lowe [9]) Unit resolutionfinds a contradiction in the clause
set Sifand only if the linear relaxation of the corresponding system Ay > a of 0-1 inequalities
isinfeasible.

30

Ay > aisinfeasble when unit resolution finds a contradiction because unit resolution (unlike
resolution in general) smply adds the inequality representations of clauses. So deriving the
empty clauseis equivalent to obtaining O > 1 from a nonnegative linear combination of Ay > a.
Conversdy, if unit resolution detects no contradiction, then the inequalities that represent the
remaining clauses can be satisfied by setting each y3 = 1/2.

Although LP duplicates the effect of unit resolution, the latter is preferable for logic pro-
cessng because of its speed.

6.4 Extended Clauses

Extended clauses seem a particularly useful compromise between arithmetic and logic because
they express the notions of "at least" and "at most" but can be efficiently processed as logical
formulas. In fact, Barth's constraint-based solver for 0-1 optimization problems [5] reasons
with 0-1 inequalities only after converting them to extended clauses.

An extended clause of degree k can be written

ied

where each L3 is aliteral. Here the sum is not an arithmetical sum but simply counts the
number of literals that are true. Ordinary clauses have degree 1. To say that at most k are
true, one can write

£ & >\J\-fc,

jed
and one can use two extended clauses to say exactly k are true.

A complete inference algorithm ("generdlized resolution™) for extended clauses was pre-
sented in [27, 30] and is refined by Barth in [5]. It uses resolution as wel as a diagonal
summation, where the latter is defined as follows. An extended clause YljeJLj > k+ | isthe
diagonal sum of the set of extended inequdities {N" Lj >_k \ i € J} if J = [»€J~ but A
eachieJ i & J%. The agorithm of [27] is applied to aset 5 of extended clauses as follows.
If there are two clauses C\,C, of degree 1 with aresolvent C that is implied by no extended
clause in 5, such that C\ isimplied by an extended clause in 5 and smilarly for C,, then add
C to 5. If thereis a st E of extended clauses with a diagonal sum D that is implied by no
extended clause in 5, such that each clause in E is implied by some clause in 5, then add D
to 5. The algorithm continues until no more clauses can be added to 5.

Theorem 8 ([27, 30]) A set S of extended clauses implies clause C if and only if the gener-
alized resolution algorithm applied to S generates a clause that implies C.

Implementation of the algorithm requires recognition of when one extended clause implies
another. Yljedi L\j = &i implies YLj€J, AV/2— A Aa(x Onpy A

Nl - \{j eJindA Ly = Ly} <_An - ko

When dl of the literals of a derived extended clause are positive and correspond to sets
of inequalities, a linear relaxation can be formulated using one of the methods described in
Section 5. A unit resolution algorithm for extended clauses appears in Fig. 7.

31

Let 5 be aset {"ej,Lj >k{ 11 G/} of extended clauses,
where each L{j is yj or -ryj.
Let P be a stack of unit clauses, initially empty.
For each i G/ with |J¢| = fc,-:
For each | G J% add Iv; to U.
Let J; =0.
While U is nonempty:
Ramnove L{ from U.
For each f G/ with t G J{\:

If 1y = L' then
Let fc, = -fc-l, I3 = Ji\{t}.

Else
Iffcy= |Ji| then stop; 5 is unsatisfiable.
Else -

If ki =\Ji\+ 1 then
For each j G J;\{<} add 13 to J7.
Let Ji =0.

Else
Let Ji = Ji\{t}.

Figure 7: A unit resolution algorithmfor extended clauses.

Linear programming is a stronger inference algorithm for extended clauses than unit resolu-
tion. For example, LP detects the infeasbility of the following inequalities, but unit resolution
can do nothing with the corresponding extended clauses.

W + 2 + 3B =22
(1 -i/)+(@i -y,)+(i-y3) >2

No known inference algorithm has exactly the same effect as LP on extended clauses, unless
one views LP algorithms as inference algorithms. Generalized resolution is of course stronger
than LP.

6.5 Knapsack Constraints

A complete inference algorithm for knapsack constraints appearsin [30], and an analog of unit
resolution can easily be devised for them. But they are perhaps best used as a source of logic
cuts that are more easily processed, such as clauses and extended clauses. Theimplied clauses,
for example, are identical to the well-known " covering inequalities’ for the constraint, and
their derivation is straightforward (e.g., [23]).

