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Abstract. Natural deduction (for short: nd-) calculi have not been
used systematically as a basis for automated theorem proving in clas-
sical logic. To remove objective obstacles to their use we describe (1)
a method that allows to give semantic proofs of normal form theorems
for nd-calculi and (2) aframework that allows to search directly for
normal nd-proofs. Thus, one can try to answer the question: How
do we bridge the gap between claims and assumptions in heuristi-
cally motivated ways? This informal question motivates the formula-
tion of intercalation calculi. Ic-calculi are the technical underpinnings
for (1) and (2), and our paper focuses on their detailed presentation
and meta-mathematical investigation in the case of classical predicate
logic. As a central theme emerges the connection between restricted
forms of nd-proofe and (strategies for) proof search: normal forms are
not obtained by removing local "detours’, but rather by constructing
proofs that directly reflect proof-strategic considerations. That theme
warrants further investigation.

1. Proof Search. Natural deduction calculi have been available since the
mid-thirties and reflect "as accurately as possible the actual logical reasoning
involved in mathematical proofs'.? They capture the logical structure of
arguments, in part, by incorporating inferences from and to complex formulas
with characteristic principal connectives. The rules for the "proper” logica
connectives, A, V, —, V, and 3 are consequently divided into "Elimination",
i.e.,, proper E-, and "Introduction”, i.e., proper I-rules. Rules for negation
do not fit fully into this schematic approach, in particular not, if they are .
formulated in the standard (Gentzen-Prawitz) mould. We use instead a very
symmetric formulation: the first rule for negation, L, is the distinctive rule
of classical logic and is needed, for example, to prove the law of excluded
middle and Peirce's law;
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the second rule, -U, captures the form of indirect argumentation admitted
also intuitionistically and used, most classically, in the Pythagorean proof of

’Gentzen in his " Investigations into logical deduction", [Gentzen], p. 74.




the irrationality of /2.
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We consider the rules for negation as both E- and I-rules, but not as proper
E- or I-rules.

Generally, E-rules specify how components of assumed or established com-
plex formulas can be used in an argument; I-rules provide conditions under
which complex formulas can be inferred from already established components.
This leads directly to the formulation of very intuitive strategies. Techni-
cally, the strategies exploit that the structure of nd-proofs can be made to
depend on the syntactic context provided by assumptions and conclusions:
the nd-calculi share, as Prawitz [1965] discovered, important metamathemat-
ical properties with sequent calculi. For the statement of the first of these
properties recall that the premise of an E-rule with the characteristic connec-
tive is called the major premise; a proof is called p-normal®, when no formula
occurrence in the proof is the conclusion of a proper I-rule or L. and also the
major premise of a proper E-rule. To be quite accurate, we have to exclude
segments of formmula occurrences, such that the first formula in the segment
is the conclusion of a proper I-rule or L. and the last formula the major
premise of a proper E-rule. Here and below we make use of terminology used
by Prawitz—with just one exception, we use ‘branch’ for his ‘thread’. Note
also that we have not yet defined ‘normal’. In order to obtain a definition
matching that of Prawitz, we first define the adjacency condition: the major
premise of a L-rule must not be inferred by a L-rule. A normal proof, then,
is p-normal and satisfies the adjacency condition.

The first central property, the Normalization Theorem, was established
+ by Prawitz for a restricted language*: (by a sequence of special “reductions”)
any proof of G from « in the nd-calculus can be transformed into a normal
proof leading from a to G, where a is a sequence of formulas®. The sec-

3This term is not related to the term “p-normal” used by Troelstra and van Dalen.

4without 3 and V; L. was applicable only to get atomic conclusions.

SPrawitz’s proof for the intuitionistic calculus can be extended to the full classical case
with the negation rules formulated in the symmetric way as above; that was established
by Byrnes. The strong normalization theorem for the full language (with restricted V- and
J-inferences) was proved by Statman [1974].




ond central property for the nd-calculus concerns the logical complexity of
formulas in proofs. normal proofs E leading from a to G have a (modified)
subformula property, i.e., every formula occurring in E is (the negation of)
either a subformula of G or of an element in a. This is a consequence of the
third central property, a structural feature of paths in (the tree presentation
of) normal nd-proofs. every path contains a uniquely determined E-part and
[-part, consisting only of segments that are major premises of proper E-rules,
respectively premises of proper I-rules, these two parts are separated by the
minimum segment that is the premise of an I-rule.

Despite the naturalness of nd-calculi, the part of proof theory that deals
with them has hardly influenced developments in automated theorem prov-
ing. For that the proof theoretic tradition rooted in Herbrand's work and
Gentzen's work on sequent calculi has been more important. The keywords
here are resolution, tableaux, and logic programming. Prom a purely logi-
cal point of view this is prima facie peculiar: it is after all the subformula
property of special kinds of derivations® that makes resolution and related
techniques possible; normal derivations in natural deduction calculi, as we
just noticed, have that very property with the minor addition mentioned.
Why is it then that nd-calculi have not been exploited for automated proof
search? The answer to this general question seems, in part, to liein answvers
to three crucial guestions. (1) How can one specify through a calculus only
normal proofs? (2) How can one construct a search space.that allows the
formulation of strategies for finding such proofs? and (3) How can one prove
the termination of search strategies?

In the case of sequent calculi the analogues to these questions have direct
answers. use calculi without the cut rule; invert systematically their rules,
prove their completeness! In this rough description of the theoretical back-
ground for automated deduction based on sequent calculi the syntactic nor-
malization or cut-elimination procedure is not mentioned, since the semantic
completeness proof for the cut-free part is fundamental, not Gentzen's cut-
elimination procedure. Indeed, algorithmsfor finding cut-free derivations are
refinements of strategies used in that completeness proof. Such strategies
realize the heuristic idea of searchingfor semantic counterexamples and yield
trees E such that either one of E's branches allows the definition of a coun-

®Derivationsin Herbrand's calculus and derivationsin the sequent calculus without cut
have the (full) subformula property: they contain only subformulas of their endformula,
respectively endsequent.




terexample to "a has G as a logical consequence" or £ constitutes a cut-free
derivation of the sequent -»a, G.” In the case of nd-calculi normal proofs
are also sufficient to obtain all logical consequences from given assumptions.
However, this fact has not been established directly: its proof combines the
completeness theorem for the calculus with the normalization theorem. In
order to obtain a direct proof of the fact and an answer to (1), intercala-
tion calculi are introduced. They provide frameworksfor answering (2), and
completeness proofs for these calculi answer (3).

The broad problem is this:. How can we derive a conclusion or goal G
from assumptions *i,..., (f>n? or, more vividly: How can we close the gap
between G and the <£i,..., <, vialogical rules? This question is at the heart
of spanning search spaces via ic-calculi: their basic rules are reformulations
of those for Gentzen's nd-calculi, but it is the preservation of inferential
information and therestricted way in which the rules are used to close the gap
(and thus to build up derivations) that is distinctive. The ic-calculi provide
the underpinning for specifying informal approaches to proof search: their
rules are used to construct a search space that contains all possible ways of
closing the-gap between assumptions and G viatheic-rules. In this space we
search for a gap-closing subspace that determines, in turn, a uniqgue normal or
p-nonnal nd-proof from the assumptions to G. If the search fails, the search
gpace contains efiough information to yield a semantic counterexample. This
sketch of the completeness proof for ic-calculi shows the family resemblance
to completeness proofs for the sequent calculus without cut. The difference
can be put sharply as follows: In the case of the sequent calculus, one tries
to find a semantic counterexample and, if that search fails, one actually has
found a proof®, in the case of ic-calculi, one tries to find a proof and, if
that search fails, one has a counterexample. Let us turn to the rigorous
metamathematical discussion.

We will discuss at first only classical sentential logic with the connectives
-», A, V, —} however, the considerations will then be extended to predicate
logic and can be used to treat non-classical logics, for example, intuitionistic

"_»a consists of the negations of the formulas in a.

8A sequent proof is far from reflecting the structure of ordinary arguments. Thus, we
have here and in the case of resolution based procedures the non-trivial problem of finding
associated nd-proofs. Cf. Shanin e.a., but also Andrews and Pfenning. The issueis also
addressed in implementations of, e.g.,, NUPRL and ISABELLE. Bledsoe's way of using
nd-methods is not systematic in the logical setting. Cf. our remark at the end of section
3 and also note 19.




logic.® The ic-rules operate on triples of the form a; plG. a is the sequence
of available assumptions; G is the current goal; (3 is a sequence of formulas
obtained by A-dimination and —*-dimination from elements in a'°>. To fa-
cilitate the description of rules and parts of search trees let us agree on some
conventions. Lowercase Greek letters a, /?,7,... range over finite sequences
of formulas; as syntactic variables over formulaswe use”,V>X> ¢+ «>2"d also
Gand H; Il,E, T,... range over trees. ™ e a expresses that 0 is an element
of the sequence a; a,f3 or a&/? is short for the concatenation a e« (3 of the
sequences a and /?; a, <f> stands for the sequence a* (<f>), where (0) is the
sequence with ~ asits only element. There are three kinds of ic-rules. those
corresponding to the proper E-rulesfor A, V, — those corresponding to the
proper I-rulesfor A, V, — finally, the rulesfor negation. Let uslist therules
of the first kind, i.e., 4-rules.

