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ABSTRACT2

We present an alternative design for communicating information between an interactive,

equation-based modeling environment user and an initial value problem (IVP) solver. The

design is practically demonstrated by connecting the widely available integrator LSODE and the

freely available plotting program Xgraph to the ASCEND IV3 modeling environment. In

contrast to the ASCEND in integrator interface, this new design allows an order of magnitude

improvement in the ease of developing an understanding of a dynamic model's behavior. The

improvement is in part achieved by allowing the user to interactively define what time varying

quantities should be recorded for postprocessing by graphics packages or other tools without

requiring that a new ASCEND model be compiled, thus making visualization easy. The more

significant improvement, however, is the new ability to select any part of the complete dynamic

model and solve it, thus making exploration of component dynamic behaviors easy. Finally, the

user may interactively change a variable between algebraic and dynamic (state or derivative)

roles. This makes it possible to negotiate a solution to the index problems which frequently arise

in chemical engineering.

1. This work has been supported by the Engineering Design Research Center, a NSF Engineering Research
Center.

2. Comments or questions on this report should be addressed to ascend+bb@ cs.cmu.edu and
ballan@cs.cmu.edu.

3. The ASCEND IV software is available free (on the publication date) via http://www.cs.cmu.edu/afs/cs/
project/ascend/home/Home.html for any UNIX platform with XI1 and ANSI C.
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INTRODUCTION

1 INTRODUCTION

We believe a reusable chemical engineering model is a general model of some unit

operation or process phenomenon which may be used to model steady-state and dynamic

flowsheet problems. Moreover, it may be solved without extensive initialization work in

each new application. From this definition it follows that ASCEND III [PMW93] does

not have reusable models within its libraries. However, with ASCEND IV, we come

closer to obtaining reusable dynamic models in the ASCEND environment. We will

address reusability and the difficulties in ASCEND in that make it nearly impossible to

reuse a dynamic model in Section 2 and Section 4. We keep several design goals,

including obtaining reusability, in mind while exploring solutions to this problem in

ASCEND IV. We do not want to increase the compile time of the models or slow the

ASCEND interface, and there must be a clear migration path for models in ASCEND III

to ASCEND IV. We detail the design goals in Section 3.

The reuse of existing ASCEND dynamic models is impossible due primarily to the way

that ASCEND III communicates problem specifications to the integration package,

LSODE. (An example of this communication is given in Section 9). Reusability is also

hampered by the way that ASCEND III communicates integration results to the

interactive user. By having the two separate integrator interface models, lsode and

derivatives, as well as the separate output collecting plt_plot model, ASCEND III leads

to repetition of code, time consuming and error prone FOR loops, and extreme

inconvenience in flowsheeting. We can solve these problems by identifying the

observation, derivative, and state variables at run time by setting flags that are new parts

of the basic variable type solver_var. The flags enable us to create a dynamic model

which is entirely self-contained, thus we can build up a dynamic model from smaller

dynamic models. We can use the larger model to study the dynamics of both the parts

and the whole using a single compiled object. This increases flowsheeting capabilities

and the readability of models, while decreasing compile time. Because ASCEND is

object-oriented, this addition of flags to the solver_var does not affect existing libraries

of purely algebraic models.
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We pose other solutions to the human/computer communication problem and explain the

design difficulties that make them infeasible in Section 5.1. We explain the new

solver_var flags and their use in detail in Section 5.2 and introduce a new plotting tool,

ASC_PLOT, in Section 5.2.1. ASCJPLOT is interactive and eliminates the need for a

separate ASCEND plot model. Although the total solution presented in Section 5 brings

us closer to reusability, we do not have "full" reusability in ASCEND IV.

In Section 6 we review some of the remaining problems. The thermodynamics library

and the stream library pose problems when trying to create very general dynamic models

because of difficulties with the existing type hierarchy. However, with the addition of the

CASE statement (a feature never implemented in ASCEND III) in ASCEND IV, we

expect to solve these problems in future development.

In Section 8 we present a simple example of a dynamic flash drum modeled, solved, and

plotted in ASCEND IV. In Section 9 we present the most complete and detailed example

available from ASCEND in, an ammonia synthesis flowsheet [Mon96]. A more detailed

description of the new ASCEND IV plotting capability is available in the ASCEND IV

on-line help and may be given in a future technical report.

A brief note on typography may help in understanding this report. The names of types,

known as classes in many other object-oriented (OO) languages, are written in bold. The

ASCEND keywords are in capitalized BOLD. The names of compiled objects (the OO

term is "instances") and of parts defined within a type (in which case the object is to be

compiled mentally by the reader) are in italicized bold. The names of ASCEND

methods, which can only be executed as parts of an instance, are also written in italicized

bold. Fragments of code offset from the text are in Courier type. It should be clear from

the context whether the fragment in question is C, Tel, or ASCEND.
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2 WHAT IS REUSABILITY?

The ideal library in ASCEND IV would consist of models which are reusable. By

reusable, we mean that each model in the library should represent an accurate

mathematical description of a general physical system and all its time variant as well as

steady-state behaviors. We must be able to reuse such models in a larger context without

doing extensive configuration or initialization of them. This representation should be

general enough so that it can handle multiple conditions arising within the system, for

example, the appearance and disappearance of chemical species or thermodynamic

phases.

Most particularly, we should be able to put a reusable model into a flowsheet with other

reusable models to describe an entire process without any changes to the definitions of the

individual models. This implies that the models must be entirely "self-contained". All the

attributes needed to solve the individual model must exist in one concise definition so that

essentially all we need to do is "connect" the models by a series of short commands. For

mixer -̂ reactor flash

example, the flowsheet fragment shown here should be modeled from library definitions

mixer, reactor, and flash as follows:

MODEL fragment;
m IS_A mixer;
r IS_A reactor;
f IS_A flash;
m.outstream, r.instream ARE_THE_SAME;
r.outstream, f.instream ARE_THE_SAME;

END fragment;

This way we can solve the difficult "degrees of freedom" problem that occurs in dynamic

modeling using the same simple techniques advocated by [Wes96] for strictly algebraic

systems built of complex, self-contained parts. According to this criterion, reusability does

not exist in the published dynamic models in ASCEND III.
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3 DESIGN GOALS

We strongly believe that, particularly where research code is concerned, documenting the

rationale leading to an artifact (the code) is as important as documenting the artifact itself.

In the next three sections we will attempt to document both. In this section we state the

goals fo the design process in a necessarily fuzzy fashion.

While developing reusable models in the ASCEND IV environment, it is important for us

to keep several other design goals or criteria in mind. Although it is our aim to have

models which will be general enough to describe many physical processes, it is important

that the method we choose to meet this goal does not increase the consumption of

computer resources dramatically. Moreover, any changes made in the ASCEND C source

code should not drastically slow down the user interface.

Along with these issues of minimizing compile time, solution time and result analysis

time comes a need for a solution which will not require us to rewrite a lot of the C source

code. Therefore, the solution to creating reusable models must fit into the general scheme

of existing user interface and solver C code. To make the C source code readable and

"elegant", it is desirable for the new source code to be "symmetric" with the existing code.

That is, C functions for managing the differential-algebraic problem to be solved should

be the same as or very similar to the functions used to manage a purely algebraic problem.

These functions should also be easy to maintain.

Finally, because there are so many models which already exist in the libraries of ASCEND

III, the solution must not invalidate these pre-existing models. Ideally, we do not want to

have to rewrite the ASCEND III model libraries to incorporate the ASCEND IV solution.

With these goals in mind, we will approach the problem in a systematic, engineering

design manner, examining in more detail the failures in ASCEND III to better understand

what is needed in ASCEND IV and documenting several potential solutions.
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4 PROBLEMS WITH REUSABILITY IN ASCEND III
By looking at previously published dynamic simulation models in the ASCEND III

libraries, we quickly see why these models are not reusable models. It is essentially an

impossible task to solve these models without an extensive lesson in dynamic modeling

and initialization or a complete understanding of the phrase "degrees of freedom" because

they cannot be simply connected and because they do not have standard methods for

managing degrees of freedom and initialization.

We cannot simply connect these models because of the multiple models used to

communicate information to the ASCEND III integration and plotting tools. In order to

represent and integrate one physical system, we need four separate models. Two of the

interface models, plt_plot and lsode, contain large arrays of time sampled information

which is unreadable to users except in graphical form. We discover a modeling method

which brings us closer to reusability and relieves us of the difficulties of using these

several models. We also suggest (by a detailed example in Section 8) a style of creating

standard methods to handle steady-state and dynamic degrees of freedom. The creation of

such methods, however, must be done specifically for each model in a library by the

library author.

4.1 THE MATHEMATICAL PROBLEM

The mathematical problem that we are typically attempting to solve in ASCEND is a

system of differential-algebraic equations (DAE)

= gd[i](y,z,t) (1)

0=ga(y,z,t) (2)

where i = number of equations. The mathematical system contains a derivative variable

(dy/df) which possibly is a vector of derivatives, a state variable (y), and an independent

variable (t). There are generally also algebraic equations (ga) and variables (z)

constraining the states and derivatives in some way. The equations may even be tangled so

that the semi-explicit form given above cannot be easily obtained, for example in variable

volume systems.
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The integration package that ASCEND in uses is LSODE [RH93], which solves initial

value problems for systems of first-order differential equations. It obtains the ODE

systems from an ASCEND interface model in the following form:

], y[2],.., y[neq], dy[l]/dt,...,dy[neq]/dt) (3)

where i = l..neq and at every evaluation point ASCEND solves and eliminates the

algebraic equations completely. There is the implicit assumption in LSODE that y[i] and

dy[i]/dt are the I th state-derivative pair.

If we were to write the ODEs found in ASCEND simulation models in this form it would

definitely create many problems in readability and naming. For example, it would be hard

to understand whether dy(l)_dt = yin - yout was an energy balance, a mass balance, or a

momentum balance. Therefore, the format in which ODEs are written in ASCEND

models (e.g. dMtotjlt = Min - Mout + Mrxn) must be converted to the equation (3)

information which LSODE can interpret, but a user need not see.

4.2 lsode AND derivatives IN ASCEND III

In ASCEND III, conversion of ODE information is accomplished by setting up two

different models with special part and type names which an IVP solver interface can

interpret. These integrator interface models are derivatives and lsode. The user must then

refine these models to accommodate the DAE found in their simulation model and merge

each derivative and state variable to its corresponding part in the models derivatives and

lsode using the ARE_THE_SAME operator. Because each state variable and its

derivative partner must have similar array locations, this conversion technique results in a

series of cumbersome, nested FOR loops for all but the most trivial dynamic models.

Moreover, when using this method of communicating with LSODE, we must create four

different type definitions to effectively use a dynamic model:

• Code describing the physical system through a set of differential-algebraic equations.
• Code refining the integrator interface model derivatives.
• Code refining the integrator interface model lsode.
• Code refining the plot interface model plt_plot which at compile time defines specific

output variables to be recorded and graphed.
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equation-based modeling environment user and an initial value problem (IVP) solver. The
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freely available plotting program Xgraph to the ASCEND IV3 modeling environment. In

contrast to the ASCEND in integrator interface, this new design allows an order of magnitude

improvement in the ease of developing an understanding of a dynamic model's behavior. The

improvement is in part achieved by allowing the user to interactively define what time varying

quantities should be recorded for postprocessing by graphics packages or other tools without

requiring that a new ASCEND model be compiled, thus making visualization easy. The more

significant improvement, however, is the new ability to select any part of the complete dynamic

model and solve it, thus making exploration of component dynamic behaviors easy. Finally, the

user may interactively change a variable between algebraic and dynamic (state or derivative)

roles. This makes it possible to negotiate a solution to the index problems which frequently arise
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INTRODUCTION

1 INTRODUCTION

We believe a reusable chemical engineering model is a general model of some unit

operation or process phenomenon which may be used to model steady-state and dynamic

flowsheet problems. Moreover, it may be solved without extensive initialization work in

each new application. From this definition it follows that ASCEND III [PMW93] does

not have reusable models within its libraries. However, with ASCEND IV, we come

closer to obtaining reusable dynamic models in the ASCEND environment. We will

address reusability and the difficulties in ASCEND in that make it nearly impossible to

reuse a dynamic model in Section 2 and Section 4. We keep several design goals,

including obtaining reusability, in mind while exploring solutions to this problem in

ASCEND IV. We do not want to increase the compile time of the models or slow the

ASCEND interface, and there must be a clear migration path for models in ASCEND III

to ASCEND IV. We detail the design goals in Section 3.