It may be more effective, however, to infer extended inequalities. Although it is hard to
derive all the extended inequalities that are implied by a constraint, it is easy to derive all
contiguous cuts. Consider a 0-1 inequality dy > 6 for which it is assumed, without loss of
generality, that d\ > d, > ... > d, > 0; if d < O, reverse its sign and add dj to 6. A

32

Let k=1 *=£%=I<* > Mat==0.
For j=1,....n:
Let; s=s—dj.
If 5<Sthen
While 5+d, < S3
Let 5=s+dk, k= k+ 1.
If k> fc® then
Generate the cut W+ ..+yj>k.
L et fciast = fc.

Figure8: Analgorithmfor generating all 1-cutsfor aknapsack constraint dy > 5inwhich

contiguous cut for dy > Sis one of the form,

k-1

Y wzk (40)
J=t

where k is the degree of the cut and w < n the "weakness' (tu = O indicates a cut that fixes
all of its variables). In particular (40) is at-cut because the first term isyt. (40) isvdlid if and
only if

t+k—1 n
Y di+ Y dy<a
Jj=1 j=tt+e+k

Furthermore,
Theorem 9 ([35]) Every t-cut of weakness wfordy>5is implied by a 1-cut of weakness w.

The power of all t-cuts can therefore be obtained by generating only 1-cuts. The algorithm of
Fig. 8, presented in [35], does this in linear time. By way of example, the knapsack constraint

13yi +9y2 +- §/3+ 6V4 + 5y5 + 3ys = 30

gives rise to the 1-cuts,
W+V2=1
ntya+ys22
yi+V2+yz+y* +ys= 3.

The first cut could be deleted if desired, because it is redundant of the second.

6.6 Multivalent Clauses

Multivalent clauses provide a convenient and versatile syntax for expressing logica formulas
that involve multivalent variables. A multivalent clause has the form

V (5 € Hy), (42)

=1

33

where each Hj is a subset of the domain Dj of hj. For notational simplicity, it is assumed that
bivalent variables yj are regarded as 2-valued variables hj that take a value of, say, 1 when yj
is true and 0 when yj isfalse. If Hj is empty, the term (hj G Hj) can be omitted from (41),
but it is convenient to suppose that (41) contains a term for each j.

Any trueffalse function f(h) = f(h\,..., hy) can be expressed as a conjunction of multiva-
lent clauses. In particular, -<(hj G Hj) can be written (hj G Dj \ Hj), and (hj G Hj) -+ (hk G
Hk) can be written (hj e Dj \ Hj) V (hk € HK). One multivalent clause \Jj(hj G H\j) implies
another \Jj(hj G Jifyj) if and only if H\j C #2] for each j. As examples of a multivalent clause
consider the following formula (4a) from the progressive party problem.

viip = (ha =j)
It is formally expressed as two multivalent clauses,

(vij¢ ego»v Efcx< e{/}
(mse e{i»Vv(fcaaeD;\ {i})-

Resolution can be generalized to abtain a complete inference method for multivalent clauses.
The resulting algorithm is related to Cooper's algorithm for obtaining fc-consistency for a set
of constraints [18]. Given a set of multivalent clauses,

\H/(h:' eHa), isl, (42)

i=1

the resolvent on hk of these clauses is

(e € (N Hi) v V (h; €) Hyj)-
‘ sel itk g
Ordinary bivalent resolution is a special case. To apply the resolution algorithm to a set 5 of
multivalent clauses, find a subset of 5 whose resolvent M is implied by no clause in 5, and
add M to 5. Continue until no further clauses can be added to 5.
The multivalent resolution algorithm is a complete inference algorithm for multivalent
clauses. The proof of the theorem uses the idea of Quine's original proof for ordinary resolution.

Theorem 10 A set S of multivalent clauses implies a multivalent clause M if and only if the
multivalent resolution algorithm applied to S generates a clause that implies M.

Proof Multivalent resolution derives only implications of 5 because it is clearly valid. To
prove the converse, let S be the result of applying the algorithm to S. Also define the length
of a clause (41) be £j \Hj\. Suppose the theorem is false, and let (41) be a longest clause
implied by 5 but by no clausein S.

Claim. At least one Hj in (41) is missing at least two elements; i.e.,, \Dj \Hj\ > 2 for
some j. First it is clear that no Hj = Dj, because otherwise (41) would be implied by a (in
fact, every) clause in S'. Suppose contrary to the claim that every Hj is missing exactly one
element, say VJ. Then h = v = (vi,.. .,t>,) violates (41) and must therefore violate some
clause Vj(hj G H'j) in 5', because 5 implies (41). This means each H'j C Dj \ {VJ}, so that
\Jj(hj G HJ) implies (41), contrary to hypothesis. This proves the claim.