A»l: a |7?G, B Afea3=>a/?, 423 for i=l or 2
V4 a;p?G,~V~reall” a,<f>\p?G AND a, ¢2; 87G
-4: a;0?G, "i->"Gai8="a;F><j>i AND a; 8,$7G

Now we formulate the rules that correspond to inverted proper I-rules, i.e.,
t -rules. - '

At: « £Xxfi A <fe=>a; /?2"i AND a; B7¢2

Vit: o; 87 V 2 => o; ¢ fot=1or 2
12 o5 %1 - G2 = o, é1; 762

Finally, we come to the rules for negation:

Le(F): «02G¥> € ,F(a,-#) =" a,-<?;"v? AND a,~G; BT

Li(F\. 3,07 G, (peT(a, G) =>a,G; P?<p AND a, G; p?-«p

°*That was done for sentential logic by Cittadini in his M.S. thesiswritten in May 1991;
see [Cittadini 1992]. The case of intuitionistic predicate logic and other non-classical logics
will be considered in ajoint paper with Cittadini, "Normal Natural Deduction Proofs (in
non-classical logics)".

" Thereason for this separation isthat someimportant syntactic constructionswill refer
only to the available assumptions; for example, concerning the indirect rules and, later on
in predicate logic, concerning the analogue of V-introduction. '




F () is obtained as follows. Let F; consist of all proper subformulas of
formulas in 7 and of all negations occurring in 7. ~(7) then consists of all
unnegated formulas in F; and the unnegated part rp of all negations -»" in
F,. T() is obvioudly finite; that is crucial for the finiteness of the search
gpace. Operations O leading to smaller and yet sufficient classes can be
specified; cf. the end of section 3. The different calculi we are considering are
distinguished through the operation O, and we denote a particular calculus
by 1Co(O), or simply 1C(O)—as long as it is clear that we are dealing with
sentential logic; the corresponding systems for first order logic will later be
denoted by ICi(O).

Remarks. (1) Intuitionistic versions of ic-calculi are obtained by using the
rule ex falso quodlibet a;p?G, <p € O(a) =* &,/3?<p and a; £2»<? instead
of £c(O). For the classical system IC(,F), the rule -4 can be weakened
toa; /3?G, M 4 (N 6 a/?, <f>, 6 a/3 => a; /?,72?G. But this formulation, as
Cittadini noticed, istoo weak for intuitionistic logic (and unnatural for proof
search even in the classical case).

(2) We formulated the ic-rules as Post-productions, but they can also
be represented in the standard way with appropriate side conditions; how-

ever, the natural application of these rules is "bottom-up". Here are three
reformulations: ™,

a; B¢ }, 827G

—d: asG with = = $2 € oF
_}T: a; ﬁ?¢1_”¢2
'U(*I)I AA g jugtin Ca%tpef(a,G)

Because of this correspondence we call the consequent (s) of a Post-production,
premise(s) of the appropriate rule. This reformulation brings out the restric-
tive character of the 4r-rales the principal formula of a *-inference must
already be in a(3. ’
Next we turn to the construction of the search or problem space, using
these rules; indeed, we shall interleaf the nodes of a tree-like arrangement

of questions with "rule nodes' that provide information on the rule that is
connecting the questions.




2. The Problem Space for Sentential Logic. As an example of how the
ic-rules are used to build up the search space for a question a?G, let us show
the search tree for the question ?PV->P. It is partially presented in Diagrams
1, I.LA, and |.B of the Appendix. We start out by applying the three possible
ic-rulesto obtain new questions, namely, ?P or ?-\P or, proceeding indirectly,
"o(PV-.P)?v? and -«(PV-nP)?-.<p with each element (p of ,F(-«(PV-«P)). Let
us pursue the leftmost branch in the tree. To answer ?P we have to use +,
and, because of the restriction on the choice of contradictory pairs, we have
only to ask -iP?P and -iP?-«P. In thefirst case only *. could be applied,
but would lead to the question we just analyzed. Thus we close this branch
with N. In the second case the gap between assumption and goal is obvioudy
closed, so we top this branch with Y. No rule is applicable to the question
?-«P; so that branch is closed with N as well. The other parts of the tree
are constructed in a similar manner. Each application of J . (J_i) is labeled
"x., <€ ("-Li,4>"), where<f>istheminor premiseof theruleapplication. The
subtree in diagram |.A is not full, but at the numbered nodes 1 through 4
the resulting trees do not help in closing the gap. In contrast, the subtreein
diagram 1.B is of interest, and we discuss it below.

The composition of Diagrams 1, I.A, and |.B contains enough infor mation
for the extraction of derivations in a variety of styles of natural deduction.
For our calculus¥%e can easily obtain corresponding derivations, namely, first:

[-P]

PV—P [~(PV-P)
P

PV-P PV SPT
PVAP ‘
(Here we use squar e brackets to indicate cancelation of an assumption.) The
second derivation is "dua" to this one with the roles of P and ->P inter-
changed. Finally, the derivation that emerges from Diagram |.B:

[-F] [P

Pvep [Py ->p) PP [PV-P)
P -P

Pv-P

The proof represented in the second diagram above is p-normal, but it is not
a normal proof, as the major premise ->P of the last inference with rule L¢

8




has been obtained by J |. (Natural normalization steps reduce this derivation
either to thefirst derivation or its dual.)

The full search or ic-tree is specified inductively by applying ic-rules to
the initial question or to the "non-terminal” leaves of an already obtained
partial search tree—in all possible ways, unless the application of arule leads
to a question that is not new for the branch determined by the appropriate
leaf (a; (3?G isthe same question as a*; 0*?Gjust in case the sets of formulas
in the sequences &/3 and a*fi* are identical.) In either case one addresses
questions of the form a; /3?G at a particular node:

if G is an element of a/?, then close the branch determined by the current
question node with Y;

if G is not an element of ctfi and every applicable rule leads to a question
that is not new for the branch determined by the current question node then
close with N;

if G is not an element of a/3 and some applicable rule leads to a new ques-
tion, then extend the tree at the current question node for all such rules by
appropriate rule and question nodes (with a fixed ordering of rules)™.

For any implementation of a proof search procedure it is crucial to decide
quickly, whethef~ particular rule will lead, at the current question node, to
anew question or not. A first easy step isto impose local side conditions on
the 4-rules that prevent the application of a rule, in case it does lead to the
same question; this can be done, for example, as follows:

Al a p2G<fi A<f>2 e al3<f>i <? al3 => a ptfalG for t=1or2
V 4; a;2?G,N V fa e afrfa t afafa <€ a/3 => a<h;/??G AND &, ¢q; 37G
-4: a,j8?2G*i -> <h € aftfc * afafa*G => a;p?</>, AND a; #,¢2?G

Indeed, these local side conditions are now taken as part of the ic-rules. A
second, more intricate step involves a careful analysis of the conditions un-
der which repeated questions can occur. This allows us to avoid checking for
repetitions in many instances. A third step would restrict the application of
theindirect rules. JLc isnever applied to negated formulas. Thus, to a given

“For example we could use the order A, i, A, 4, ->4, V |, A t, ->t* Vi t, Vo t, U>
J .. We also need to order multiple applications of each rule, say by the order in which
the formulas to which it is applied appear in &/3.

9




question node only one |_-rule is applied. We do not pursue such issues in
any systematic way, as we are intending to present only the broad theoret-
ical framework for proof search via ic-calculi; there will be some additional
remarks at the end of sections 3 and 4.

The ic-tree is constructed in the above general way for questions a?G; its
branches deter mine sequences of subquestions for a?G. Due to the finiteness
of T and the form of the rules, only finitely many different subquestions for
OLIG can be formulated. This together with the requirement not to repeat
guestions on a branch yields the Proposition: The ic-trees for questions oLIG
are finite, and their branches are closed with either Y or N. This assignment
to questions at leaves of an ic-tree can be extended to all questions in the .
tree and determines a unique value for the original question a?G; the value
of a question a*; [2<E* isindicated by [a*; 0*?G*]. In the remainder of this
section we will show: if Y is assigned to the root of the ic-tree, then thereis
a p-normal proof leading from the assumptions to the goal of the question.
In the next section this fact will be complemented by a second fact: if N is
assigned to theroot of the ic-tree, then there is not only no p-normal proof,
but no proof at all; i.e., the ic-tree contains enough information to show that
the inference from a to G is semantically invalid. We will also show that a
certain restricted calculus 1Cy(X) isstill complete; nd-proofs obtained from
"derivations' inthat calculus are actually normal.

Wesaw through the PV-*P example, how an nd-proof can beread off from
a properly chosen partial ic-tree whose root evaluatesto Y. To formulate the
underlying general fact properly we define first the notion of an ic-derivation.

Definition. An ic-derivation for the question a; /??€? is a subtree T of the
ic-tree E for a; /7?G satisfying: (i) a; P?G istheroot of T, (ii) all branches of
T are Y-closed branches of E, and (iii) every question nodein T (that is not
a leaf) is followed by exactly one rule node (to obtain the next question(s))..

