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1. I ntroduction

The introduction of statistical models represented by directed acyclic graphs (DAGS) has
proved fruitful in the construction of expert systems, in allowing efficient updating
algorithms that take advantage of conditional independence relations (Pearl, 1988,
Lauritzen et al. 1988), and in ihferring causal gructure from conditional independence
relations (Spirtes and Glymour, 1991, Spirtes, Glymour and Schemes, 1993, Pear| and
Verma, 1991, Cooper, 1992). As aframework for representing the combination of causal
and statistical hypotheses, DAG models have shed light on a number of issuesin statistics
ranging from Simpson's Paradox to experimental design (Spirtes, Glymour and Schemes,
1993). The relations of DAGs with statistical constraints, and the equivalence and
distinguishability properties of DAG models, are now well understood, and their
characterization and computation involves three properties connecting graphical structure
and probability distributions: (i) alocal directed Markov property, (ii) a global directed
Markov property, and (iii) factorizations of joint densities according to the sructure of a
graph (Lauritizen, etal, 1990).

Recursive dructural equation models are one kind of DAG model. However, non-
recursive sructural equation models are not DAG models, and are instead naturally
represented by directed cyclic graphs in which a finite series of edges representing
influence leads from a vertex representing a variable back to that same vertex. Such
graphs have been used to model feedback systems in electrical engineering (Mason,
1953, 1956), and to represent economic processes (Haavelmo, 1943, Goldberger, 1973).
In contragt to the acyclic case, almost nothing general is known about how directed cyclic
graphs (DCGs) represent conditional independence constraints, or about ther equivalence

! Resear ch for this paper was supported by the National Science Foundation through grant 9102169 and the
Navy Personnel Research and Development Center and the Office of Naval Research through contract
~number N00014-93-1-0568. We are indebted to Clark Glymour, Richard Schefnes, Chrigopher Meek, and
Riarek Druzdd for helpful conversations. We also wish to thank anonymous refer ees for helpful comments,
corrections, smplifications, and clarifications.




or identifiability properties, or about characterizing classes of DCGs from conditional
independence relations or other statistical constraints. This paper addresses all of these
issues. The issues turn on how the relations among properties (i), (i) and (iii) essential to
the acyclic case generalize—or fail to generalize—to directed cyclic graphs and
associated families of distributions. It will be shown that when DCGs are interpreted by
analogy with DAGs as representing functional dependencies. with independently
distributed noises or "error variables," the equivalence of the fundamental global and
local Markov conditions characteristic of DAGs no longer holds, even in linear systems.
For linear systems associated with DCGs with mdependent errors or noises, a
characterisation of conditional independence constraints is obtained, and it is shown that
the result generalizes in a natural way to systems in which the error variables or noises
are statistically dependent.

We also present a correct polynomial time (on sparse graphs) discovery algorithm for
‘linear cyclic models that contain no latent variables. This algorithm outputs a
representation of a class of non-recursive linear structural equation models given
observational data as input. Under the assumption that all conditional independencies
found in the observational data are true for structural reasons rather than because of
particular parameter values, the algorithm discovers causal features of the structure which
generated the data. (Discovery algorithms for directed acyclic graphs based upon similar
assumptions are described in Spirtes et al. 1993, and Pearl and Verma 1991.)The
remainder of this paper is organized as follows: Section 2 defines relevant mathematical
ideas and gives some necessary technical results on DAGs and DCGs. Section 3 obtains
results for non-recursive linear structural equations models. Section 4 describes a
discovery algorithm. Section 5 describes some open research problems. All proofs arein
Section 6.

2.. Directed Graphsand Probability Distributions

A directed graph (DG) is an ordered pair of a finite set of vertices V, and a set of
directed edges E. (We place sets of variables and defined terms in boldface.) A directed
edge from A to B is an ordered pair of distinct vertices <A3>inV (depicted as A -> B)
in which A is thetail of the edge and B is the head; the edge is out of A and intoB, and
Aisaparent of B and B isachild of A; also A and B are adjacent. A sequence of edges
<E\g...cE;> in adirected graph G is an undirected path if and only if there exists a
sequence of vertices <Vi,...,Vn.i> such that for 1 < i < n either <Vi,Vi.i> = E[ or
¥<Vi+i,Vi> = Ei and E(* EN. A sequence of edges <£i,...”,> in adirected graph G is a




directed path if and only if there exists a saquénce of vertices <Vi,...,V+i> such that
for 1 £i! £n <Vj,Vi,i>=E(. A (directed or undirected) path U isacyclic if no vertex
occurring on an edge in the path occurs mofe than once. If there is an acydlic directed
path from A to B or B = A then A isan ancestor of B, and B isadescendant of A. A
directed graph is acydlic if and only if it contains no directed cydlic paths.

A directed acyclic graph (DAG) G with a set of vertices V can be given two distinct
interpretations. On the one hand, such graphs can be used to represent causal relations
between variables, where an edge from A to B in G meansthat A is adirect cause of B
illativeto V. A causal graph is aDAG given such an interpretation. Here we take the
concept of "direct cause relative to a set of variables' to be primitive. There is alarge
philosophical literature that attempts to define various causal relations (see e.g. Sosa
1975). However, for the theorems in this paper, such definitions are not needed. The key
assumptions we make are the ones relating causal relations to probability distributions,
and these are stated and justified in section 4.

On the otter hand, a DAG with a set of vertices VV can aso represent a set of probability
measures over V (where the members of V' are both the vertices of the graph and random
variables). Following the terminology of Lauritzen et al (1990) say that a probability
measure over a set of variables V satidfies the local directed Markov property for a
directed acyclic graph (or DAG) G with verticesV if and only if for every W inV, W is
independent of V\(Descendants(W) u Parents(W)) given Parents(W), where
Parents(W) is the set of parents of W in G, and Descendants(W) is the set of
descendants of W in G. (Note that the vertices do not merely index the random variables,
rather the random variables are the vertices of the graph. A vertex isits own ancestor and
descendant, although not its own parent or child.) A DAG G represents the set of
probability measures which stisfy the local directed Markov property for G.

The use of DAGs to smultaneoudy represent a set of causal hypotheses and a family of
probability distributions extends back to the path diagrams introduced by Sewell Wright
(1934). Variants of probabilistic DAG models were introduced in the 1980's in Wermuth
(1980), Wermuth and Lauritzen (1983), Kiiveri, Speed, and Carlin (1984), Kiiveri and
Speed (1982), and Pearl (1988). In Section 4 we will present assumptions which link the
two interpretations of directed graphs.

2An undirected path is often defined as a sequence of vertices rather than a sequence of edges. The two
definitions are essentially equivalent for acyclic directed graphs, because a pair of vertices can be identified
with a unique edge in the graph. However, a cydic graph may contain more than one edge between a pair
of vertices. In that caseit isno longer possible to identify a pair of vertices with a unique edge.




Pearl(1988) defines a global directed Markov property that has been shown to be
equivalent to the local directed Markov property for DAGs, and can be used to calculate
the consequences of the local directed Markov property. (See e.g. Lauritzen et al. 1990.3)
Several preliminary notions are required. Vertex X is a collider on an acyclic undirected
path U in directed graph G if and only if there are two adjacent edges on U directed into
X (e.g- A > X « B). Every other vertex on U is a non-collider on U. In a directed graph
G, if X and Y are not in Z, then an acyclic undirected path U d-connects X and Y given
Z if and only if every collider on U has a descendant in Z, and no non-collider on U is in
Z. For three disjoint sets X, Y, and Z, X and Y are d-connected given Z in G if and only
if there is a path U that d-connects some X in X to some Y in Y given Z. For three
disjoint sets X, Y, and Z, X and Y are d-separated given Z in G if and only if X is not d-
connected to Y given Z. A probability distribution P satisfies the global directed Markov
property for directed graph G if and only if for any three disjoint sets of variables X, Y,
and Z, if X is d-separated from Y given Z in G, then X is independent of Y given Z in P.

The following theorems relate the global directed Markov property to factorizations of a
density function. Denote a density function over V by f{V), where for any subset X of V,
JiX) denotes the marginal density of V). If (V) is the density function for a probability
measure over a set of variables V and An(X) is the set of ancestors of members of X in
directed graph G, say that {V) factors according to directed graph G with vertices V if
and only if for every subset X of V,

f(AnX))= [ &v(V.Parents(V))

VeAn(X)

where each gy is a non-negative function.

The following result was proved in Lauritzen et al. (1990). (A more precise description of
the weak assumptions that need to be made about the underlying probability spaces and
densitites is given in Lauritzen et al. 1990.)

Theorem 1: If V is a set of random variables with a probability measure P that has a
density function {V), then {V) factors according to DAG G if and only if P satisfies the
global directed Markov property for G.

“>However, in Section 3 we show that the local and global directed Markov properties are not equivalent for
cyclic directed graphs.




As in the case of acyclic graphs, the existence of a factorization according to a cyclic
directed graph G does entail that a measure satisfies the globd directed Markov property
for G. The proof given in Lauritzen et al (1990) for the acyclic case carries over
essentialy unchanged to the cyclic case. (Lauritzen et al. use a different definition of
d-separation that is equivaent to Pearl's in both the cyclic and the acyclic case.)

Theorem 2: If V is a set of random variables with a probability measure P that has a
dengity function/(V) and/(V) factors according to directed (cyclic or acyclic) graph G,
then P satisfies the globa directed Markov property for G.

However, unlike the case of acyclic graphs, if a probability measure over a set of
varidbles V stisfies the globa"directed Markov property for cyclic graph G and has a
dengty function/(V), it does not follow that/(V) factors according to G, even if/(V) is
positive. (We thank an anonymous referee for pointing this fact out) -

3. Non-recursiveLinear Structural Equation Models

The problem considered in this section is to investigate the generalization of the Markov
properties to linear, non-recursive structura equation models. First we must relate the
socid scientific terminology to graphica representations, and clarify the questions.

The variables in a structual equation model (SEM) can be divided into two sets, the
"error" variables and the "substantive" variables. Corresponding to each substantive
variable Xj is an equation expressing X| as alinear function of the direct causes of Xj plus
aunique error variable e where the linear coefficient of each variable thet is not an error
variableis afree parameter. (We will not consider non-linear models in this paper. For a
discussion of non-linear cyclic models see Spirtes 1995.) Since we have no interest in
first moments, without loss of generdity each variable can be expressed as a deviation
from its mean.

Congder, for example, two SEMsS, and S, over X = {X,, X,, X3}, wherein both SEMs
X, is a direct cause of X, and X, is adirect cause of X5. The structurd equations® in
Figure 1 arecommontoboth § and S,.

. Werealize that it is dightly unconventional to write the trivial equation for the exogenous variable Xi in
Tamsof itserror, but this servesto givetheerror variables a unified and special status asproviding all the
exogenous sour ces of variation for the system.




X, =¢,
X2 =PIl *I +72
X3 =ps2 Xy +£3

Figure 1. Structural Equationsfor SEMs S and S,

where P,; and », are free'parameters ranging over real values, and £,, £2and £3 are error
variables. In addition suppose that £,, £2and £3 are distributed as multivariate normal. In
S we will assume that the correlation between each pair of distinct error variables is
fixed at zero. The free parameters of S, are Q, = <p, P>, where p is the set of linear
coefficients { p2;, ps2} and P is the set of variances of the error variables. We will use
ZgQG) to denote the covariance matrix parameterized by the vector Q, for model S, and
occasionally leave out the model subscript if the context makes it clear which mode! is
being referred to. If all the pairs of error variables in aSEM S are uncorrelated, we say S
isaSEM with uncorrelated errors.

S, contains the same structural equations as S but in S, we will allow the errors between

X2 and X3 to be correlated, i.e., we make the correlation between the errors of X, and X3

a free parameter, instead of fixing it a zero, asin S,. In S; the free parameters are 8, =

<P, P'>, where p is the set of linear coefficients {P2PP32} " P' is the set of variances of

the error variables and the correlation between £2 and £3. If the correlations between any

of the error variables in a SEM are not fixed at zero, we will call it a SEM with
~correlated errors.® |

If the coefficients in the linear equations are such that the substantive variables are a
unique linear function of the error variables alone, the set of equations is said to have a
reduced form. A linear SEM with a reduced form also determines ajoint distribution
over the substantive variables. We will consider only linear SEMs which have
coefficients for which there is a reduced form, all variances and partial variances among
the substantive variables are finite and positive, and al partial correlations among the
substantive variables are well defined.

It is possible to associate with each SEM with uncorrelated errors a directed graph that
represents the causal structure of the model and the form of the linear equations. For
example, the directed graph associated with the substantive variables in §j is X,-> X, -»

*We do not consider SEM s with other sorts of constraints on the parameters, e.g., equality constraints.




X3, because X, is the only substantive variable that occurs on the right hand side of the
equation for X" and X" isthe only substantive variable that appeals on the right hand side

. of the equation for X3. We generdly do not include error variables in the causa graph
associated with aSEM unlessthe errors are correlated When the distinction is relevant to
the discussion, we enclose measured variables in boxes, latent variables in circles, and
leave error variables unenclosed.

