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Abstract

We analyze common reasoning about admissibility in the strategic and
extensive form of a game. We define a notion of sequential proper admissi-
bility in the extensive form, and show that, in finite extensive games with
perfect recall, the strategies that are consistent with common reasoning
about sequential proper admissibility in the extensive form are exactly
those that are consistent with common reasoning about admissibility in
the strategic form representation of the game. Thus in such games the
solution given by common reasoning about •*iitti«qfciiifcy does not depend
on how the strategic situation is represented. We further explore the links
between iterated admissibility and backward and forward induction.

1 Introduction
A weU known problem with non-cooperative game theory is that Nash
equilibria are seldom relevant for predicting how the players will play. The
equilibria of a game do not represent all the possible outcomes. Rather,
they represent the set of self-enforcing agreements: had the players known
their respective choices before playing the game, then they must have
constituted an equilibrium. Some game theorists have argued that pre-
dictabffity must involve what Binmore (1987/88) has called an "eductive"
procedure. When asking how the players1 deductive processes might un-
fold, one must usually specify some basic principles of rationality, and
then examine what choices are consistent with common knowledge of the
specified principles. The advantage of this approach is that it is possible
to refine our predictions about how players might choose without assum-
ing that they will coordinate on a particular equilibrium. Principles such
as iterated strict dominance or rationalkabOity (Pearce 1984), (Bernheim
1984) are examples of how it is possible to restrict the set of predictions



yields exactly the backward induction solution. And in finite games of
imperfect information, common reasoning about arimissihility yields typ-
ical forward induction solutions. Thus backward and forward induction
seem to follow from one principle, namely that players' choices should be
~w**tmnt with common reasoning about admissibility. This result may
seem questionable, as it is also commonly held that backward and for-
ward induction principles are mutually inconsistent. That is, if we take
backward and forward induction principles to be restrictions imposed on
equilibria, then they lead to contradictory conclusions about how to play.
We show that the problem with the fncamplfs one finds in the literature
is that no constraints are set on players' forward induction "signals". We
define a credible forward induction signal in an extensive game as a signal
consistent with common reasoning about sequential admissibility. Thus
the examples in the literature which purport to show the conflict between
backward and forward induction principles involve forward induction sig-
nals that are not credible.

2 Extensive Form Games
We introduce the bask notions for describing games in extensive form.
Note that our formaliiation is limited to finite games, and that we restrict
players to only play pure strategies. A finite extensive form game for
players N = 1,2, ...,n is given by a game tree T with finitely many nodes
V, root r, payoff functions *+ which assigns a payoff to each player i at
each terminal node in T, and information sets 1% for each player i. For
each node x in T, I(x) is the information set containing s. A pure strategy
s% for player t in a game tree T assigns a unique action, called a move,
to each information set h of player t in T. We denote the set of Vs pure
strategics in T by &(T) (in what follows, the term •strategy* always
refers to pure strategies.) A strategy profile in T is a vector (*i,*2, ••',*»)
consisting of one strategy for each player t. We denote the set of pure
strategy profiles in T by S(T); Le. S(T) = x i € N &(r) . We use V to
denote a generic strategy profile. It is useful to denote a vector of length
n — 1 consisting of strategy choices by player t*s opponents by s-%. We
write S-i(T) for the set of strategy profiles of Ve opponents, i.e. S-i(T)

Given a strategy profile *, we use s[i\ to denote the strategy of player
t in J, and s[-t{ to denote the strategy profile of t's opponents in s.

In the games we consider, the root is the only member of its informa-
tion set (Le. I(r) = {r}), so that a strategy profile J in T determines a
unique maximal path < r,«i,«j,...,«» > from the root r to a terminal
node xm; we refer to this path as the play sequence resulting from *, and
denote it by pJay(j). When a strategy profile s in T is played, each player
receives as payoff the payoff from the terminal node reached in the play
sequence resulting from *. With some abuse of notation, we use m to
denote both a function from strategy profiles to payoffs for player t, as
well as a function from terminal nodes to a payoff for player t, and define



strategy, whereas in the second case also weakly dominated strategies are
eliminated.

A player who is reasoning, say, with the help of admissibility would not
go very far in «limin»tan{r plays of the game inconsistent with it, unless he
assumes that the other players are also applying the same principle. In
the game of Figure 1, for example, player 1 could not eliminate a priori
any play of the game unless he assumed player 2 never plays a dominated
strategy. l In general, even assuming that other players are rational
not be enough to rule out possibilities about how a given game might
be played. Players must reason about other players' reasoning, and such
mutual reasoning must be common knowledge. Unless otherwise specified,
we shall assume that players have common knowledge of the structure of
the game and of rationality, and examine how common reasoning about
rationality unfolds.