The reuse of existing ASCEND dynamic models is impossible due primarily to the way

that ASCEND III communicates problem specifications to the integration package,

LSODE. (An example of this communication is given in Section 9). Reusability is also

hampered by the way that ASCEND III communicates integration results to the

interactive user. By having the two separate integrator interface models, lsode and

derivatives, as well as the separate output collecting plt_plot model, ASCEND III leads

to repetition of code, time consuming and error prone FOR loops, and extreme

inconvenience in flowsheeting. We can solve these problems by identifying the

observation, derivative, and state variables at run time by setting flags that are new parts

of the basic variable type solver_var. The flags enable us to create a dynamic model

which is entirely self-contained, thus we can build up a dynamic model from smaller

dynamic models. We can use the larger model to study the dynamics of both the parts

and the whole using a single compiled object. This increases flowsheeting capabilities

and the readability of models, while decreasing compile time. Because ASCEND is

object-oriented, this addition of flags to the solver_var does not affect existing libraries

of purely algebraic models.
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We pose other solutions to the human/computer communication problem and explain the

design difficulties that make them infeasible in Section 5.1. We explain the new

solver_var flags and their use in detail in Section 5.2 and introduce a new plotting tool,

ASC_PLOT, in Section 5.2.1. ASCJPLOT is interactive and eliminates the need for a

separate ASCEND plot model. Although the total solution presented in Section 5 brings

us closer to reusability, we do not have "full" reusability in ASCEND IV.

In Section 6 we review some of the remaining problems. The thermodynamics library

and the stream library pose problems when trying to create very general dynamic models

because of difficulties with the existing type hierarchy. However, with the addition of the

CASE statement (a feature never implemented in ASCEND III) in ASCEND IV, we

expect to solve these problems in future development.

In Section 8 we present a simple example of a dynamic flash drum modeled, solved, and

plotted in ASCEND IV. In Section 9 we present the most complete and detailed example

available from ASCEND in, an ammonia synthesis flowsheet [Mon96]. A more detailed

description of the new ASCEND IV plotting capability is available in the ASCEND IV

on-line help and may be given in a future technical report.

A brief note on typography may help in understanding this report. The names of types,

known as classes in many other object-oriented (OO) languages, are written in bold. The

ASCEND keywords are in capitalized BOLD. The names of compiled objects (the OO

term is "instances") and of parts defined within a type (in which case the object is to be

compiled mentally by the reader) are in italicized bold. The names of ASCEND

methods, which can only be executed as parts of an instance, are also written in italicized

bold. Fragments of code offset from the text are in Courier type. It should be clear from

the context whether the fragment in question is C, Tel, or ASCEND.
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2 WHAT IS REUSABILITY?

The ideal library in ASCEND IV would consist of models which are reusable. By

reusable, we mean that each model in the library should represent an accurate

mathematical description of a general physical system and all its time variant as well as

steady-state behaviors. We must be able to reuse such models in a larger context without

doing extensive configuration or initialization of them. This representation should be

general enough so that it can handle multiple conditions arising within the system, for

example, the appearance and disappearance of chemical species or thermodynamic

phases.

Most particularly, we should be able to put a reusable model into a flowsheet with other

reusable models to describe an entire process without any changes to the definitions of the

individual models. This implies that the models must be entirely "self-contained". All the

attributes needed to solve the individual model must exist in one concise definition so that

essentially all we need to do is "connect" the models by a series of short commands. For

mixer -̂ reactor flash

example, the flowsheet fragment shown here should be modeled from library definitions

mixer, reactor, and flash as follows:

MODEL fragment;
m IS_A mixer;
r IS_A reactor;
f IS_A flash;
m.outstream, r.instream ARE_THE_SAME;
r.outstream, f.instream ARE_THE_SAME;

END fragment;

This way we can solve the difficult "degrees of freedom" problem that occurs in dynamic

modeling using the same simple techniques advocated by [Wes96] for strictly algebraic

systems built of complex, self-contained parts. According to this criterion, reusability does

not exist in the published dynamic models in ASCEND III.
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3 DESIGN GOALS

We strongly believe that, particularly where research code is concerned, documenting the

rationale leading to an artifact (the code) is as important as documenting the artifact itself.

In the next three sections we will attempt to document both. In this section we state the

goals fo the design process in a necessarily fuzzy fashion.

While developing reusable models in the ASCEND IV environment, it is important for us

to keep several other design goals or criteria in mind. Although it is our aim to have

models which will be general enough to describe many physical processes, it is important

that the method we choose to meet this goal does not increase the consumption of

computer resources dramatically. Moreover, any changes made in the ASCEND C source

code should not drastically slow down the user interface.

Along with these issues of minimizing compile time, solution time and result analysis

time comes a need for a solution which will not require us to rewrite a lot of the C source

code. Therefore, the solution to creating reusable models must fit into the general scheme

of existing user interface and solver C code. To make the C source code readable and

"elegant", it is desirable for the new source code to be "symmetric" with the existing code.

That is, C functions for managing the differential-algebraic problem to be solved should

be the same as or very similar to the functions used to manage a purely algebraic problem.

These functions should also be easy to maintain.

Finally, because there are so many models which already exist in the libraries of ASCEND

III, the solution must not invalidate these pre-existing models. Ideally, we do not want to

have to rewrite the ASCEND III model libraries to incorporate the ASCEND IV solution.

With these goals in mind, we will approach the problem in a systematic, engineering

design manner, examining in more detail the failures in ASCEND III to better understand

what is needed in ASCEND IV and documenting several potential solutions.
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4 PROBLEMS WITH REUSABILITY IN ASCEND III
By looking at previously published dynamic simulation models in the ASCEND III

libraries, we quickly see why these models are not reusable models. It is essentially an

impossible task to solve these models without an extensive lesson in dynamic modeling

and initialization or a complete understanding of the phrase "degrees of freedom" because

they cannot be simply connected and because they do not have standard methods for

managing degrees of freedom and initialization.

We cannot simply connect these models because of the multiple models used to

communicate information to the ASCEND III integration and plotting tools. In order to

represent and integrate one physical system, we need four separate models. Two of the

interface models, plt_plot and lsode, contain large arrays of time sampled information

which is unreadable to users except in graphical form. We discover a modeling method

which brings us closer to reusability and relieves us of the difficulties of using these

several models. We also suggest (by a detailed example in Section 8) a style of creating

standard methods to handle steady-state and dynamic degrees of freedom. The creation of

such methods, however, must be done specifically for each model in a library by the

library author.

4.1 THE MATHEMATICAL PROBLEM

The mathematical problem that we are typically attempting to solve in ASCEND is a

system of differential-algebraic equations (DAE)

= gd[i](y,z,t) (1)

0=ga(y,z,t) (2)

where i = number of equations. The mathematical system contains a derivative variable

(dy/df) which possibly is a vector of derivatives, a state variable (y), and an independent

variable (t). There are generally also algebraic equations (ga) and variables (z)

constraining the states and derivatives in some way. The equations may even be tangled so

that the semi-explicit form given above cannot be easily obtained, for example in variable

volume systems.
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The integration package that ASCEND in uses is LSODE [RH93], which solves initial

value problems for systems of first-order differential equations. It obtains the ODE

systems from an ASCEND interface model in the following form:

], y[2],.., y[neq], dy[l]/dt,...,dy[neq]/dt) (3)

where i = l..neq and at every evaluation point ASCEND solves and eliminates the

algebraic equations completely. There is the implicit assumption in LSODE that y[i] and

dy[i]/dt are the I th state-derivative pair.

If we were to write the ODEs found in ASCEND simulation models in this form it would

definitely create many problems in readability and naming. For example, it would be hard

to understand whether dy(l)_dt = yin - yout was an energy balance, a mass balance, or a

momentum balance. Therefore, the format in which ODEs are written in ASCEND

models (e.g. dMtotjlt = Min - Mout + Mrxn) must be converted to the equation (3)

information which LSODE can interpret, but a user need not see.

4.2 lsode AND derivatives IN ASCEND III

In ASCEND III, conversion of ODE information is accomplished by setting up two

different models with special part and type names which an IVP solver interface can

interpret. These integrator interface models are derivatives and lsode. The user must then

refine these models to accommodate the DAE found in their simulation model and merge

each derivative and state variable to its corresponding part in the models derivatives and

lsode using the ARE_THE_SAME operator. Because each state variable and its

derivative partner must have similar array locations, this conversion technique results in a

series of cumbersome, nested FOR loops for all but the most trivial dynamic models.

Moreover, when using this method of communicating with LSODE, we must create four

different type definitions to effectively use a dynamic model:

• Code describing the physical system through a set of differential-algebraic equations.
• Code refining the integrator interface model derivatives.
• Code refining the integrator interface model lsode.
• Code refining the plot interface model plt_plot which at compile time defines specific

output variables to be recorded and graphed.
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It is here we see that the problem of keeping dynamic models self-contained lies not

within the LSODE integration package, but with how ASCEND III transmits the

integration information to LSODE. By using the idea of two different integrator interface

models, when we write a flowsheet (e.g. a chemical process with three unit operations),

models have to be written for the three units and then two overall models would have to

refine the derivatives and lsode model for the flowsheet. Finally, a model would have to

be written to plot the flowsheet.

Using this method, the individual units within the flowsheet cannot be integrated

separately because each model does not contain the information needed to communicate

with LSODE. This is in no way close to being reusable.

• To integrate, the models require an extensive amount of interface overhead modeling
by the user.

• The user cannot simply "connect" unit operations together, separate flowsheet models
must be rewritten for each different combination of unit operations.

One purpose of modeling is to test different combinations of unit operations rapidly

without conducting expensive experiments. Here we do not save much time by having to

rewrite three models for each new combination of units! It is almost as though the

ASCEND III interface just described was designed to waste user time. In Section 9 there

is an example of the ASCEND III integrator interface model refinements associated with

an ammonia reactor, written by Jon Ingar Monsen. By looking at these models, it is easy to

see why these models make this ammonia reactor unit operation close to impossible to

insert into another flowsheet without rewriting a lot of code.
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5 REUSABILITY IN ASCEND IV
The question we now ask is "How can we interface LSODE without creating four

separate models?" We came up with three possible solutions, one of which we accepted

and implemented. The others were rejected because of the reuse problems they posed.

• Identify the derivative and state variables at run time by having flags within the
so!ver_var [AW97] that users can manipulate interactively, as is done for communi-
cating algebraic problem specifications to ASCEND Ill's algebraic solvers.

• Identify states and derivatives by giving each type a different root in the type hierar-
chy.

state solver var derivative_solver_var

Refines

molar rate
IRefines

molar rate

Identify states and derivatives by recognizing prefixes in type names.

dynamic_molar_rate algebraic_molar_rate

5.1 REJECTED SOLUTIONS

One of the solutions to the integration interface problem that we rejected was to create

multiple solver_var types. The multiple types would be named: state_solver_var,

derivative_solver_var, and algebraic_solver_var LSODE would then be programmed

to recognize the difference in these solver_var types and treat the variables which were

associated with them accordingly when integrating. There are many problems with this

solution. The main one was that we would have to rewrite all ASCEND III models to

accommodate the separation of the solver_var. Also, the problem of matching a state

variable and its corresponding derivative variable would still exist. Furthermore, we
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would have to create multiple atoms Mb because solver_var is at the root of the ASCEND

IV hierarchy, unless this hierarchy was totally reorganized. This solution is also inflexible

because the role of a state or derivative variable may change to an algebraic variable in

other dynamic configurations.

Another solution that we considered, but abandoned was creating atom refinements with

the special name prefixes dynamic^ and algebraic^. However, this solution also would

cause type incompatibility within ASCEND IV (i.e. prevent merging) and again require

multiple versions of atoms.lib.

5,2 FLAGS WITHIN Soiver_var

By flagging the derivative, state, and independent variables, we are able to accomplish the

goal of keeping the models self-contained. This is done by creating new solver_var

children called odejype, odejd, and obsjd. Odejype determines the variable's role

with respect to an IVP solver.

Table 1: Definition of Odejype values

odejype value

-1

0

1

2

>2

variable type

independent

algebraic

state

derivative

higher derivatives

The function of ode Jd is to pair the state variable with its corresponding derivative

variable (e.g. MtoLodeJd = 1 and dMtotJttodeJd = 1). This allows LSODE to match the

correct variables during integration. The odejd is a prototype way of associating

variables that will become obsolete when ASCEND IV differential calculus syntax is

implemented. Obsjd allows us to select the variables we wish to record while integrating.

The different values for the newly created solver_var children are set in the following

ways. Values of odejype and odejd are determined in the user-written set_ode method

which is in the METHODS section of the dynamic model. This method only has to be
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created once for each model. If the model is put into a larger hierarchical model, we

simply run the setjode method recursively for the individual sub-models, as is done with

the standard reset method [Wes96]. In addition to setting the odejype within the

METHODS section of the model, we can change this instance interactively through the

ASCEND interface. This is beneficial when negotiating an index problem. The odejype

has a default of zero so that we do not have to go through and set it for all of the algebraic

variables, which can amount to tens of thousands variables when modeling large systems.