X > E——P X,

y

£ €4

Figure2. SEM S, with correlated errors

The typica path diagram that would be given for S, is shown in Figure 2. Thisis not
srictly a directed graph because of the curved line between error variables 82and Zy
which indicates that s*and £3 are correlated. It is generally accepted that correlation isto
be explained by some form of causal connection. Accordingly if £0and £3 are correlated
we will assume that either “causes e, e; causes € some latent variable causes both »
and 83, or some combination of these. In other words, curved lines are an ambiguous
representation of acausa connection.

A SEM issaid to be recursive (an RSEM) if its directed graph is acyclic; otherwise it is
non-recursive®

A SEM containing digoint sets of variables X, Y, and Z linearly entailsthat X is
independent of Y given Z if and only if X is independent of Y given Z for al vaues of
free parameters in the SEM. A DG G containing digoint sets of variables X, Y, and Z
linearly entailsthat X isindependent of Y given Z if and only if the SEM with DG G
and no correlated errors linearly entails that X isindependent of Y given Z. Smilarly we
may say that a SEM containing X, Y, and Z, where X * Y and X and Yare not in Z,
linearly entailsthat PxY.z=0, if and only if pxY.Z= 0 for dl vaues of free parametersin
the SEM (where pxY.Z is the partia correlation of X and Y given Z.) DG G linearly
entailsthat Pxy.z= 0 if and only if the SEM with DG G and no corrdated errors linearly

"+ Note that this use of cyclicdirected graphsto represent feedback processes represents an extension of the
causal interpretation of directed graphs.




entails PXY.z= 0 It follows from Kiiveri and Speed (1982) that if the error variables are
jointly independent, then any distribution that forms a linear, recursive SEM with a
directed acyclic graph G satisfies the local directed Markov property for G. One can
therefore apply d-separation to the DAG in a linear, recursive SEM to compute the
conditional independencies and zero partial correlations it linearly entails. The
d-separation relation provides a polynomial (in the number of vertices) time algorithm for
deciding whether a given conditional independence relation or vanishing partial
correlation is linearly entailed by a SEM with agiven DAG.

Linear non-recursive structural equation models (linear SEMs) are commonly used in the
econometrics literature to represent feedback processes that have reached equilibrium.’
Corresponding to a set of non-recursive linear equations is a cyclic graph, as the
following example from Whittaker (1990) illustrates.
Xi=gx1
X2 =€x2
X3 =P31X1 + P34X4 + ex3
X4 = PA2X2 + PA3X3 + ex4
&x1> £X2> £X3> 3X4 arejointly independent and normally distributed

Xl—_ox 3

!

X, —— X4

Figure 3: Example of Non-recursive SEM

Theorem 3 and Theorem 4 state that the set of conditional independence relations (and
hence, zero partial correlations) linearly entailed by a SEM correspond to the
d-separation relations in the associated directed graph, even in the case of cyclic graphs.
(Theorem 3 was independently proved by J. Koster in Koster 1995.)

Theorem 3: The probability measure P over the substantive variables of alinear SEM L
(recursive or non-recursive) with jointly independent error variables satisfies the global

’Cox and Wermuth (1993), Wermuth and Lauritzen(1990) and (indirectly) Frydenberg(1990) consider a
class of linear models they call block recursive. The block recursive models overlap the class of SEMs, but
they are neither properly included in that class, nor properly include it Frydenberg (1990) presents

‘snecessary and sufficient conditions for the equivalence of two block recursive models. The graphs of SEMs
without correlated errors are a subclass of the reciprocal graphs introduced in Koster (1995).




directed Markov property for the directed (cyclic or acyclic) graph G of L, i.e. if X, Y,
and Z arcdigoint setsof variablesin G and X isd-separated fromY given Z in G, then X
and Y areindependent given Z in P.

Theorem 4: In-alinear SEM L with jointly independent error variables and directed
(cyclic or acyclic) graph G containing digoint sets of variables X, Y and Z, if X is not
d-separated from Y given Z in G then L does not linearly entail that X is independent of
Y given Z.

Applying Theorem 3 and Theorem 4 to a linear SEM with the directed graph in Figure 3,
the conditional independence reations linearly entailed are: Xi is independent of X2; Xi
is independent of X2 given X3 and X4. It is easy to see from Theorem 3 and Theorem 4
that in alinear SEM L withjointly independent error variables and (cyclic or acyclic)
directed graph G containing substantive variables X, Y and Z, where X * Y and Z does
not contain X or Y, X isd-separated from Y given Z in G if and only ifL linearly entails
that pxY.Z =0 (even if the error terms are not normally distributed).

As in the acyclic case, d-separation provides a polynomial time procedure for deciding
whether alinear SEM with a cyclic graph linearly entails a conditional independence or
vanishing partial correlation.

In DAGsthe global directed Markov property entails the local directed Markov property,
because a variable V is d-separated from its non-parental non-descendants given its
parents. However, thisis not always the case in cyclic graphs. For example, in Figure 3,
X4 is not d-separated from its non-parental non-descendant Xi given its parents X2 and
X3, so thelocal directed Markov property does not hold.2

Thereis also away to decide which partial correations are entailed to be zero by a SEM

with correlated errors, such as S, (Figure 2). This is done by first creating a directed
graph G with latent variables but no correlated errors, and then applying d-separation to
G to determine if a zero partial correlation is entailed. The latent variable directed graph
G (without correated errors) that we will assocate with a SEM S with correlated errorsis
created in the following way. Start with the usual graphical representation of S, that

contains undirected lines connecting correlated errors (e.g. SEM S, in Figure 2). For each

8 We are indebted to C. Glymour for pointing out that the local Markov condition fails in Whittaker's
model. Indeed, there is no acyclic graph (even with additional variables) that linearly entails all and only
conditional independence relations linearly entailed by Figure 3, although the directed cyclic graph of

Vigure 3 isequivalent to onein which the edgesfrom X1 to X3 and X2 to X4 arereplaced, respectively, by
edgesfrom X] to X4 and from X2to X3.




pair of error variables €; and €; connected by an undirected edge, introduce a new latent '
variable T;, and edges from T} to X; and X;. Finally remove all of the error variables from
the graph. When this process is applied to SEM S,, the result is shown in Figure 4.

X,__’Xz_’)g

~Figure 4. SEM S,’: Correlated Errors in S, Replaced by Latent Common Cause

In a SEM like S,, with correlated errors, one can decide whether p,, x; v, is entailed to be
zero by determining whether {X,} and {X,} are d-separated given {X,} in the directed
graph in Figure 4. In this way the problem of determining whether a SEM with correlated
errors entails a zero partial correlation is reduced to the already solved problem of
determining whether a SEM without correlated errors entails a zero partial correlation.
(In general if S is a SEM with correlated errors, and S’ is the SEM with uncorrelated
errors and the latent variable directed graph associated with S, it is not the case that for
every instantiation 0, of the free parameters of S there is an instantiation 0, of the free
‘ parameters of S’ such that 24(0,) = X5,(6,). We are making the weaker claim that d-
separation applied to G correctly describes which zero partial correlations are linearly
entailed by S. See Spirtes et al. 1996a.)

4. The Discovery Problem

Suppose that we are given data sampled from a population whose causal structure is
coﬁectly described by some non-recursive structural equation model M. Is it possible to
discover the causal graph of M from the data, or at least recover some features of the
causal graph from the data? In Spirtes et al. (1995) the problem of discovering features of
the causal graph is considered under the assumption that it is acyclic, but that there may
be latent common causes (i.e. there may be unmeasured variables that are the direct cause
of at least two measured variables.) Here we will consider the problem of discovering
“features of the causal graph under the assumption that it may be cyclic, but there are no

10




latent common causes. Future research is needed on the problem of discovering the
causal graph when it may be cyclic and there may be latent common causes.

In order to make inferences about causal relations from a sample distribution it is
necessary to introduce some axioms that link probability distributions to causal relations.
The two assumptions that we will make are the Causal Independence and Causal
Faithfulness Assumptions, described in the next two subsections.

4.1. The Causal Independence Assumption

The most fundamental assumption relating causality and probability that we will make is
the following:

Causal Independence Assumption: If A does not cause B, and B does not cause A, and
there is no third variable that causes both A and B, then A and B are independent.

This assumption allows us to draw a causal concl usion from statistical data and lies at
the foundation of the theory of randomized experiments. If the value of A is randomized,
the experimenter knows that the randomizing device is the sole cause of A. Hence the
experimenter knows B did not cause A, and that there is no third variable which causes
both A and B. This leaves only two alternatives: either A causes B or A and B are
independent. If A and B are dependent in the experimental population, the experimenter
concludes that A does cause B, which is an application of the Causal Independence
Assumption.

The Causal Independence Assumption entails that if two error variables, such as e*and £3
in Figure 2 are correlated there is alatent common cause of X, and X3 responsible for the
correlation. In other words, when X,and Xshave correlated errors, we assume that the
distribution over X2and X3is the marginal of some other distribution including a finite
number of latent causes of Xj and X3 in which the error variables are unconelated. Since
we are making the assumption that there are no latent common causes, it follows that the
error variables of the causal graph are uncorrelated. The correctness of the d-separation
criterion for deciding which partial correlations are linearly entailed to be zero by'a_ SEM
with an associated directed graph G then follows from Theorem 3 and Theorem 4.

4.2. TheFaithfulness Assumption

In addition to the zero partial correlations that are entailed for all values of the free
parameters of a SEM with a given directed graph, there may be zero partia correlations
«Jhat hold only for some particular assignments of values to the parameters. For example,

11




suppose Figure 5 is the directed graph of a SEM that describes the relations among Tax
Rate, the Economy, and Tax Revenues, where py 1} and p; are free parameters.

%Tax

Revenues

Figure 5. Economic Model

In this case there are no vanishing partial correlation constraints entailed for all values of
the free parameters. But if in the population (J, = -(p2 X ps), then Tax Rate and Tax
Revenues are uncorrelated. The SEM postulates a direct effect of Tax Rate on Revenue
(p,), and an indirect effect through the Economy (p, X ps). The parameter constraint
indicates that these effects exactly offset each other in the population, leaving no total
effect whatsoever. In such acase we say that the distribution is unfaithful to the directed
graph of the causal structure that generated it. A distribution is faithful to a directed
graph G if each vanishing partial correlation in the distribution is linearly entailed by G
(i.e. entailed for all values of the free parameters of the SEM with directed graph G and
no correlated errors). '

Causal Faithfulness Assumption: If the directed graph associated with a SEM M
correctly describes the causal structure in the population, and Qo are the population
parameter values, then if pry = 0in IVi“pop)' M linearly entails that py, = 0.

The faithfulness assumption limits the SEMs considered to those in which population
constraints are entailed by structure, not by particular values of the parameters. If one
assumes faithfulness, then if A and B are not d-separated givenC, then pagc* 0>
(because it is not linearly entailed to equal zero.) Faithfulness should not be assumed
when there are deterministic relationships among variables, or equality constraints upon
free parameters, since either of these can lead to violations of the assumption. Some form
of the assumption of faithfulness is used in every science, and amounts to no more than
the belief that an improbable and unstable cancellation of parameters does not hide real
"tausal influences. When atheory cannot explain an empirical regularity save by invoking

12




a specia parameterization, most scientists are uneasy with the theory and look for an
aternative.

It is also possible to give a personalist Bayesian argument for assuming fathfulness. For
any directed graph, the set of linear parameterizations of the directed graph that lead to
violations of linear faithfulness are Lebesgue measure zero. Hence any Bayesan whose
prior over the parameters is absolutely continuous with Lebesgue measure, assgns azero
prior probability to violations of faithfulness. Of .course, this argument is not relevant to
those Bayesians who place aprior over the parameters that is not absolutely continuous
with Lebesgue measure and assigns anon-zero probability to violations of faithfulness.

The assumption of faithful ness guarantees the asymptotic correctness of the Cyclic
Causd Discovery (CCD) algorithm described in Section 4.4. It does not guarantee that on
samples of finite size this agorithmisreliable.

Given the Causa Independence Assumption, an assumption of no latent variables, a
linearity assumption, and the Causa Faithfulness assumption, it follows that in a
distribution P generated by acausal structure represented by adirected graph G, pxy, =0
if and only if X is d-separated fromY given Z in G. So if we can perform datistical tests
of zero partia correlations then we can use that information to draw conclusions about
the d-separation relations in G, and then to reconstruct as much information about G as
possible. Henceforth we will speak of reconstructing features of G from d-separation
“relations, and from zero partial correlation interchangeably, since given our assumptions,
these are equivalent. We assume that the discovery agorithm has access to a
d-separation oracle that correctly answers questions about d-separation relaionsinG. In
practice, of course, the oracle is some kind of statistical test of the hypothess that a
particular partial correlation is zero in apopulation that satisfies the global Markov and
fathfulness properties for G. (The agorithm is correct for any distribution for which a
d-separation oracle is available, but because in the case where the functiond relations
between variables are non-linear, non-recursive d-separation is not a sufficient condition
for conditional independence, the only case we know of in which such an oracle is
avalableisthelinear case.)

Of course the number of distinct d-separation relations grows exponentially with the
number of variables in the directed graph. Therefore it is important to discover the
features of G from a subset of the set of al d-separation relations. The CCD dgorithm
that we describe below chooses the subset of d-separation relations that it needs to
'reconstruct festures of G as it goes aong.