3.1 Strict Dominance and Subgame Perfection
This section explores in detail the implications of common reasoning about
weak admissibility, the requirement that players should avoid strictly dom-
inated actions. We show that in finite games of perfect information, com-
mon reasoning about weak admissibility gives exactly the same results as
Zermelo's backward induction algorithm, which in finite games of perfect
information corresponds to Selten's notion of subgame perfection 3. We
th*n show by examples that the tight connection between common rea-
soning about weak admissibility and subgame perfection breaks down in
games of imperfect information.

We define a strategy to be sequentially weakly admissible in a game
tree T if it is weakly admissible at each information set in T. A strategy
*i for player t is not weakly admissible at a given information set /« if
the strategy is strictly dominated at I*. This means that there is some
other strategy J£ that yields i a better outcome than Si at every node x
in Ii. For example, in the game of Figure 1, playing right (CR') at 2's
information set is strictly dominated by playing left fL1).

The formal definition of sequential weak admissibility is the following.

DEFINITION 2 Strict Dominance and Weak Admissibility in Extensive Form
Games

• LetT be a finite game tree for N = 1,2,. . . , n players.

• We define the payoff to player i from strategy *i and strategy profile
*-• atx, written Ui(si,s-i,x), to 6e «>(*, «.t, s) = m(*|T*,*-i|T*).

• A strategy s% is strictly dominated by another strategy s[ at an infor-
mation set Ii belonging to tin T just in ease for all strategy profiles
s-i in Tf and for ally in Iit **(*,«_», y) < *i(*J, *_i, y).

1Here and elsewhere, the payoff at a terminal node is given as & pair (x,y), where x is the
payoff for player 1 and y is the payoff for player 2.

3cf. (Osborne and Rubinstein, 1994, Ch. 6).



• A strategy a is weakly Admissible at an information set U inT just
in ease Si is not strictly dominated at I».

• A strategy a is sequentially weakly admissible inT if and only if *i
is weakly admissible at each information set U inT 1hat belongs to
player i.

Our procedure for capturing common reasoning about sequential weak
admissibility in T is the following. First, eliminate at each information set
in T all moves that are inconsistent with weak admissibility, Le. strictly
dominated chokes. The result is a restricted game tree 7".

Repeat the pruning procedure with T to obtain another restricted
game tree, and continue until no moves in the resulting game tree are
strictly dominated. Note that the recursive pruning procedure does not
start at the final information sets. Our procedure allows players to con-
sider the game tree as a whole and start eliminating branches anywhere
in the tree by applying weak admissibility. To illustrate the procedure,
look at the game of figure 1. R is eliminated at 2>s information set in
the first iteration, and then c is eliminated for player 1 because, after R
is eliminated, either a or 6 yield player 1 a payoff of 1 for sure, while c
yields 0. The pruning procedure is formally defined as follows. Fbr a given
game tree T, let Weak-Adi(T) = {* € &(T) : * is sequentially weakly
admissible in T}, and let Weak - Ad(T) = xieNWeak - Adi(T) .

DEFINITION 3 Common Reasoning about Sequential Weak Admissibility

• Let T be a finite game tree for N = 1,2,... ,n players.

• Hie strategies in T consistent with common reasoning about sequen-
tial weak admissibility are denoted by CRWA(T), and are defined as
follows:

1. WA°(T) = S(T).
t. JPAi+1(T) = Weak - Ad(T\WA'(T)).
3. se CRWA(T) <=* Vj: s\[T\WA*(T)] 6 WA*+\T).

If T is a finite game tree, the set of strategies for player it£k(T) is
finite, and our procedure will go through only finitely many iterations.
lb be precise, let max = J^ien 1*1" *» t h c n t a c P^ocodme will terminate
after max iterations, Le, for all; > max, WA^T) = WA>+\T).

