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ABSTRACT

Discrete-continuous non-linear optimization models are frequently used to formulate

problems in Process System Engineering. Major modeling alternatives and solution algorithms

include generalized disjunctive programming and MINLP. Both have advantages and drawbacks

depending on the problem they are dealing with. In this work, we describe the theory behind

LOGMIP, a new computer code for disjunctive programming and MINLP. We discuss a hybrid

modeling framework which combines both approaches, allowing binary variables and disjunctions

for expressing discrete choices. An extension of the Logic-Based OA algorithm has been

implemented to solve the proposed hybrid model. Computational experience is reported on

several examples, which are solved within disjunctive, MINLP and hybrid approaches.



INTRODUCTION

Mathematical programming models for addressing problems in Process Systems

Engineering have been extensively used over the last decade. Many applications in the synthesis

and design of process networks have been formulated as MINLP models. These models assume

an algebraic representation of the equations, and discrete variables are mainly restricted to 0-1

values.The current methods to solve this type of optimization problems are: Branch and Bound ,

Generalized Benders Decomposition (GBD) and Outer Approximation (OA). An overview of

these methods, the relationships between them, and references for process engineering

applications can be found in Grossmann and Kravanja (1995). Recently Turkay and

Grossmann(1996) have presented logic-based algorithms in which the discrete-continuous

problem is modeled as generalized disjunctive program. This model involves logic disjunctions

with non-linear equations and pure logic relations. The main advantages of generalized disjunctive

programs in structural flowsheet optimization are its robustness and computational efficiency

when compared to algebraic MINLP models and algorithms. This approach for modeling discrete-

continuous nonlinear problems is based on the work by Raman and Grossmann (1994) who

investigated linear disjunctive problems. Starting with the disjunctive programming representation,

a subset of the disjunctions is converted into algebraic mixed integer equations using the Mw-

MIP" representability criterion. This is a theoretical characterization which establishes conditions

of equivalence between the disjunctions and mixed integer algebraic form. A solution algorithm

restricted to the linear case was also presented. The above modeling schemes provide several

alternatives and solution methods for the same problem. Depending on the representation that is

selected, the computational efficiency and robustness to achieve the solution can be greatly

affected.

In this work a hybrid modeling formulation for discrete-continuous non-linear problems

for process system engineering is proposed. The model can involve disjunctions, binary variables

and integer or mixed-integer constraints. It will be shown that from this formulation, the

algebraic and the disjunctive formulation can be derived as particular cases. For the case of the

hybrid formulation, we also introduce a new solution algorithm. Through the solution of several

examples, we show that using disjunctions in the problem formulation is a better alternative for

problems where avoiding zero flows is an important issue, or where big-M constraints yield poor

relaxations. The hybrid representation is convenient when the Hw-MIP" criteria applies to some

disjunctions but not to all, or when it is not natural to express the entire model in terms of

disjunctions and logic relations.

The above ideas we have implemented in LOGMIP, a new computer code for solving

discrete-continuous nonlinear optimization problems in which the problems can be modeled with

either the algebraic, disjunctive or hybrid formulation. The program has a model recognition

routine to check the model type, such that, if it is in the MINLP algebraic form, the OA/ER/AP



two sub-problems, the NLP and the master MILP sub-problems. First, fixing the binary ( yk) and

Boolean variables (Y;) we obtain the following NLP problem:

min Z = Z q + f(x) + dTyk

s.t. g(x) < 0
(NLP)

r(x)< -Dyk

£ 0 ifYi=True

B* x = 0 ] i
. = 0 J

if Yj = False

It should be noted that in the solution of the NLP sub-problem, the dimensionality is

reduced because only the equations whose Boolean variables are true apply. Therefore, nonlinear

equations with zero value variables are avoided reducing difficulties with numerical singularities.

On the other hand, depending on the problem, more than one initial NLP sub-problem should be

solved, in order to set up the first MILP master problem. This MILP must contain linearizations

of all non-linear equations in the disjunctions, to predict new binary and Boolean variable values

for the next NLP. An interesting issue arises at the initialization step. While the Boolean variables

should be fixed for each initial NLP sub-problem to be solved, the binary variables can be fixed or

relaxed for each set of fixed Boolean, and remain constant or variable through the different initial

NLPs. For some problems, e.g. synthesis of process networks, the minimum number of initial

NLP sub-problems and the Boolean values, can be determined solving a modified set-covering

algorithm for CNF Prepositional Logic (Turkay and Grossmann, 1996). In other cases these

values should be provided by the user.