Now suppose VK,V'¢ are missing from Hk, and consider the multivalent clauses

(he eHKU {vk}) V Vj*hj G Hj), (hk eHkU «}) V Viwd(fg € Hj). (43)

34

They must respectively be implied by clauses M\g M, 6 S because they are longer than (41).
This means that the resolvent of My, M, on hk implies (41). So by construction of the resolution
algorithm, S contains a clause that implies (41), contrary to hypothesis. *

The proof of the theorem shows that it suffices in principle to generate resolvents only of
pairs of clauses.

A unit resolution algorithm for multivalent clauses appears in Fig. 9. The algorithm aso
accommaodates al-different predicates, which can serve as diguncts of multivalent clauses along-
sde terms of the form hj € Hj. Examples of the latter are constraints (4b) and (4e) of the
progressive party problem. The constraint (4€) is written,

SVSVmgV (ha#hy)
but can be formaly written as a multivalent clause as follows.

(e e {1}V (S €{1»V (mm € {1) V alldiff(hy, kj:).

6.7 Valid and Nonvalid Logic Cuts

An intuitive understanding of a problem can suggest logic cuts, both valid and nonvalid, even
when no further polyhedral cuts are easily identified. The idea of a (possibly nonvalid) logic
cut was defined in [37], which gives the process synthesis example discussed here as an example.
Other examples include structural design problems [10], matching problems [32], and a series
of standard O-1 problems discussed by Wilson [73].

A logic cut for an MLLP model (1) has heretofore been characterized as an implication
of the logical formulas in (1). Actualy any logica formulaimplied by the constraint set as a
whole is alogic cut. That is, g(y,h) is alogic cut if it is true for every (X, y,h) that satisfies
the constraints of (1). For example, —8 is alogic cut for the problem

min Xi + X

st. yi— X >1 Vi Vy,
V2 - (X2 2 1)
V3->(*i +X,<0)

A

but is not implied by the formulay\ V y,.

Logic cuts can be defined in an even more genera sense that permits them to be nonvalid.
Let (y,h) be feasible in (1) if (x,y,/i) is feesble in (1) for some x. Let (y',h’) dominate (y,h)
if for any (x',y',h’) that is feasble in (1), there is afeasble (x, j/,/i) for which ex < ex'. Then
g(y, h) is alogic cut if any feasble (y, h) that makes g(y, h) fase is dominated by a feasble
(y',h") that makes g(y\h") true. The cut g(y,h) may be added to (1) without changing the
optimal solution, but it may exclude feasible solutions.

For example, the formulas -ij/i and -132 are (nonvalid) logic cuts for (44). They are nonvdid
because they exclude the feasble points (1,0,0),(l, 1,0).

6.8 Logic-Based Benders Cuts

The idea behind Benders decomposition is generalized to a logic-based setting in [33], which
applies the idea to 0-1 programming and the satisfiability problem. Here the ideais applied
to MLLP.

35

Let 5be aset {C{|i E/} of nultivalent clauses, where each G
has the formVjLi (fy €H;) V\/enal I diff ({fy|] €J:})
Let n%be the nunber of terms (hj €fl]) of Chvith nonenpty ifj.
Let U be a stack of indices representing active domains;
initially U={1,... ,n}.
Let Abe alist of enforced alldiff predicates, initially enmpty.
For eachi €1: :
[f m=0 and \Ti\ =1 then
Add the alldiff predicate in G to A and remove i from/.
Elseif np=1and |Ti{ =0 then
Let H{j be nonenpty.
Let Z5 =D n Ftj- and remove %from/.
VWhile U is nonenpty:
Remove sone index k from17.
If Dk is enpty then stop; S is unsatisfiable.
Eor all i €/:
If iftfc is nonempty then
If Dfc C JAb then remove i from /.
Else
Let Hix = HxnDy.
If Hik is empty then
Let rti = Ui — 1.
If nt =1 and |Ti|=0 then
Let iTij be nonempty and remove i from /.
If Dj <€ Hij then
Let Dj =Dj HH” and add j to U.
If nt =0 and |Ti| =1 then
Remove i from /.
Add the alldiff predicate in C; to A.
For each predicate alldiff{{hj \] €J}) in A with A; € J:
If |D*| =1 then
For | € J\ {k}:
If Dk C 2>, then Let Dj =Dj\D¢ and add j to C7.

Figure 9. A tiritt re*d/ufton algorithm for multivalent clauses.