We introduce the concept of Nash equilibrium and one of its refine-
ments, subgame perfection, for generic finite games in extensive form. A
strategy s% in a game tree T is a best reply to a strategy profile s-i of t*s
opponents if there is no strategy *J for player i such that «<(«£, *_<) >
«<(««, «-i). A strategy profile a is a Nash equilibrium if each strategy
s[t\ in s is a best reply against s[-i\. A strategy profile s is a subgame
perfect equilibrium if for each subgame Tm of T, (*|T«) is a Nash equilib-
rium of TK. We say that a strategy *• in T is consistent with subgame
perfection if there is a subgame perfect strategy profile s of which ««
is a component strategy, Le. «; = s[%\. We denote the set of player t's
strategies in T that are consistent with subgame perfection by SPEi(T),
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Figure 2: A game of perfect information.



4 Sequential Weak Dominance and For-
ward Induction
4.1 Weak Dominance
Informally, a strategy s% is weakly dominated by another strategy s\ at
an information I* in a game tree T if aj never yields less to t at 1% than 5*
does, and sometimes yields more. For example, in the game of Figure 3, a
b weakly 4mninitH at 2's information set. And in the game of Figure 4,
^rvwng 6 |s weakly dominated for 2 because a yields player 2 the payoff
2 for sure, while b may yield only 0 if player 1 plays Jfe. As in the case
of weak admissibility, we call a strategy * sequentially admissible just in
case Si is admissible at each information set belonging to player t.

DEFINITION 4 Weak Dominance and AdmitsibiUiy in Extensive Form Games

• LetT be a finite game tree for N = 1 , 2 , . . . , n players.

• A strategy n is weakly dominated by another strategy s\ at an in-
formation set U belonging to i in T just in case

I. for all strategy profiles s-i in T, and for ally in /*, tti(*i,«-», y) <

2. for some strategy profile s-i and some node y in I*,

• A strategy s% is admissible at an information set U in T just in ease
Si is not weakly dominated at /».

• A strategy Si is sequentially admissible in T if and only if Si is
admissible at each information set Ii inT that belongs to t.

We define a procedure to capture common reasoning about sequen-
tial admissibility analogous to common reasoning about sequential weak
admissibility. To illustrate the procedure, consider figure 4. Common
reasoning about admissibility rules out b as a choice for player 2 because
b is weakly dominated. Then given that only a remain at 29s decision
node, Ri (strictly) dominates In for player 1. So the only play consistent
with common reasoning about sequential admissibility is for player 1 to
play Ri and end the game. Note however that common reasoning about
sequential weak admissibility, Le. the standard backwards induction pro-
cedure, is consistent with both Ri and the play sequence Iri,b,L3. So
even in games of perfect information, common reasoning about sequential
admissibility may lead to stronger results than common reasoning about
sequential weak admissibility.

For a given game tree T, let Seq - Adi(T) = {* € S(T) : Si is
sequentially admissible in T}, and let Seq - Ad(T) - xieNSeq - Aa\(T).

DEFINITION 5 Common Reasoning about Sequential Admissibility

• Let T be a finite game tree with players N = 1,2, ...n.
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The strategies in T consistent with common reasoning about se-
quential admissibility are denoted by CRs*q(T), and are defined as
follows:

1. Seq*(T) = S(T).

3. s eCRs^CT) <=• Vi : sWTlSe^iT)) €

We have seen that common reasoning about sequential admissibility
can lead to stronger results than common reasoning about sequential weak
admissibility; we next show that the former never leads to weaker results
than the latter. The key is to observe that if a strategy * is strictly
dominated in a game tree T, «« will be strictly dominated in a restriction
of T. The next lemma asserts the contrapositive of this observation: If a
strategy * is admissible in a restriction of T, Si is not strictly dominated
inT.

LEMMA 2 IfT is a restriction ofF and «« is sequentially admissible in
T, then there is an extension s'{ of a to T such that J£ is sequentially
weakly admissible in T*.

This means that our procedure Seq yields, at each stage j, a result that
is at least as strong as that of common reasoning about weak admissibility,
the procedure WA. Hence we have the following proposition.

PROPOSITION 3 Let T be a finite game tree. If a play sequence is con-
sistent with common reasoning about sequential admissibility in T, then
that play sequence is consistent with common reasoning about sequential
weak admissibility. That is, {play{s) : s € CRs^T)} C {ptay(s) : s e
CRWA(T)}.

4.2 Forward Induction
It is commonly held that iterated weak dominance (Le., iterated sequen-
tial admissibility) captures some of the features of backward and forward
induction. Fudenberg and Tiroie (1993, p.461) thus state that: "Iterated
weak dominance incorporates backward induction in games of perfect in-
formation: The suboptimal choices at the last information sets are weakly
dominated; once these are removed, all subgame-tmperfect choices at the
next-to4ast information sets are removed at the next round of iteration;
and so on. Iterated weak dominance also captures part of the forward
induction notions implicit in stability, as a stable component contains a
stable component of the game obtained by deleting a weakly dominated
strategy".