One can easily extract ic-derivationsfrom ic-trees that evaluateto Y. Let E
be the ic-tree for a?G and assume that [<*?G] = Y. We can determine from
E a canonical Y-subtree T as f(hg(E)), where hg(E) is the height of E and
/ a function defined recursively as follows:

I(0) = a?G
to  -n — [Ci(/(®")) #*£*°™ pranch of /(2n) can be extended
f2n+l) - | /20 otherwise

10




_ [ e(f(2n) if f(2n+1) # f(2n)
f@en+2) = { f(2n) otherwise

f extends the open branches of a partial ic-derivation by their “left-most
Y-expansions” in . More explicitly, the open branches of f(2n) are open
branches of £ and are consequently expanded by ic-rules; at least one of
these rules must have a (pair of) premise(s) evaluating to Y; €, chooses the
left-most such rule application in each case, and €, expands the tree by the
appropriate question node(s). The main point is that from an ic-derivation
we can construct uniquely an nd-proof!?; indeed, that proof is p-normal.

Proposition. For any T, o, 8, G: if T is an ic-derivation for a; 7G, then
there is a uniquely determined p-normal nd-proof Ils leading from aff to G.

PROOF. (by induction on the height of ¥). If hg(X) = 1, the ic-derivation
simply consists of the question a; 87G with G € af, as T evaluates to Y. Iy
is the nd-proof consisting of the node G. —If hg(X) > 1, distinguish cases as
to the ic-rule that is applied to a; 87G in . The induction hypothesis asserts:
for any ic-derivation T with hg(T) < hg(X) there is a uniquely determined
p-normal nd-proof Il answering the question at the root of T.

A; }: The immediate subderivation T; of X has root a; 8, ¢;?G; by induction
hypothesis there, is a uniquely determined p-normal nd-proof Ilt; leading
from assumptions in af, ¢; to G. If IIt, contains occurrences of ¢; as open
assumptions, then replace those occurrences by —ﬁ%ﬁ— . The resulting
p-normal proof of G from af is the associated nd-proof Ily.

V |: The immediate subderivations T; of £ have roots o, ¢;; 387G for i =
1 or 2; by induction hypothesis there are uniquely determined p-normal nd-

proofs Ilt, leading from , ¢;, B to G. The associated p-normal nd-proof Ils
of G from af is:
(6] (g2

o1V d2 G G
G

This construction is proper, as V | has as its major premise an element of
af3, and G is the endformula of Ilr,.

12An analogous procedure for the sequent calculus is outlined roughly by Prawitz (p.
91); however, note that no “choices” have to be made in our procedure.
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->: The immediate subderivations Ti and T, of E have roots a; /3?0i and
a; /3, 02?G; by induction hypothesis there are uniquely determined p-normal
nd-proofe nt; and nt, leading from a/3 to Oi, respectively from &/3,02 to
G. U lIT! and thefact that 0i —> fa G a/3 to construct a p-normal proof
Il of 02 from assumptions in a/3.

0L_01->02
é2

If nt, contains any occurrences of 02 as open assumptions, then replace
those occurrences by I1. This construction yields the p-normal proof |1 E of
G from assumptions in a/3.

A t= The immediate subderivations T» of E have roots a; /370», for i =
lor 2, and Gis (0i A 02); by induction hypothesis there are uniquely de-
termined p-normal nd-proofe 11" leading from a/3 to 0. The nd-proof |1 E
is obtained by joining I1xi and 11T, via A-introduction.

V* t Theimmediate subderivation T* of E hasroot a; /3?0j and G is (0i V
02); by inductipn hypothesis there is a uniquely determined p-normal nd-
proof nt< leading from a/3 to 0*. The p-normal nd-proof ng is obtained by
V-introduction. '

—+1: The immediate subderivation T of E has root a,0i;/3?02 and G is
(0i -> 02); by induction hypothesis thereis a uniquey determined p-normal
nd-proof 11 T leading from &, 0i,/3 to 02- The nd-proof || E is obtained by
-A-introduction with Oi and 02-

Finally, we treat the rules for negation.

+i: The immediate subderivation T [T”*] of E hasroot a,ip; /??H<p, where
Gis-»V ~d V G J’; by induction hypothesis there are uniquely deter mined
nd-proofe ny and IL" leading from a, ip, ft to (p, respectively -«p. The nd-
proof I1E is obtained by applying £\ to infer G.—The classical rule J ; is
treated in the same way as J i. .

Thend-proof I E uses exactly thesamerulesas E. (One parenthetical remark
is appropriate here: the structural similarity between ic-derivations and nd-
proofs is even more apparent, when the latter are represented graphically by

12




Fitch-diagrams!3. The ic-derivations can then be viewed as prescriptions for
constructing isomorphic Fitch-diagrams.) Joining the proposition and the
earlier observation concerning the extraction of ic-derivations from ic-trees
we have:

Proof Extraction Theorem. For any o and G: If the ic-tree ¥ for a?G
evaluates to Y, then a p-normal nd-proof of G from assumptions in a can be
found.

It is extremely easy to obtain the interpolation theorem (and other meta-
mathematical results); the argument is a modification of that for the proof
extraction theorem.

Interpolation Theorem. For any a,G: if G is a logical consequence of
a, then there is an interpolating formula ¢ together with p-normal nd-proofs
Iy and Iy G, such that 1y leads from a to ¢, and Iy leads from ¢ to G.

The theorem follows from the next proposition, when observing (with the
counterexample extraction theorem established in the next section) that—
on account of the fact that G is a logical consequence from a—the ic-tree for
the question a?Gevaluates to Y and thus contains an ic-derivation answering
the question a?G.

Proposition. For any T, a,8,G: if £ is an ic-derivation for a; B7G, then
there is a uniquely determined interpolant ¢, an nd-proof I14 leading from of3
to ¢, and an nd-proof Ily ¢ leading from ¢ to G. Furthermore, 114 and Ily ¢
are p-normal.

3. Normal Form Theorems for Sentential Logic. By the evaluation
of ic-trees we know that a question a?G obtains the value Y or N. In case
the value is Y we can determine an associated p-normal proof. In case the
question has value N, we have as an immediate consequence: “The search
failed!” But that only means that the particular possibilities of building up
derivations—as reflected in the construction of the ic-tree—do not lead to a

13Prawitz (1965, pp. 98-99) asserts that already Jaskowski introduced this representa-
tion in the late twenties. In any event, for computer implementation Fitch-diagrams are
convenient for the representation of nd-proofs: they reflect dependencies as graphically as
trees do, but are easier to put on a screen and avoid the duplication of parts of proofs
necessary in tree representations.
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proof establishing G from assumptions in a. We will do better: a specially
selected branch in the ic-tree can be used to define a semantic counterexample
to the inference from a to G.

Counterexample Extraction Theorem. For anya andG : Iftheic-tree
[l for ct?G evaluates to N, then it contains a canonical refutation branch P
that determines a valuation v with v \= </>for all <f> G a andv JE G. (That
is, v is a counterexample to the inference from a to G.)

Clearly, if the question otlG evauates to N, so does one of the questions
a,G~7<f> anda, G~?-»0for each<j> G T(a, G~), wherewedefine

=¥ ife=—p . ¢4_('%|> i b=
| "¢ otherwise K N\ <f> otherwise

It will be quite direct to see that the fallowing construction leads to a branch
P through Il if T(ot, G~) is non-empty. If this set is empty, a, G~ consists
only of sententia letters. The valuation v, defined for sentential letters P
by v |= P iff P occurs in a*G", provides a counterexample. If FHc*,G~)
IS not empty, we need a more sophisticated argument and, naturally, some
auxiliary definitions.

The finite set, T(a; G-) for the negation rules can be enumerated (without
repetition) by (Hi)e, where/={i | 1 <i < n}. Let H, = G. Define

iy, o1 | A*M* <k<nAH&7A -*Hy £7) if there is such an Hy
Yy ~\ 0 otherwise:

The sequence of nodes of P* = P*(0),... is defined as follows:

¢o = a
Ao = O
4\1n-|.-l = E(Qm:'\m)
¢ - | Ha if [om?Hy.] =N
" \ - Ham otherwise
Q™+l = OLm, G*
P@2m) = a.?Gn
Pr@2m+1) = I( >A* 1 jf Gy isanegaion

| M -CjH Xl otherwise

Let 1/ be the smallest m with #+1 = 0. Define P to be P* restricted to
{m1 mx<2i/}. Pistheinitia segment of some branch in the search tree;
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we call the leftmost such branch the canonical refutation branch. Let us
illustrate and clarify this construction through Diagram 2 in the Appendix:
At each step in selecting the next question node of the canonical branch P one
or the other indicated possibility of proceeding must obtain (as long as the
set of assumptions can be properly extended), because not both conclusions
of the appropriate -L-nile with the contradictory pair H* and -*Hy can be
evaluated as Y. (In case both are evaluated as N, we choose the leftmost.)
The top node of P is<*,?£,. Lt A={<E | <f>G a"G,)'}. Theset A has
important syntactic closure properties and this can be exploited to define
a valuation that will serve as a model for a, G~, i.e.,, a counterexample to
a\= G. We establish first the closure properties.