The only variables which require assignment of the odejype value are the derivatives, the

states, and the independent variable.

While developing the solver_var child odejd, we needed to develop a universal counter,

which we called ode_counter. This counter is needed because it is important that there is

a distinct value of the odejd for each matching derivative and state variable. The type

ode_counter is a UNIVERSAL ATOM that refines integer. It is found in atoms.lib in

ASCEND IV. To set the odejd in the METHODS section of the simulation model, we

simply use this UNIVERSAL ATOM and define a counter instance of it in the model,

usually named odejcounter. We then increment the universal odejoounter value each

time it is used. The advantage of using a universal counter over using specific integer

values defined in each dynamic model is seen when the model is put in a flowsheet. The

values for odejd can be assigned over the entire flowsheet and are not specific to the

number or order of the unit operations within the flowsheet.

The only disadvantage to the counter is that it must be set to a value of one each time a

new flowsheet configuration is specified. This is accomplished in the script file that

accompanies the model by inserting the command:

ASSIGN {<model name>.ode__offset} 1 {};

One might ask why the counter does not just default to a value of one. Setting a default

would defeat the purpose of a "universal" counter. We want the counter to start at a value

of one for the top model we select interactively and then continue to count throughout the

model hierarchy below this top model. This may not include the whole flowsheet,

therefore, we want to be able to interactively control when the universal counter is reset to
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one.

The obsjd flag is an integer, but it may be thought of as a boolean by the casual user. All

variables with obsjd > 0 when the integrator is started will be recorded in tabular form in

a file called obs.dat. The state and derivative variables are automatically recorded in the

file y.dat. The file names y.dat and obs.dat may be respecified interactively through the

ASCEND solver interface. These files can be fed into the new plotting tool in ASCEND

IV, ASC_PLOT, which will be discussed in Section 8. The obsjds > 0 are reassigned to a

unique positive value by the interface to LSODE for file indexing purposes. Thus, we need

not create hierarchical methods for uniquely indexing the observations as we do for the

odejd.

All variables have a default obsjd value of zero. Therefore, if we want to observe a

variable, we set the variable's obsjd to one in the set_pbs method in the METHODS

section of the test model. In using this method of assignment, it becomes apparent that in

large flowsheets a method which would "clear" all observations is needed. This is

accomplished through the clear jobs method in the individual models. It sets all obsjd

values back to zero.

5.2.1 ASC_PLOT

Many, if not most, numerical results are most easily understood by creating plots of the

data rather than looking at individual values, lists of values, or averages of values. We

focus in ASCEND IV on producing data in a portable text format carrying all the

information possibly needed by the range of plotting tools found at Carnegie Mellon. We

do this because each organization or user has a favorite plotting tool set and because the

present interests of the authors do not include research on data visualization. There are

many graphing tools available within spreadsheets on personal computers, as stand-alone

utilities (Xgraph, XMGR), or as complete graphing environments (gnu-plot, Yorick) on

UNIX workstations. The use of an obsjd makes this particularly easy, indeed it is the

foundation of an improved plotting ability.

The local users of ASCEND are not content with a raw data set, however, so we also

provide a Tcl/Tk [Ost94] based tool, ASC_PLOT, for manipulating data files and creating
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plots with Xgraph or any other plot tool which can accept a text file as input. This tool is

similar to an independent spreadsheet package in that after the simulation is finished it

allows the user to:

• import arbitrarily large amounts of data from ASCEND or from other sources.
• execute elementary mathematical transformations on rows or columns of the data.
• view selected portions of the data in graphical formats he or she can interactively con-

figure.
• merge data sets from several simulations

This tool does none of these things as well as a dedicated PC package such as EXCEL

might. However, nobody will grant us degrees in Chemical Engineering for writing a

spreadsheet or a graph package. ASCJPLOT is a Tcl/Tk application that does not require

the rest of ASCEND IV to be loaded.

In ASCEND III, a separate plot type definition and instance must be created, as mentioned

in Section 4.2. This requires defining fixed size arrays of plot points associated with

specific observation variables. All of this costs compiler time and a great deal of

ASCEND object overhead memory just to store what are essentially vectors of real

numbers. Furthermore, the observed variables cannot be dynamically redefined and

cannot be tracked across multiple runs in one plot. Clearly, ASCEND III style

programming is not the ideal method to handle the large quantities of data produced using

dynamic models.

5.2.2 Changes Within the Script File

Some changes that accompanied this solution occurred within the models' script file. As

was mentioned earlier, the universal counter's initial value must be assigned within the

script. Another addition is that the independent variable's initial value must be specified

within the script file or another method. This done by the following command:

ASSIGN {<independent variable name>} 0 {s};

This specific command assigns zero as the initial point for integration. The {s} is units

expression of the independent variable, seconds. The independent variable may be in any
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units, however, as appropriate to the model.

The command

WRITE_VIRTUAL <model name> <buffer name>;

saves the current values of variables to a core memory buffer. If there is a problem with

integration, the buffer contents can be used to reinitialize the model.

We also had to add to the script file a method to set the observation sample time steps. We

developed a Tel command called setjnt. In order to access this command, we load the file

setjntervals.tcl which is now a part of the ASCEND IV examples library. Setjnt is

invoked by the command:

set_int <number of steps> <step size> <units>/
e.g. set_int 101 1 {s}

This means "create 1 second intervals (implicitly from t=0) for 100 seconds". Setjnt

replaces the method within the ASCEND in model lsode. Variations on the setjnt

method are easy to construct, and several are included in the library files. For example,

setjagrangeint is a function which creates uniformly spaced major intervals with minor

intervals at the roots of a scaled lagrange polynomial.

Finally, to begin integration, all the user must type in the script file is:

INTEGRATE <model name>;

The indices to a subset of the defined intervals may also be given, e.g.:

INTEGRATE <model name> FROM 50 TO 100;

Some of these changes within the script file should eventually be moved into the methods

of the models or into new graphic user interface tools. This would remove extraneous

information from the eye of the user, making it easier to work with dynamic models.
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5.2.3 Advantages to Flagging Variables

There are many advantages to the solution above. By flagging the variables, we take away

the need for the two separate integrator interface models, lsode and derivatives, as well as

the separate plotting model. In terms of flowsheeting, this allows us to connect unit

operations by simply merging the outputs of one with the inputs of another. This simpler

means of connection, combined with the notion of setting odejypes and odejds in the

methods of individual models, allows us to do something we previously could not, namely

solve and integrate individual models and parts of a flowsheet. There is a sharp increase

(from 0) in the reusability of models, because they are now self-contained.

Being able to choose observation variables interactively by setting the obsjd value to one

through the interface increases the model's flexibility. If we only want to see the dynamics

of one variable, we do not have to record extraneous variables specified by the model's

original author as is the case in ASCEND III. Moreover, when these observation variables

are viewed in ASCEND III, they are found in the BROWSER window. If we want to save

these variables for future use, they must be sent to the PROBE and saved from there. In

ASCEND IV they are automatically saved to a specified data file. Also, the observation

values in ASCEND III are indexed like the dynamic variables in LSODE:

obs[l..n_obs][l..n_steps]. This makes it hard to distinguish which variable is which in the

BROWSER or PROBE. Now when the values are written to the data file, they are

tabulated according to the names that the modeler assigned to them in the dynamic model.

We next consider the notion of "elegant" modeling. One way to describe model code

elegance is the absence of extra statements and structures concerned with trivial issues,

such as file input and output. These statements contain information other than the

mathematical essence of the model. In ASCEND IV the models become more readable

because all of the arrays and size parameters which were previously found in the

derivatives and lsode refinements are now derived based on variable flags and managed

by the solver interface software. Removing these bookkeeping objects from the model

definitions also reduces the compile time of a model.

Another advantage of the new LSODE communication method is that it provides a clear
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migration path from the simulation models of ASCEND HI that do not contain variable

flag information about integration. They have bode and derivative counterparts which are

interfaced with LSODE. The only changes that we need to make within these older

models in the ASCEND III libraries is the addition of the odejtffset and independent

variables, and of the methods setjode and clear_pbs to handle the flags on the new

solver_var. Once these variables and procedures have been added and tested under the

new system, it is easy to simply delete the old bookkeeping model parts and type

definitions. During the transition both integration interfaces may be used with the same

dynamic model. Although a lot of source code (in C) had to be written for the ASCEND

IV solution, the amount of source coded needed to manage the interface with LSODE is

actually smaller in ASCEND IV than in ASCEND III. Once all of the ASCEND III

dynamic models have been migrated to ASCEND IV, the ASCEND III LSODE interface

C code will be deleted.

5.2.4 Problems Associated with Flagging Variables

One of the problems that we encountered while implementing this solution was what to do

about the relative and absolute tolerances that were previously specified in the integrator

interface models lsode and derivatives. We first thought about setting them within

LSODE so that they would be internally fixed. However, modelers often need to control

the tolerances for their integrations. We have been frustrated on more than one occasion

by integrators and other solvers that hide their internal tuning parameters. Another

solution which we thought of was to create a model tolerance which would communicate

an array of tolerances to LSODE. However, this brought back the problem of difficult

array indexing and inflexibility in changing the role of a variable between algebraic and

dynamic. Therefore, the solution that we settled on was adding two more children to

solver__var: odejitol and odejiol. Each child is a real and they are set by default to le-4

and le-8, respectively. This solution yields a symmetric treatment of all the integration

interface information: everything LSODE or any algebraic solver needs to know about a

variable is contained in flags that are part of the variable. Although the presence of these

new flags increases the size of the solver_var, the compile time does not dramatically

increase.
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A solution that we proposed to the problem of a large solver_var was to create a CASE-

like statement within the solver_var that would determine which children to compile

based on a universal flag, e.g. DAE = TRUE or FALSE. However, a CASE statement does

not currently exist for atoms in ASCEND IV. Therefore, this solution is infeasible for the

moment. Another alternative solution to the large solver_var problem is to allow multiple

inheritance for atomic types in ASCEND. This solution we set aside for the moment

because the implications of multiple inheritance in the ASCEND language are too

complicated to explore here. The solution selected to solve the large solver_var problem

is to create an alternate ivpsystem.lib to replace system.lib for dynamic modelers. This

way algebraic modelers have an interchangeable library, system.lib, that does not contain

these larger solver_vars.
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6 AREAS OF IMPROVEMENT IN ASCEND IV
We do not yet have full reusability in ASCEND IV. Most of the problems which hinder us

from accomplishing our goal of reusability are primarily associated with some of the

standard libraries and not with the integration package. The libraries that are problematic

deal with chemical engineering applications. Currently, the thermodynamics library,

which in turn affects the stream library, is separated into two main categories

homogeneous and heterogeneous mixtures. When we create a unit operation having

streams entering and leaving, the number and type of phases in each stream must be

specified to determine the appropriate mixture model if anything more complicated than a

mass balance is to be computed. This difficulty particularly affects dynamic models. For

example, we cannot simulate the level in a flash tank overflowing into the vapor line

because we commit to the overhead line having a vapor_mixture properties model when

we define the flash tank.

A possible solution to this might come with the CASE statement when it arrives in

ASCEND IV. With it, we could have a set of equations in the model which would apply to

heterogeneous mixtures and a set that would deal with homogeneous mixtures. Then,

when the overflow condition occurs, the appropriate liquid equations would be used and

the vapor equations ignored. This conditional modeling area is under development by

Vicente' Rico-Ramirez.

Another significant improvement in ASCEND IV would be to attach a more efficient DAE

integrator, such as a sparse version of DASSL [BCP89], to the system. Another

improvement, and one that is necessary for commercial dynamic modeling, would be to

incorporate strategies for handling discontinuities into the integration software and

interface. Neither has yet been done because they are not on the critical path of any of the

researchers presently working on ASCEND IV.
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7 CONCLUSIONS

Through the development of a new integrator interface procedure within ASCEND IV, we

advance towards total reusability. When we first looked at the problem of reusability in

ASCEND HI, we discovered that a large portion of the problem dealt with the way

ASCEND HI interfaced with the integration package LSODE. Therefore, we developed a

new technique to deal with the integration information in a dynamic model. This solution,

which consists of flagging the variables within the model, meets the design goals that we

established because it:

• Reduces model compilation time
• Does not slow down ASCEND interface
• Does not invalidate pre-existing models
• Makes models more self-contained
• Allows a more "user-friendly" interface for specifying sample times and plotting sim-

ulation results
• Leads to better flowsheeting capabilities
• Makes for much more elegant and readable code

Examples of the application of this integration interface solution to chemical engineering

unit operations are located in Appendix A. With this solution came the new plotting tool in

ASCEND IV, ASC_PLOT, which takes data from observation variables and exports it to

third party graphing packages such as Xgraph.