The hybrid linear master sub-problem is obtained by the linearizations of the disjunctions

and non-linear constraints at the solution point of the NLP sub-problem. Instead of working with

a master problem involving linear disjunctions, it is transformed into algebraic form by using the

convex-hull representation for the linear disjunctions proposed by Balas (1985). The original set

of binary variables is increased by m, the number necessary to replace the Boolean variables by 0-

1 variables. In this way the master MILP problem can be solved with the conventional branch and

bound method. This algebraic master MILP sub-problem has the following form :



s.t

min ZL = a + Z yi y + dTy

f(x' ) + V f ( x l ) T ( x - x l ) ^ a

g(x) + Vg(xl)T(x-x*)<0 (MILP)

r(x') + Vr(x')T (x - x 1 ) + Dy < 0

Vh(x ')T x < I -h(x ) + Vh(x' )Tx' 1 y

A y > a

E y > e

1 = 1, , L

, y e { O , l } q+m

where for simplicity we assume that all variables for a given disjunction are set to zero if it is false.
The constraint Ey>e are integer inequalities corresponding to the logic relationship between the
Boolean variables (fi(Y)). After solving the master MILP new values for the binary and Boolean
variables are obtained for the next iteration.
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Figure 1: Algorithm flow chart

As can be seen in the algorithm flowchart, the number of initial NLP problems to be
solved (nips) has to be determined first, in order to set up the first master problem. Depending on



the problem this can be done in a systematic way or simply specified by the user. Having identified

the initial NLP sub-problems, the Boolean variables have to be fixed for each problem, and the

binary variables can be fixed or relaxed, according to which strategy is specified. After solving the

initial NLP sub-problems, we can obtain a valid Upper Bound from this set. Then we setup the

MILP master problem to predict the Boolean and binary variables values for the next NLP, and a

Lower Bound. If the Upper and the Lower Bound lie within a tolerance we stop; otherwise the

iterations continue until convergence is achieved.

LOGMIP FEATURES

LOGMIP is a computer code written in C that allows the specifications of disjunctions in

the problem formulation. Logic relations are presently handled as inequalities. The program has

been linked to GAMS, whose language is used to express the model in terms of disjunctions and

algebraic equations. The model can be specified in form of models (PA), (PD) and (PH).

LOGMIP has a model recognition routine that works as follows: if no disjunctions are detected in

the model, that means we are in the presence of a MINLP model and the OA/ER/AP is applied. If

disjunctions are detected, LOGMIP finds if the model contains binary variables or not. In that way

it can decide which algorithm has to be applied, if the Logic-Based OA for the disjunctive model

(PD) or the proposed algorithm for the hybrid model (PH). Figure 2 shows the major steps

involved in LOGMIP. Since the solution algorithms require the solution of NLP and MDLP

master problems, the I/O GAMS Library is used to set up and solve the sub-problems. The

program has been written in C to assure portability to other platforms. After supplying a GAMS

input file with the discrete-continuous model, the input file syntax is checked through the GAMS

language compiler. If it is correct, the control is transferred to LOGMIP.

f GAMS Input File J

CHECK SYNTAX

MODEL RECOGNITION

Apply OA/ER/AP

N

Apply Logic-Based OA

Disjunctions^

T Y

^oinary
Variable
\>

\ ^ Y

Apply Proposed Algorithm

Figure 2: LOGMIP Flowchart



EXAMPLES

A set of synthesis and design problems of different size have been solved with LOGMIP. The

first example corresponds to a superstructure of 8 chemical processes (Turkay and Grossmann,

1996). The model is composed of convex constraints. The objective of this example is to find the

configuration with the minimum cost. Figure 3 shows the superstructure for this example.

Figure 3: Processes Superstructure

We have modeled this example in three different ways: algebraic, disjunctive and hybrid. The

results obtained with this example are in the following table:

RESULTS : PROCESSES SUPERSTRUCTURE

Model -*
Initialization —>

Constraints
Variables

Discrete V.
Obj. Value
Exec, time
Iterations

PA
Relaxed

32
33
8

68
2.7 sec.

4 major*

PD
Fixed

52
42
8

68
2 sec.
3 nip

1 major*

PH
Fixed

52
42
8

68
0.74 sec

2 nip
1 major*

* 1 major iteration => 1 nip + 1 master milp

In this example the constraints were increased in the disjunctive and the hybrid models

because the prepositional logic equations (relationships between the Boolean variables) were

added to those models. The variables added correspond to the fixed charge costs. Even with this

increase in constraints and variables the results obtained with these models are encouraging. The

number of iterations have been reduced in the disjunctive and hybrid models compared to the

algebraic MINLP. Therefore, the execution time is also reduced. Due to the small execution times

the performance is better analyzed through the number of major iterations. In the disjunctive case

the difference respect to the algebraic model lies in the master milp number of problems executed.

Three master problems have not been executed for the disjunctive model. The transformation



from the disjunctive model into the hybrid model, has taken place for the linear models

representing the process 3, 4 and 5. These linear models are "w-MIP" representable, and

therefore these models have been written in algebraic equation form. The rest of process models

that are non-linear remain as disjunctions. This transformation has allowed to reduce in one the

initial number of NLP's to be executed to set up the first master problem.

The next example corresponds to a simultaneous model structure determination and

parameter estimation for a FTIR-spectroscopy example by Brink and Westerlund (1995). It has a

non-linear objective function subject to linear constraints. These linear constraints have been

transformed into disjunctions. They are not "w-MIP" representable, so that the hybrid model

cannot be applied to this example. The results obtained are shown below :

RESULTS : FTIR-Spectroscopy

Model -»
Initialization —»
Constraints
Variables
Discrete V.
Obj. Value
Exec, time
Iterations

PA
Relaxed

112
142
30

13.98
55 sec

6 major*

PA
Fixed
112
142
30

13.98
100 sec.