Indeed, we have previously shown that, in finite game of perfect in-
formation, common reasoning about weak aHmmgihiiHy yields exactly the
backward induction solution. In this section we show how, in finite games
of imperfect information, common reasoning about admissibility yields
typical forward induction solutions. Thus backward, and forward induc-
tion seem to follow from one principle, namely that players' choices should

13
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Figure 5: Backward vs. Fbrward Induction Prindples
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DEFINITION 6 Let T be a game tree with information set /». Let T\I%
denote the restriction ofT to nodes in U and successors of nodes in J».

• A strategy s% is consistent with forward induction at U if s% is se-
quentially admissible at /«.

• A move matan information set U is a forward induction signal for
SI at a lower information set IJ (written < /»: m, ij : 5t* >), where

t. Ii is reachable from 1% with *+;
3. *i is consistent with forward induction at /«.

• A forward induction signal < 1% : m,/J : S? > is credible if some
strategy s% in Si is consistent with common reasoning about sequen-
tial admusibiUty in T, Le. Si € CRs*(T)<.

Let us illustrate these concepts in the game of figure 5. According to
our definitions, the only strategy that chooses n at Fs first information set
and is consistent with forward induction is nT. So < i£ : n^lf : {nT} >
is a forward induction signal, where /j denotes Fs first information set
and If denotes Fs second information set. However, < / | : n , i | : {nT} >
is not a credible signal. For nT is inconsistent with common reasoning
about sequential admissibility, since such reasoning rules out L at IFs
second information set. Similarly for player II, < Jjj : DJj± : {DR} >
is a forward induction signal. But it is not a credible signal, since DR is
inconsistent with common reasoning about sequential admissibility. Hence
neither forward induction signal is credible, as "sending" either signal
is inconsistent with common reasoning about sequential admissibility as
denned by CRseq-

In terms of reasoning about admissibility, the difference between Kohlberg's
and our analysis is this. Kohlberg applies admissibility once to argue that
D b a forward induction signal for R and n is a forward induction signal
for T. But if we assume that admissibility is common knowledge among
the players, then neither D nor n are credible signals. Indeed, common
knowledge b not even needed to get to this conclusion: it b sufficient to
apply admissibility twice to get the same result.

5 Common Reasoning about Admissibil-
ity in the Extensive and Strategic Forms
A game G in strategic form is a triple (AT, <S»€*9 **»€*)» where N is the
number of players and, for each player t € N, Si is the set of pure strategies
available to t, and u» is player t*s utility function. Given a strategy profile
s = (*i,..., 0»),ffti(*) denotes the payoff to player i when players follow
the strategies («!,.. . ,«»). Consider the set of strategy profiles S = Si x
S2 x ... x S«, and two strategies *,«< 6 Si of player t. Player t's strategy
Si is weakly dominated by her strategy «< given S just in case:

17



1. PSeq*(T) = S(T).
ft. PSeqi+l(T) = Seq -
S. s € CRpsetCT) <=

The two notions of sequential admissibility are equivalent in terms of
their predictions about how the game will be played. That is, exactly the
same play sequences are consistent with both restrictions.

LEMMA 4 Let T be a finite game tree. Then the play sequences consistent
with sequential admissibility am exactly those consistent with sequential
proper admissibility. That is, {pfay(') : * " sequentially admissible in
T} = iplay(s): s is sequentially properly admissible in T}.

From this fact it follows immediately that common reasoning about
sequential admissibility yields the same predictions as common reasoning
about proper sequential admissibility.

PROPOSITION 5 Let T be a finite game tree. Then the play sequences con-
sistent with common reasoning about sequential admissibility are exactly
those consistent with common reasoning about sequential proper admissi-
bility. That is, {play(s) : s € CRse*(T)} = \play(s) : s € CRPS^T)}.

However, it is not always the case that a strategy that is admissible in
the strategic form of a game is properly admissible in an extensive form of
the game. For example, in the game of figure 6, the strategy L is properly
weakly dominated for player 2 at her information set: at node y, R yields a
higher payoff than L, and starting at node x, both choices yield the same.
On the other hand, node y cannot be reached when 2 plays L, so that L is
admissible in the strategic form of the game, yielding 2's maximal payoff
of 1. The game in figure 6 has the strange feature that if 2 plays R at * to
arrive at y, she has 'forgotten' this fact and cannot distinguish between
x and y. Indeed, this is a game without perfect recall. Perfect recall is
defined as follows.

