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1. Introduction

The introduction of statistical models represented by directed acyclic graphs (DAGs) has

proved fruitful in the construction of expert systems, in allowing efficient updating

algorithms that take advantage of conditional independence relations (Pearl, 1988,

Lauritzen et al. 1988), and in inferring causal structure from conditional independence

relations (Spirtes and Glymour, 1991, Spirtes, Glymour and Schemes, 1993, Pearl and

Verma, 1991, Cooper, 1992). As a framework for representing the combination of causal

and statistical hypotheses, DAG models have shed light on a number of issues in statistics

ranging from Simpson's Paradox to experimental design (Spirtes, Glymour and Schemes,

1993). The relations of DAGs with statistical constraints, and the equivalence and

distinguishability properties of DAG models, are now well understood, and their

characterization and computation involves three properties connecting graphical structure

and probability distributions: (i) a local directed Markov property, (ii) a global directed

Markov property, and (iii) factorizations of joint densities according to the structure of a

graph (Lauritizen, et aL, 1990).

Recursive structural equation models are one kind of DAG model. However, non-

recursive structural equation models are not DAG models, and are instead naturally

represented by directed cyclic graphs in which a finite series of edges representing

influence leads from a vertex representing a variable back to that same vertex. Such

graphs have been used to model feedback systems in electrical engineering (Mason,

1953, 1956), and to represent economic processes (Haavelmo, 1943, Goldberger, 1973).

In contrast to the acyclic case, almost nothing general is known about how directed cyclic

graphs (DCGs) represent conditional independence constraints, or about their equivalence

1 Research for this paper was supported by the National Science Foundation through grant 9102169 and the
Navy Personnel Research and Development Center and the Office of Naval Research through contract

^number N00014-93-1-0568. We are indebted to Clark Glymour, Richard Schemes, Christopher Meek, and
Riarek Druzdel for helpful conversations. We also wish to thank anonymous referees for helpful comments,
corrections, simplifications, and clarifications.



or identifiability properties, or about characterizing classes of DCGs from conditional

independence relations or other statistical constraints. This paper addresses all of these

issues. The issues turn on how the relations among properties (i), (ii) and (iii) essential to

the acyclic case generalize—or fail to generalize—to directed cyclic graphs and

associated families of distributions. It will be shown that when DCGs are interpreted by

analogy with DAGs as representing functional dependencies with independently

distributed noises or "error variables," the equivalence of the fundamental global and

local Markov conditions characteristic of DAGs no longer holds, even in linear systems.

For linear systems associated with DCGs with independent errors or noises, a

characterisation of conditional independence constraints is obtained, and it is shown that

the result generalizes in a natural way to systems in which the error variables or noises

are statistically dependent.

We also present a correct polynomial time (on sparse graphs) discovery algorithm for

linear cyclic models that contain no latent variables. This algorithm outputs a

representation of a class of non-recursive linear structural equation models given

observational data as input. Under the assumption that all conditional independencies

found in the observational data are true for structural reasons rather than because of

particular parameter values, the algorithm discovers causal features of the structure which

generated the data. (Discovery algorithms for directed acyclic graphs based upon similar

assumptions are described in Spirtes et al. 1993, and Pearl and Verma 1991.)The

remainder of this paper is organized as follows: Section 2 defines relevant mathematical

ideas and gives some necessary technical results on DAGs and DCGs. Section 3 obtains

results for non-recursive linear structural equations models. Section 4 describes a

discovery algorithm. Section 5 describes some open research problems. All proofs are in

Section 6.

2. Directed Graphs and Probability Distributions

A directed graph (DG) is an ordered pair of a finite set of vertices V, and a set of

directed edges E. (We place sets of variables and defined terms in boldface.) A directed

edge from A to B is an ordered pair of distinct vertices <A3> in V (depicted as A -> B)

in which A is the tail of the edge and B is the head; the edge is out of A and intoB, and

A is a parent of B and B is a child of A; also A and B are adjacent. A sequence of edges

<E\9...9En> in a directed graph G is an undirected path if and only if there exists a

sequence of vertices <Vi,...,Vn+i> such that for 1 < i < n either <Vi,Vi+i> = E[ or
¥<Vi+i,Vi> = Ei and E( * E^\. A sequence of edges <£i, . . .^n> in a directed graph G is a



directed path if and only if there exists a sequence of vertices <Vi,...,Vn+i> such that
for 1 £ i! £ n <Vj,Vi+i> = E(. A (directed or( undirected) path U is acyclic if no vertex
occurring on an edge in the path occurs more than once. If there is an acyclic directed
path from A to B or B = A then A is an ancestor of B, and B is a descendant of A. A
directed graph is acyclic if and only if it contains no directed cyclic paths.2

A directed acyclic graph (DAG) G with a set of vertices V can be given two distinct
interpretations. On the one hand, such graphs can be used to represent causal relations
between variables, where an edge from A to B in G means that A is a direct cause of B
illative to V. A causal graph is a DAG given such an interpretation. Here we take the
concept of "direct cause relative to a set of variables" to be primitive. There is a large
philosophical literature that attempts to define various causal relations (see e.g. Sosa
1975). However, for the theorems in this paper, such definitions are not needed. The key
assumptions we make are the ones relating causal relations to probability distributions,
and these are stated and justified in section 4.