13




4.3. OQutput Representation — Partial Ancestral Graphs (PAGs)

In general, it is not possible to reconstruct a unique directed graph G given information
only about its d-separation relations, because there may be more than one directed graph
in which exactly the same set of d-separation relations hold. Two directed graphs G, G*
are said to be d-separation equivalentif the same set of d-separation relations holds in
both directed graphs. The set of directed graphs d-separation equivalent to a given
directed graph G is denoted by Equiv(G). (Note that there is a stronger sense of
equivalence, which we will call linear statistical equivalence between two directed graphs
G and G’ which holds when for every instantiation 0, of the free parameters of SEM S
with directed graph G and no correlated errors, there is an instantiation 6, of the free
parameters of SEM S’ with directed graph G’ and no correlated errors, such that £y(0,) =
2(0,), and vice versa. In the acyclic case it is known that d-separation equivalence
implies linear statistical equivalence, but it is known that this is not so for cyclic graphs.)

The members of Equiv(G) always have certain featureé in common. We now introduce
the formalism with which we will represent features common to all directed graphs in
Equiv(G) for some fixed G. A partial ancestral graph (PAG) is an extended graph
consisting of a set of vertices V, and a set of edges between vertices, where there may be
the following kinds of edges: A <> B,Ao—0B,A—B,A0o—>B,A<0B,A 5B, A «
B, Ao—B,and A—o B (The A & B, A <o B, and A o— B edges appear only in PAGs
for directed graphs with latent variables. Because in this paper we are considering only
directed graphs without latent variables, none of these types of edges occur in the PAGs
we consider here.) We say that the A endpoint of an A — B, A— B, or A—o B edge is
“-”; the A endpoint of an A <> B, A <o B, or. A « B edge is “<”; and we say the A
endpoint of an A o—o B, A o— B, or A o— B edge is “o”. The conventions for the B
endpoints are analogous. In addition pairs of edge endpoints niay be connected by
underlining, or dotted uﬂderlim’ng (illusttated below). A partial ancestral graph for G
contains partial information about the ancestor relations in G, namely only those ancestor
relations common to all members of Equiv(G). In the following definition, which
provides a semantics for PAGs we use “*” as a meta-symbol indicating the presence of
any one of {o, —, >}, e.g. A—* B represents any of the following edges: A—B, A — B,
or A—oB.
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Partial Ancestral Graphs (PAGS)’

*FisaPAG for directed graph G with vertex set V, if and only if
(i) Thereis an edge between A and B in ~F if and only if A and B are d-connected in
G given any subsst W ¢ V\{AJB} .
(i) If thereisan edgein *F out of A (not necessarily into B), i.e. A—* B, then A isan
ancestor of B in every directed graph in Equiv(G).
(iii) If there is an edge in H* into B, i.e. A*->B, then in every directed graph in
Equiv(G), B isnot an ancestor of A. .
(iv) If there is an underlining A*—*B*—*C in *F then B is an ancestor of (at least

~ oneaf) A or Cinevery directed graph in Equiv(G).

(v) If there is an edge from A into B, and from C into B, (A—> B<— C), then the

directed graph in Equiv(G) B is not a descendant of acommon child of A and C.

(vi) Any edge cndpoint not marked in one of the above ways is left with asmall circle

thus. o—*. -
Two vertices, X and Y, in adirected cyclic graph G are p-adjacent if there is an edge
between them, X*—*Y, in any (hence every) PAG for G. It follows directly from the
definitions that apair of vertices X, Y are p-adjacent in G ifand only if X and Y are d-
connected given every subset of the other vertices inG.

Observe that condition (i) in the definition of the PAG differs from the other five
conditions in providing necessary and sufficient conditions on Equiv(G) for a given
symbol, in this case an edge, to appear in aPAG. The other five conditions merely state
necessary conditions. For this reason there are in fact many different PAGs for a directed
graph G. Although they al have the same p-adjacencies, the edges may be of different
types. Some of the PAGs provide more information than others about causal structure,
eg. they have fewer Vs at the end of edges.™®

° The extended graphs which we introduce here - Partial Ancestral Graphs - use a superset of the set of
symbols used by Partially Oriented Inducing Path Graphs (POIPGs) descaribed in Spirtes etal (1993) but
the graphical interpretation of the (mentations given to edges is different. However, it has been shown in
Sprites etal. (1996) that a POIPG can beinterpreted directly as a PAG. A direct corollary isthat PAGs can
be used to represent the d-separation equivalence class for directed acyclic graphs with latent variables. It is
an open question whether or not the set of symbols is sufficiently rich to allow ustorepresent d-separation
classes of cyclic graphs with latent variables.
19 f one PAG for agraph G hasaV at theend of an edge, then every other PAG for the same graph either
"hasaV or aV in that location. Similarly if one PAG for a graph G has a ™' at the end of an edge then
every other PAG for the same graph either hasa'-' or an V in that location.

15




If *FisaPAG for directed graph G, we also say that *F represents G. Sinceevery clause
in the definition refers only to Equiv(G), it follows that if *Pis aPAG for directed graph
G, and G*eEquiv(G), then *F isaso aPAG for G*. Thisis not surprisng since, asthe
output of the discovery agorithm we present below, the PAG is designed to represent
features common to all directed graphs in the d-separation equivalence class. However,
some PAGs may represent directed graphs from different d-separation equivaence
classes. This leaves open the possibility that an agorithm might output the same PAG
given directed graphs from different d-separation classes as input However, any PAG
.output by the discovery algorithm we present provides sufficient information to ensure
that the agorithm never outputs the same PAG given oracles for two directed graphs
unless those directed graphs are d-separation equivaent. Hence the algorithm provides a
1-1 mapping from d-separation equivaence classesinto PAGs.

The set of features described by aPAG isrich enough to enable usto distinguish between

any two d-separation equivalence classes, i.e. thereis some set of features common to al
directed graphs in one d-separation equivaence classthat is not true of all directed graphs
in another d-separation equivalence class, and this difference can be expressed by a
difference in the PAGs representing those d-separation equivalence classes.

Example:
Suppose Gisasfollows.
A —eX
G
B —&
Figure6

Inthis case it can be shown that Equiv(G) contains (only) two directed graphs:

A—»X A X
Equiv(G) 0 ><Q
B—»Y B

Figure7

The PAG which the CCD agorithm outputs given as input an oracle for deciding
conditiona independencefactsin G, is:
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A 2 X

PAG for Equiv(G) ’ i
B Sy
Figure 8

Observe that the PAG tells us the following facts about Equiv(G):™*
(@ X is an ancestor of Y, and Y is an ancestor of X in every directed graph in
Equiv(G).
(b) In no directed graph in Equiv(G) is X or Y an ancestor of A or B.
(¢) Inevery directed graph in Equiv(G) both A and B are ancestorsof X and Y.

Note that not every edge in the PAG appearsin every directed graph in Equiv(G). Thisis
because an edge in the PAG indicates only that the two variables connected by the edge
are d-connected given any subset of the other variables. In fact it is possible to show
something stronger, namely that if there is an edge between two vertices in aPAG, then
there is some directed graph represented by the PAG in which that edge is present.’

Thisexampleis atypica in that the PAG given by the agorithm contains no V endpoints;
however it shows how much information a PAG may provide. Notice that the following
are dso PAGsfor G though they are lessinformétive.

A fex A oX
Other PAGs ><'
forEqui* G) .
B—NY B Y
Figure 9

The CCD dgorithm we describe does not dways give the most informative PAG for a
given directed graph G in that there may be features common to al directed graphsin the
d-separation equivaence class which are not captured by the PAG that the dgorithm
outputs. In this sense the algorithm is not complete. However, the algorithm is
d-separation complete in the sense that if the d-separation oracles for two different
directed graphs cause the algorithm to produce the same PAG as output then the two
directed graphs are d-separation equivaent.

**Thisis not an exhaustive list For example, the presence of the dotted line connecting the arrowheads on

the A —>X, and B—>X edges, tells us that in no graph in Equiv(G) are both of these edges present.
~Likewise with the dotted line connecting the arrowheads of the B—>Y, and A—>Y edges.

12See footnote 10.
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The following definition is required to state the algorithm. For graph *F,
Adjacencies*”:) is afunction giving the set of variables Y st. there is an edge X*—* Y
in*F.'® *F is adynamic object in the algorithm that changes as the algorithm progresses,
and hence AdjacenciesCP,X) also changes as the algorithm progresses. A trace of the
algorithm on asimple example is given in section 4.8.

4.4. The Cyclic Causal Discovery (CCD) Algorithm
The overall strategy for discovery is shown in Figure 10.

. Discovery Tepresents d-separation
d—sm: - : *PAG fgatures equivalence
Algorithm ommon to class
Figure 10
Note that once the following algorithm adds a "—", ">", or "<" endpoint to an edge it

never removes or changes it; similarly once it adds underlining (dotted or not) it never
removes it or changes it. For each pair of variables X and Y the set Sepset(X,Y) is
assigned a values at most once by the algorithm. For some pairs of variables the
algorithm does not assign avalue to Sepset(X,Y), but in those cases, the values are not
needed by the algorithm. Similar remarks hold for Supsetset(X,Y,Z). The algorithm
correctly creates PAGs for acyclic as well as cyclic graphs.

CCD Algorithm

Input: An oracle for answering questions of the form: "Is X d-separated from Y given set
Z, (X,Y* Z) in directed graph GV

Output: A PAG for G.

BHereasdsawhere ** asameta-symbol indicating any of thethreeends-, o, >.




9A a) Form the complete graph ¥, such that between every pair of variables A and B
there is an edge Ao—oB in V.
b)n=0.
repeat
repeat
select an ordered pair of variables X and Y such that there is an
edge Xo—oY in ¥ and the number of vertices in
Adjacencies(¥,X)\{ Y} is greater than or equal to n;
repeat
select a subset S of Adjacencies(¥,X)\{Y} with n vertices;
if X and Y are d-separated given S delete edge Xo—oY
from ¥ and set Sepset(X,Y) =S and Sepset(Y,X) =§;
until every subset S of Adjacencies(¥,X)\{Y} with n vertices
has been selected or some subset S has been found for which X
and Y are d-separated given S;
until all ordered pairs of p-adjacent vertices X and Y such that
Adjacencies('¥,X)\{Y} has greater than or equal to n vertices have
been selected;
n=n+1;
until for each ordered pair of p-adjacent vertices X, Y, Adjacenciest¥ ., X)\{Y}
has less than n vertices.

9B. For each triple of.vertices A,B,C such that the pair A,B and the pair B,C are each
p-adjacent in ¥ but the pair A, C are not p-adjacent in ‘¥, then:

(i) orient A*—*B*—*C as A—>B<—C if and only if B ¢ Sepset<A,C>;

(ii) orient A*—*B*—*C as A*—*B*—*C if and only if B € Sepset<A,C>.

9C. For each triple of vertices <A,X,Y> in ¥ such that
(a) A is not p-adjacentto X or Yin'¥,
(b) X and Y are p-adjacent in ¥,
(c) X ¢ Sepset<A,Y>
if A and X are d-connected given Sepset<A,Y> then orient X o—o Y or X o— Yas
X<—Y
9D. For each vertex V in ¥ form the following set: Xe Local('¥,V) if and only if X is
p-adjacent to V in ¥, or there is some vertex Y such that X—>Y<—V in W.

(Local('W,V) is calculated once for each vertex V and does not change as the
algorithm progresses.)
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m= 1.
repeat

repeat

select a pair of variables {A,C} and athird variable B such that A
and C are not p-adjacent, A—>B<—C, and
L ocal (",A)\(Sepset<A,C> u {B,C}) has greater than or equal tom
vertices,
repeat
select a set T ¢ LocalCP,A)\(Sepset<A,C> u {B,C}) with m
vertices, if A and C are d-separated given T u Sepset<A,C>
u {B} then orient the triple A—>B<—C as A—>B<—C, and
record T u Sepset<A,C>u {B} in SupSepset<A,B,C> and
SupSepset<CJIB,A>.
until every subset T ¢ Local (HAA)\(Sepset<A,C> u {B,C}) with m
vertices has been selected or a d-separating set for A and C has
been recorded in SupSepset<A,B,C> and SupSepset<CJIB,A>.

not p-adjacent, and Local OP,A)\(Sepset<A,C> u {B,C}) have greater
than or equal to m vertices have been selected,
m =m+l.

until each ordered triple <A,B,O such that A—>B<—C but A and C are not
p-adjacent, is such that L ocalOF,A)\(Sepset<A,C> u {B,C}) has fewer than m
vertices.

fE. Ifthereis aquadruple <A,B,C,D> of distinct vertices such that

(ii1) B and D are p-adjacent in *F
then orient B o—o D or B—o D asB—>D in *F if D isnot in SupSepset<A,B,C>
elseorient B*--oD asB*—D in *F if D isin SupSepset<A3,C>.

fF. For each quadruple <A3,C,D> of digtinct vertices such that

(ii) D isnot p-adjacent to both A and C in*F

(iii) B and D are p-adjacent in *F
if A and C are a pair of vertices d-connected given SupSepset<A,B,C> u {D}, then
orient theedgeB 0—o D or B—o0 D asB—>D in *F.
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Notes concer ning the operation of the CCD Algorithm:

(fA) The search iniA looks for d-separating sets for pairs of vertices X, Y in G. If such a
set is found then it is recorded in Sepset(X,Y), and the edge between X and Y in ¥ is
deleted. It can be shown (see proof of Theorem 5) that if X and Y are not p-adjacent in G,
then f A is'guaranteed to find a set which d-separates X and Y. Consequently at the end of
fA thereis an edge between apair of vertices V and W in Hf if and only if V and W are
p-adjacent in G. Since, further, all edgesin ” at this point take the form 0-0, at this point
*FisaPAG for G, though not avery informative one.

f A always tests every subset of a given set before testing that set itself. It can be shown
(see Lemma 6, Corollary 2) that as a consequence’every vertex in Sepset(X,Y) is an
ancestor of either X or Y in every directed graph in Equiv(G). Note that Sepset(X,Y) is
set at most once: the algorithm removes the edge between X andY in ~P, as soon as ad-
separating set for X and Y is found, and only attempts to find such a d-separating set if
thereis still an edge between X and Y in *F.