Other solutions to the interface problem that we have discussed were rejected because

they did not meet our design criteria. These solutions experienced problems like type

incompatibility and the invalidation of existing models. Although the new method of

interfacing LSODE brings us closer to reusability, a few areas still hinder us from "full"

reusability. One of these problems is the hierarchical structure of the thermodynamics and

stream libraries in ASCEND IV. The addition of the CASE statement to ASCEND IV is a

possible solution to this problem and we would then attain total reusability in ASCEND.

Through the development of reusable models, we hope to extend the scope of ASCEND

past dynamic and steady state simulation models into the realm of true multi-purpose

modeling. This would include the development of models good for dynamic and steady

state optimization, as well as parameter estimation.
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8 APPENDIX A - ASCEND IV EXAMPLE

8.1 EXAMPLE - FLASH UNIT

A standard example of a chemical engineering unit operation is the flash unit. This

separation unit can be described with several levels of thermodynamics, the simplest being

relative volatility, which will be the focus of our first example. Without going through the

details of the theory behind mathematical modeling, we will describe the general basis of

the alpha.flash model. The theory which was used to create this model is described in

[AW96].

The model presented below is a multi-component flash separation unit where the split

fractions, alphafcomponents], are defined arbitrarily. The dynamics of the system are

described by a component mass balance which is defined for each component in the

system. This allows us to track the dynamic variables' behavior in an unsteady state

system. The integration is accomplished through the integration package LSODE. The

model is connected to this package through the new interface described in prior sections of

this paper with the addition of the new methods setjtde and clear_pbs, located in lines

157-173 of the model.

The easiest way to understand the steps used to solve and integrate a model is to go

through a script of that model. In lines 217-251 of this appendix, we present a script file

for the alpha.flash model. The function of this file is to load all of the libraries needed in

describing the model, to run the methods setting the values needed to solve the model at

steady and unsteady states, and finally to integrate the model at unsteady state. The first set

of commands in the SCRIPT file are used to read files into ASCEND IV. Line 217 loads a

Tel file which defines the command setjnt found in line 250. Setjnt sets the observation

time samples during integration. The next two commands set aliases, alib and blib, for

frequently used directories so that they may be referenced by the Tel notation $alib or

$blib when reading libraries into ASCEND IV. Line 220 is used to delete all type

definitions and simulations which may have been loaded previously to make the

demonstration using a clean system. Finally, lines 221-226 read all of the appropriate

libraries needed to define the types within test_alpha_flash, along with loading
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test_alpha_flash itself.

Before a model can be solved it needs to be compiled as a simulation in ASCEND. In this

case, the simulation instance is called tf, however this name is arbitrary. Line 228 handles

this action. The next line sends the instance to the BROWSER window so that we can

examine the parts of the instance in greater detail. This is useful when we wish to change

the initialization values of the variables.

The next set of commands solve test_alphaJRash at steady state. We run the methods

reset, steady_yalues, and values in order to square and initialize the model. Line 235

sends the instance to the SOLVER window and solves the model with the QRSlv.

The fun comes in when we solve the model at an unsteady state and get to play with the

derivative variables. This is accomplished in lines 236-251. The first line of this series of

commands sets the value of the UNIVERSAL_COUNTER, ode_pffset, to one. As

described before, this counter is used in the matching of the state and derivative pairs. The

next task performed is establishing what variables are to be observed during integration.

Line 239 clears all variables previously flagged as observation variables. Then line 240

sets them for the variables chosen within the set_obs method in the test model. If a

previous integration has taken place, then time within the model will not start at zero.

Therefore we insert line 241 to begin the integration at time equal to zero. The boolean

variable dynamic in the model is set to TRUE in the next line. The model's seqmod

method configures the model for unsteady state use if the value of dynamic is TRUE, as

shown in lines 124-132 of the alpha_flash model.

The next three lines square the model {specify calls seqmod) and initialize the values of

the model so that it will be ready to solve. We then use the WRITE ^VIRTUAL <model

name> <buffer name>; to save the current values of variables to a core memory buffer.

Therefore, if there is a problem with integration, the buffer contents can be used to

reinitialize the model. The model is solved with the QRSlv in line 249. Using the setjnt

command that was loaded in line 217, we set the observation time samples. Finally, the

model is integrated using BLSODE (the name of the new interface to LSODE in the

ASCEND IV environment) from time step 0 to time step 10. We can change these times to
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whatever time interval we wish to observe.

After the model is solved and integrated we can then use ASCJPLOT to make a graphical

representation from the model's output. To do this, we select the ASC_PLOT button in the

TOOLBOX window. The data, found in the obs.dat and y.dat files in the current directory,

is loaded by selecting "Load data set" in the Edit menu of the ASC_PLOT window. The

variables to be graphed are selected and moved into the plotted variables box. After all of

the plotted variables are set, we select "View plot file" from the Execute menu and Xgraph

will produces a graph, such as the one on the following page.

This is the plot of the accumulation rates of four species in a mass holdup with respect to

time, as computed using an alphaJiash subject to a step change in its feed composition.

The molar rates of holdup change are on the Y axis and time is on the X axis. We can also

choose different observation variables to plot through the interactive ASC_PLOT window.
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8.2 MODELS USED IN THE FLASH EXAMPLE

MODEL alpha_flash;
components IS_A
data[components] IS_A
choice_component IS_A
alpha[components] IS_A
inputs, vapouts, liqouts IS_A
input[inputs], vapout[vapouts],

liqout [liqouts] IS__A
scale IS_A
state IS_A
phases IS__A
phases :==
x[components] IS_A
t

set OF syraboInconstant;
component_constants;
symboInconstant;
factor;
set OF symbol__constant;

molar__stream;
scaling_constant;
heterogeneous_mixture;
set OF symbol_constant;
[•liquid','vapor'];
mole_fraction;
time;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
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ode_offset IS_A ode_counter; 15
16

(*set dynamic to TRUE IF you want the MODEL to be dynamics*) 17
dynamic IS_A boolean; 18

19
(*set the local to be TRUE IF the MODEL is being integrated 20

within another MODEL*) 21
local IS_A boolean; 22

23

liq_frac[components], 24
vap_frac[components]IS_A mole_fraction; 25

26
Mole_Holdup[phases] IS_A mole; 27
M IS_A mole; 28
m[components] IS_A mole; 29
dm_dt[components] IS_A molar_rate; 30
Vol_Holdup[phases]IS_A volume; 31
Vtot IS_A volume; 32
mix_V[phases] IS_A molar_volume; 33

34
state.reference :== 'liquid1; 35

36
37

(•aliasing*) ' 38
components, input[inputs].components, 39

liqout[liqouts].components, 40
vapout[vapouts].components, 41
state.components ARE_THE_SAME; 42

43

phases, state.phases ARE__THE_SAME; 44
45

FOR i IN components CREATE 46
alpha [ i ] , state. alpha [ • vapor ' ] [ i ] ARE_THE__SAME; 47

END; 48
49

FOR i IN components CREATE 50
x[i], state.y[i] ARE_THE_SAME; 51
liq_frac[i], state.mix['liquid'].y[i] ARE_THE_SAME; 52
vap_frac[i], state.mix['vapor'].y[i] ARE_THE_SAME; 53

END; 54
55

state.mix['liquid1], liqout[liqouts].state ARE_THE_SAME; 56
57

state.mix['vapor'], vapout[vapouts].state ARE_THE_SAME; 58

59
FOR i IN components CREATE 60

data[i], input[inputs].data[i], state.data[i] ARE_THE_SAME; 61
END; 62

63
64
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(•relations*) 65
M = SUM(m[i] | i IN components); 66

67
FOR i IN [phases-[state.reference]] CREATE 68

Mole_Holdup[i] = M * state.phi[i]; 69
END; 70

71
M = SUM(Mole_Holdup[i] | i IN phases); 72
FOR i IN [components- [choice..component] ] CREATE 73

M * x[i] = m[i]; 74
END; 75

76
FOR i IN [phases - [state.reference]] CREATE 77

Vol_Holdup[i] = Mole_Holdup[i]*mix_V[i]; 78
END; 79

80
V_mix_def: state.V = SUM(mix_V[i]|i IN phases); 81

82
V__vhold_def: Vtot = SUM(Vol__Holdup[i] | i IN phases); 83

84
V__def: Vtot = M * state.V; 85

86
FOR i IN components CREATE 87

component_MB[i]: dm_dt[i] = SUM(input[inputs].f[i])- 88
SUM(vapout[vapouts].f[i])-SUM(liqout[liqouts].f[i]); 89

END; 90
91

(•define bounds*) 92
FOR i IN components CREATE 93

dm_dt[i].lower_bound := -lelO {mol/s}; 94
END; 95

96
local := TRUE; 97

98
METHODS 99

METHOD clear; 100
RUN input[inputs].clear; 101
RUN vapout[vapouts].clear; 102
RUN liqout[liqouts].clear; 103
RUN state.clear; 104

:= FALSE; 105
FALSE; 106

:= FALSE; 107
FALSE; 108

:= FALSE; 109
FALSE; 110

:= FALSE; 111
FALSE; 112

113
END clear; 114

m[components].fixed
dm__dt [components] . fixed
x[components].fixed
M.fixed
Mole_Holdup[phases].fixed
Vtot.fixed
Vol_Holdup[phases].fixed
dynamic
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METHOD seqmod;
RUN state.specify;
mix__V [phases] .fixed
M.fixed
Vtot.fixed
dm_dt[components].fixed
x[components].fixed
liqout['liquid'].Ftot.fixed
IF dynamic = TRUE THEN

dm_dt[components].fixed
state. ave__alpha [' vapor' ] . fixed
liqout[liqouts].Ftot.fixed
vapout[vapouts].Ftot.fixed
x[components].fixed := FALSE;
m[components-[choice_component]]

Vtot.fixed
M.fixed
RUN set_ode;
IF local = TRUE THEN

= TRUE;
= FALSE;
= TRUE;
= TRUE;
= FALSE;

:= TRUE;

:= FALSE;
:= FALSE;
:= TRUE;
:= TRUE;

.fixed
:= TRUE;
:= FALSE;

input[inputs].state.y[components],ode_type

END;
END;

END seqmod;

:= TRUE;

:= 0;

METHOD specify;
RUN input[inputs].specify;
RUN seqmod;

END specify;

METHOD reset;
RUN clear;
RUN specify;

END reset;

METHOD scale;
RUN input[inputs].scale;
RUN vapout[vapouts].scale;
RUN liqout[liqouts].scale;
RUN state.scale;

END scale;

METHOD set_ode;
FOR c IN components DO

m [ c ] . ode__type : = 1 ;
dm_dt [ c ] . ode__type : = 2 ;
m[c].ode_id := ode_offset;
dm_dt[c].ode_id := ode_offset;
ode_offset := ode__offset + 1;

END;
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t. ode__type: = - 1 ;
END set_ode;

METHOD clear__obs;
FOR c IN components DO

m[c] .obs__id:= 0;
dm_dt [c] .obs__id:= 0;

END;
END clear_obs;

END alpha_flash;

MODEL test_alpha_flash REFINES alpha_flash;
inputs
vapouts
liqouts

components :==
1 n__pentane' , • n__hexane' , ' n__.

choice__component
data['n_pentane•]
data['n_hexane']
data['n—heptane']
data['n_octane']

METHODS

METHOD steady_values;
M

dm_dt[components]
x[choice_component]
state.phi['liquid']

END s t eady_jva lues;

METHOD unsteady_values;

liqout[liqouts].Ftot
x[components]

END unsteady_values;

:== ['feed'];

:== ['vapor•];

:== ['liquid'];

heptane','n_octane'];
:== 'n_hexane';
IS_REFINED_TO n_pentane;
IS_REFINED_TO n_hexane;
IS_REFINED_TO n_heptane;
IS_REFINED_TO n_octane;

:= 100 {mole};
:= 0 {mol/s};
:= 0.33;
:= 0.3;

:= 10 {mol/s};

:= 1/3;

METHOD values;
input[inputs].f[components]

state.alpha['vapor']['n_pentane']
state. alpha [' vapor' ] [' n__hexane' ]
state.alpha['vapor']['njieptane']
state.alpha['vapor']['n_octane']
state.ave_alpha['vapor']

END values;

METHOD set^obs;
FOR c IN components DO

m[c].obs_id:= 1;
dm_dt[c].obs_id:= 1;