DEFINITION 9 (KUHN) LetTbe a finite game tree. Then Tisan extensive
game with perfect recall if and only if for each information setli belonging
to player i, and each strategy «» in T, all nodes in U are consistent with
Si if any node in U is.

We note that if T is a game with perfect recall, then all restrictions of
T satisfy perfect recall. The next proposition shows that in extensive form
games with perfect recall, the notion of proper weak dominance coincides
exactly with admissibility in the strategic form.

PROPOSITION 6 Let T be a finite game tree with perfect recall Then a
strategy Si for player i is admissible in the strategic form S(T) if and only
if Si is sequentially properly admissible in T.

Consider a game G in strategic form. We define an order-free iterative
procedure for eliminating weakly dominated strategies. If S is a set of
strategy profiles, let Admissi(S) be the set of all strategies * for player t
that are consistent with S and admissible given 5, and let Admiss(S) =
xieNAdmis3i(S).
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Figure 7: Order-Free Elimination of Weakly Dominated Strategies

DEFINITION 10 Common Reasoning About Admissibility in the Strategic
Form

• Let the strategic form ofa finite game Gbe given by (AT, &€*,<*•€*)>
and let S = Si x £2 x ... x S» be the set of strategy profiles in G.

• The strategies in S consistent with common reasoning about admis-
sibility are denoted by CRAd{S), and are defined as follows.

1. AdP(S) = 5.

2.

3.

The procedure goes through at most £ ) i e N \S% - 1 | iterations; that is,
for all i > £ * * \Si - 1\9A*W = Ad?+\S) .

For example, consider the game in figure 7. In the first iteration, player
1 will eliminate c, which is weakly dominated by 6, and player 2 will elim-
inate A, which is dominated by L and M. Since admissibility is common
knowledge, both players know that the reduced matrix only contains the
strategies a, 6 and L, Af. Common reasoning about admissibilhy means
that both players will apply admissibility to the new matrix (and know
that they both do it), and since now L dominates Af, both will know that
M is being eliminated. Finally, common reasoning about admissibility
will leave 6, L as the unique outcome of the game.
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(=»): Let s be a strategy profile consistent with common reasoning
about sequential weak admissibility (Le. s e CRWA(TX) ). Suppose that
it is player t's turn at x. For each player j,*[j]|7V k consistent with
subgame perfection in each proper subgame T, of T«, by the inductive
hypothesis and the fact that s\j\ is consistent with common reasoning
about sequential weak admissibility in T«. So the implication (=>) is
established if we show that s[i\ is consistent with subgame perfection in
Tx. Let y be the successor of * that is reached when t plays *[%[ at x.
Let max(y) be the w*«r™«**i thftfr t r^n achieve given common reasoning
about sequential weak admissibility when he follows «[t] (Le. max(y) =
max{ui(/[i], *_», x) : «-»is consistent with CRWA(TX)}). Fbr each j / that
is a successor of x, let mind/) be ^e minimum that t can achieve given
common reasoning about sequential weak admiwahflity when he follows
*[t] in Ty#. Then we have (•) that max(y) > mind/) fbr each successor y'
of x. Fbr otherwise player t can ensure himself a higher payoff than s[t\
can possibly yield, by moving to some successor yf of x and continuing
with «[tj. That is, the strategy jj which moves to y' at x and follows s[i\
below y' strictly dominates s[t\ in TX\CRWA(TX). But since T and hence
T* is finite, this contradicts the assumption that s[t\ is consistent with
CRWA(TX). NOW by inductive hypothesis, CRWA(T^) = SPE(T^) for
each successor y' of x. So there is a subgame perfect equilibrium Sm** in
Ty which yields t the payoff max(y) in Ty and in which player % follows
«[t] (Le. «[t] = «m*x[t]). Again by inductive hypothesis, for each successor
node ]/ of x there is a subgame perfect equilibrium s\oia in T^t which gives
player t the payoff min(y/) and in which player t follows s[{\ in Tj. Now
we define a subgame perfect equilibrium s* in Tx in which player i follows

2. in Ty,0* follows

3. in Ty/,4* follows ^J^, where j/ is a successor of x other than y.
By our observation (*), there is no profitable 1-deviation from s*
for player i at x, and hence by lemma 0, ** is a subgame perfect
equilibrium in Tx.