(fB) In section fB each triple of vertices <A,B,C> in *P, such that there is an edge
between A and B, and B and C, but there is no edge between A and C is either oriented as
A—>B<—C or as A*—*B*—*C. The orientation rule makes use of the property
(mentioned above) that every vertex in Sepset(A,C) is an ancestor of A or C. The rale
also uses the fact that if A and B, and B and C are p-adjacent, but A and C are not p-
adjacent, and B is an ancestor of A or C then B occurs in every set which d-separates A
and C (See Lemma7). Note that the premise infB that there is no edge between A and C
in*F ensuresthat Sepset(A,C) existsand hasbeen setin 1 A. The proof of correctness for
the algorithm implicitly shows that this rule can never lead to contradictory conclusions
(e.g. agraph containing A—>B<—Q as long as the d-separation oracle gives correct
‘answers about d-separation in directed graph G.)

(f C) Section f C performs additional orientationsin *P. The rule applies to certain triples
of vertices <A,X,Y>, where X and Y are p-adjacent, but A is not p-adjacent to X or Y.
The rule infers from the existence of ad-connecting path from A to X given Sepset(A,Y),
(Xg Sepset(A,Y)) and the absence of a d-connecting path from A to Y given
Sepset(A,Y), that X is not an ancestor of Y. The inference is based on the ideathat if X
were an ancestor of Y then the d-connecting path from A to X could be Extended' to a
d-connecting path between A and Y, given Sepset(A,Y). Note again that the condition
that thereis no edge between A and Y ensuresthat Sepset(A,Y) hasbeensetinf A.
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(fD) In section I D, the algorithm considers each triple <A 3,C> which is then oriented as
A—>B<—C in *F, and attempts to find a set Z which d-separates A and C, but contains
{B}u Sepset(A,C). If such aset is found then it is recorded in Supsepset<A3,C>, and

Since fD looks for the smallest superset of { B} u Sepset(A,C), it can be proved (see
Lemma 6) that every vertex in Supsepset<A,B,O is an ancestor of A, B or C in every
directed graph in Equiv(G). (This makes use of the analogous property, mentioned
above, that Sepset(A,C) <= An({ A,C}) in every directed graph in Equiv(G).)

Note that fD looks for Supsepset<A,B,C> only if A—>B<—C inV, A and C are not
p-adjacent, and there is no underlining at B. Since underlining is added at B'if a set which
satisfies the conditions on Supéepset<A,B,C> is found, it follows that
Supsepset<A3,C> is'set at most otice by the algorithm.

(fE & fF) These last two sections make additional inferences concerning ancestor
relations by examining Supsepset<A,B,C>. Both rules make use of the fact that
Supsepset<AJB,C> ¢ An({A,B,C}) as mentioned above. Note that antecedent (i) in fE
and fF ensures that Supsepset<A,B,C> exists and has been set by fD of the agorithm.

4.5. Propagation Rules

There are many inferences that are validated by the semantics of a PAG, without
referring to the d-separation oracle. For example the following inferencerule:

Ao—-_p-_]g:—oc = Ao—ri_—uc

The underlining at B asserts that B is an ancestor of A or C, while the arrowhead at B on
the A—>B edge asserts that B is not an ancestor of A, hence B is an ancestor of C. We
shall call such inferences propagation rules, since they 'propagate’ information that is
already present in the PAG. The CCD algorithm as it stands includes ailmost no such
propagation rules.** The development of a complete set of such propagation rules is an
area for future research. |

It will follow from the completeness theorem (Theorem 7) that all of the structural
information about the directed graph that can ever be obtained from the oracle can be

¥ In certain special instances rulesfC, fE and |F may redundantly consult the d-separation oracle, in the
sense that the answer to the query could be inferred from orientations that are already present in the PAG.

"in such cases these rules behave as propagation rules. (We have not removed these redundant tests because,
so far aswe can see, thiswould involve a subgtantial increase in computational complexity.)
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obtained by applying propagation rules (which do not require further oracle consultation)
to the output of the CCD agorithm. If any of the steps of the agorithm were omitted, this
would no longer be the case, i.e. in certain cases further consultation of the oracle would
be needed in order to find the mogt informative PAG.

46. Soundness

Theorem 5: (Soundness) Given asinput an oracle for d-separation relaionsin the (cydic
or acyclic) directed graph G, the output of the CCD algorithmisaPAG *P for G.

Theorem 5 is proved by showing that each section of the agorithm makes correct
inferences about the Structure of G from the answers of the d-separation oracle for G.

In practice, an approximation to a d-separation oracle can be implemented as a Satistical
test that the corresponding partia correlation vanishes. As the sample size increases
without limit, if the significance levd of the Satistical test is systematically lowered, then
the probabilities of both Type | and Type |1 error for the test approach zero, so that the
satistical test is correct with probability one. Of course, this does not guarantee that the
CCD dgorithm as implemented isreliable on redlistic sample sizes. The reiability of the
agorithm depends upon the following factors:

1. Whether the Causa Independence Assumption holds (i.e. there are no latent
variables).

2. Whether the Causd Faithfulness Assumption holds.

3. Whether the distributional assumptions made by the Statistical tests hold.
4. The power of the datistical tests againg alternatives.

5. The sgnificance level used in the statistical tests.

In the future, we will test the sengitivity of the-adgorithm to these factors on smulated
data

4.7. Completeness

The statement of the algorithm in 84.4 does not specify completely an order in which sets
aetobetested infA and ID: itisonly required that no set may be tested until al of the
sets of smaller cardinality have been tried, but the order in which sets of the same
cardinality are to be tested is ungpecified.

If such an order is specified, and the process of selecting sets is deterministic then it
follows that given oracles for two d-separation equivaent directed graphs G\ and G2, the
‘algorithm will generate the same PAG. This is because, relative to a fixed order of .
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selecting subsets, the output is determined entirely by the responses of the oracle, and for
d-separation equivalent directed graphs the oracle, by definition, will give the same
responses.

However, this leaves open the possibility that different orderings of the oracle
consultations might generate different PAGs, given the same directed graph (or d-
separation equivalent directed graphs) as input. In fact this may occur in certain
circumstances: selecting sets in a different order may result in a different PAG as output.
It can in fact be shown that the operation of sections 'A, IB; ID and IE will be
unaffected by the order in which subsets of the same cardinality are selected. However,
1C and IF may orient more edges under some orderi ngs than others.

In spite of this it is still the case that if, given oracles for two directed graphs the CCD
algorithm produces the same PAG as output then the directed graphs are d-separation
equivalent. This remains true even if the PAGs were generated by different
implementations of the algorithm, which selected subsets differently:*

Theorem 7 (d-separation Completeness) If the CCD algorithm, when given as input
d-separation oracles for the directed graphs G\g Gi produces as output PAGs *Fi, ¥2
respectively, then *H isidentical to ¥2 only if G\ and G7 are d-separation equivalent, i.e.
G2 eEquiv(Gi) and vice versa.

The proof is based on the characterization of d-separation equivalence in Richardson
(1994b).

As argued above, relative to a fixed, deterministic method for selecting subsets, the
converse to Theorem 7 also holds: oracles for d-separation equivalent directed graphs
will produce the same PAG as output from the algorithm. Hence the CCD agorithm,
together with a fixed method of selecting sets, will produce the same PAG as output if
and only if given oracles for d-separation equivalent directed graphs as i nput

4.8. Traceof CCD Algorithm

The following illustrates the operation of the algorithm given as input a d-separation
oracle for the following directed graph:

> Thisis not in conflict with the statement that different implementations may produce different PAGs. If
H*i and H*2 are different PAGs for the same graph resulting from different implementations, then any edge

Vndpoint oriented with a*-' or a *>* in ¥1 but with a'o' in *F, could also be oriented in ¥2 ty applying®
propagation rule (see 84.5) to 'Y 2 (and vice versa).
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A—»X

G
B —&»
Figure 11
Initial Graph Y¥':
X
Figure 12
Section JA:

Since A and B are d-separated given the empty set, the algorithm removes the edge
between A and B and records Sepset<A,B> = Sepset<B,A> = . This is the only pair of
vertices that are d-separated given a subset of the other variables. Hence after JA ¥,
which is now a PAG for G, is as follows:

Ao—oX

<]

Bo——Y
Figure 13
Section {B
Since X¢ Sepset<A,B> and Y¢ Sepset<A,B>, Ao—oXo—oB and Ao—oYo—oB are oriented
respectively as A->X<~-B and A->Y<-B. The state of ¥ at the end of IB is shown in

Figure 14.
B

B —_— Y
Figure 14
Section §C No orientations are performed in this case.
Section D
Since A and B are d-separated given {X,Y}, the algorithm records SupSepset<A,X,B> =
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Section )E

p-adjacent, thus it S&[IS‘IeS the conditions in section IE. Snce Ye SupSepset<A,X,B>,
the edge Yo-0 X isariented as Y—oX. Since Xe SupSepset<A,Y 3>, thisedge is further
oriented as Y—X.

Section fF No orientations are performed in this case, hence the PAG that is output is:

PAGT g
Y

Flgure 16

4.9. Complexity of CCD Algorithm
Let MaxDegree(G) = Maé(\{x | Y <-X,orX<r-Yin G}|
and MaxAdj(G) = I\élgq{x | X isp-adjacentto Yin any PAGforG}]

The numbe of d-separation tests performed by Step f A of the CCD dgorithm will, in a

worst case, be bounded asfollows:
Totd number of < ,. (" )y -2 < (kK + Nn?(n- 2)"*'
orade conautationsin1A ~  AZAy t pT ki

where n = number of vertices in G, and k = MaxAdj(G). Since MaxAdj(G) <
(MaxDegree(G))?, with MaxDegree(G) = r this step is O(n*3). It should be stressed that
even as aworst case complexity bound thisis avery loose one; the bound presumes that
there is a directed graph in which for every pair of vertices (X,Y), not p-adjacent in the
directed graph, X and Y are only d-separated given al vertices adjacent to X or dl
vertices adjacentto Y.

Step 1B performs no additiona tests of d-separation.

Step f C peforms a most one d-separation test for each triple satisfying the conditions
given. ThusthisstepisO(n).

“Tn aworst case the number of tests of d-separation that Step ID performs is bounded by
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Tatal number of < MY/n-3\ < (m+ 1)n\n-3)™+
oradeconaultationsinIP "" WA~ » | ~ m!

wherem = 'lea\rX\{X | X e LocalCP,Y)} inID. Since m < (MaxDegree(G))? this step is
L 3
O(n"*"%). Again thisis aloose bound.

Step |E performs no tests of d-separation, while step fIF performs at most one test for
each quadruple satisfying the conditions. Hence this step is O(n%), (though in many
directed graphs there may be very few quadruples satisfying all four conditions).

Thus overall the algorithm is of complexity O(n"**%).
5. Conclusion

These results raise a number of interesting questions whose answers may be of practical
importance. Are there other parameterizations of directed cyclic graphs which entail the

. global Markov condition? Richardson (1995) gives a polynomial- time algorithm for
deciding whether two directed cyclic graphs are d-separation equivalent, based on the
characterization of d-separation equivalence given in Theorem 6. Spirtes and Verma
(1992) gives a polynomial time algorithm for deciding whether two directed acyclic
graphs with latent variables are d-separation equivalent over the subset of measured
variables. Is there a polynomial algorithm for determining when two arbitrary directed
graphs (cyclic or acyclic) have the same set of d-separation relations over a common
subset of variables O? As we have seen there are correct, polynomial time algorithms for
inferring features of sparse directed graphs (cyclic or acyclic) from a probability
digtribution when there are no latent common causes. There are smilarly correct, but not
polynomial time, algorithms for inferring features of directed acyclic graphs from a
probability distribution even when there may be latent common causes (see Spirtes, 1992,
Spirtes, Glymour and Schemes, 1993, and Spirtes, Meek, and Richardson 1995, Pear| and
Verma 1991). Are there comparable algorithms for inferring features of directed graphs
(cyclic or acyclic) from a probability distribution even when there may be latent common
causes?
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6. Proofs
6.1. Pr oof of Theorem 3

Some of the proofs are simplified by using a graphical relation (which we will call
"Lauritzen d-separation™) shown in Lauritzen et al. (1990) to be equivalent to Pearl's
d-separation relation defined in Section 2. Several preliminary definitions are needed to
define Lauritzen d-separation. An undirected graph is an ordered pair of a finite set of
vertices V, and a set of undirected edges E. An undirected edge between A and B is an
unordered pair of distinct vertices { A3} inV. A sequence of edges <Ei;...JEn> in an
undirected graph H is an undirected path if and only if there exists a sequence of
vertices <Vi,...,Vpi> such that for 1 <i< n {Vi,Vi,i} =£, and Ex* Ey. Let G(X) be
the 'induced’ directed subgraph of directed graph G that contains only verticesin X, with
an edge from A to B in G(X) if and only if there is an edge from A to B in G. Moral(G)
‘moralizes adirected graph G if and only if Moral(G) is an undirected graph with the
same vertices as G, and apair of vertices X and Y are adjacent in Moral(G) if and only if
either X and Y are adjacent in Gg or they have a common child in G. In an undirected
graph H, if X, Y, and Z are digoint sets of vertices, then X is separated from Y given Z
if and only if every undirected path between a member of X and a member of Y contains
amember of Z. If X, Y and Z are digjoint sets of variables, X and Y are Lauritzen
d-separated given Z in adirected graph G just when X and Y are separated given Z in
Mora (G(An(X uY u Z))).