= 4 {mol/s};
= 1.5;
= 1.2;
= 1.0;
= 1.3;
= 1.16;
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END;
END set_obs;

END test_alpha_flash;

SCRIPT FILE FOR ALPHA FLASH

214
215
216

source /afs/cs.emu.edu/project/edrc-ascend3/jsed/models/blsode/newbl-
sode/tcl/set_intervals.tel; 217

set alib /afs/cs.emu.edu/project/ascend/newserver/models/pending/librar-
ies; 218
set blib /afs/cs.cmu.edu/project/edrc-ascend3/jsed/models/blsode/newbl-
sode/newthermo; 219
DELETE TYPES; 220
READ FILE $alib/ivpsystem.lib; 221
READ FILE $alib/atoms.lib; 222
READ FILE $alib/components.lib; 223
READ FILE $alib/H_G_thermodynamics.lib; 224
READ FILE $alib/stream.lib; 225
READ FILE $blib/fIash3.lib; 226

227
COMPILE tf OF test_alpha_flash; 228
BROWSE {tf}; 229

230
#this solves the flash at steady state# 231
RUN {tf.reset}; 232
RUN {tf.steadyjvalues}; 233
RUN {tf.values}; 234
SOLVE {tf} WITH QRSlv; 235

236
#this solves and integrates the flash at an unsteady state* 237
ASSIGN {tf.ode_offset} 1 {}; 238
RUN {tf.clear_obs}; 239
RUN {tf.set_obs}; 240
ASSIGN {tf.t} 0 {s}; 241
ASSIGN {tf.dynamic} TRUE; 242
RUN {tf.specify}; 243
RUN {tf.unsteady_values}; 244
RUN {tf.values}; 245
WRITE_VIRTUAL tf initpointO; 246
SOLVE tf WITH QRSlv; 247
set_int 100 0.1 s; 248
INTEGRATE tf from 0 to 10 WITH BLSODE; 249
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9 APPENDIX B - ASCEND III EXAMPLE

9.1 JON MONSEN'S AMMONIA REACTOR

MODEL flowsheet_dynamics REFINES derivatives; 250

251
(* Defines the differential variables *) 252

253
process IS_A flowsheet; 254
components IS_A set OF symbol; 255
subset[1..CARD(components)] IS_A symbol; 256
x IS_REFINED_TO time; 257
y[1.,5*process.n_reactors] IS_REFINED_TO molar_rate; 258
dydx[l..5*process.n.reactors] IS_REFINED_TOoncentration_rate;259
y[5*process.n_reactors+l..6*process.n_reactors] IS_REFINED_TO temper-

ature; 260

dydx[5 *process.n__reac tors+1..6 *process.n_reactors]IS__REFINED_TO
temperature_rate; 261

components, process. pf r__reactor.components ARE_THE_SAME; 262

263
subset[1] := 'ammonia'; 264
subset[2] := 'argon'; 265
subset[3] := 'hydrogen'; 266
subset[4] := 'methane'; 267
subset[5] := 'nitrogen'; 268

269
FOR i IN [1..process.n_reactors] CREATE 270

FOR j IN [1..CARD(components)] CREATE 271

y[j+(i-l)*5]f 272
process.pfr_reactor.reactor[i].output['product'].f[subset[j]]

ARE_THE_SAME; 273
dydx[j+(i-l)*5] , 274
process.pfr_reactor.reactor[i].dC_dt[subset[j]]ARE_THE_SAME; 275

END; 276
END; 277

278
FOR i IN [5*process.n__reactors+1..6*process.n_reactors] CREATE 279
y[i] , process.pfr_reactor.reactor[i-process.n__reactors*5] .T

ARE_THE_SAME; 280
dydx[i] , process.pfr_reactor.reactor[i-process.n__reactors*5] ,dT__dt

ARE_THE_SAME; 281
END; 282

283

n_eq := process,n_reactors*6; 284

285
METHODS 286

METHOD clear; 287
RUN process.pfr_reactor.clear; 288
RUN process .heat__ex. clear; 289

END clear; 290
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291
METHOD specify; 292

RUN process.pfr__reactor.specify_pfr; 293
RUN process.heat_ex.specify; 294

END specify; 295
296

METHOD reset; 297
RUN process.clear; 298
RUN process.specify; 299

END reset; 300
301

END flowsheet_dynamics; 302
303
304

MODEL flowsheet_integrate REFINES lsode; 305
306

(* Connects to the integrator lsode *) 307
308

d IS_REFINED_TO flowsheet_dynamics;309
step IS_A time; 310
npnt IS_A integer; 311
curve_spacing IS_A integer; 312

313

nstep := 80; 314
npnt := nstep + 1; 315

316
d.n_obs := 6*d.process.n_reactors+l; 317

318
FOR i IN [1..d.n_obs-l] CREATE 319

d.obs[i], d.y[i] ARE_THE_SAME; 320
END; 321

322

d.obs[d.n_obs], 323
d.process.pfr_reactor.reactor[1].Tf ARE_THE_SAME; 324

325
(* 326
Define the absolute and arelative error tolerance user wants LSODE to
have. 327

*) 328
atol[l..d.n_eq] :=1.0e-5; 329
rtol[l..d.n_eq] := 1.0e-5; 330

(* 331
Put user suppiled initial conditions into the integration. 332
*) 333

FOR i IN [l..d.n_eq] CREATE 334
d.y[i], y[0][i] ARE_THE_SAME; 335

END; 336
337

FOR i IN [l..d.n_obs] CREATE 338
d.obs[i], obs[0][i] ARE_THE_SAME; 339
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END; 340
341

(* Sets up the ploting OF the molar flowrates *) 342

343
concentration_plot IS_A plt_plot_integer; 344
concentration__plot .ncurve := 5; 345

346
FOR i IN [1..concentration_plot.ncurve] CREATE 347

concentration_plot.curve[i].npnt := nstep+1; 348
END; 349

350
concentration_plot.curve[1].npnt := nstep+1; 351
concentration_plot.curve[2].npnt := nstep+1; 352
concentration_plot.curve[3].npnt := nstep+1; 353
concentration_jplot.curve[4] .npnt := nstep+1; 354
concentration__plot.curve[5] .npnt := nstep+1; 355
concentration_j?lot. title := ••; 356
concentration_plot.YLabel := 'Molar Flowrate [mole/s]'; 357
concentration_plot.XLabel := 'Time [s]'; 358
concentration_plot.curve[1].legend := 'NH31; 359
concentration_plot.curve[2].legend := 'Ar1; 360
concentration_plot.curve[3].legend := 'H21; 361
concentration_plot.curve[4].legend := 'CH4'; 362
concentration__plot.curve[5] .legend := 'N21; 363

364

FOR i IN [1. . concentration__plot.ncurve] CREATE 365
FOR j IN [1. .concentration_plot.curved] .npnt] CREATE 366
concentration_plot.curve[i].pnt[j].y, 367

obs[j-l][(d.process.n_reactors)*4+i] ARE_THE_SAME; 368
concentration__plot.curve[i] .pnt[j] .x, 369
x[j-l] ARE_THE_SAME; 370
END; 371

END; 372
373

(* Sets up the ploting OF the temperatures *) 374
375

temperature_plot IS__A plt__plot_integer; 376
temperature_plot.ncurve := 6; 377

378
FOR i IN [1..temperature_plot.ncurve] CREATE 379

temperature_plot.curve[i].npnt := nstep+1; 380
END; 381

382

temperature__plot. title := ' ' ; 383
temperature_plot.YLabel := 'T [K]'; 384
temperature_plot.XLabel := 'Time [s]'; 385

386

temperature_plot.curve[1].legend := 'Tl1; 387
temperature_plot.curve[2].legend := 'T2'; 388
temperature_plot.curve[3].legend := 'T31; 389
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temperature_plot.curve[4].legend := 'T41; 390
temperature_plot.curve[5].legend := 'T5'; 391
temperature_plot.curve[6].legend := 'Tf1; 392

393
394

FOR i IN [1. .temperature_plot.ncurve-1] CREATE 395
FOR j IN [1..temperature_plot.curve[1].npnt] CREATE 396

temperature_plot.curve[i].pnt[j].y, 397
obs[ j-1] [ (d.process.n_reactors) *5+curve_spacing*i]

ARE_THE_SAME; 398
tempera ture__plo t.curve[i] .pnt[j] .x, 399
x[j-l] ARE_THE_SAME; 400

END; 401
END; 402

403
FOR j IN [1. .temperature_plot.curve[1] .npnt] CREATE 404

temperature_plot.curvettemperature_plot.ncurve].pnt[j].y, 405
obs[j-1][d.n_obs] ARE_THE_SAME; 406

temperature_plot.curve[temperature_plot.ncurve].pnt[j].x, 407
x[j-1] ARE_THE_SAME; 408

END; 409
410

METHODS 411
METHOD set_intervals; 412

FOR i IN [0..nstep] DO 413
x[i] := i*step; 414

END; 415
END set_intervals; 416
METHOD values; 417

..nstep] DO 418
IN [1..(d.n_eq-d.process.n_reactors)] DO 419

y[i][j].lower_bound := 0.0 {mole/s}; 420
421
422

..nstep] DO 423
IN [(d.n_eq-d.process.n_reactors+l)..d.n_eq] DO 424
y[i][j].lower.bound := 0.0 {K}; 425

END; 426
END; 427
step := 5.0 {s}; 428
x[0] := 0.0 {s}; 429
RUN set_intervals; 430
RUN d.process.pfr_reactor.bounds; 431

END values; 432
METHOD initial_conditions; 433

d.process.heat_ex.input['primary*].state.T := 465 {K}; 434
END initial_conditions; 435
METHOD steady_state; 436

RUN d.process.reset; 437
END steady_state; 438

FOR

END;
FOR

i

i

IN
FOR

END

IN
FOR

[0
j

[0

j
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METHOD c lear; 439
RUN d .c lear ; 440
y[0..nstep][1..d.n_eq].fixed:= FALSE; 441
x[0..nstep].fixed := FALSE; 442
step.fixed := FALSE; 443

END clear; 444
METHOD specify; 445

RUN d.specify; 446
RUN fix_x_and_y; 447
RUN set_intervals; 448
d.process.pfr_reactor.input['feed1].state.T.fixed := FALSE; 449
x[0..nstep].fixed := TRUE; 450
step.fixed := TRUE; 451

END specify; 452
METHOD reset; 453

RUN clear; 454
RUN specify; 455
FOR i IN [l..d.n_eq] DO 456

d.y[i].fixed :=TRUE; 457
END; 458

END reset; 459
METHOD set_tols; 460

atol[l ..d.n_eq] := 1.0e-4; 461
rtoltl ..d.n_eq] := 1.0e-4; 462

END set_tols; 463
METHOD set_init_cond; 464

FOR i IN [l..d.n_eq] DO 465
y[0][i] := d.y[i]; 466

END; 467
FOR i IN [1..d.process.n_reactors*5] DO 468

d.dydx[i] := 0.0 {mole/mA3/s}; 469
END; 470
FOR i IN [d.process.n_reactors*5+l..d.process.n_reactors*6] DO 471
d.dydxfi] := 0.0 {K/s}; 472

END; 473
END set_init_cond; 474

475

END flowsheet^integrate; 476
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5 REUSABILITY IN ASCEND IV
The question we now ask is "How can we interface LSODE without creating four

separate models?" We came up with three possible solutions, one of which we accepted

and implemented. The others were rejected because of the reuse problems they posed.

• Identify the derivative and state variables at run time by having flags within the
so!ver_var [AW97] that users can manipulate interactively, as is done for communi-
cating algebraic problem specifications to ASCEND Ill's algebraic solvers.

• Identify states and derivatives by giving each type a different root in the type hierar-
chy.

state solver var derivative_solver_var

Refines

molar rate
IRefines

molar rate

Identify states and derivatives by recognizing prefixes in type names.

dynamic_molar_rate algebraic_molar_rate

5.1 REJECTED SOLUTIONS

One of the solutions to the integration interface problem that we rejected was to create

multiple solver_var types. The multiple types would be named: state_solver_var,

derivative_solver_var, and algebraic_solver_var LSODE would then be programmed

to recognize the difference in these solver_var types and treat the variables which were

associated with them accordingly when integrating. There are many problems with this

solution. The main one was that we would have to rewrite all ASCEND III models to

accommodate the separation of the solver_var. Also, the problem of matching a state

variable and its corresponding derivative variable would still exist. Furthermore, we
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would have to create multiple atoms Mb because solver_var is at the root of the ASCEND

IV hierarchy, unless this hierarchy was totally reorganized. This solution is also inflexible

because the role of a state or derivative variable may change to an algebraic variable in

other dynamic configurations.