Closure Lemma. For ail formulas ip :

(i) ~ € A=><ip~- $ A

(i) ip is a subformula of an element in A =$« ** G A or r/)" G A;
(iii) i/>is-""Ni, ~*-*fa G A => fa G A;

(iv)™ (N Afa), (faAfa) GA=><f>tGAand<f>% G A;
*I>is~*(fabMa), »(# Afa) GA=* fo GAor fe GA;

(v) i> is (faV fa), (favfa)eA=> <f>t eAor</4 G A;
%l) is -»# V fa), -*(fa \Jfa)eA="4>""A and <fc G A,

(vi) rp is (fa -+ fa), (fa -+fa)eA=><f>ieAor<f4eA,
tj)is~* (fa—* fa), ~* (fa—>fa) GA=" <> GAand<" 6i .

PROOF. Weassumefor simplicity that G5, $. ot,\ thus no question node which
has a,, Gy, on the left-hand side will repeat a question in P. (If G G a, and
OLy, 5~?G* repeats a question otmiG* on P, then the arguments below are
carried out for that earlier question.) (i) Let tI> G A. If ~ isnot a negation
and -i*” G -A then the following subtree isin the search space:
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Y Y

ava 4_?#) Oy, G!:?"‘lf,b

S~

1,9

a,,‘.lG,
Thus [a,/?G,] =Y, contradicting the construction of P. If rp is a negation,
the argument proceeds smilarly.

For (ii), let <j> G A and rp a subfonnula of <f>. Assume as case 1, that
ip* =~ Iftj> = <f>, we areclearly done; so supposetp isa proper subfonnula
of <f>. Then ether » or rj)~ is an eement of Tfa*Q') = ~(ajG"). If
N G a,GMor M~ € a,G~, we are done. Otherwise some G, m > 0, is
oneof Vs-'VA" " Aty <o isone of A ~, ('VO'* V~> (</(V'~))~ Theseare,
respectively, A" " AN, N> as we are supposing V' = A~ Thus, G is either
rl)+ or VA~ and as* G~ € A, either ip* £EA OT ip~ € A.

Assume as case 2 now that %l)* A xj), i.e, » = -1-1X f°' sonie x» a™
A* = x- Then -ix is an eement of T{oL,, G;-) = ~(or, G~). " neither -ix "°'
X isin a, then some G,,,, rn > 0, is either -ix or -»ix- ~mM " then ether x
or -ix; theformer is™*, thelatter i[>~. Thus, as before, tp+ G -A or *r G -A.

For (iii) assume ——% G A. By (ii) either (->-»0i)" G A or (-««*i)" G A]
by (i) the latter case cannot arise. Thus (~""i)" G A; ("»-'0i)" is<f and
we can conclude that 4>i € A.

The arguments for the remaining items are similar. We present the ar-
gument only for (iv). First let (0Oi A fa) G A and assume <\>\ £ A (the case
<t>2 & Aissymmetric); by (i) 2f>\ € A- If#i is"°' anegation, then G~ = —¢,
and the following subtree is in the search space:
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Y

Xy, G;! ¢1?¢1
Al Y

ay, J_?ﬂbl oy, G_?_'¢l

~_—

-Mi

|
aMz,
s0 [a,?G,] =Y which contradicts the construction of P. If 4>\ is a negation,
then we have a symmetric tree which again yields a contradiction.

Here the application of A 4- is crucial. To establish the second part of
(iv) A t isused analogoudy. So assume that >"i A~ )eA"" N A, and
fe & A. By (ii) we have that 4>t € A and 4% G A. For smplicity's sake let
usfirst consder the casethat <f>f =.& . Then we have:

Y Y
ay, G.l '-;¢1 Olm] G, 792
AT Y
oo ]
"1 GV () A fa oy, Gy ?_'(¢l A ¢2)
J—: 1 A ¢2 ’

a,’G,

If Oi is-"Xi and Oj is 02, then the left branch over the question node A t
has to be replaced by
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Y Y

o, Gy oxiTxe o G xa?xa
J-iiXi

0, G; ) ¢

The remaining cases 0t is Oi, but 02 is »*X2, and O0» is >»%t "° treated
similarly. D

Now define a valuation by v f= P iff P G A. Using this valuation and the
closure lemma we can prove the proposition: for every 0G A, v f= 0. Hence
v is a moddl for a,G~; this concludes the proof of the theorem concerning
the extraction of counterexamples. Putting these considerations together,
we have a completeness theorem for classical sentential logic in the following
form:

Completeness Theorem. The ic-treefor the question a?G allows us to
determine either a p-normal proof of G from a or a branch that provides a
counterexample to the inferencefroma to G.

This yields, a semantic proof of the p-normal form theorem for the natural
deduction calculus.

P-Normal Form Theorem. If G can be proved from assumptions in a,
then there is a p-normal proof of G from a.

As a matter of fact, the proof establishes more, as the nd-proofs obtain-
able from ic-derivations are a proper subclass of p-normal derivations; for
example, the following derivations

[¢1] ¢1 — @2
@2
01 =02

and
01 A02 0Q1A02
_—01 Q2
01A02
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are p-normal, but not obtainable from an ic-derivation. Notice that these
derivations are actually normal and that one can construct such derivations
of arbitrary length. As a matter of fact, the "normal" form can be further
restricted. But before considering such additional restrictions we would like
to re-emphasize one absolutely central point: the normality of the nd-proofs
obtained from ic-derivations is a direct consequence of (the very intuitive
strategy for constructing nd-proofs that underlies) the generation of ic-trees
for particular questions. That intuitive strategy consists of trying to close
the gap between assumptions and conclusion "from above' (by elimination
rules) and "from below" (by inverted introduction rules); if neither works,
one proceeds indirectly. Thus, a 4-rule can only be applied to assumptions
or to formulas that have been inferred by 4-rule applications, smilarly, the
conclusion of £, cannot be the major premise of a proper elimination rule.

Further restrictions on "normal" forms are obtained by restricting the
generation of ic-trees; we discuss this here only for modifications of the +-
rules. This will lead to normal nd-proofs. In the above discussion we con-
sdered J-c essentially as an I-rule for complex non-negated formulas, to a
formula thus introduced no E-rule can be applied. Why not consider also
negated formulas and disallow subsequent applications of £, (how viewed as
an E-rule)? That excludes then in particular nd-proofs of the form

[~¥]

b ~¢
Y
“Indeed, thisisjust a special case: in a normal proof, no major premise of'a
-L-ruleisthe conclusion of a _L-rule That theic-calculuscan berestricted in
such away asto provide only normal nd-proofs (without loss of completeness)
will be a consequence of the subsequent considerations. :
For proof search it is important that ic-trees be pruned—uwithout losing
completeness. That can be achieved by restricting the formulas with which
contradictory pairs are formed; one can do this through four successively
more restrictive versions of the operation ~(7), namely, Af(y), ~(7)1 £(7)>
and X(7). iV; (P7, S7) consists of all negations that occur as (positive, strictly
positive)'* subformulas in 7; J; contains exactly the elements of 7 that are

““These notions are defined in the Appendix.
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negations. * (7) (" (7), 5(7), 1(j)) consists then of the formulas tp with -
in N7 (P7, 57, /7). The %-niles for these operations are now formulated,
except for X, as indicated earlier; the £(J)-rules are given as follows.

+c(J): a 722 tpel(aE,-.G) =*+ a,-.G; /72<? AND a, -.G; 0?-./
+i(l) isgiven in a smilar way. Clearly, these rules can be reformulated as
1e(D): a; 179G, <p G J(ak, -G) => a, -G; f% _' )

and similarly for -U(X); thisbrings out most clearly that -yip is "immediately
available" .

To establish completeness for each of the resulting variations of the ic-
“calculus, it suffices to show that the restricted ic-trees (built up by the |-
and f-niles, and the restricted -L-riiles) allow the extraction of a counterex-
ample.in case [a?GJ = N. The construction of a canonical refutation branch
involves now not only the £-rules, but possibly all the other rules. In defin-
ing such a branch one has to make sure that the appropriate verson of the
closure lemma can be established. Prom this fact for IC(l) we can infer the
normal form theorem below: the adjacency condition is obvioudly satisfied in
this case, asthe major premise a, G*'; /72> of the +-rules has an immediate
Y -answer. .

Normal Form Theorem. IfG can be provedfrom assumptionsin a, then
there is a normal proof of G from a.

Remark. Before extending our considerations to full predicate logic, let us
return to some general remarks we made in section 1. There we emphasized
the role of the ic-calculus as a technical tool in the search for nd-proofs.
The rules are directly modeled after the |-, E-, and -L-rules of the classical
natural deduction calculus (with a special treatment of classical negation).
However, due to the way in which assumptions are indicated and *-niles are
represented, there is also a certain resemblance with the sequent calculus.

Two distinctive features of the ic-calculus were already mentioned in note
10 and remark 2 at the end of section 1. Here we note some additional (and
obvious) differences with the sequent calculus. (i) the ic-calculus always has

A trivial modification is now needed in the proof extraction lemma.
81 it werejust for the first feature, we would have essentially the formulation of NK
asgiven in [Gentzen 1936], pp. 512-515.
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exactly one formula on the right-hand side; (ii) every formula on the left-
hand side of a conclusion appears on the left-hand side of the premise(s);
(iii) redundant formulas may not be inferred on the left-hand side; (iv) the
negation rules have been altered. To put it briefly and informally: the ic-
calculus is a special form of natural deduction, where the goal is never |eft
out of sight!