Since some of the vertices in the proofs are defined as satisfying certain properties in the
graph, if A and B are vertices, we write AsB when A and B arc different names for the
same vertex. If there is an undirected path U contai ning vertices A and B in directed
graph G,-and there is only one subpath of U between A and B, then {/(AJB) is the subpath
of U between A and B.

Lemma 1: In adirected graph G with vertices V, if X, Y, and Z are digoint subsets of V,
and X isd-connected to Y given Z in G, then X is d-connected to Y given Z in an acyclic
directed subgraph of G.

Proof. Suppose that U is an undirected path that d-connects X and Y given Z, and Cis a
collider on U. Let length(C,Z) be 0 if C is amember of Z; otherwise it is the length of a
shortest directed path from C to amember of Z. Let size(U) equal the number of colliders
on U plus the sum over al colliders C on U of length(C,Z). U isaminimal d-connecting
.path between X and Y given Z, if U d-connects X and Y given Z and there is no other
.path U' that d-connects X and Y given Z such that size(U") < size(U). If there is a path
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that d-connects X and Y given Z there is at least one minimal d-connecting path between
X and Y given Z.

Suppose X is d-connected to Y given Z. Then for some X in X and Y in Y, there is a
minimal d-connecting path U between X and Y given Z. It follows immediately from the
definition of a d-connecting path that U is acyclic. First we will show that no shortest
acyclic directed path D; from a collider C; on U to a member of Z intersects U except at
C; by showing that if such a point of intersection exists then U is not minimal, contrary to
our assumption. See Figure 17.

XV, C 4N PY XV »C—WNPY

J i

U L}

Figure 17

Form the path U’ in the following way. If D; intersects U at a vertex other than C; then let
Wx be the vertex closest to X on U that is on both D; and U, and Wy be the vertex
closest to Y on U that is on both D; and U. Suppese without loss of generality that Wy is
after Wy on D;. Let U’ be the concatenation of UX,Wx), D;(Wy,Wx), and UWvy,Y). It
is now easy to show that U’ d-connects X and Y given Z, and size(U’) < size(U) because
U’ contains no more colliders than U and a shortest directed path from Wx to a member
of Z is shorter than D;. Hence U is not minimal, contrary to the assumption.

Next, we will show that if U is minimal, then it does not contain a pair of colliders C and
D such that a shortest directed path from C to a member of Z intersects a shortest path
from D to a member of Z. Suppose this is false. See Figure 18.
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Let D\ be a shortest directed acyclic path from C to a member of Z that intersects £52, a
shortest directed acyclic path from D to a member of Z. Let the vertex on D\ closest to C
that isaso on D2 be R. Let U' be the concatenation of £/(X,C), £i(C,R), £52(D,R), and
t/(Y,D). It is now easy to show that U' d-connects X and Y given Z and size(U') <
size(U) because C and D are not colliders on U\ the only collider on U’ that may not be
on U is R, and the length of a shortest path from R to a member of Z is less than the
length of a shortest path from D to a member of Z. Hence U is not minimal, contrary to °
the assumption.

For each collider C on a minimal péth U that d-connects X and Y given Z, a shortest
directed path from C to a member of Z does not intersect U except at C, and does not
intersect a shortest directed path from any other collider D to a member of Z. It follows
that the directed subgraph consisting of U and a shortest directed acyclic path from each
collider on U to amember of Z is acyclic. --.

Lemma 2 (Lauritzen et al.g 1990): In adirected (cyclic or acyclic) graph G, digoint sets
of variables X, Y and Z, X and Y are Pearl d-connected given Z if and only if X and Y
are Lauritzen d-connected given Z.

Lauritzen et al.g originally proved this for the acyclic case, but the proof goes over
essentially unchanged to the cyclic case. Since Lauritzen d-separation and Pearl
d-separation are equivalent, henceforth we will simply refer to "d-separation” when the
context makes clear which definition is being used.
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Theorem 3: The probability measure P over the substantive variables of alinear SEM L
(recursive or non-recursive) with jointly independent error variables satisfies the globa
directed Markov property for the directed (cyclic or acyclic) graph G of L, i.e. if X, Y,
and Z aredigoint sets of variablesin G and X is d-separated from 'Y given Z in G, then X
andY areindependent given Z in P.

Proof. Let Err(X) be the set of error variables corresponding to a set of substantive
variables X. In order to distinguish the density function for V from the densgity function
for the error variables we will usef\ to represent the density function (including margind
dengities) for the former and/En- to represent the density function of the latter. If V isthe
st of variablesin G, then by hypothesis,

led(Err(V))= [ fee®

£€Err(V)

It is possible to integrate out the error variables not in Err (An(X)) and obtain

e Err(AI(X) = J]fuml®)
ceErr (Aii(X))
Because for each variable X in V, X is alinear function of its parents in G plus aunique
error variable ex, it follows that ex is alinear function gx of X and the parents of X in G.
Hence Err(An(X)) is afunction of An(X). Following Haavelmo (1943) it is possible to
derive the dengity function for the set of variables An(X) by replacing each ex i& JEN(£X)
by #x(X,Parents(X)) and multiplying by the absolute va ue of the Jacobian:

I(ANX))= ] few(8x (X, Parents(X))) x|J]

where J is the Jacobian of the transformation. Because the transformetion is linear, the
Jacobian is a constant. All of the terms in the multiplication are non-negative because
they are either adengity function or a positive constant. It follows from Theorem 2 that if
X andY ared-separated given Z then X and Y are independent given Z. -

6.2. Proof of Theorem 4

Theorem 4: In alinear SEM L with jointly independent error variables and directed
(cyclic or acyclic) graph G containing digoint sets of variables X, Y and Z, if X is not
d-separated from'Y given Z in G then L does not linearly entail that X is independent of
Y given Z.
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Proof. Suppose that X is not d-separated from Y given Z. By Lemma 1, if X is not
d-separated from Y given Z in acyclic directed graph G, then there is some acyclic
directed subgrgph G' of G in which X is not d-separated fromY given Z. Geiger and
Pearl (1988) have shown that if X is not d-separated from Y given Z in adirected acyclic
graph, then there is some distribution represented by the directed acyclic graph in which
X is not independent of Y given Z, and it has been shown (Spirtes, Glymour and
Scheimes, 1993) that thereis in particular an instantiation of alinear parameterization of a
SEM with directed graph G and no correlated errors in which X is not independent of Y
given Z. If P satidfies the globd directed Markov property for G' it dlso satidfies it for G
because every d-connecting path in G' is a d-connecting path in G. Hence there is a
disgtribution represented by G inwhich X isnot independent of Y given Z. -

63. Proofof Theorem5

Theorem 5: (Soundness) Given asinput an oracle for testing d-separation relations in the
directed (cyclic or acydlic) graph G, then the output isaPAG *F for G.

Proof. The proof proceeds by showing that each section of the CCD agorithm makes
correct inferences from the answers given by the d-separation oracle for G, to the
structure of G (and hence any directed graph in Equiv(G)).

Section <A
Lemma3: Let G be adirected graph with vertex set V, and X, YeV. Thefollowing are
equivaent:
(@ 3Z cV{X,Y} suchthat X and Y are d-separated given Z, i.e. X and Y are not
p-adjacent.
(b) {X,Y} isnotanedgein Mora(G(An({X,Y}))).
(c)None of the following conditions hold in G:
(i) X isapaent of Y
(i) Y isaparent of X
(iif) X and Y have acommon child C that isan ancestor of X or Y.
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Pr oof:

(2)=Kb) Observe that Moral (G(An({ X,Y}))) is a subgraph of Moral (G(An({ X,Y}uZ))).
The hypothesis implies that {X,Y} is not an edge in Moral(G(An({ X,YuZ}))). Hence it
is also not an edge in Moral (G(Aii({ X,Y}))).

(b)<=>(c) By definition of the operation of graph moralization on G(An({X,Y})): thereis
an edge between X and Y in Mora (G(An({ X,Y}))) if and only if either there is an edge
between X and Y in G(An({X,Y})) and thusin G, i.e. (i) or (ii) holds, or X and Y have a
common child C in G(An({ X,Y})), in which case (iii) holds.

(c)=Ka) Take Z=An({X,Y})\{X,Y}. By definition, every vertex in
Mora (G(Aii({X,Y}))) is an ancestor of X or Y. Since (c)=>(b) there is no edge between
X andY in Mora(G(An({ X,Y}))). Thus thereis avertex in Z lying on every path from X
to Y in Mora(G(An({X,Y}))) B Moral (G(Aii(Zu{X,Y}))). Hence X and Y are d-
separated given Z. .\

Corollary 1: In directed graph G, if X and Y are p-adjacent then either X is an ancestor
of Y, or Y is an ancestor of X (or both).

Proof: This follows immediately from the previous Lemma: if X and Y are p-adjacent
then either (i) X isaparent of Y, (ii) Y isaparent of X, or (iii) X and Y have acommon
child C that is an ancestor of X or Y (or some combination). .\

Lemma 4: In directed graph G, if X and Y are not p-adjacent then X and Y are d-

separated given T A fVIV is adjacent to X in Moral (G(An({ X,Y})))}.
Further, either T" c_{ VIV isp-adjacentto X in G} or X is an ancestor of Y in G.

Proof: Since X and Y are not p-adjacent it follows from Lemma 3 that there is no edge
between them in Moral(G(An({X,Y}))). Hence every path from X to Y in
Mora (G(An({ X,Y}))) contains at least two edges. Hence the vertex closest to X on any
pathisin Thy. So X and Y are d-separated given Ty.y.

We now show that either T*y g. {V 1V is p-adjacent to X in G} or X is an ancestor of Y
in G. By the definition of graph moralization, in G every vertex in Tx.y is either (a) a
parent of X, (b) achild of X, or (c) aparent V of some vertex C, where C is aso a child
of X and an ancestor of X or Y. Any vertex in the first two categories is clearly
p-adjacent to X. If C is an ancestor of X, then V is p-adjacent to X. If C is an ancestor of
Y, then X is an ancestor of Y. /.

Lemma 5: In adirected graph G, if A and B are not p-adjacent then either A and B are
d-separated by a set of vertices all of which are p-adjacent to A, or by a set of vertices all
> which arc p-adjacent to B.
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Proof. Let T, 5, and Ty, be defined as in Lemma 4. It follows from this Lemma that A
and B are d-separated given T, , and A and B are d-separated given Ty,,. There are three
cases to consider:

Case 1: A is not an ancestor of B.
From Lemma 4, since A is not an ancestor of B, T, 3 < {V | V p-adjacent to A}.

Case 2: B is not an ancestor of A. Symmetrical to Case 1.

Case 3: B is an ancestor of A, and A is an ancestor of B. Any vertex V in T, 4 is either a
child of A, a parent of A, or a parent of some vertex C, which is also a child of A and an
ancestor of A or B. Clearly vertices in the first two categories are p-adjacent to A; as
before, vertices in the last category are p-adjacent to A if C is an ancestor of A. Since C is
an ancestor of A or B, and B is an ancestor of A, consequently C is an ancestor of A.
(Note that in this case every vertex in Ty, is also p-adjacent to B.) .-.

Suppose that the input to the algorithm is a d-separation oracle for a directed graph G. To
find a set which d-separates some pair of variables A and B in G the algorithm tests
subsets of Adjacencies (‘¥,A) and subsets of Adjacencies (¥',B) to see if they d-separate
A and B. Since the vertices which are p-adjacent to A in G are at all times a subset of
Adjacencies (W,A),1¢ and likewise the vertices p-adjacent to B are always a subset of
Adjacencies (¥,B), it follows from Lemma 5 that step JA is guaranteed to find a set
which d-separates A and B, if any set d-separates A and B in G. Clearly the order in
which subsets of Adjacencies (¥,A) and Adjacencies (¥,B) of a fixed cardinality are
tested in JA will not affect whether or not a d-separating set for a given pair of variables
is found: the above argument shows that the search in JA is guaranteed to find some d-
separating set for A and B if such exists (i.e. A and B are not p-adjacent). However,
which d-separating set the search finds first may be influenced by the ordering of the tests
inJA.17

Section B
The next lemma and corollary give an important property of d-separating sets that are

found through a search which never tests a set unless it has already tested every proper
subset of that set (as in JA of the CCD algorithm).