Another solution that we considered, but abandoned was creating atom refinements with

the special name prefixes dynamic^ and algebraic^. However, this solution also would

cause type incompatibility within ASCEND IV (i.e. prevent merging) and again require

multiple versions of atoms.lib.

5,2 FLAGS WITHIN Soiver_var

By flagging the derivative, state, and independent variables, we are able to accomplish the

goal of keeping the models self-contained. This is done by creating new solver_var

children called odejype, odejd, and obsjd. Odejype determines the variable's role

with respect to an IVP solver.

Table 1: Definition of Odejype values

odejype value

-1

0

1

2

>2

variable type

independent

algebraic

state

derivative

higher derivatives

The function of ode Jd is to pair the state variable with its corresponding derivative

variable (e.g. MtoLodeJd = 1 and dMtotJttodeJd = 1). This allows LSODE to match the

correct variables during integration. The odejd is a prototype way of associating

variables that will become obsolete when ASCEND IV differential calculus syntax is

implemented. Obsjd allows us to select the variables we wish to record while integrating.

The different values for the newly created solver_var children are set in the following

ways. Values of odejype and odejd are determined in the user-written set_ode method

which is in the METHODS section of the dynamic model. This method only has to be
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created once for each model. If the model is put into a larger hierarchical model, we

simply run the setjode method recursively for the individual sub-models, as is done with

the standard reset method [Wes96]. In addition to setting the odejype within the

METHODS section of the model, we can change this instance interactively through the

ASCEND interface. This is beneficial when negotiating an index problem. The odejype

has a default of zero so that we do not have to go through and set it for all of the algebraic

variables, which can amount to tens of thousands variables when modeling large systems.

The only variables which require assignment of the odejype value are the derivatives, the

states, and the independent variable.

While developing the solver_var child odejd, we needed to develop a universal counter,

which we called ode_counter. This counter is needed because it is important that there is

a distinct value of the odejd for each matching derivative and state variable. The type

ode_counter is a UNIVERSAL ATOM that refines integer. It is found in atoms.lib in

ASCEND IV. To set the odejd in the METHODS section of the simulation model, we

simply use this UNIVERSAL ATOM and define a counter instance of it in the model,

usually named odejcounter. We then increment the universal odejoounter value each

time it is used. The advantage of using a universal counter over using specific integer

values defined in each dynamic model is seen when the model is put in a flowsheet. The

values for odejd can be assigned over the entire flowsheet and are not specific to the

number or order of the unit operations within the flowsheet.

The only disadvantage to the counter is that it must be set to a value of one each time a

new flowsheet configuration is specified. This is accomplished in the script file that

accompanies the model by inserting the command:

ASSIGN {<model name>.ode__offset} 1 {};

One might ask why the counter does not just default to a value of one. Setting a default

would defeat the purpose of a "universal" counter. We want the counter to start at a value

of one for the top model we select interactively and then continue to count throughout the

model hierarchy below this top model. This may not include the whole flowsheet,

therefore, we want to be able to interactively control when the universal counter is reset to
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one.

The obsjd flag is an integer, but it may be thought of as a boolean by the casual user. All

variables with obsjd > 0 when the integrator is started will be recorded in tabular form in

a file called obs.dat. The state and derivative variables are automatically recorded in the

file y.dat. The file names y.dat and obs.dat may be respecified interactively through the

ASCEND solver interface. These files can be fed into the new plotting tool in ASCEND

IV, ASC_PLOT, which will be discussed in Section 8. The obsjds > 0 are reassigned to a

unique positive value by the interface to LSODE for file indexing purposes. Thus, we need

not create hierarchical methods for uniquely indexing the observations as we do for the

odejd.

All variables have a default obsjd value of zero. Therefore, if we want to observe a

variable, we set the variable's obsjd to one in the set_pbs method in the METHODS

section of the test model. In using this method of assignment, it becomes apparent that in

large flowsheets a method which would "clear" all observations is needed. This is

accomplished through the clear jobs method in the individual models. It sets all obsjd

values back to zero.

5.2.1 ASC_PLOT

Many, if not most, numerical results are most easily understood by creating plots of the

data rather than looking at individual values, lists of values, or averages of values. We

focus in ASCEND IV on producing data in a portable text format carrying all the

information possibly needed by the range of plotting tools found at Carnegie Mellon. We

do this because each organization or user has a favorite plotting tool set and because the

present interests of the authors do not include research on data visualization. There are

many graphing tools available within spreadsheets on personal computers, as stand-alone

utilities (Xgraph, XMGR), or as complete graphing environments (gnu-plot, Yorick) on

UNIX workstations. The use of an obsjd makes this particularly easy, indeed it is the

foundation of an improved plotting ability.

The local users of ASCEND are not content with a raw data set, however, so we also

provide a Tcl/Tk [Ost94] based tool, ASC_PLOT, for manipulating data files and creating
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plots with Xgraph or any other plot tool which can accept a text file as input. This tool is

similar to an independent spreadsheet package in that after the simulation is finished it

allows the user to:

• import arbitrarily large amounts of data from ASCEND or from other sources.
• execute elementary mathematical transformations on rows or columns of the data.
• view selected portions of the data in graphical formats he or she can interactively con-

figure.
• merge data sets from several simulations

This tool does none of these things as well as a dedicated PC package such as EXCEL

might. However, nobody will grant us degrees in Chemical Engineering for writing a

spreadsheet or a graph package. ASCJPLOT is a Tcl/Tk application that does not require

the rest of ASCEND IV to be loaded.

In ASCEND III, a separate plot type definition and instance must be created, as mentioned

in Section 4.2. This requires defining fixed size arrays of plot points associated with

specific observation variables. All of this costs compiler time and a great deal of

ASCEND object overhead memory just to store what are essentially vectors of real

numbers. Furthermore, the observed variables cannot be dynamically redefined and

cannot be tracked across multiple runs in one plot. Clearly, ASCEND III style

programming is not the ideal method to handle the large quantities of data produced using

dynamic models.

5.2.2 Changes Within the Script File

Some changes that accompanied this solution occurred within the models' script file. As

was mentioned earlier, the universal counter's initial value must be assigned within the

script. Another addition is that the independent variable's initial value must be specified

within the script file or another method. This done by the following command:

ASSIGN {<independent variable name>} 0 {s};

This specific command assigns zero as the initial point for integration. The {s} is units

expression of the independent variable, seconds. The independent variable may be in any
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units, however, as appropriate to the model.

The command

WRITE_VIRTUAL <model name> <buffer name>;

saves the current values of variables to a core memory buffer. If there is a problem with

integration, the buffer contents can be used to reinitialize the model.

We also had to add to the script file a method to set the observation sample time steps. We

developed a Tel command called setjnt. In order to access this command, we load the file

setjntervals.tcl which is now a part of the ASCEND IV examples library. Setjnt is

invoked by the command:

set_int <number of steps> <step size> <units>/
e.g. set_int 101 1 {s}

This means "create 1 second intervals (implicitly from t=0) for 100 seconds". Setjnt

replaces the method within the ASCEND in model lsode. Variations on the setjnt

method are easy to construct, and several are included in the library files. For example,

setjagrangeint is a function which creates uniformly spaced major intervals with minor

intervals at the roots of a scaled lagrange polynomial.

Finally, to begin integration, all the user must type in the script file is:

INTEGRATE <model name>;

The indices to a subset of the defined intervals may also be given, e.g.:

INTEGRATE <model name> FROM 50 TO 100;

Some of these changes within the script file should eventually be moved into the methods

of the models or into new graphic user interface tools. This would remove extraneous

information from the eye of the user, making it easier to work with dynamic models.
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5.2.3 Advantages to Flagging Variables

There are many advantages to the solution above. By flagging the variables, we take away

the need for the two separate integrator interface models, lsode and derivatives, as well as

the separate plotting model. In terms of flowsheeting, this allows us to connect unit

operations by simply merging the outputs of one with the inputs of another. This simpler

means of connection, combined with the notion of setting odejypes and odejds in the

methods of individual models, allows us to do something we previously could not, namely

solve and integrate individual models and parts of a flowsheet. There is a sharp increase

(from 0) in the reusability of models, because they are now self-contained.

Being able to choose observation variables interactively by setting the obsjd value to one

through the interface increases the model's flexibility. If we only want to see the dynamics

of one variable, we do not have to record extraneous variables specified by the model's

original author as is the case in ASCEND III. Moreover, when these observation variables

are viewed in ASCEND III, they are found in the BROWSER window. If we want to save

these variables for future use, they must be sent to the PROBE and saved from there. In

ASCEND IV they are automatically saved to a specified data file. Also, the observation

values in ASCEND III are indexed like the dynamic variables in LSODE:

obs[l..n_obs][l..n_steps]. This makes it hard to distinguish which variable is which in the

BROWSER or PROBE. Now when the values are written to the data file, they are

tabulated according to the names that the modeler assigned to them in the dynamic model.

We next consider the notion of "elegant" modeling. One way to describe model code

elegance is the absence of extra statements and structures concerned with trivial issues,

such as file input and output. These statements contain information other than the

mathematical essence of the model. In ASCEND IV the models become more readable

because all of the arrays and size parameters which were previously found in the

derivatives and lsode refinements are now derived based on variable flags and managed

by the solver interface software. Removing these bookkeeping objects from the model

definitions also reduces the compile time of a model.

Another advantage of the new LSODE communication method is that it provides a clear
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migration path from the simulation models of ASCEND HI that do not contain variable

flag information about integration. They have bode and derivative counterparts which are

interfaced with LSODE. The only changes that we need to make within these older

models in the ASCEND III libraries is the addition of the odejtffset and independent

variables, and of the methods setjode and clear_pbs to handle the flags on the new

solver_var. Once these variables and procedures have been added and tested under the

new system, it is easy to simply delete the old bookkeeping model parts and type

definitions. During the transition both integration interfaces may be used with the same

dynamic model. Although a lot of source code (in C) had to be written for the ASCEND

IV solution, the amount of source coded needed to manage the interface with LSODE is

actually smaller in ASCEND IV than in ASCEND III. Once all of the ASCEND III

dynamic models have been migrated to ASCEND IV, the ASCEND III LSODE interface

C code will be deleted.

5.2.4 Problems Associated with Flagging Variables

One of the problems that we encountered while implementing this solution was what to do

about the relative and absolute tolerances that were previously specified in the integrator

interface models lsode and derivatives. We first thought about setting them within

LSODE so that they would be internally fixed. However, modelers often need to control

the tolerances for their integrations. We have been frustrated on more than one occasion

by integrators and other solvers that hide their internal tuning parameters. Another

solution which we thought of was to create a model tolerance which would communicate

an array of tolerances to LSODE. However, this brought back the problem of difficult

array indexing and inflexibility in changing the role of a variable between algebraic and

dynamic. Therefore, the solution that we settled on was adding two more children to

solver__var: odejitol and odejiol. Each child is a real and they are set by default to le-4

and le-8, respectively. This solution yields a symmetric treatment of all the integration

interface information: everything LSODE or any algebraic solver needs to know about a

variable is contained in flags that are part of the variable. Although the presence of these

new flags increases the size of the solver_var, the compile time does not dramatically

increase.
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A solution that we proposed to the problem of a large solver_var was to create a CASE-

like statement within the solver_var that would determine which children to compile

based on a universal flag, e.g. DAE = TRUE or FALSE. However, a CASE statement does

not currently exist for atoms in ASCEND IV. Therefore, this solution is infeasible for the

moment. Another alternative solution to the large solver_var problem is to allow multiple

inheritance for atomic types in ASCEND. This solution we set aside for the moment

because the implications of multiple inheritance in the ASCEND language are too

complicated to explore here. The solution selected to solve the large solver_var problem

is to create an alternate ivpsystem.lib to replace system.lib for dynamic modelers. This

way algebraic modelers have an interchangeable library, system.lib, that does not contain

these larger solver_vars.
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6 AREAS OF IMPROVEMENT IN ASCEND IV
We do not yet have full reusability in ASCEND IV. Most of the problems which hinder us

from accomplishing our goal of reusability are primarily associated with some of the

standard libraries and not with the integration package. The libraries that are problematic

deal with chemical engineering applications. Currently, the thermodynamics library,

which in turn affects the stream library, is separated into two main categories

homogeneous and heterogeneous mixtures. When we create a unit operation having

streams entering and leaving, the number and type of phases in each stream must be

specified to determine the appropriate mixture model if anything more complicated than a

mass balance is to be computed. This difficulty particularly affects dynamic models. For

example, we cannot simulate the level in a flash tank overflowing into the vapor line

because we commit to the overhead line having a vapor_mixture properties model when

we define the flash tank.