It has been suggested that the sequent calculus could be used as well as
the ic-calculus in the search for nd-proofs, i.e., one would proceed in two
steps:

(i) search for a proof in, say, Gentzen's LK (or alternatively in a tableau
system, which can be viewed as a notational variant of LK);

(if) trandate the resulting proof into an nd-proof.

In (i), LK may be restricted so as to make for more efficient search, and,
in addition, allow an easier trandation to NK or provide more natural NK
proofs. In (ii), the LK proof itself may be manipulated before trandating
to achieve the additional goalsjust mentioned. (We referred to work along
theselinesin note 8, in particular that of Shanin e.a.) From this point of view
one might look at the technical aspects of our paper as imposing particular
restrictions on LK which make search more efficient and trandation into NK
trivial.

However, this view israther forced: it brushes aside not only all differing
" details’ of the calculi, but also the strategic use of the ic-calculusfor building
up an appropriate search space. The search space should be appropriate for
our main goal, i.e, it should allow us, from the very beginning, to focus
on the question of finding "natural" NK proof$ by using "natural” search
strategies.” The most obvious of these strategies is to work backward from
the goal formula and forward from derived lines, both in arestricted and goal-
directed manner, i.e., to perform sequences of intercalation steps. We try to
find smple representations of the states of the search and of the transition
steps taking us from one state to the next. The representation of the final
state of a successful search must encode a " proof that can be directly viewed
as an NK proof. This difference in the strategic use of the ic-calculus comes
out clearly in the completeness proof for the calculus presented in this section
(and was emphatically stated in section 1).

" Indeed, this opensinteresting questionsfor proaf theor etic udy, eg., how isthefarm
of nd-proofs related to the strategies used in their search?
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4. Normal Form Theorems for Predicate Logic. The metamathemat-
ical considerations for sentential logic can be extended to predicate logic. To
that end we use the following formulation of the E- and I-rules for the quan-
tifiers; note that writing ¢t assumes that ¢ is free for z in ¢z or, alternatively,
that some bound variables in ¢z have been renamed. For V we have the rules:

(Vz)oz Py
P Wngz

Applications of the I-rule must satisfy the restriction that y does not have a
free occurrence in any assumption on which the derivation of ¢y depends.—
For 3 we have the rules:

[¢v]

: ’ gt
@ge n fEnrrai

n

with the usual restriction on the E-rule, namely, y must not have free occur-
rences in 7 or (3z)¢z nor in any assumption (other than ¢y) on which the
proof of (the upper occurrence of) 7 depends.

~ To build up ie-trees one applies now also quantifier rules “to close the gap
between assumptions and conclusion” in the ic-format. In the formulation of
the ic-rules 7(y) denotes the finite set of terms occurring in the formulas of

.18 |

Vi a;87G, (Vz)¢z € afB, t € T(aB,G) = a; B, $t?G

3{: o; 07G, (Az)dz € af, y is new for a, (I)dz,G = o, ¢y; f?G
V1 o B?(Vx)d:x, y is new for a, (Vz)¢pz => o; B7¢y

31t a; ?(3z)¢z, t € T (B, (3x)dz) = a; f7¢t

Ic-trees are specified inductively: if a*; 8*?G* is an open question, all pos-
sibilities of intercalating formulas are considered as in the case of sentential
logic. Let us just remark that for applications of the 1-rules we are consid-
ering as (proper) subformulas of quantified formulas all instances with the

18 As in the propositional calculus, we add restrictions to the }-rules which prune the
search space. In the case of 3 |, the restriction is that there is no ¢ such that ¢t € af; in
the case of V |, we require that ¢t & af.
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finitely many terms in 7. The resulting calculus is denoted by IC,(O), de-
pending on the set of formulas admitted for the 1-rules. Branches are closed
with Y and N under the same conditions as before. In general, however,
ic-trees will not be finite. Thus, at every stage of construction there may
be an open question at some leaf; to evaluate finite partial ic-trees ¥ a third
value U is assigned to such a leaf. Given the valuation vy, the value of
the question at X’s root is determined by recursion on ¥ following Kleene’s
scheme [p. 334] for three-valued logic: If N is a leaf of £, [N]z = vz(N),
and in case N is the unique successor of M, [N]s = [M]s. In case N is at
a conjunctive branching,

N if for some immediate predecessor M of N: [M]z =N

Y if for all immediate predecessors M of N: [M]zs =Y
[N==
U otherwise

‘and in case N is at a disjunctive branching,

- Y if for some immediate predecessor M of N: [M]z =Y

N if for all immediate predecessors M of N: [M]s =N
[Ns =
U otherwise

The full ic-tree ¥for a?G is defined in stages as follows: T is a?G; Lp4, is Zp,
if [a?G]s, is either Y or N, otherwise X, ,, is obtained from X, by expanding
each open branch by all applicable rules. Three possibilities can arise: (1)
for some n € N, [a?G]y, =Y, (2) for some n € N, [a?G]s, = N, and (3)
for all n € N, [a@?G]s, = U. In the first case a p-normal derivation can be
associated with a subtree of ¥,,—Dby selecting an ic-derivation and by proving
(inductively) that each ic-derivation determines a unique p-normal derivation
of G from elements in c. In the second case we can construct a finite canonical
refutation branch as in sentential logic and define from it a counterexample.
The third case, whose treatment is clearly crucial to complete this sketch of
the completeness proof, requires additional considerations.

Counterexample Extraction Theorem. For any a and G: if the ic-tree
L for a?G is such that for every natural number n [a?G]s, = U, then £
contains an infinite refutation branch P that determines a structure M with

M= ¢, forall ¢ € a, and M | ~G. Thus, M is a counterezample to the
inference from a to G.
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The extraction of a counterexample from an infinite ic-tree requires some
circumspection: Instead of constructing a refutation branch directly, we de-
termine first a particular infinite subtree E* of the ic-tree E and then apply
Konig's Lemma to this canonical refutation tree. The reason for having to
cut down the ictree E to the canonical refutation tree E* is this: Refuta-
tion branches have to satisfy suitable closure conditions, and it is trivial to
construct infinite branches of E that don't. So we define E* in such a way
that all of its infinite branches satisfy the closure conditions. The pertinent
considerations extend those for sentential logic with variations on familiar
Henkin and "far" tableau constructions, thus we emphasize only the crucial
points. :

The construction of E* (as a subtree of theic-tree E) for the question a?G
proceeds in two waves. The first aims for " sub-maximization" with respect
to a given finite set of formulas, whereas the second introduces new subfor-
mulas by witnessing—through instances with new variables—existential and
negated universal formulas that occur on the I.h.s. of ?. We start out the
construction of the binary tree E* (using conventions and definitions from
the sentential case) with the first wave for the enumeration of the formulas
in T{a, G~) as in the sentential logical case with E*(0) = a?G. For m > 0,
we extend each open branch of E*(2m) (i.e., its leaf evaluates to U) with a
rule node of theipnn -L,*

Yo Y?-¢

\/

- L¢

if both questions y?tf> and 7?-»0 evaluate to U; if only one of them evaluates
to U, then the branch is extended at just that question. One of these cases
must hold, becausetherulenode JL, <j> hasvalue U. (Clearly, asbefore, <f>is
the first element in the given enumeration that extends 7 properly.) After
finitely many steps this construction cannot be continued. However, at least
one branch in the tree constructed so far hasto be open for extensions by rules
other than the JL-rules asfor all n G N [a?G]s., = U. In sentential logic, we
saw, that cannot happen; the resulting set of formulas A is deductively closed
in the sense of the earlier Closure Lemma. Here, some of the A’s associated
with leaves cannot satisfy the closure conditions (3x)<f>x G A => <)+t G A
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for someterm t, and -«(Vx)0x G A ==> (f>~t G A for sometermt. In the first
case therule 3| is applicable with a canonically chosen new variable; in the
second case we are able to extend the branch in the following way using also
a canonically chosen new variable:

Y?éa

V1
SUNZAL L ¥?~(Vz)dx

1, (Vz)¢z

The right extension closes with Y, whereas the left one remains open. This
brings us to the second wave. We apply 3 = in all needed cases and then
perform the above analysis on those -»(Vx)0x for which no negated instance
is available. The first wave can be repeated now for an extended set of
formulas and so on, obvioudy! We obtain in this way an infinite subtree
E* of the ic-tree; Konig's Lemma applied to E* yields an infinite branch P.
Define Ap = {ifi \ y\> occurson thel.h.s. of ? in some question on P}; this
set has all the appropriate closure properties needed to serve as the basis for
the counterexample definition. Let T{Ap) consist of all terms that occur in
some formula of Ap.