16This is because if a pair of vertices X,Y are p-adjacent in G then no set is found which d-separates them,

and hence the edge between X and Y in V¥ is never deleted.

17 In this regard note that there may be vertices in Sepset(A,B) that are not p-adjacent to A or B. This is

because although, in searching for Sepset(A,B) only subsets of Adjacencies (¥,A) and Adjacencies (‘¥',B)
“are tested, there may be vertices which are in these sets on account of edges in ‘¥ that have yet to be deleted

at that point in the search, i.e. vertices which are not p-adjacent to A or B.
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Lemma 6: Suppose that in adirected graph G, Y is not an ancestor of X or Z or R. If
thereisasat S, suchthaa Rc S, Ye S,adforevery sa TSL RETES{Y} XandZ
are d-connected given T.in G, then S d-connects X and Z in G.

Proof. Let T* = An({ X,Z}uR)nS. Since by assumption Ye An({X,Z}uR), Y «T*.
Now, RcT*,and T*¢cS\{ Y}, soby hypothesisthere is ad-connecting path, P, between
X and Z, conditional on T*. By the definition of ad-connecting path every vertex onP is
either an ancestor of one of the endpoints, or T*. Moreover, by definition, every vertex in
T* isan ancestor of X or Z or R. Thus every vertex on the path P is an ancestor of X or Z
or R. Since neither Y nor any vertex in S\T* is an ancestor of X or Z or R, it follows that
no vertex in SYT* lieson P. Since T* e S the only way in which P could fall to d-connect
given Swould be if some vertex in S\T* lay on the path. Hence P still d-connects X and
ZgvenS./.

Inadi rected graph G, if X and Y are d-separated given S, and are d-connected given any
proper subset of S, then Sisaminimal d-separating set for X and Y in G.

The fallowing corollary is ussful here:

Corollary 2: In adirected graph G, if Sisaminima d-separating set for X and Y, then
any vertex in Sisan ancestor of X or Y in G.

Proof* The corollary follows immediately from Lemma 6, with R =0 via
contragposition. *.

This shows that orientation rule IB(ii) is correct If A and B, and B and C are p-adjacent,
but Sepset(A,Q contains B, then we know from the search procedure that A and C are
not d-separated given any subset of Sepset(A,C). It follows that B is an ancestor of A or
C Hence A*—*B*—*C should be oriented as A*—*g*—*C inthe PAG.

The following Lemma shows the correctness of the orientation rulefB(i):

Lemma7: Inadirected graph G, if A and B are p-adjacent, B and C are p-adjacent, and
B isan ancestor of A or C then A and C are d-connected givenany s&t S, st A3,C « S.

Proof. Since A and B, and B and C are p-adjacent in G it follows from Lemma 3 that
{AB} and {B,C} are edges in Mora(G(An({A,B}))) and Mora(G(An{B,C})))
respectively, hence aso in Moral(G(An({A3,C}us))). If B e An({A,C}), then
An({A3,C}uS) = An({A,C}uS), hence {AB} and {B,C} are edges in
Mora(G(An({A,C}uS))). If B«S then A—B—C is a path circumventing S in
Mord(G(Aii({ A,C}uS))) hence A and C are d-connected given S. .\
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It follows by contraposition that if A and B are p-adjacent, B and C are p-adjacent, A and
C are d-separated given Sepset<A,C>, and Be Sepset<A,C>, then B is not an ancestor of
A or C, hence A*—*B*—*C should be oriented as A*—>B<—*C in the PAG. It then
follows from Cordllary 1 that A is an ancestor of B, and C is an ancestor of B, hence
these edges are oriented as A—>B<—C.

Section fC

Lemma 8: In adirected graph G, suppose X is an ancestor of Y. If thereisaset S such
that A and Y are d-separated given S, X and Y are d-connected given S, and X£ S, then A
and X are d-separated given S.

Proof. Suppose for a contradiction that A and X are d-connected given S. In that case
there is a path P between A and X in Moral(G(An({A,X}uS))) on which there is no
vertex in S. Since, by hypothesis X and Y are d-connected given S, there is a path Q
between A and X in Moral (G(An({ X,Y}uS))) on which there is no vertex in S. Since
{X,Y}uS and {A,X}uS are subsets of {A,X,Y}uS path P and path Q exist in
Moral (G(An({A,X,Y}uS))). Since X is an ancestor of Y, An({ A,X,Y}uS) =
An({ A,Y}uS). ThusP and Q existin Mora (G(Aii({ A,Y}uS))). Since P and Q intersect
at least once (at X), and do not contain any verticesin S, it follows that there is a path R
from A to Y in Moral(G(An({ A,Y}uS))), which also does not contain any verticesin S.
But thisis acontradiction. .\

Lemma9: Let A, X and Y bethree verticesin adirected graph G, suchthat X and Y are
p-adjacent. If thereis aset S such that:

(i) Xe S,

(i) A and Y are d-separated given S, and

-(iii) A and X are d-connected given S,
then X is not an ancestor of Y.
Proof. Suppose that there is such aset S. If X and Y are p-adjacent then X and Y are
d-connected by every subset of the other variables. In particular X and Y are d-connected
given S. Since S d-separates A and Y but d-connects A and X, it follows from Lemma 8
by contraposition that X is not an ancestor of Y. /.

Step IC simply applies Lemma9. Suppose that <A, X,Y> is atriple such that:
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(i) Alisnot p-adjacentto X or Y,
(i) X and Y arep-adjacent in *F, and
(i) XeSepset<A,Y >.

fC isjudtified in the following way. Suppose that A and X are d-connected given
Sepset<A,Y>. Since X £ Sepset<A,Y>, setting S = Sepset<A,Y >, we can goply Lemma
Qtoorient X 0—0Y or X 0— Y as X<-*Y. It then follows by Corollary 1 that Y isan
ancestor of X, hencethe edgeis oriented as X<—Y.

It is afeature of this orientation rule that X and Y may be arbitrarily far from A. Rules of
this type are needed by a cyclic discovery algorithm, because, as was shown in
Richardson (1994b), two cyclic directed graphs may agree ‘locally' on d-separation
relations, but disagree on some d-separation relation between distant variables™®

We date without proof the following Lemma, used subsequently in the proof, which is an
easy generdization of Lemma3.3.1 in Spirtes et al. (1993). The Lemma sates conditions
under which a set of 'short* d-connecting paths may be put together to form a single d-
connecting path.

Lemma 10: (Richardson 1994b)

In a directed (cyclic or acyclic) graph G over a set of vertices V, if the following
conditions hold:
(8 Ris asequence of vertices in V from A to B, R = < A=Xo,...X.SB>, such that
Vi,0<i<n, Xi* Xi+ (the Xi areonly pairwisedistinct, i.e. not necessarily distinct),
(b)ZcV\{ A3},
() T isaset of undirected paths such that
(i) for each pair of consecutive vertices in i?, Xi and Xi.i, there is a unique
undirected path in T that d-connects Xi and Xi+ given ZV{Xi, Xj+i},
(i) if somevertex Xkin/J, isinZ, thenthepathsin T that contain Xk as an endpoint
collideat XK, (i.e. al such paths are directed into Xk)
(iii) if for three vertices Xk-i, Xk, Xk+H occurring in R, the d-connecting pathsin T
between Xk-i and XKk, and Xk and Xk+i, collide a Xk then Xk has adescendant in Z,
then there isapath U in G that d-connects AsXo and BMX+i given Z that contains only
edges occurring in T.

Section frD This section searches to find 'extra’ d-separating sets for triples oriented as
X—>Y<—Z by IB (where X and Z are not p-adjacent). In the acyclic case, atriple of

*+8 Whether or not such rules will ever be used on real data, in which 'distant’ variables are generally found
to be independent by statistical testsis another question.
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vertices X*—*Y*—Z where X and Y are p-adjacent, Y and Z are p-adjacent, but X and
Z are not p-adjacent, either has the property that every d-separating set for X and Z
contains Y, or that every d-separating set for X and Z does not contain Y. However, in
the cyclic case it is possible for X and Z to be d-separated by one set containing Y, and
one set not containing Y. We already know from Lemma 7 that if X and Z are
d-separated by some set which does not contain Y, then Y is not an ancestor of X or Z.
What can we infer if in addition X and Z are also d-separated by a set which contains Y?
Thisisanswered by the next Lemmaand Coroallary.

Lemma 11: In adirected graph G, Y is a descendant of a common child of X and Z then
X and Z are d-connected by any set containing Y.

Proof. Suppose that Y is a descendant of a common child C of X and Z. Then the path
- X-»C<-Z d-connects X and Z given any set containing Y. /.

Corollary 3: Ifin adirected graph G, with vertices X, Y and Z, if there is some set S
such that YeS, and X and Z are d-separated given S, then Y is not a descendant of a
common child of X and Z.

It follows from Lemma 12 that if <X,Y,Z>isatriple such that X and Z are d-connected
given any set containing Y, and d-separated by some set not containing Y, then Y is a
descendant of a common child of X and Z.

Lemma 12: In directed graph G, if X and Z are not p-adjacent, and Y is not a descendant
of a common child of X and Z, then X and Z are d-separated by the set T, defined as
follows:

T={VIVisadjacentto X in MoréJ(G(An({X,Y,Z})))}.

Further, if X and Y arep-adjacent then YeT.

Proof: Since X and Z are not p-adjacent it follows by Lemma 3 that X and Z are not
adjacent in Moral(G(An({X,Z}))). As Y isnot a descendant of acommon child of X and
Z, it then followsthat X and Z are not adjacent in Moral(G(An({X,Y,Z}))). HenceZ"T
and every path from X to Z in Moral(G(An({X,Y,Z}))) contains some vertex in T. Thus
X and Z are d-separated given T.

If X and Y are p-adjacent in G then Y is adjacent to X in Moral(G(An(X,Y))), and
thereforein Moral(G(An({X,Y,Z}))). ThusYeT..-.

Lemma 13: In directed graph G, if X and Z are d-separated by some set R, then for all
'.sets QcANn(Ru {X,Z}H\{X,Z}, X and Z are d-separated by Ru Q.
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Proof. If Q ¢ An(RuU {X,ZH\{X,Z} then AnR U {X,Z})=AnR U QuU {XZ}). It
follows that Moral(G(An(Ru {X,Z}))) = Moral(G(An(RuU Qu {X,Z}))). The result
then follows via the (Lauritzen) definition of d-connection...

The search in section D considers in turn each triple A—>B<—C in ¥, A and C not
p-adjacent, and attempts to find a set R which is a subset of Local(¥',A)\{B,C} such that
A and C are d-separated given RU {B} U Sepset<A,C>. It follows from Lemma 11, that
if there is some set which d-separates A and C, and contains B, then B is not a descendant
of a common child of A and C. It then follows from Lemma 12 that in this case there is
some subset, the set T given in the Lemma, which contains B, d-separates A and C and in
which every vertex is either a parent of A, a child of A, or a parent of a child of A and so
T c Local(W,X). Since Sepset<A,C> is a minimal d-separating set for A and C, it
follows that Sepset<A,C> < An({A,C})\{A,C} (€ An(T U{A,C}). Hence by Lemma 13,
T U Sepset<A,C> also d-separates A and C.

The reader may wonder why D tests sets of the form T U Sepset<A,C>, (where
T < Local(¥,A)), instead of just testing sets of the form T < Local(¥,A)); Lemma 12
shows that a search of the latter kind would succeed in finding a d-separating set for A
and C which contained B. The answer is that from Lemma 13 we know that any set
T < Local(¥,A) which d-separates A and C is such that T U Sepset<A,C> also
d-separates A and C, but the reverse is not true. In particular the smallest set T such that
T U Sepset<A,C> d-separates A and C may be considerably smaller than the smallest set
T which d-separates A and C alone, hence the search is significantly faster.19

We require one more lemma to explain why we initialize m = 1, and do not test T = &.

Lemma 14: In directed graph G, if X and Y are p-adjacent, Y and Z are p-adjacent, X
and Z are not p-adjacent, Y is not an ancestor of X or Z, and S is a minimal d-separating
set for X and Z then X and Z are d-connected given S U {Y]}.

Proof. According to Lemma 3, if X and Y are p-adjacent then either X—Y, Y—X or
X—C«Y, where C is an ancestor of X or Y. Thus under the hypothesis that Y is not an
ancestor of X it follows that X is an ancestor of Y. Moreover, it follows that there is a
directed path P from X to Y, on which every vertex except X is a descendant of Y, and
hence on which every vertex except X is not an ancestor of X or Z. (In the case XY,

19In some cases the cardinality of the smallest set (T U Sepset<A,C>) may be greater than the cardinality
of the smallest T; but this is not true in general, and since we only intend to discover linear models this is

“tnsignificant. (With discrete models conditioning on a large set of variables in a conditional independence
test may reduce dramatically the power of the test.)
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the last assertion is trivial. In the other case it merely states a property of the path
X->C->...Y, where C isacommon child of X and Y.) Likewise thereis apath Q from Z
to Y on which every vertex except Z is not an ancestor of X or Z.