36

A Benders cut for (1) can be generated at each node of the search tree in the following
way. Let the logical formulas comprise the master problem. The subproblem consists of the
LP relaxation at that node; i.e., the linear congtraint sets that are enforced by propostions
that are true at the node. Thusifyj is fixed to true for j G Ji, the LP relaxation is,

min ex

st. Ax>a (u) (gee
A>x_> a*, jel (t*0 43
x>0,

where Ax > a represents cuts added at theroot node. Let u, Uj be the dual variables as shown.
Then the following is a valid bound on the optimal value z of (1):

The bound can also be written o
z2ua+ Y uadyj (46)
j€h
if each yj takesits current value, namdy 1 (for true). In fact (46) is a valid bound for any y
for which u remains feasible in the dual of (45), i.e., any y for which

ua+ 22 UAlyj <c 47

This gives the Benders cut,
(47) -+ (46).

This cut can be generated at any leaf node and used at any subsequent node to obtain alower
bound on the optimal value without solving the LP relaxation. If the bound is not large enough
to prune the true, the LP must be solved.

In practice it is convenient to work with reduced costs. If Z is the optimal value of (45)
and r is the vector of reduced costs, then (46) and (47) respectively become

222- £ Wdl-) (48)
aﬁ . .
-3 wWA(1I-) <. (49)
i€Ji
The Benders cut is
(49) - (48).

The cut generated at each node is valid throughout the search tree. It does not strengthen
the LP relaxation but provides a bound on the optimal value that may obviate solution of the
relaxation. This can be useful when the LP islarge or hard to solve.

37

7 Computational Results

The am of the computational experimentsis not to compare the best possible MLLP algorithm
for a given problem with the best possible competing algorithm. Rather, the am is to isolate
the effect on performance of the specific MLLP features that are illustrated by each problem.
To the end, the smplest possible MLLP algorithm is compared with the smplest possble
MILP agorithm.

The MLLP agorithm is that of Fig. 2, fleshed out as follows. The branching rule is to
branch on the first propositiona variable in the first unsatisfied logical formula. The logic
processing agorithm is unit resolution. The relaxation of logica formulas varies from case to
case, as described below. The code is written in C and compiled with the Sun C compiler
verson 11 with optimization. The tests were conducted on a SPARC Station 330 running
N OS verson 4.1.1. The LP relaxations were solved by CPLEX version 3.0.

The MILP agorithm is a straightforward branch-and-bound procedure. The branching
rule is to branch on avariable whose value in the relaxation is nearest 1/2. The LP relaxations
were s0lved with the same CPLEX routine. '

Run times and node counts for verson 2.1 of the CPLEX MILP code are adso reported.
It is argued in [34], however, that comparison with a commercia code may provide limited
insight. The details of commercia implementations are not public knowledge, and even if they
were, it would be difficult to isolate the factors that explain differences in performance.

MLLP has already been shown to have advantages on the chemica engineering problems,
and for these problems the computational experiments reported here confirm previous work.
They are reported because the confirmation of experimental results is akey element of empirical
science, one that is largely neglected in the algorithmic literature.

7.1 Flow Shop Problem:

Theflow shop problem illustrates two advantages of MLLP: @) it can result in a smaller search
tree than MILP, because the MILP representation is not integral, and b) the processing time
at each node is less, because the elimination of integer variables makes the LP relaxations
smaller.

As discused in Section 5.1, there is little reason to introduce linear relaxations of the
digunctive constraints typical of scheduling problems. They are therefore omitted. If there
are mjobs and n machines, this reduces the number of variables in the LP relaxation from
2rn+ mnto2m.

Furthermore, the MILP model islikely to create alarger search tree, because its continuous
relaxation is nonintegral. This can be seen from Corollary 1, which implies that the MILP
representation of the digunction

(t-UzrigVU-t=ra)
isintegral if and only if

max{*A - U | U -t rg (0,00< (Ut)—< (mi,m)} =ry - My (50)
max{*; - t | t - U> fge, (0,0)< (U,tl)< (M-Mi)} = rix - M.

Ddlnlng Myi,Mix by (18) yleIdS (Mki1 Mlk) = (rki + Mg, Mk + ml) Al it is ey to e that
the two maximain (50) are respectively equal to —r{ and —fc. So (50) implies that the MILP
representation is integral if and only if (ry,rik) = (mfc,my), which does not occur in practice.

38

Number of || MLLP N MILP CPLEX.
jobs | machines || nodes | time per || nodes | time per || nodes| time per
node node node
6 5 407 2.7] 0.0066 689 | 10.1 | 0.0147 527 811 0.0154
7 5 1951 157 0.0080 | 3171 | 52.2| 0.0165 2647 | 51.0| 0.0193
8 5){ 14573 | 129.0 | 0.0089 || 24181 | 546.4 | 0.0226 || 16591 | 413.9 | 0.0249

Table 1: Computational resultsfor flow shop problemswith zero-time transfer, showing number
of nodes in the search tree, time in seconds, and second