A possible solution to this might come with the CASE statement when it arrives in

ASCEND IV. With it, we could have a set of equations in the model which would apply to

heterogeneous mixtures and a set that would deal with homogeneous mixtures. Then,

when the overflow condition occurs, the appropriate liquid equations would be used and

the vapor equations ignored. This conditional modeling area is under development by

Vicente' Rico-Ramirez.

Another significant improvement in ASCEND IV would be to attach a more efficient DAE

integrator, such as a sparse version of DASSL [BCP89], to the system. Another

improvement, and one that is necessary for commercial dynamic modeling, would be to

incorporate strategies for handling discontinuities into the integration software and

interface. Neither has yet been done because they are not on the critical path of any of the

researchers presently working on ASCEND IV.
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7 CONCLUSIONS

Through the development of a new integrator interface procedure within ASCEND IV, we

advance towards total reusability. When we first looked at the problem of reusability in

ASCEND HI, we discovered that a large portion of the problem dealt with the way

ASCEND HI interfaced with the integration package LSODE. Therefore, we developed a

new technique to deal with the integration information in a dynamic model. This solution,

which consists of flagging the variables within the model, meets the design goals that we

established because it:

• Reduces model compilation time
• Does not slow down ASCEND interface
• Does not invalidate pre-existing models
• Makes models more self-contained
• Allows a more "user-friendly" interface for specifying sample times and plotting sim-

ulation results
• Leads to better flowsheeting capabilities
• Makes for much more elegant and readable code

Examples of the application of this integration interface solution to chemical engineering

unit operations are located in Appendix A. With this solution came the new plotting tool in

ASCEND IV, ASC_PLOT, which takes data from observation variables and exports it to

third party graphing packages such as Xgraph.

Other solutions to the interface problem that we have discussed were rejected because

they did not meet our design criteria. These solutions experienced problems like type

incompatibility and the invalidation of existing models. Although the new method of

interfacing LSODE brings us closer to reusability, a few areas still hinder us from "full"

reusability. One of these problems is the hierarchical structure of the thermodynamics and

stream libraries in ASCEND IV. The addition of the CASE statement to ASCEND IV is a

possible solution to this problem and we would then attain total reusability in ASCEND.

Through the development of reusable models, we hope to extend the scope of ASCEND

past dynamic and steady state simulation models into the realm of true multi-purpose

modeling. This would include the development of models good for dynamic and steady

state optimization, as well as parameter estimation.
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8 APPENDIX A - ASCEND IV EXAMPLE

8.1 EXAMPLE - FLASH UNIT

A standard example of a chemical engineering unit operation is the flash unit. This

separation unit can be described with several levels of thermodynamics, the simplest being

relative volatility, which will be the focus of our first example. Without going through the

details of the theory behind mathematical modeling, we will describe the general basis of

the alpha.flash model. The theory which was used to create this model is described in

[AW96].

The model presented below is a multi-component flash separation unit where the split

fractions, alphafcomponents], are defined arbitrarily. The dynamics of the system are

described by a component mass balance which is defined for each component in the

system. This allows us to track the dynamic variables' behavior in an unsteady state

system. The integration is accomplished through the integration package LSODE. The

model is connected to this package through the new interface described in prior sections of

this paper with the addition of the new methods setjtde and clear_pbs, located in lines

157-173 of the model.

The easiest way to understand the steps used to solve and integrate a model is to go

through a script of that model. In lines 217-251 of this appendix, we present a script file

for the alpha.flash model. The function of this file is to load all of the libraries needed in

describing the model, to run the methods setting the values needed to solve the model at

steady and unsteady states, and finally to integrate the model at unsteady state. The first set

of commands in the SCRIPT file are used to read files into ASCEND IV. Line 217 loads a

Tel file which defines the command setjnt found in line 250. Setjnt sets the observation

time samples during integration. The next two commands set aliases, alib and blib, for

frequently used directories so that they may be referenced by the Tel notation $alib or

$blib when reading libraries into ASCEND IV. Line 220 is used to delete all type

definitions and simulations which may have been loaded previously to make the

demonstration using a clean system. Finally, lines 221-226 read all of the appropriate

libraries needed to define the types within test_alpha_flash, along with loading
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test_alpha_flash itself.

Before a model can be solved it needs to be compiled as a simulation in ASCEND. In this

case, the simulation instance is called tf, however this name is arbitrary. Line 228 handles

this action. The next line sends the instance to the BROWSER window so that we can

examine the parts of the instance in greater detail. This is useful when we wish to change

the initialization values of the variables.

The next set of commands solve test_alphaJRash at steady state. We run the methods

reset, steady_yalues, and values in order to square and initialize the model. Line 235

sends the instance to the SOLVER window and solves the model with the QRSlv.

The fun comes in when we solve the model at an unsteady state and get to play with the

derivative variables. This is accomplished in lines 236-251. The first line of this series of

commands sets the value of the UNIVERSAL_COUNTER, ode_pffset, to one. As

described before, this counter is used in the matching of the state and derivative pairs. The

next task performed is establishing what variables are to be observed during integration.

Line 239 clears all variables previously flagged as observation variables. Then line 240

sets them for the variables chosen within the set_obs method in the test model. If a

previous integration has taken place, then time within the model will not start at zero.

Therefore we insert line 241 to begin the integration at time equal to zero. The boolean

variable dynamic in the model is set to TRUE in the next line. The model's seqmod

method configures the model for unsteady state use if the value of dynamic is TRUE, as

shown in lines 124-132 of the alpha_flash model.

The next three lines square the model {specify calls seqmod) and initialize the values of

the model so that it will be ready to solve. We then use the WRITE ^VIRTUAL <model

name> <buffer name>; to save the current values of variables to a core memory buffer.

Therefore, if there is a problem with integration, the buffer contents can be used to

reinitialize the model. The model is solved with the QRSlv in line 249. Using the setjnt

command that was loaded in line 217, we set the observation time samples. Finally, the

model is integrated using BLSODE (the name of the new interface to LSODE in the

ASCEND IV environment) from time step 0 to time step 10. We can change these times to
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whatever time interval we wish to observe.

After the model is solved and integrated we can then use ASCJPLOT to make a graphical

representation from the model's output. To do this, we select the ASC_PLOT button in the

TOOLBOX window. The data, found in the obs.dat and y.dat files in the current directory,

is loaded by selecting "Load data set" in the Edit menu of the ASC_PLOT window. The

variables to be graphed are selected and moved into the plotted variables box. After all of

the plotted variables are set, we select "View plot file" from the Execute menu and Xgraph

will produces a graph, such as the one on the following page.

This is the plot of the accumulation rates of four species in a mass holdup with respect to

time, as computed using an alphaJiash subject to a step change in its feed composition.

The molar rates of holdup change are on the Y axis and time is on the X axis. We can also

choose different observation variables to plot through the interactive ASC_PLOT window.
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8.2 MODELS USED IN THE FLASH EXAMPLE

MODEL alpha_flash;
components IS_A
data[components] IS_A
choice_component IS_A
alpha[components] IS_A
inputs, vapouts, liqouts IS_A
input[inputs], vapout[vapouts],

liqout [liqouts] IS__A
scale IS_A
state IS_A
phases IS__A
phases :==
x[components] IS_A
t

set OF syraboInconstant;
component_constants;
symboInconstant;
factor;
set OF symbol__constant;

molar__stream;
scaling_constant;
heterogeneous_mixture;
set OF symbol_constant;
[•liquid','vapor'];
mole_fraction;
time;

1
2
3
4
5
6
7
8
9

10
11
12
13
14
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ode_offset IS_A ode_counter; 15
16

(*set dynamic to TRUE IF you want the MODEL to be dynamics*) 17
dynamic IS_A boolean; 18

19
(*set the local to be TRUE IF the MODEL is being integrated 20

within another MODEL*) 21
local IS_A boolean; 22

23

liq_frac[components], 24
vap_frac[components]IS_A mole_fraction; 25

26
Mole_Holdup[phases] IS_A mole; 27
M IS_A mole; 28
m[components] IS_A mole; 29
dm_dt[components] IS_A molar_rate; 30
Vol_Holdup[phases]IS_A volume; 31
Vtot IS_A volume; 32
mix_V[phases] IS_A molar_volume; 33

34
state.reference :== 'liquid1; 35

36
37

(•aliasing*) ' 38
components, input[inputs].components, 39

liqout[liqouts].components, 40
vapout[vapouts].components, 41
state.components ARE_THE_SAME; 42

43

phases, state.phases ARE__THE_SAME; 44
45

FOR i IN components CREATE 46
alpha [ i ] , state. alpha [ • vapor ' ] [ i ] ARE_THE__SAME; 47

END; 48
49

FOR i IN components CREATE 50
x[i], state.y[i] ARE_THE_SAME; 51
liq_frac[i], state.mix['liquid'].y[i] ARE_THE_SAME; 52
vap_frac[i], state.mix['vapor'].y[i] ARE_THE_SAME; 53

END; 54
55

state.mix['liquid1], liqout[liqouts].state ARE_THE_SAME; 56
57

state.mix['vapor'], vapout[vapouts].state ARE_THE_SAME; 58

59
FOR i IN components CREATE 60

data[i], input[inputs].data[i], state.data[i] ARE_THE_SAME; 61
END; 62

63
64
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(•relations*) 65
M = SUM(m[i] | i IN components); 66

67
FOR i IN [phases-[state.reference]] CREATE 68

Mole_Holdup[i] = M * state.phi[i]; 69
END; 70

71
M = SUM(Mole_Holdup[i] | i IN phases); 72
FOR i IN [components- [choice..component] ] CREATE 73

M * x[i] = m[i]; 74
END; 75

76
FOR i IN [phases - [state.reference]] CREATE 77

Vol_Holdup[i] = Mole_Holdup[i]*mix_V[i]; 78
END; 79

80
V_mix_def: state.V = SUM(mix_V[i]|i IN phases); 81

82
V__vhold_def: Vtot = SUM(Vol__Holdup[i] | i IN phases); 83

84
V__def: Vtot = M * state.V; 85

86
FOR i IN components CREATE 87

component_MB[i]: dm_dt[i] = SUM(input[inputs].f[i])- 88
SUM(vapout[vapouts].f[i])-SUM(liqout[liqouts].f[i]); 89

END; 90
91

(•define bounds*) 92
FOR i IN components CREATE 93

dm_dt[i].lower_bound := -lelO {mol/s}; 94
END; 95

96
local := TRUE; 97

98
METHODS 99

METHOD clear; 100
RUN input[inputs].clear; 101
RUN vapout[vapouts].clear; 102
RUN liqout[liqouts].clear; 103
RUN state.clear; 104

:= FALSE; 105
FALSE; 106

:= FALSE; 107
FALSE; 108

:= FALSE; 109
FALSE; 110

:= FALSE; 111
FALSE; 112

113
END clear; 114

m[components].fixed
dm__dt [components] . fixed
x[components].fixed
M.fixed
Mole_Holdup[phases].fixed
Vtot.fixed
Vol_Holdup[phases].fixed
dynamic
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METHOD seqmod;
RUN state.specify;
mix__V [phases] .fixed
M.fixed
Vtot.fixed
dm_dt[components].fixed
x[components].fixed
liqout['liquid'].Ftot.fixed
IF dynamic = TRUE THEN

dm_dt[components].fixed
state. ave__alpha [' vapor' ] . fixed
liqout[liqouts].Ftot.fixed
vapout[vapouts].Ftot.fixed
x[components].fixed := FALSE;
m[components-[choice_component]]

Vtot.fixed
M.fixed
RUN set_ode;
IF local = TRUE THEN

= TRUE;
= FALSE;
= TRUE;
= TRUE;
= FALSE;

:= TRUE;

:= FALSE;
:= FALSE;
:= TRUE;
:= TRUE;

.fixed
:= TRUE;
:= FALSE;

input[inputs].state.y[components],ode_type

END;
END;

END seqmod;

:= TRUE;

:= 0;

METHOD specify;
RUN input[inputs].specify;
RUN seqmod;

END specify;

METHOD reset;
RUN clear;
RUN specify;

END reset;

METHOD scale;
RUN input[inputs].scale;
RUN vapout[vapouts].scale;
RUN liqout[liqouts].scale;
RUN state.scale;

END scale;

METHOD set_ode;
FOR c IN components DO

m [ c ] . ode__type : = 1 ;
dm_dt [ c ] . ode__type : = 2 ;
m[c].ode_id := ode_offset;
dm_dt[c].ode_id := ode_offset;
ode_offset := ode__offset + 1;

END;

115
116
117
118
119
120
121
122
123
124
125
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127
128
129
130
131
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133
134
135
136
137
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141
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143
144
145
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t. ode__type: = - 1 ;
END set_ode;