If Sisaminimal d-separating set for X and Z every vertex in S is an ancestor of X or Z,
(and X,Z £S). Hence no vertex on P or Q isin S. It follows that P d-connects X and Y
given S, and Q d-connects Y and Z given S. It then follows from Lemma 10 that these
paths can be joined to form a single d-connecting path, hence X and Z are d-connected
givenSu{Y}..\

This completes the proof that step ID of the algorithm will succeed in finding a set which
d-separates A and C, and contains B, for each triple A—>B<—C in the PAG, if any such
set exists. A number of the subsequent proofs make use of the following consequence:
For every triple A, B, C such that *F contains A—>B<—C, A and C are not p-adjacent in
*F, and B is not a descendant of acommon child of A and C, ID orients A—>B<—C as

Section fE

and D is not in SupSepset<A,B,C>, in which case B 0—0 D or B —o0 D is oriented as
B—>D.

p-adjacent, and W is an ancestor of V in G, then any set S such that Ve S, and X and Z
are d-separated by S, also containsW.

Proof. Suppose there were some d-separating set S for X and Z which contained V and
did not contain W. Then, since W is an ancestor of V and Ve S, but We S, it follows by
Lemma 10 that we could put together a d-connecting path from X to W given S and from
W to Z given S to form a new d-connecting path from X to Z given S (irrespective of
whether or not these paths collide at W). Such d-connecting paths between X and W, and
between W and Z exist (by Lemma 3) since X is p-adjacent to W and W is p-adjacent to
Z. Thisisacontradiction. .\

algorithm orients B*—oD as B*—D, the inference can bejustified as follows. If D isin
SupSepset<A,B,C> then it follows from Lemma 6 and the fact that section ID looks for
the smallest superset of {B} u Sepset<A,C> which d-separates A and C that D is an
eancestor of {B} u Sepset<A,C>. Since Sepset<A,C> is aminimal d-separating set for A J
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and C, every vertex in Sepset<A,C> is an ancestor of A or C. Thus if D is in
SupSepset<A,B,C>, D is an ancestor of A, C or B. However, since there are arrowheads
at D on the edges from A to D, and C to D in *F, it follows that D is not an ancestor of A
or C, and hence D is an ancestor of B. Thusiit is correct to orient B *—o D asB*—D.

In the case in which A—>D<—C in *F, (A and C are not p-adjacent and there is no dotted

C are d-connected by any set S that contains D but does not contain A or C (because of
thelack of underlining in the edge pair A—> D <—C). It follows from Lemma 12 by
contraposition that D is a descendant of a common child of A and C. Moreover since A
and C are d-separated by some set containing B (because of the underlining in the edge

p-adjacent, B o—o D or B —o0 D should be oriented as B—>D.

Section JF

A and C are d-separated by SupSepset<A,B,C>, and Be SupSepset<AJB,C>. Hence by
Lemma 13, if D is an ancestor of B, then A and C are d-separated by
SupSepset<A,B,C> u {D}. Hence by contraposition, if A and C are d-connected given
SupSepset<A,B,C> u {D} then D is not an ancestor of B. (In fact, it follows that D is
not an ancestor of A3 or C.) Since D is not an ancestor of B, but B and D are p-adjacent
it follows by Corollary 1 that B is an ancestor of D. Thus B 0—o D or B —o D should be
oriented asB—>D in*F.

This completes the proof of the correctness of the CCD algorithm. /.

6.4. Pr oof of Theorem 7

In order to prove the d-separation completeness of the CCD algorithm, all that isrequired
is to show that whenever the first input to the CCD algorithm is a d-separation oracle for
G\ that results in output * 7, and the second input to the CCD algorithm is a d-separation
oracle for Gi that results in output ¥2, and ¥1 and ¥2 are identical, then G\ and G2 are
d-separation equivalent. We shall do this by proving that when d-separation oracles for
G\ and Gi are used as input to the CCD algorithm and produce the same PAG as outpuit,
then Gi, and G% satisfy the five conditions of the Cyclic Equivalence Theorem CET(I)-
(V) (given below) with respect to one another. It has already been shown in
Richardson(1994b) that two directed graphs G\ and Gi are d-separation equivalent to one
eanother if and only if they satisfy these 5 conditions. These conditions lead directly to a
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polynomial-time (O(n®)>=0(n’¢") algorithm, for determining whether or not two directed
cyclic graphs are d-separation equivalent, see Richardson (1994b, 1995).

Before stating the Cyclic Equivalence Theorem we require a number of extra definitions.
In adirected graph G, call atriple of vertices <A3,C> an unshielded tripleif A and B
are p-adjacent, B and C are p-adjacent, but A and C are not p-adjacent.

Call an unshielded triple a conductor if B is an ancestor of A or C, otherwise, if B is not
an ancestor of A or C, call it anon-conductor. (Note that it follows from Corollary 1 that
if <A3,C> is a non-conductor then A and C are ancestors of B.) Call a non-conductor
perfect if B is adescendant of acommon child of A and C, otherwise call it imperfect.

If <Xo0,Xi,...X,+i> is a sequence of distinct vertices st. Vi 0 <i <n, Xi and Xi+i are
p-adjacent then we will refer to <X0,Xi,...X ,+i> as an itinerary.
If <Xo0,...X,+i> (n=2) isan itinerary such that:

() Vt I t< n, <Xt-i, Xt, Xt+i> is aconductor,

(i) Vk 1< k < n, Xfc-1 is an ancestor of Xfc, and Xfct+l is an ancestor of X& and

(iii) Xo is not a descendant of Xi, and X, is not an ancestor of X ,+i,
then <X0,Xi,X2> and <Xn-i>X,,,X,+i> are mutually exclusive (m.e.) conductors on the
itinerary <Xo,...X,+i>.% '

If <Xo0,...X,+i>is® itinerary such that Vij 0 <di <j-I<j A n+l Xi and Xj are not
p-adjacent in the directed graph then we say that <Xo,...X,+i> is an uncovered
itinerary, i.e. an itinerary is uncovered if the only vertices on the itinerary which are
p-adjacent to other vertices on the itinerary, are those that occur consecutively on the
itinerary.

Theorem 6: (Cyclic Equivalence Theorem, Richardson 1994b) Directed graphs G\ and
G2 are d-separation equivalent if and only if the following five conditions hold:

CET(l) G\ and G7 have the same p-adjacencies,

CET(I1) G\ and G% have (@) the same conductors, and (b) the same perfect non-
conductors,

CET(m) For al triples <A,B,C> and <X,Y,Z>, <A3,C> and <X,Y,Z> are m.e.
conductors on some uncovered itinerary P=<A,B,C,...X,Y,Z> in G\ if and only if
<A,B,C> and <X,Y,Z> are m.e. conductors on some uncovered itinerary
Q=<A,B,C,...X,Y,Z>inG2,

CET(IV) If <A,X,B> and <A,Y,B> are imperfect non-conductors (in G\ and G2),
then X is an ancestor of Y in Gi if and only if X is an ancestor of Y in G2,

¥ Note that a pair of m.e. conductors on an uncovered itinerary are a generalization of a non-conductor. In
both casesthereisa set of vertices"in the middle" that are not ancestors of the vertices at the " ends'.
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CET(V) If <A3,C> and <X,Y,Z> are mutually exclusive conductors on some
uncovered itinerary P s=<A3,C,...X,Y,Z> and <A ,M,Z> is an imperfect non-
conductor (in G\ and G,), then M is adescendant of B in G\ iff M is a descendant
ofBinG2.

Lemma 16: Given a sequence of vertices <Xo,.*-X,+i> in adirected graph G having the
property that Vk, 0 <k < n, Xfc is an ancestor of Xk+i, and Xk is p-adjacent to Xk.i there
is a subsequence of the Xj's, which we label the Y|'s having the following properties:

(a) Xo=Yo

(b) Vj, Yj isan ancestor of Yj+i

(c) VjX Ifj <k, Yj and Yk are p-adjacent in the directed graph if and only if k =

j+L i.e. theonly Yk's which are p-adjacent are those that occur consecutively.

Proof. The Yk's can be constructed as follows:
Let Yo = Xg. _
Let Yk+i = X" wheret] isthe greatest h >| such that Xh is p-adjacent to Xj where Xj=Yfc.

Property (@) is immediate from the construction. Property (b) follows from the transitivity
of the ancestor relation, and the fact that the Yk's are a subsequence of the X;'s. It is aso
clear, from the construction that if k =j+1 then Yj and Yk are p-adjacent. Moreover, if
YjsX .2 and Y~sXp are p-adjacent, andj <Kk, then it follows again from the construction
that if Yj.isXy, then {} <y, sok<j+1. (Thisisbecause the Yk's are a subsequence of the
Xfs.) Hence Y.isYy./.

Lemma 17: Let G\ and Gj be two directed graphs satisfying GET(I)-(111). Suppose there
is adirected path Di-»...D,, in G\. Let Do be avertex distinct from Di,...,D,, st. Do is
p-adjacent to Di in G\ and G2, Do is not p-adjacent to D2,...D, in G\ or G7 and Do is not
adescendant of Di in G\ or G*i. It then follows that Di is an ancestor of D, in G2.

Proof. It follows from Lemma 16 that in G\ there is a subsequence <D,(0pDo,D4(i),
Da(2)...Da(m"Dy> such that the only p-adjacent vertices are those that occur
consecutively, and each vertex is an ancestor of the next vertex in the sequence. Since G\
and G2 satisfy CET(l), they have the same p-adjacencies, hence also in G2 the only
vertices in the subsequence that are p-adjacent are those that occur consecutively.
Moreover, since, by hypothesis, Do is not p-adjacent to Dj2,...D, in G\ or G2 it follows
that D,(i)2Di in G\ and Gs.

2 That is, thej* vertex in the sequence of Y verticesisthe a* vertex in the sequence of X vertices,




Suppose, for a contradiction that some vertex Dg(.1y is not an ancestor of its successor
Dg(x) in the sequence in G;. Let r be the smallest k < m such that Dy j) is not an
ancestor of D) in G;. Let s be the greatest j < r—1 such that Dg;) is not an ancestor of
Dggj-1yin G2. (Such a j exists since Dg(1)=D; and Dgg)=Dy is not a descendant of D;.)

There are now two cases: s =r—lors <r-1.

If s =r-1 then the unshielded triple <Dgs-1),Da(sy=Da(r-1).Pagy> is @ non-conductor in G,,
since De(sy=Daq(r-1) is not an ancestor of Dgs.1) or Dg(p). But in Gy, by hypothesis, Dgg-1)
is an ancestor of D) hence <Ds.1y,Dos)=Dar-1)-Dagry> is a conductor in G;. But this is
a condtradiction since G| and G have the same conductors by CET(Ila).

If s < r—1 then it follows that <Da(s—l)’uz(s)vDa(s+l)> and <Da(r-2),Da(r-l)sDa(r)> are
mutually exclusive conductors on the uncovered itinerary <Dys-1y,..-Dagy> in G,. But
these two triples are not mutually exclusive in G; since Dgc-1) is an ancestor of Dqyr) in
G1; hence G and G, fail to satisfy CET(III), which is a contradiction.

It follows that D1y is an ancestor of Dy in G». .-

Theorem 7: (d-separation Completeness) If the CCD algorithm, when given as input
d-separation oracles for the directed graphs G, G, produces as output PAGs ¥, ¥,
respectively, then ¥ is identical to '¥'; only if G and G; are d-separation equivalent, i.e.
G, € Equiv(G1) and vice versa.

Proof. We will show that if two directed graphs, G, and G, are not d-separation
equivalent, then the PAGs output by the CCD algorithm, given d-separation oracles for
G) and G, as input, would differ in some respect.

It follows from the Cyclic Equivalence Theorem that if G; and G, are not d-separation
equivalent, then they fail to satisfy one or more of the five conditions CET(I)-(V).

Case 1: G; and G, fail to satisfy CET(J).

In this case the two directed graphs have different p-adjacencies. It has already been
established (Theorem 5) that the CCD algorithm outputs a PAG. It follows from clause
(i) of the definition that G; and G, have different p-adjacencies if and only if the
corresponding PAGs, ¥ and ¥, possess different adjacencies.

Case 2: G; and G fail to satisfy CET(IIa). We assume that G, and G; satisfy CET(I). In
this case the two directed graphs have different conductors and hence different non-

conductors. Thus we may assume, without loss of generality, that there is some




unshielded triple of vertices <X,Y,Z> such that in Gi, Y isan ancegtor of X or Z, while Y
isnot an ancestor of either X or Z in G7.

If Y is an ancestor of X or Z then it follows from Lemma 7 that every set which
d-separates X and Z contains Y. Hence Y eSepset(X,Z) in G\. It then follows from I B(ii)
that in ¥, X+*Ys-*Z '

- 1f Y isnot an ancestor of X or Z in G2, then Y isnot in any minimal d-separating set for
X and Z. In particular Ye Sepset(X,Z) for G2. Again it follows from the correctness of

are different.