11 major*

PD
Fixed
175
172
30

13.98
7 sec

4major*

Toluene
Recycle

ene

Figure 4. HDA superstructure Dyphenyl



The results show for the FTIR-spectroscopy example an impressive performance for the

disjunctive model compared to the algebraic MINLP models. The disjunctive model is superior

not only in the number of iterations, but also in the execution time, which has been reduced by a

factor of eight compared to the algebraic model with relaxed initialization. The explanation for

this behavior is that, the convex-hull representation for the linear disjunctions in the master MILP

gives a tighter relaxation, improving the prediction of lower bounds.

The third example is a structural flowsheet optimization problem (Kocis and Grossmann,

1989). For this example, the HDA process was modeled in the algebraic and the disjunctive

forms. There is a significant number of non-convex non-linear equations in this problem. The

augmented penalty strategy (Viswanathan and Grossmann, 1990) was applied to solve it. No w-

MIP representable disjunctions were found in this model, therefore, the hybrid model does not

apply for this example. The objective for this optimization problem is to obtain the HDA

flowsheet with maximum profit. The superstructure for the process can be seen in Figure 4. The

results obtained with this problem are shown in the next table.

RESULTS: HDA PLANT

Model -»
Initialization ->
Constraints
Variables
Discrete V.
Obj. Value
Exec, time
Iterations

PA
Relaxed

719
722
13

5304.8
348 sec.

lnlp
3 major*

PA
Fixed
719
722
13

5671.4
293 sec.

lnlp
2 major*

PD
Fixed
737
717
14

5810.8
280 sec.

2 nip
1 major*

* 1 major iteration => 1 nip + 1 master milp

Two initial configurations were given to solve this example in the disjunctive

representation. Therefore, two initial NLPs have been solved to obtain the linearizations for all

non-linear constraints, in order to set up the first MILP master problem. For this case the

disjunctive model (PD) obtained a solution with higher profit than the algebraic models (PA),

presumably because zero flows are avoided in (PD). The profit was increased with the disjunctive

model in approximately 9.5 % compared to the algebraic model with relaxed MINLP as initial

point, and 2.4 % compared to the algebraic with fixed initial point.

The last example is a batch plant design with multiple units in parallel and intermediate

storage tanks (Ravemark, 1995). The problem consists of determining the volume of the

equipment, the number of units in parallel, and the volume and location of the intermediate

storage tanks. The objective is to minimize the plant investment cost. To ensure rigorous lower

bounds the equations and constraints were convexified. The problem was modeled in both

algebraic and hybrid representation. In the hybrid representation, the disjunctions correspond to



the storage tank volume equations and the batch size equations. The example corresponds to a

batch plant with five products and six stages. The results are shown in the following table:

RESULTS : BATCH PLANT

Model -»
Initialization ->
Constraints
Variables
Discrete V.
Obj. Value
Exec, time
Iterations

PA
Relaxed

1S6
112
53

260383
287 sec.

lnlp
10 major*

PA
Fixed
186
112
53

260383
616 sec.

lnlp
20 major*

PH
Fixed
187
113
53

260383
80 sec.

lnlp
4 major*

* 1 major iteration => 1 nip -+-1 master milp

For this example, which is difficult to solve in the algebraic mode, the results obtained for

the hybrid model are very encouraging. The reduction in time and number of iterations for this

example are very significant. The number of sub-problems solved with respect to the better

algebraic model (with relaxed MINLP initialization) has been reduced by more than one half. The

execution time has been reduced more than 3 times compared to the same model.

The results obtained from the solution of the four examples show that, for some cases, the

use of disjunctions is a better modeling alternative compared to the algebraic MINLP. The

model and algorithm to be applied for a particular problem depends on the type of equations and

constraints the problem has. For convex problem, the disjunctive and hybrid models have shown a

very significant improvement compared to the algebraic case. For non-convex problems the main

advantage seems to lie in the fact that the disjunctive and hybrid models are less likely to get

trapped into poor suboptimal solutions. In contrast, the algebraic model may be trapped more

easily due to the difficulties with nonconvex models where flows are set to zero.

CONCLUSIONS

In this work, the solution of hybrid models, with disjunctions and binary variables, for

discrete-continuous non-linear optimization problem has been investigated. From this model the

pure disjunctive or algebraic model can be derived. The computer code LOGMIP (acronym of

Logic Mixed Integer Program) has been developed to deal with this representation. The problem

input for LOGMIP can be written in three different forms: hybrid, disjunctive or algebraic form.

For the hybrid model an extension of the Logic Based OA algorithm has been presented.

LOGMIP has been written in C and linked to GAMS. The possibility to define different starting

points has been added. All these capabilities make LOGMIP an important tool for the solution of

non-linear discrete-continuous optimizations problems. The novelty of this program is the



capability to handle disjunctions. No other non-linear computer code has been reported in the

open literature that can solve problems of this type. The results obtained in the solution of several

examples have shown that the disjunctive and hybrid representation outperform the algebraic

MINLP in terms of computational time and quality of solutions.
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