METHOD clear__obs;
FOR c IN components DO

m[c] .obs__id:= 0;
dm_dt [c] .obs__id:= 0;

END;
END clear_obs;

END alpha_flash;

MODEL test_alpha_flash REFINES alpha_flash;
inputs
vapouts
liqouts

components :==
1 n__pentane' , • n__hexane' , ' n__.

choice__component
data['n_pentane•]
data['n_hexane']
data['n—heptane']
data['n_octane']

METHODS

METHOD steady_values;
M

dm_dt[components]
x[choice_component]
state.phi['liquid']

END s t eady_jva lues;

METHOD unsteady_values;

liqout[liqouts].Ftot
x[components]

END unsteady_values;

:== ['feed'];

:== ['vapor•];

:== ['liquid'];

heptane','n_octane'];
:== 'n_hexane';
IS_REFINED_TO n_pentane;
IS_REFINED_TO n_hexane;
IS_REFINED_TO n_heptane;
IS_REFINED_TO n_octane;

:= 100 {mole};
:= 0 {mol/s};
:= 0.33;
:= 0.3;

:= 10 {mol/s};

:= 1/3;

METHOD values;
input[inputs].f[components]

state.alpha['vapor']['n_pentane']
state. alpha [' vapor' ] [' n__hexane' ]
state.alpha['vapor']['njieptane']
state.alpha['vapor']['n_octane']
state.ave_alpha['vapor']

END values;

METHOD set^obs;
FOR c IN components DO

m[c].obs_id:= 1;
dm_dt[c].obs_id:= 1;

= 4 {mol/s};
= 1.5;
= 1.2;
= 1.0;
= 1.3;
= 1.16;
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END;
END set_obs;

END test_alpha_flash;

SCRIPT FILE FOR ALPHA FLASH

214
215
216

source /afs/cs.emu.edu/project/edrc-ascend3/jsed/models/blsode/newbl-
sode/tcl/set_intervals.tel; 217

set alib /afs/cs.emu.edu/project/ascend/newserver/models/pending/librar-
ies; 218
set blib /afs/cs.cmu.edu/project/edrc-ascend3/jsed/models/blsode/newbl-
sode/newthermo; 219
DELETE TYPES; 220
READ FILE $alib/ivpsystem.lib; 221
READ FILE $alib/atoms.lib; 222
READ FILE $alib/components.lib; 223
READ FILE $alib/H_G_thermodynamics.lib; 224
READ FILE $alib/stream.lib; 225
READ FILE $blib/fIash3.lib; 226

227
COMPILE tf OF test_alpha_flash; 228
BROWSE {tf}; 229

230
#this solves the flash at steady state# 231
RUN {tf.reset}; 232
RUN {tf.steadyjvalues}; 233
RUN {tf.values}; 234
SOLVE {tf} WITH QRSlv; 235

236
#this solves and integrates the flash at an unsteady state* 237
ASSIGN {tf.ode_offset} 1 {}; 238
RUN {tf.clear_obs}; 239
RUN {tf.set_obs}; 240
ASSIGN {tf.t} 0 {s}; 241
ASSIGN {tf.dynamic} TRUE; 242
RUN {tf.specify}; 243
RUN {tf.unsteady_values}; 244
RUN {tf.values}; 245
WRITE_VIRTUAL tf initpointO; 246
SOLVE tf WITH QRSlv; 247
set_int 100 0.1 s; 248
INTEGRATE tf from 0 to 10 WITH BLSODE; 249
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9 APPENDIX B - ASCEND III EXAMPLE

9.1 JON MONSEN'S AMMONIA REACTOR

MODEL flowsheet_dynamics REFINES derivatives; 250

251
(* Defines the differential variables *) 252

253
process IS_A flowsheet; 254
components IS_A set OF symbol; 255
subset[1..CARD(components)] IS_A symbol; 256
x IS_REFINED_TO time; 257
y[1.,5*process.n_reactors] IS_REFINED_TO molar_rate; 258
dydx[l..5*process.n.reactors] IS_REFINED_TOoncentration_rate;259
y[5*process.n_reactors+l..6*process.n_reactors] IS_REFINED_TO temper-

ature; 260

dydx[5 *process.n__reac tors+1..6 *process.n_reactors]IS__REFINED_TO
temperature_rate; 261

components, process. pf r__reactor.components ARE_THE_SAME; 262

263
subset[1] := 'ammonia'; 264
subset[2] := 'argon'; 265
subset[3] := 'hydrogen'; 266
subset[4] := 'methane'; 267
subset[5] := 'nitrogen'; 268

269
FOR i IN [1..process.n_reactors] CREATE 270

FOR j IN [1..CARD(components)] CREATE 271

y[j+(i-l)*5]f 272
process.pfr_reactor.reactor[i].output['product'].f[subset[j]]

ARE_THE_SAME; 273
dydx[j+(i-l)*5] , 274
process.pfr_reactor.reactor[i].dC_dt[subset[j]]ARE_THE_SAME; 275

END; 276
END; 277

278
FOR i IN [5*process.n__reactors+1..6*process.n_reactors] CREATE 279
y[i] , process.pfr_reactor.reactor[i-process.n__reactors*5] .T

ARE_THE_SAME; 280
dydx[i] , process.pfr_reactor.reactor[i-process.n__reactors*5] ,dT__dt

ARE_THE_SAME; 281
END; 282

283

n_eq := process,n_reactors*6; 284

285
METHODS 286

METHOD clear; 287
RUN process.pfr_reactor.clear; 288
RUN process .heat__ex. clear; 289

END clear; 290
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291
METHOD specify; 292

RUN process.pfr__reactor.specify_pfr; 293
RUN process.heat_ex.specify; 294

END specify; 295
296

METHOD reset; 297
RUN process.clear; 298
RUN process.specify; 299

END reset; 300
301

END flowsheet_dynamics; 302
303
304

MODEL flowsheet_integrate REFINES lsode; 305
306

(* Connects to the integrator lsode *) 307
308

d IS_REFINED_TO flowsheet_dynamics;309
step IS_A time; 310
npnt IS_A integer; 311
curve_spacing IS_A integer; 312

313

nstep := 80; 314
npnt := nstep + 1; 315

316
d.n_obs := 6*d.process.n_reactors+l; 317

318
FOR i IN [1..d.n_obs-l] CREATE 319

d.obs[i], d.y[i] ARE_THE_SAME; 320
END; 321

322

d.obs[d.n_obs], 323
d.process.pfr_reactor.reactor[1].Tf ARE_THE_SAME; 324

325
(* 326
Define the absolute and arelative error tolerance user wants LSODE to
have. 327

*) 328
atol[l..d.n_eq] :=1.0e-5; 329
rtol[l..d.n_eq] := 1.0e-5; 330

(* 331
Put user suppiled initial conditions into the integration. 332
*) 333

FOR i IN [l..d.n_eq] CREATE 334
d.y[i], y[0][i] ARE_THE_SAME; 335

END; 336
337

FOR i IN [l..d.n_obs] CREATE 338
d.obs[i], obs[0][i] ARE_THE_SAME; 339
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END; 340
341

(* Sets up the ploting OF the molar flowrates *) 342

343
concentration_plot IS_A plt_plot_integer; 344
concentration__plot .ncurve := 5; 345

346
FOR i IN [1..concentration_plot.ncurve] CREATE 347

concentration_plot.curve[i].npnt := nstep+1; 348
END; 349

350
concentration_plot.curve[1].npnt := nstep+1; 351
concentration_plot.curve[2].npnt := nstep+1; 352
concentration_plot.curve[3].npnt := nstep+1; 353
concentration_jplot.curve[4] .npnt := nstep+1; 354
concentration__plot.curve[5] .npnt := nstep+1; 355
concentration_j?lot. title := ••; 356
concentration_plot.YLabel := 'Molar Flowrate [mole/s]'; 357
concentration_plot.XLabel := 'Time [s]'; 358
concentration_plot.curve[1].legend := 'NH31; 359
concentration_plot.curve[2].legend := 'Ar1; 360
concentration_plot.curve[3].legend := 'H21; 361
concentration_plot.curve[4].legend := 'CH4'; 362
concentration__plot.curve[5] .legend := 'N21; 363

364

FOR i IN [1. . concentration__plot.ncurve] CREATE 365
FOR j IN [1. .concentration_plot.curved] .npnt] CREATE 366
concentration_plot.curve[i].pnt[j].y, 367

obs[j-l][(d.process.n_reactors)*4+i] ARE_THE_SAME; 368
concentration__plot.curve[i] .pnt[j] .x, 369
x[j-l] ARE_THE_SAME; 370
END; 371

END; 372
373

(* Sets up the ploting OF the temperatures *) 374
375

temperature_plot IS__A plt__plot_integer; 376
temperature_plot.ncurve := 6; 377

378
FOR i IN [1..temperature_plot.ncurve] CREATE 379

temperature_plot.curve[i].npnt := nstep+1; 380
END; 381

382

temperature__plot. title := ' ' ; 383
temperature_plot.YLabel := 'T [K]'; 384
temperature_plot.XLabel := 'Time [s]'; 385

386

temperature_plot.curve[1].legend := 'Tl1; 387
temperature_plot.curve[2].legend := 'T2'; 388
temperature_plot.curve[3].legend := 'T31; 389
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temperature_plot.curve[4].legend := 'T41; 390
temperature_plot.curve[5].legend := 'T5'; 391
temperature_plot.curve[6].legend := 'Tf1; 392

393
394

FOR i IN [1. .temperature_plot.ncurve-1] CREATE 395
FOR j IN [1..temperature_plot.curve[1].npnt] CREATE 396

temperature_plot.curve[i].pnt[j].y, 397
obs[ j-1] [ (d.process.n_reactors) *5+curve_spacing*i]

ARE_THE_SAME; 398
tempera ture__plo t.curve[i] .pnt[j] .x, 399
x[j-l] ARE_THE_SAME; 400

END; 401
END; 402

403
FOR j IN [1. .temperature_plot.curve[1] .npnt] CREATE 404

temperature_plot.curvettemperature_plot.ncurve].pnt[j].y, 405
obs[j-1][d.n_obs] ARE_THE_SAME; 406

temperature_plot.curve[temperature_plot.ncurve].pnt[j].x, 407
x[j-1] ARE_THE_SAME; 408

END; 409
410

METHODS 411
METHOD set_intervals; 412

FOR i IN [0..nstep] DO 413
x[i] := i*step; 414

END; 415
END set_intervals; 416
METHOD values; 417

..nstep] DO 418
IN [1..(d.n_eq-d.process.n_reactors)] DO 419

y[i][j].lower_bound := 0.0 {mole/s}; 420
421
422

..nstep] DO 423
IN [(d.n_eq-d.process.n_reactors+l)..d.n_eq] DO 424
y[i][j].lower.bound := 0.0 {K}; 425

END; 426
END; 427
step := 5.0 {s}; 428
x[0] := 0.0 {s}; 429
RUN set_intervals; 430
RUN d.process.pfr_reactor.bounds; 431

END values; 432
METHOD initial_conditions; 433

d.process.heat_ex.input['primary*].state.T := 465 {K}; 434
END initial_conditions; 435
METHOD steady_state; 436

RUN d.process.reset; 437
END steady_state; 438

FOR

END;
FOR

i

i

IN
FOR

END

IN
FOR

[0
j

[0

j
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METHOD c lear; 439
RUN d .c lear ; 440
y[0..nstep][1..d.n_eq].fixed:= FALSE; 441
x[0..nstep].fixed := FALSE; 442
step.fixed := FALSE; 443

END clear; 444
METHOD specify; 445

RUN d.specify; 446
RUN fix_x_and_y; 447
RUN set_intervals; 448
d.process.pfr_reactor.input['feed1].state.T.fixed := FALSE; 449
x[0..nstep].fixed := TRUE; 450
step.fixed := TRUE; 451

END specify; 452
METHOD reset; 453

RUN clear; 454
RUN specify; 455
FOR i IN [l..d.n_eq] DO 456

d.y[i].fixed :=TRUE; 457
END; 458

END reset; 459
METHOD set_tols; 460

atol[l ..d.n_eq] := 1.0e-4; 461
rtoltl ..d.n_eq] := 1.0e-4; 462

END set_tols; 463
METHOD set_init_cond; 464

FOR i IN [l..d.n_eq] DO 465
y[0][i] := d.y[i]; 466

END; 467
FOR i IN [1..d.process.n_reactors*5] DO 468

d.dydx[i] := 0.0 {mole/mA3/s}; 469
END; 470
FOR i IN [d.process.n_reactors*5+l..d.process.n_reactors*6] DO 471
d.dydxfi] := 0.0 {K/s}; 472

END; 473
END set_init_cond; 474

475

END flowsheet^integrate; 476
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