Case 3. G\ and G, fail to satisfy CET(I1b). We assume that G\ and G, satisfy CET(l),
CET(l1a). In this case the two directed graphs have different imperfect non-conductors,
i.e. thereis sometriple <X,Y,Z> such that it forms a non-conductor in both G\ and G2,
but in one directed graph Y is a descendant of a common child of X and Z, whilein the
other directed graph it is not. Let us assume that Y is a descendant of a common child of
X and Z in Gi, whilein G2 it isnot.

It follows from Lemma 11 that in G\¢ X and Z are d-connected given any subset
containing Y. In this case the search in CCD section ID will fail to find any set
Supsepset<X,Y,Z>. Hence <X,Y,Z> will be oriented as X ->Y <- Z (i.e. without dotted
underlining) in *Pi.

If Y is not a descendant of a common child of X and Z in G,, then it follows from
Lemma 12 and Lemma 13 that thereis some subset T of L ocalOF,,X), such that X and Z
are d-separated given T u (Y } u Sepset<X,Z>. Section ID will find such aset T, and

removes or adds dotted underlining, it followsthat *Pi and Y2 are different.

Case 4: G\ and G; fail to satisfy CET(m). We assume that G\ and G, satisfy CET(l),
CET(l1a), CET(l1b). In this case the two directed graphs have the same p-adjacencies,
and the same conductors, and perfect non-conductors. However,.the two directed graphs
have different mutually exclusive conductors. Hence in both G\ and G2 there is an
uncovered itinerary, <Xo,...X,+i> such that every triple <Xk i Xk*"Ck+> (1 <k <n) on
thisitinerary is a conductor, but in one directed graph <X'o>Xi,X2> and <X.i,Xp,Xp+i>
are mutually exclusive, i.e. Xi isnot an ancestor of Xo, and X,, is not an ancestor of X,+i,
while in the other they are not mutually exclusive. Let us suppose without loss of
generality that <Xo"Xi,X,> and <X,-i,X,,,Xn+i> are mutually exclusive in G\g while in
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G, they are not, and that no pair of mutually exclusive conductors on a shorter uncovered
itinerary have this property.

From the definition of a pair of m.e. conductors it follows that in G\ the vertices
Xi,.._.Xn, inclusive are not ancestors of Xo or Xpii. Hence {Xi,...X} n
Sepset(Xo0,X,+i) =0, since Sepset(Xo,Xn+) is minimal, and so is a subset of
An({Xo"Cn.i}). (Here, Sepset(Xo"C,+i) is calculated for G,) For the same reason
Descendants({Xi,...,X,}) n Sepset(Xo,Xn+i) = 0. It follows from the definition of a pair
of m.e. conductorson an itinerary that Xk is an ancestor of X+ (1 <k <n), thusthereis
a directed path P*= Xk->..->Xjc+i in G\. Since no descendant of Xi,...,X,, is in
Sepset(Xo,Xn+i)* *@°h of the directed paths P* d-connects each vertex X” to its successor
Xk+ (1 <k<n), conditional on Sepset(Xo0,X,.i). In addition, since XQ and Xi are
p-adjacent there is some path Q d-connecting XQ and Xi given Sepset(Xo,X,+i). Since
each P(is out of X\ (i.e. the path goes Xi—»...-»Xi.i), by applying Lemma 10, with T =
{QJI*\,.Pn}* R = <Xo,...X;;>, and S = Sepset(X"X,+i) it follows that we can form a
path d-connecting Xo and X,, given Sepset(Xb,Xn+i). A symmetric argument shows that
Xi and X,.i are also d-connected given Sepset(Xo*X,+i)- It then follows that the edges
Xo*—*Xi and X,*—* X,,I areoriented as Xo—>Xi and X,<—Xu+i in Yi by stage %C
of the CCD algorithm (unless they have already been oriented this way in a previous
stage of the algorithm). Thus again, by the correctness of the algorithm these arrowheads
will be present in *?i. (Subsequent stages of the algorithm only add - *and '>' endpoints,
not V endpoints. If either of the arrowheads at Xi or X, were replaced with a'-' the
algorithm would beincorrect.)

“Since by hypothesis, no pair of conductors on the uncovered itinerary <Xo...X.i> are
mutually exclusive in G, it followsfrom Lemma 17 that either Xi is an ancestor of Xo,
or X, is an ancestor of X,.i. It then follows from the correctness of the orientation rules
in the CCD algorithm that the pair of edges X ,*—* Xi and X,*—* X,.,i will not both be
oriented as X ,*—>Xi and X,<—* X+ in *F,. Thus *F and *F, will once again be
different

Case 5: G\ and G, fail to satisfy ether CET(1V) or CET(V). We assume that G\ and G,
satisty CET(IMin).?2 If G\ and G, fail to satisfy either CET(IV) or CET(V), then in

"~The conditions under which CET(IV) or CET (V) fail arc quite intricate precisdy because the assumption
that CET(1)-(111) are satisfied implies that the graphs agreein many respects.
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either case we have the following situation: There is some sequence of verticesin G\ and
G, <XoX\,.. .Xn, Xn+i,V>, » satisfying the following:

(@) ifi >j then X{ and X| are p-adjacent if and only if i =j+1,

(b) Xj isnot an ancestor of Xo, and X, is not an ancestor of X p.i,

(c) VK, 1.sk=<n, X n, and Xk+ are ancestors of Xk,

(d) <Xo0,V,X+i> is an'imperfect non-conductor, and

(e) in one directed graph V is a descendant of Xi, while in the other directed

graph V is not a descendant of Xi

L et us suppose without loss of generality that V is adescendant of Xi in G\g and V is not
adescendant of Xi in G,. As in previous cases it is sufficient to show that if *H and *F,
are CCD PAGs corresponding to G\ and G, respectively, then *H and *F, are different.
We may suppose, again without loss of generality that V is the closest such vertex to any
Xk (I=k<n) in G\g in the sense that a shortest directed path P=Xk-*...->V in G\
contains at most the same number of vertices as a shortest directed path in G\ from any
Xk (1= k< n) to some other vertex V satisfying the conditions on V.

Claim: Let W be the first vertex on P which is p-adjacent to V, (both in G\ and G, since
by CET(I) G\ and G2 have the same p-adjacencies). We will show that the assumption
that V is the closest such vertex to any Xk (in G\) together with the assumption that G\
and G, satisfy CET(I)-(111) imply that W is a descendant of Xi in G,. We prove this by
showing that every vertex in the directed subpath P(Xk, W)=Xk—K..W in G\ is dso a
descendant of Xi in G,.

Proof of Claim: By induction on the vertices occurring on the path P(Xk, W).
Base Case: X”. By hypothesis Xk is a descendant of Xi in both G\ and G,.

Induction Case: Consider Y,, where P(Xk, W)sXk->Yi->...->Y ->...YsW. By the
induction hypothesis, for s<r, Yy is a descendant of Xi in G,. Now there are two
subcases to consider:

Subcase 1: Not both Xo and X,.i are p-adjacent to Y,. Suppose without loss that Xo is
not p-adjacent to Y,. Since in G\ there is a directed path Xo-».. Xk—»Yi-»...Y,, by
Lemma 16 it then follows that there is some subsequence of this sequence of vertices,
£7°<Xo0,...Y > such that consecutive vertices in Q are p-adjacent, but only these vertices

2 |n the case where CETIV) fails n=I, while if CET(V) fails, n>l.
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are p-adjacent. Moreover, since Xois not p-adjacent to Y,, this sequence of vertices is of
length greater than 2, i.e. (?=<Xo0,D...Y,>where D isthefirg vertex in the subsequence
after Xo, henceether D=X (1 <K <k) or D*Y”, (1<p,<r). Sincein éther caseD isa
descendant of Xi in both G\ and G2, (either by the induction hypothesis or by the
hypothes's of case 5), but Xo is not a descendant of Xi in G\ or Gi it followsthat D is not
an ancegtor of XQ in G\ or G2. Hence we may apply Lemma 17, to Qto deducethat Y, is
a descendant of D. Hence Y, is a descendant of Xi in G, since Xi is an ancestor of D.

Subcase 2: Both Xoand X..i are p-adjacent to Y, Firg notethat in G\ thevertex Y, isa
descendant of X, and X" is not an ancestor of XQ or X,.i. It followsthat Y, isnot an
ancestor of Xo or X,+i in G\ . Moreover, since XQ and X+ are not p-adjacent, X< Y/,
Xnt+i>forms a non-conductor in G\. Hence <Xo, Y, X,.i> forms a non-conductor in G2,
since by hypothesis G\ and G2 satisfy CET(D[a). So Y, isnot an ancestor of Xo or Xp.+i in
G\ or G2. Further, since Y, is an ancestor of V in Gi and V is not a descendant of a
common child of Xoand Xn+i in G\, it follows that Y, is not a descendant of a common
child of Xo and X,+i in G\. Thus<Xo,Y,X,.i> forms an imperfect non-conductor in G\.
Since G\ and G, satisfy CET(l), CET(lla), and CET(IIb), <Xo0,Y,,X,+i> forms an
imperfect non-conductor in G2. Now, if Y, were not a descendant of Xi in G2, then Y,
would satisfy the conditions on V, yet be closer to X” than V (Y, occurs before V on a
shortest directed path from X” to V in G\). This is a contradiction, hence Y, is a
descendant of Xk in G2. ’

This completes the proof of the claim. We now show that *F and ¥2 *& different.

Congder theedge W*-*V in *¥\. In G\g W is an ancestor ofV, henceit follows from the
correctness of the algorithm that in *Fi this edge is oriented as Wo—*V or W—*V. In
G2, however, since Xi is not an ancestor of IV, but, as we have just shown Xi is an
ancestor of W, it follows that W is not an ancestor of V. Further, since W is a descendant
of Xi and so also of X, it followsfrom (b) that W is not an ancestor of Xo or X,.i. There
are now two casesto consder:

Subcase 1: W is p-adjacent to both Xo and X,.i- Since W is not an ancestor of Xo or
Xl in G\ or G2, <Xo, W, X,.i>is anon-conductor in both G\ and G2. Further, since
Xo—>Y<—Xp4i in ¥1 (and *F,), and W is an ancestor of V in G\g it follows that W is
and hence, by CET(l1), also in ¥2- Supsepset(Xo,V,X i) isthe smallest set containing
Sepset (X, Xn+1)u{V} which d-separates Xo and X .. It followsfrom Lemma 6 (with R
"t Sepset(Xo,Xn+1)u{V}) that Supsepset(Xo,V,Xn:1) € An(Sepset(Xo™n+i) u{Xo,
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Xn+1, V}). Since Sepset(Xo,Xp+1) € An({Xo, Xn+1}), Supsepset(Xo,V.Xn+1) € An({Xo,
Xh+1> V}). We have alrcad)} shown that W is not an ancestor of Xg, Xp41, or V in G,.
Hence in step ID of the algorithm given a d-separation oracle for G, as input We
Supsepset(Xo,V,Xp+1)- Thus step E of the CCD algorithm will orient Wg o—o V or an
edge Wo o—V in ¥, as W<—V (unless they have already been oriented this way in a
previous stage of the algorithm). Thus ¥'; and ‘¥, are not the same.

Subcase 2:W is not p-adjacent to both Xy and Xy41.
Claim: X, and X,,,; are d-connected given Supsepset(Xo,V,Xp+1)U{W} in G;.

Proof. Since in both G; and G; X is p-adjacent to X, but X is not an ancestor of Xy, it
follows from Corollary 1 that X, is an ancestor of X;. Hence in both G and G; there is a
directed path Py from Xj to X; on which every vertex except for Xy is a descendant of
X. (In the case X¢o—X, the last assertion is trivial. In the case where X and X; have a
common child that is an ancestor of Xy or X1, and X is not an ancestor of Xy, it merely
states a property of the path Xo—C—...X;, where C is a common child of Xg and X;.)
Since W is a descendant of X, it follows that there is a directed path P, from X; to W.
Concatenating Py and P; we construct a directed path P* from Xo to W on which every
vertex except X is a descendant of X;. Since X is not an ancestor of Xg, Xp41 or V, it
follows that no vertex on P*, except Xp, is an ancestor of Xg, Xp, or V. Similarly we can
construct a path from Q* from Xy, to W on which no vertex, except Xy}, is an ancestor
of Xo, Xn+1 orV.

Since every vertex in Supsepset(Xo,V,X;.1) is an ancestor of Xg, Xp41 oOF
Sepset(Xo,Xpn+1)U{V}, it follows as before that every vertex in Supsepset(Xo,V,Xy+1) is
an ancestor of X, Xp4+1 or V. Thus no vertex in Supsepset(Xo,V,Xp+1) lies on P* or Q*
(Xo, Xn+1 € Supsepset(Xo,V,Xp41) by definition). It now follows by Lemma 10 that we
can concatenate P* and Q" to form a path R which d-connects Xy and Xp, given
Supsepset(Xo,V,Xp+1)U{W}.

Since W is not p-adjacent to both X and X4 it follows directly from this claim that step
9F of the CCD algorithm will orient the edgeV o—o W or V —o0 W as V—>W in ¥,
(unless they have already been oriented this way in a previous stage of the algorithm).
Hence ¥, and ¥, are different.

Since Cases 1-5 exhaust the possible ways in which G and G, may fail to satisfy CET(I)-
(V), this completes the proof. .-
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