Closure Lemma. For all formulas rj):

(i) i) G Ap=*rI>- <E Ap;

(ii) t/> is a subformula of an element in Ap => " G Ap or tp" G Ap_;
(@iii) rf) is-1-71, "»»0 G Ap => fa G Ap;

(iv) V is (Oi A fa), {fa Afa)eAp=><f>teAp and <E G Ap;
r)) is-y(fa A fa), -*(fa Afa)eAp => ' G Ap or fe G Ap;

(v) tl>is(ffav fa), {fa Vfa)eAp=>4>teApor<tde Ap;
rpis-*{faV fa), -i(0!' Vfa) G Ap =<' GApandfeG Ap;

(vi) " is {fa -> fa), {fa -+fa)eAp=>4>ieApor<fde Ap;
ipis-->{fa-»fa), ->{fa->fa) GAp=><f>f GApandfeG Ap

25




(vii) rp is (3X)<f>x, (BX)<I>x € Ap => <f>+t e Ap for some termt e T(Ap);
ip is-i(3x)<f>x, -M3BX)()x e Ap => (j>~t e Ap for all termst e T{Ap);

(viii) xp is (V2)<£z, (VX)Ox G Ap => < e Ap for all termst G T(AgR);
%I) is ->(WX)<f>X, -»(VX)<"x G Ar => <f>~t G Ap for some termt G T(Ap).

The definition of a structure M. from Ap is now standard, and we obtain a
completeness theorem for classica predicate logic in the form:

Completeness Theorem. The ic-treefor the question a?G determines
either a p-normal nd-proof of G froma or a branch that provides a coun-
terexample Ai to the inferencefroma to G.

So we have a semantic argument for the p-nonnalizability of nd-proofe; and
from ic-derivations we can construct not only p-normal nd-proofs, but dso as
in the case of sentential logic interpolants to obtain the interpolation theorem.

P-Normal Form Theorem. IfG can be proved from assumptions in a,
then there is a p-normal nd-proof of G from a.

The L-rules can be restricted to smaller élm of formulas; that provides
then, as in the case of sentential logic, the argument for the norma form
theorem. -

-

Normal Form Theorem. If G can be provedfrom assumptionsin a, then
there is a normal nd-proof of G from a.

If we were just concerned with establishing normal form theorems, we could
end our paper right here. However, we want to provide the broad theoretical
basis for proof search in first order logic. That requires additiona work,
namely, to find the basis for a natural extension of the search algorithm for
sentential logic, as implemented in the Carnegie Méllon Proof TVitor.”

5. Skolem-Herbrand Expansion. For the search agorithm the language
of predicate logic is expanded by newfree variables and Skolem and Herbrand

Quite sophisticated strategies areinvolved in the algorithm underlying the Proof Tutor
that searches automatically for nd-proofs in classical sentential logic; that program was
developed by Richard Scheines and Wilfried Sieg with assistance from Jonathan Pressler
and Chris Walton. Presently we are redesigning it in collaboration with Jesse Hughes,
Mark Ravaglia, Richard Scheines, and Prank Wimberly, and we have extended the search
algorithm to predicate logic along the lines sketched here—Similarly motivated programs
have been developed by Jeff Pelletier and Fred Portoraro; cf. their papersin this volume.
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functions as done, for example, in Fitting's book. It isin this expansion that
quantifiers are eliminated during the search in a "canonical” way. To direct
the search we use heuristics employed for sentential logic together with two
novel features, namely an appropriately narrow concept of " grictly positive
canonical subfonnula® and a unification algorithm for quantified formulas,
see [Sieg and KauSmann]. We will come back to these issues at the end of
our paper, briefly. Here we focus on the description of the search space, i.e,
the generation of appropriate ic-trees.

C\ is the language of I1Ci; the Skolem-Herbrand expansion ICSH has as
its underlying language an expansion £SH of C\\ C\ is fixed here to have
just the set X = {X, Xo, X,...} asits set of variables. £SH has in addition a
set Y of bound variables{y,jlo>!/i,...}, aset Z of parameters{z, ZQ, 2\, ...},
and a set F of function symbols {/,/q,/i,°..}. The sets X, Y, and Z are
all digoint; F contains infinitely many function symbols for each arity n, n
a natural number; the O-ary symbols are constants. Terms and formulas of
£sH are inductively generated asusual. Let usjust note that we call a given
variable or function symbol new for a given tree (or set) if that symbol does
not occur in the tree (or set). For a sequence of formulas 7, 75H(7) is the
set of termsin 7; 71(7) contains exactly those termsin 7 which are termsin
£i. T*(7) = 7TE4(7) - 71(7). Similarly we use £ = £sH - A- Finally, the
set of parameterSof 7 is given by FV(7) =78H(7)n Z. The ICSH calculusis

obtained from I1Ci by replacing the quantifier rules with those which appear
below:®

V1: a; /?7?G, (V2)<£z € a/3 => a; /?, <f>2?G for some new z

31 a 177G, {3x)<f>x ea@;z = FV(a, (3x)0x, G) => a, <t>f(2); P?G for some
new /

Vi a;)82(Vx)0x,z2=FV(a, (VX)0x) =* a; /3?<f>f(2) for some new /
3th < [32(3X)(f>x =» a; p?<j>zfor some new z

Parameters and function symbols are new relative to (partial) icsu-trees.
Such trees are built up in the most straightforward way by using the rules of

#'We can, of course, make the same kind of restrictions as before concerning inference
of repeated formulas, cf. note 18. We can also improve efficiency by restricting ourselves
to canonically chosen function symbols (one for each formula up to renaming of variables)
and by taking as parameters for the term only the "relevant" variables—both strategies
are discussed and analyzed for tableaux by Baaz and Ferm0ller, 1995.
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ICsu; what is not as straightforward is the formulation of appropriate closure
conditions. |.e., branches will be closed with Y, N, and U under roughly the
same conditions as before, but now we consider also "partial” yes-answers Y,
relative to a "unifying substitution” a. The reason issimple, as the question
"a, 0?G" isnow asking "Is G unifiable with an element in &/??" In case we
find unifying substitutions, we close the branch with a sequence of Y~'s and,
in case other rules can be applied, also with U. In the last case, all other
options of intercalating formulas are used to expand the partial icsH-tree.

Three points have to be taken up: (1) appropriate unification, i.e., a
substitution concept generalized to formulas, (2) evaluation of partial icsH-
trees that uses the unification information properly; (3) extraction of nd-
proofs from icsH-trees. The last issue and normal form theorems will be
addressed in the next section. (2) will be quite naturally resolved, as soon
as (1) isproperly set up.

Definition. A term assignmeht Is a mapping afrom Z to the terms of £SH
such that sup(a) = {z\ a(z2) » Z is finite. If sup(a) = {zb,..., Zn} then a
can be represented by (a(zb)/zb,..., <r(zn)/zn); () = id..

Substitutions, based on term assignments, will include a 'canonical renam-
ing of bound variables. For that we have to consder "modifications' of
term assignment's N(W+** = e*»kexq for variables two,..., w, € X U Z and terms
*0> » e o¥*n € Csw The modification is given for w € X U Z by

(to/tWo,.mtnfwn) sy — | T if tu = W[ for somei <TI
’ @)=1 m@y) otherwise

Note that this will not be, in general, a term assignment, as variables from
X may appear in the support. For a given modified term assgnment a we
define a family of (i,”~-substitutions on X U Z as follows: a»[x] = a(x)
and Gi[z] = a(z) in the base case; Oi distributes over function and relation
symbols, but also over the sentential connectives. For quantified formulas
{Qw)<f>, whereQisV or 3,

a[(Qu)d] = Qu)o {4,
For agiven term assignment a, wewriteafor &Q and call any (i, a)-substitution
simply a substitution.
Notice that <T[(VXI)3Xx)PXIX] IS (VYo)(3i/i)Pyoyi; applying a to (VXy)
(3x3)Px7x3 yields the same result; i.e, a literally identifies formulas that
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are identica only up to renaming of bound variables. It is the canonica
renaming of bound variables that dlows us to extend unifigbility from terms
to formulas. Two formulas<t> and tp in £SH are caled unifiableiff thereisa
term assignment a, such that o[ <j>] = cr[].% Let uslook at someexampleson
how to prove statements in the expanded cal culus and motivate the additional
technical steps we have to take.

Example 1. Pah (3x)Px

‘{a
PmF&
31
Pa?(éx)Px
a isthe substitution (a/zi); as example 3 will show, closing with Y, will not
adways guarantee success of the proof search.

Example 2 (YXo)PXo, (VXMQXI h (VX2)Pxo A (VX3)QX3

X0 Yo

(Vzo) Pzo, (V31>Q11?(V12)P-‘52 (Vzo) Py, (Vzl}Qzl?(st)st
|

(VZo) Pxo, (VX1)QX1AVX2)Px2 A (VX3)QX3

Thistransforms directly into an nd-proof, as we assume the general renaming
rule; cf. beginning of section 6.

Example 3. Closng every branch with a substitution is not enough to
guarantee that a derivation has been found. For example,

(3X)(3Xx2)Pxix2, (3X)Qx \f {3x){3x){Pxix2 A QX).