(<=) Let s be consistent with subgame perfection in T*. Let % be the
player moving at x. Consider any strategy «[/] in s, where j ^ i. Since
y is not moving at x, s[j] is consistent with common reasoning about se-
quential weak admissibility in T« if and only if s\j\fT9 is consistent with
common reasoning about sequential weak admissibility in each subgame
T9 of Ts. Since s is consistent with subgame perfection in Tc, there is a
subgame perfect equilibrium 8* in T« in which j follows s\j\. Since 3* is
subgame perfect, s*\Tt is subgame perfect in T,. Hence «[/]|Ty = **b1|Ty

is consistent with subgame perfection in Ty. By inductive hypothesis, this
entails that «[j]|Ty *& consistent with common reasoning about sequential
weak admissibility in T9. Since this is true for any subgame T9 of T«, s\j\
is consistent with common reasoning about sequential weak admissibil-
ity in Tx. Next, consider *[t], the strategy followed by the player who
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is a restriction of T\WAj+l(T). This completes the proof by induction.
D

LEMMA 4 Let T be a finite game tree. Then the play sequences consistent
with sequential admissibility are exactly those consistent with sequential
proper admissibility. That is, {play(s) : s is sequentially admissible in
T} = {play(s) : s is sequentially properly admissible in T}.

Proof. (D) Let s be a sequentially properly admissible strategy profile
in T, and let x be any node reached in play(s) such that I(x) belongs
to player t. Then s[i\ is admissible at I(x) since I(x) is consistent with
s[i\. Now we may modify s to obtain a strategy profile «*, in which each
player t follows «[t] at any information set containing a node in piay(s)^
and follows an admissible strategy at every other information set. Then
5* is sequentially admissible, and play(s*) = play(s).

(C) This is iinra'vti?** because all sequentially admissible strategies
are sequentially properly admissibicD

PROPOSITION 5 Let T be a finite game tree. Then the play sequences con-
sistent with common reasoning about sequential admissibility are exactly
those consistent with common reasoning about sequential proper admissi-
bility. That is, {play(s) : s e CRs^T)} = {play(s) : s € C7*PS«,(T)}.

Proof. We prove by induction on j that for each j >

Base Case, j = 0. The claim is immediate since Se4p(T) = PSeq*(T) =

sen.
Inductive Case: Assume that T\Se^(T) = T|P5e^(T), and consider

j + 1 . The claim follows immediately from lemma 4.D
PROPOSITION 6 Let T be a finite game tree with perfect recall. Then a
strategy s% for player i is admissible in S(T) if and only ifs% is sequentially
properly admissible in T.

Proof. Suppose that a strategy s% in S(T) for player t is weakly dom-
inated in S(T). Then there is a strategy a- consistent with S(T) such
that

1. for all strategy profiles *-« consistent with S(T),Ut(*i, «-i) < ««(*<, s_
and

2. for some strategy profile «1{ consistent with 5(T), «»(*», *!.<) <

Let x be the first node that appears along both the plays of s% against
sti and Si against «I{ at which «» deviates from «£, so that x 6 range(play(si,
rangeiplayistoS^i)) and «i(/»(x)) / ^(/i(x)). Then x is consistent with
Si and s'i in T. Let y be any node at U(x) consistent with Si and s'^
and let 5_» be any strategy profile of t's opponents. Then u»(«i,«-», y) <
Ui(s'i, 5-t,y); for otherwise, by perfect recall, let «!.{ be a strategy profile
of t's opponents such that both pfay(«i,«!_») and piay(«i, ̂ li) reach y,
and such that *!Li|Ty = *_»|Tt. Then t4»(«t,«!.») > t*»(«i, *-i)> contrary to
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that a* is in PSeqi(T)i and the second condition may be restated to
say that *< is admissible in S(T\Ad>(S(T))). By proposition 6, the sec-
ond condition then implies that *, is sequentially properly admissible in
T\AtP(S(T)) = T\PSeqi(T). Hence * is in PSr^l(T). This shows that
PSeq>+l(T) = J W + 1 ( 5 ( T ) ) , and completes the proof by induction^

PROPOSITION 8 Far all finite games G with pure strategy profiles S, CRA<I(S)

0.
Proof. The admissible elements in S{ survive at each iteration j ,

for each player *, and there always is a admissible element in each S{

since each 5? is finite. Hence SP £ 0 for any j , and so S ^ - ^ N |5<"M =
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