Consder the following partial icsH-tree (where a abbreviates the appropriate
sequence of assumptions):

Z gtandard unification algorithms can be easily adapted to provide a most general idem-
potent unifier; cf. [Sieg and Kauffmann].
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a, (3Xt)Pf,X2I, Pf]fg?Plez

. Y,
a, (3x2) Pfilxz?lezz a,Q _f;,?QzI
BI.I, 3'1,
a?Plzlzay a?lel

(3$1)(3$2)P31$2, (%)QI?PZ[ZQ Fat QZ]_
31
(3%1)(3x2) Pxix2, (3X)qx?(3x2)(Pax2 A Qz)

- (Bx)(Bx)Pxixa,  (3)QX?Bx)(X)(Prxz A Q)

Here, a = (fi/zifa/z® and r; = (fZf2\). a unifies P/1/2 with PAz and
?/ unifies Qfz with Qzi, but applying both of these means that P/1/2 and
Qfz will be the premises to A t with a conclusion which should unify with
P2zt\QZ. The only possible conclusion from these premises is P/1/2 AQ/3,
which does not unify with PAZ2 A Q2. Thus the failure of this tree to be
a derivation is not determined at the leaves, but rather when the unification
information is passed down thetree. Note also that in applying 3 X to obtain
Q/35 we introduce a function symbol which is new to the entire tree, not just
to the branch below the rule application. 1f werequired only that these names
were new to the given branch, we could have instantiated (3x)Qx with Qf\.
Doing so would have allowed us to use rf = (fi/z). The tree would then be
a "derivation".

Example 4. (VX)) (3X2)PxX2,{3X)Qx  h  (3X1)(3BX)(PI:Xa A QXx) The
derivation is as follows:
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' |
a; {3x)PzsXy, P21 f21Pz122

: Y
a; {3x») sz,xz?Pz. 72 a; Qf f?QZq
V N
a?P'zlzg a??zl
Al t

(Vz }(322) P11 72, (:SX)QX?PZ! Z,AQzn
(VX1)(3X2)PXaXa, (3X)|QX?_(3X2)(PZ|X2 A Qz)

(VX1)(3x2)Px1X2, (3X)QXU3X)(3%2)(PxiX2 A Q1)

Here ais (z&/2, hz", and r/ is (fz/z)). In this tree, when passing down the
unifier informatfen, we can "merge" o and rj to asubstitution (/3/21, /a/",
hi*i)+ This substitution will work for the part of the tree where the two
branches merge.

The following considerations serve to make explicit the mechanism under-
lyingthe "merging" mentioned in example 4. For that purposewe review first
some standard definitions as found, for example, in [Snyder]. We indicate the
composition of two substitutions a and p by ap, with ap(w) = a(p(w)). A
substitution a is t dempotent just in case GO = a. Finaly, p<o ("p is more
generd than a' or, perhaps better, " p is less specific than a") if and only if
there is a substitution 77, such that r)p = a. For idempotent substitutions we
note that p < a implies op = 0. Finally, we come to our crucia definitions.

Definition, (i) For substitutions O\ and 0,, 0 = O\Vo; is the least (with
respect to <) substitution o such that o\ < o and 0, < 0. oiscdled thejoin
of o\ and 0,. Note that the join is not dways defined, and that sometimes
multiple substitutions may bejoinsfor agiven pair of substitutions (in which
case we smply pick one), (ii) Substitutions o and p are called consistent
exactly when o\lp is defined.
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Let us consider two examples. If 0 = (a/z,b/2,) and n = {c/z), then
o[Pz123 A Qz3] = Pab A Qz3 and n[Pz12; A Qz3] = Pczy A Qz3, whereas
oV is undefined. Now let o = (23/2,b/2,) and 1 = {c/z), then 0[Pz 2, A
Qz3) = P23b A Qz; and [Pz 22 A Qz3] = Pcz; A Qzz. In this case oV =
(c/z1,b/22,¢/25) and aVn[Pz 22 A Qz3] = Pcb A Qc.

To summarize our discussion (through examples): When asking a ques-
tion in the calculi described prior to ICsy, closing a branch with Y guaranteed
success along that branch, and succeeding for the whole proof required only
that we succeed on sufficiently many branches to build a derivation. The
above examples illustrate that closing off a branch with a unifier does not
guarantee success on that branch, as it may cause the new free variables oc-
curring in the branch to be instantiated with terms which are not consistent
with the rest of the tree. Thus, a unifier gives us success only modulo its
compatability with unifiers from other branches of the tree. Moreover, at
any stage there may be multiple possible unifiers, any of which may or may
not succeed further down the tree.

In order to keep track of all of these possibilities we modify the valuation
function accordingly. We will introduce the value Y, for every idempotent
substitution 0. Roughly speaking, a node N will be given the value Y, if
applying o to the subtree rooted at N will result in a tree having value Y.
To do this rigorously, we first introduce a means for “joining” values, so that
the value for the whole tree can be determined—when the leaves have values,
namely, sets of Y,’s.

Definition. Let A = {Y,,,...,Y,.}, B = {Yo,...,Yo,}. AVB =
{Y,,‘.\-,,,j |1<i<m,1<j<n, and p; and g; are consistent}.

The earlier evaluation function [N]x has to be modified, as sets of values
are assigned to nodes. Let ¥ be a partial icgg-tree and vy the valuation
for the leaves of £. In case N is a leaf, say N = a;87G, [Nls = {Ys |
o[G] € o[af] and o idempotent}. In case N is the unique successor of M,
[N]s = [M]g; in case N is at a conjunctive branching, i.e., a rule node for a
two-premise rule with M; and M, above N, [N]z = [Mi]sV[M:]z; finally,
in case N is at a disjunctive branching, i.e., a question node with rule nodes
M,, ..., M; above N, [N}z = Ui<i<k[Mi]s- If £ has (question node) N as
its root, we set [X] = [N]s. o

6. Correctness of Proof Search (in the SH-Expansion). We consider
the SH-expansion “just” as a convenient technical tool for automated proof
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search; thus, we ask basic questions a?G only when the elements of @ and G
are formulas in £;. Clearly, if we find an icgg-derivation for such a question,
we want to associate with it an nd-proof in £, of G from assumptions in a.
This is immediate with p-normal or normal derivations, as soon as we know
how to transform partial icgy-trees into ic;-trees. For this purpose, we define
a canonical renaming function as follows:

Definition. Let o be a substitution and IT an icgy-tree. Let {t;,...,t,} =
T*(o[M]). Let z,,...,z, € X be new for II. R is the tree-renaming gener-
ated by Il and o.

o _ ) Ti ifoftj=¢t,1<i<n
Rl = { oft] otherwise

RI distributes over relation symbols, sentential connectives, and quantifiers.
It is applied to a question node by applying it to every formula at the node,
and to a tree by applying it to every question node in the tree (as well as to
the formulas displayed at L-rule nodes). We abbreviate RI[IT] by R,[II].

For such renamings we will show that they associate with partial icgy-trees
partial ic,-trees. Then we will show that an icsy-derivation exists for a given
Li-question a?G”if and only if an ic,-derivation exists for a?G. We add
to our formulation of the natural deduction calculus a rule that allows for
renaming of bound variables:

(R) %— if o[¢*] = o|¢] for every term-assignment o.

We need to make the corresponding adjustment to IC,, i.e., we close a branch
with leaf node a; 87?G with Y whenever G € af8 up to renaming of bound
variables.

Local Correctness Lemma. Let T be an icgg-tree for ap?Go—ayg, Go in
L. Then for any substitution o, R,[T] is an ic,-tree for ap?Gy.

PROOF. Fix R = RY; by the definition of R, R[T] has root ap?Gy (since the
support of R is contained in £*). We show now by induction on the height
of IT* that for every subtree II* of T, R[II*] is an ic,-tree. Let a; 587G be
the root of IT and let o'; 3'?G' = R[a; 87G]. If a; B?G is a leaf node then
R[a; B?G] is a leaf in £, and hence an ic;-tree. For the inductive step, it will
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be enough to show: for each rule node r immediately above a; /772G, the tree
Il consisting of a; /3?G and the subtree of 11* with root r above it is mapped
by R to an ici-tree. The tree |l isrepresented by

Ep sI

where we allow E, to be empty in case r has only one premise. i2[Eo] and
R[Eare ici-trees by the induction hypothesis. Let E{, = #[Eo] and Ey =
R[X,]. We proceed by case according to the ruler. Consider A t; herell is

2 C 0z :
o{ a; B¢ 1{ a; B¢,
o; 8741 A &2
If Rla; /37<t>i] = & /?"?#foreach f = 1,2, then R[a; 0?faA<fo] = &'; £'?#A#,
and R[U] is

S ST X .
o; f'7¢] o'; 79,
) AT AY
thisis, by A t> an ici-tree. All other propositional rules follow in a similar
way. Now let us-consider the quantifier rules. In thecaseof V 4, Il is

"o 1 orp<tz?G
a; f7G
where (Vx)*a; € a/3. Let t = R[Z]. If a[Z € £1, then t = a[Z] € A, by the

definition of R; if not, then t = x for some appropriate x 6 A. In either
case, t e £1 and i2[Eo] = Ed is an ic,-tree for a’; /?, <€t2G". R[] isthen

E"{ o; B, $17G"
o; §1°G’
where (Vx)M'x € aft'. By V 4, R[R] isan ici-tree. Thecasefor 3tissmilar.
Finally, consider 3 J; herell is

o { o, ¢f% 51G
a;0?G
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where (3x)<j>x e a/3 and fz $ Tsn(<*P,G). Thereisno z e Tsn((*P,G) such
that a[Z] = a[f7], because any such z would be an argument of f.? Thus,
R[fZf ? TsH(@/3,G). Say R[fZ-= x; R[I1} is now

zfo I 7 :. ]
o, ¢'z; B'7G
a]/37G

R[U] isanici-tree by 3|, since (3X)</>'x G a3, and x is new to a, G*. The
case for V f is similar. E

Having associated with partial icsH-trees partial ici-trees, we show now that
the "association" preserves global correctness in the sense of the following
theorem:

Valuation Theorem. Let T be an icsH-*re=> @ 2 substitution.
() 1fY.e[Tl then[R[T]I=Y.
(i) //[T] =0, then [R*[T]] = U or N.

PROOF. Let T"and a be given as above; we use R as an abbreviation for
-Rj. To establish the theorem it suffices to show by induction on Il that for
every subtree Il of T (rooted at a question node):

Yo G [n]+ for some p< a if and only if [flplUAT] =Y.

Note, that if Y, G [11JT for some p < a, then /2[ll] isanici-tree by thelocal
correctness lemma. Let N = a; /?2G be the root of II. For the base case
assume that N is a leaf node. If Y, € [n]y for some p < a, then choose
<f> € afi such that p{0] = p[G\. a[<f>] = ap{<() = ap[<t>]] = (?[p[G]] = <?p[G\ =
a[G]. Thus R[G\ e R[ap] up to renaming of bound variables, so [R[U]] =Y.
Conversely, assume [R[U]] = Y. Then RG] G R[a(3] up to renaming of
bound variables, so Y, G [&; p?G\.

In the inductive step, N is not a leaf node. For the "-direction, assume
Y, G [N]T for some p < a. Let M be any node immediately above N such
that Y, G [M\. (Such an M exists by the definition of [JV].) If M has a

Here one uses the fact that, given any term f(2
such that <r[f(4,..., z,)] = a[z]] for any 1 <t <n.

..... Z,), there is no substitution a
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single premise M,, then Y, G [M,] by the definition of [M]. By inductive
hypothesis, [R[Mo]] = Y. Then [RIM]] =Y and hence [RIN]] = Y as
wel. If M has two premises, M, and My, then by the definition of [M],
there are po and p, such that YA G [M], Yp G [MJ, and p = poVpi- Since
Po < P< <, we have po_< a and, thus, [#M¢]] =Y. Similarly we have
[flfMX]] =Y. But then [RIM]] = Y and hence [[ZN]] =Y.
For the ~-direction, assume [i7iV]] =Y, and choose rule node M imme-
diately above N, such that [#M]j] = Y. If M has only one premise M,,
then [i2IMg]] =Y. By inductive hypothesis, Y, G [M,] T for somep < a.
[TV] = [M] = [M0], so we are done. If M has two premises Mo and Mi,
then [RIMo]] =Y and [RY]] =Y by the definition of [R[M]]. By the in-
ductive hypothesis, choose (for t = 0,1) pi such that Ypi G [My] and p; < a
Noovp € [ANJ N VI Since PQ<G and pi < @, poVpi < @, So we are done.
D

The fdllowing corollary to this theorem establishes the usefulness of the
ICSH calculus.

Correctness for IcsH- Let a, G be in C\; then there is an icsn-derivation
for a?G if and only if there is an ici-derivation for a?G.

Indeed, the nd-proofs that are then associated with ici-derivations are,
depending on the operation chosen in the +-rules, either p-norma or nor-
mal. The SH-expansion is thus a tool that provides correctly nd-proofe.
In the introductory remarks to the previous section we mentioned that the
SH-expansion is to be used for proof search, indeed, proof search that ex-
tends in amost natural way the strategic considerations for sentential logic—
implemented in the Carnegie Mdlon Proof Tutor. Those strategic consder-
ations are described in [Seg and Schemes]; here we review just the coarse
structure of the (very efficient) search procedure. The search for an answer,
l.e., an ic-derivation, to the question a;/3?G involves three distinct compo-
nents. (i) use of i-rules, (ii) use of t-rules, (iii) use of _L-rues (with alimited
set of contradictory pairs of formulas). It isstep (i) that is central and taken
in agoal-directed way. If the question

(*) Is G adtrictly positive subformula of a formula in a/3?

has an affirmative answer, this step provides sequences of 4,-rule applications
that extract G from strictly positive occurrences of G in elements of aft. The
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connecting formula sequences consist of the major premises of the ”-rules
and require, in genera, answers to new questions, namely, those raised in
the minor premises of the rule applications.

It is for the appropriate generalization of this extraction strategy that the
SH-expangon is absolutely critical. Recall that the question in sententia
logic "Is G an dement of a/??" is generdized in predicate logic to "Is G
unifiable with an dement of aft?". The goal-directedness of applications of
4-rules is now obtained by generalizing the question (*) above to

Is G unifiable with a strictly posit‘ive canonical subformula of a formulain
a/3?

A subformula is consdered to be a canonical one, if quantifiers are instan-
tiated by terms that match the "-quantifier rules of iIcsH> ie., those terms
would be used, if the formula were "extractable” by 4-rules—This natural
extension of the sentential logica search satisfies three important desiderata:
(i) logica truths of sentential logic, e.g., instances of the lawv of excluded
middle with complex formulas of d, are recognized without appealing to
quantificational rules; (ii) the seection of terms for V | and 3t is ddayed;
(iii) extractability is the central feature of the search. The details of our
approach to autgmated proof search will be presented in a later publication
(together with a discussion of benchmark examples).

7. So what? This work is to address, ultimately, the question of finding
proofs in mathematics with logicd and mathematical understanding. If one
- looks at Georg Polya's writings on mathematical reasoning and heuristics one
realizes quickly that his most general strategies for argumentation are smple
logical ones. Clearly, logicd formality per se does not facilitate the finding
of proofs. Logic within a natural deduction framework does help, however,
to bridge the gap between assumptions and conclusions by suggesting very
rough structures for arguments, i.e. logical structures that depend soldy on
the syntactic form of assumptions and conclusions. This role of logic, though
modest, is the starting-point for moving up to subject-specific considerations
that support a theorem.

Proofs provide explanations of what they prove by putting their conclu-
sonsin acontext that shows them to be correct. The deductive organization
of parts of mathematics is the classical methodology for soecifying such con-
texts. This methodology has two wel-known aspects: the formulation of
principles, i.e. axioms, and the reasoning from such principles; the latter is
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mediated through logical inferences and subject-specific lemmata. Heuris
tic considerations and "leading mathematical ideas' for particular parts of
mathematics have to be found and properly articulated. Saunders MacL ane
(1934) suggested to include in the scope of logic such a structure-theory of
proofs. this extension of the traditional role of logic and, in particular, of
proof theory interacts directly and, we are convinced, fruitfully with a so-
phisticated, automated search for humanly intelligible proofs.

38




Appendix
In this appendix we give first a definition used at the end of section 3; then
two diagrams are drawn that complement the text of sections 2 and 3.

Positive and strictly positive subformulas of a given formula are defined
by induction; indeed, for the first concept one defines smultaneoudy, when
N is a positive subformula of rj}[<f> G P(VQ] or 0 is a negative subformula of
¥[¢ G N(ij;)], namely by the rules,

(i) 0is™=> " G P{i)
() (a)</»iS ki, A G IyT(V») ==+ " G P{v¥)
()W is-+ , A (") =+ $ G "(¢)
(i) (a)t/»isV'I A vArt 0G P(V'i) U Pti»2) = ¢ € P(3)
(b)i/»is V)] A"2,<> G N(V'i) U A(V*2) =>-0G N(¥)
(iv) (Q)ij)isviVa, ¢ GP(ViI)UP(M:)=""G P(¥)
0>)il;isVh Vg, & GA/(M1)UA/(V2) = ¢ € N(¥)
v) (a).p i =52, 97 G P(VA) =A A G P(V)
(b)i bistg v <6 G IV (M) =N M»GP(V>)
(c)i I;isVn — 2, ¢* G P(ipi) U A/ == 0 & N(¥)
Finally, ~ is a strictly positive subformula of VVKE € «SV>)] if and only if it can
be obtained by just the rules (i), (iii)(a), (iv)(a), and (v)(a).

Diagram 1 illustratesthe construction of an ic-tree in an interesting case,
namely the proof of tertium non datur. Diagram 2 illustrates the construction
of canonical refutation branches discussed in section 3.
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->pP?P -~P?7-P
1, P N
7P 7-P
. vt vtz @
PV P
Diagram 1.

Diagrams 1A and |.B expand nodes A and B, respectively.
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az?—-P
ag?P

03?—|P

as?P

4
[ V{2
2 1 Y Vi
Vit
-P)
: ay?(PV
Pv-P
-~P)  on?
\/ as?ﬂ(P V
-P
as?P Vv
3
\/ e
-P
1, PV /
a]_?P
' Y
V12
vVt
\/ .
-P
PV
-P
-Lc PV
ai =--(PV ->P) :

a = -,(PV->P), P

Diagram |.A.
o3 = —1(PV —-P}, -P
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~(PV —P)?P ~(PV ~P)?-P

\/

1., P

Diagram 1.B.

The question nodes above are expanded in exactly the same way as the
corresponding questions in diagram 1.A.
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-H A
ay!
a,,?H A

1,H;,
as?H),
az?H),

N

. -L7 HXz

?—'HAI
g’
al?H,\l

N

-!-,HAI

i ?
ap?Hy, i.e. a?’G

Diagram 2.
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