On the otter hand, a DAG with a set of vertices V can also represent a set of probability
measures over V (where the members of V are both the vertices of the graph and random
variables). Following the terminology of Lauritzen et al (1990) say that a probability
measure over a set of variables V satisfies the local directed Markov property for a
directed acyclic graph (or DAG) G with vertices V if and only if for every W in V, W is
independent of V\(Descendants(W) u Parents(W)) given Parents(W), where
Parents(W) is the set of parents of W in G, and Descendants(W) is the set of
descendants of W in G. (Note that the vertices do not merely index the random variables;
rather the random variables are the vertices of the graph. A vertex is its own ancestor and
descendant, although not its own parent or child.) A DAG G represents the set of
probability measures which satisfy the local directed Markov property for G.

The use of DAGs to simultaneously represent a set of causal hypotheses and a family of
probability distributions extends back to the path diagrams introduced by Sewell Wright
(1934). Variants of probabilistic DAG models were introduced in the 1980's in Wermuth
(1980), Wermuth and Lauritzen (1983), Kiiveri, Speed, and Carlin (1984), Kiiveri and
Speed (1982), and Pearl (1988). In Section 4 we will present assumptions which link the
two interpretations of directed graphs.

2An undirected path is often defined as a sequence of vertices rather than a sequence of edges. The two
definitions are essentially equivalent for acyclic directed graphs, because a pair of vertices can be identified
with a unique edge in the graph. However, a cydic graph may contain more than one edge between a pair
of vertices. In that case it is no longer possible to identify a pair of vertices with a unique edge.



Pearl(1988) defines a global directed Markov property that has been shown to be
equivalent to the local directed Maikov property for DAGs, and can be used to calculate
the consequences of the local directed Markov property. (See e.g. Lauritzen et al. 1990.3)
Several preliminary notions are required. Vertex X is a collider on an acyclic undirected
path U in directed graph G if and only if there are two adjacent edges on U directed into
X (e.g. A —» X <- B). Every other vertex on U is a non-collider on U. In a directed graph
G, if X and Y are not in Z, then an acyclic undirected path U d-connects X and Y given
Z if and only if every collider on U has a descendant in Z, and no non-collider on U is in
Z. For three disjoint sets X, Y, and Z, X and Y are d-connected given Z in G if and only
if there is a path U that d-connects some X in X to some Y in Y given Z. For three
disjoint sets X, Y, and Z, X and Y are d-separated given Z in G if and only if X is not d-
connected to Y given Z. A probability distribution P satisfies the global directed Markov
property for directed graph G if and only if for any three disjoint sets of variables X, Y,
and Z, if X is d-separated from Y given Z in G, then X is independent of Y given Z in P.

The following theorems relate the global directed Markov property to factorizations of a
density function. Denote a density function over V byy(V), where for any subset X of V,
fiX) denotes the marginal density of /(V). If/(V) is the density function for a probability
measure over a set of variables V and An(X) is the set of ancestors of members of X in
directed graph G, say that/(V) factors according to directed graph G with vertices V if
and only if for every subset X of V,

/(An(X))=
VeA*(X)

where each gv is a non-negative function.

The following result was proved in Lauritzen et al. (1990). (A more precise description of
the weak assumptions that need to be made about the underlying probability spaces and
densitites is given in Lauritzen et al. 1990.)

Theorem 1: If V is a set of random variables with a probability measure P that has a
density function flV), then/[V) factors according to DAG G if and only if P satisfies the
global directed Markov property for G.

"* However, in Section 3 we show that the local and global directed Markov properties are not equivalent for
cyclic directed graphs.



As in the case of acyclic graphs, the existence of a factorization according to a cyclic
directed graph G does entail that a measure satisfies the global directed Markov property
for G. The proof given in Lauritzen et al (1990) for the acyclic case carries over
essentially unchanged to the cyclic case. (Lauritzen et al. use a different definition of
d-separation that is equivalent to Pearl's in both the cyclic and the acyclic case.)

Theorem 2: If V is a set of random variables with a probability measure P that has a
density function /(V) and/(V) factors according to directed (cyclic or acyclic) graph G,
then P satisfies the global directed Markov property for G.

However, unlike the case of acyclic graphs, if a probability measure over a set of
variables V satisfies the global directed Markov property for cyclic graph G and has a
density function /(V), it does not follow that/(V) factors according to G, even if/(V) is
positive. (We thank an anonymous referee for pointing this fact out)

3. Non-recursive Linear Structural Equation Models

The problem considered in this section is to investigate the generalization of the Markov
properties to linear, non-recursive structural equation models. First we must relate the
social scientific terminology to graphical representations, and clarify the questions.

The variables in a structual equation model (SEM) can be divided into two sets, the
"error" variables and the "substantive" variables. Corresponding to each substantive
variable Xj is an equation expressing X| as a linear function of the direct causes of Xj plus
a unique error variable e{ where the linear coefficient of each variable that is not an error
variable is a free parameter. (We will not consider non-linear models in this paper. For a
discussion of non-linear cyclic models see Spirtes 1995.) Since we have no interest in
first moments, without loss of generality each variable can be expressed as a deviation
from its mean.

Consider, for example, two SEMs S, and S2 over X = {X,, X2, X3}, where in both SEMs
Xx is a direct cause of X2 and X2 is a direct cause of X3. The structural equations4 in
Figure 1 are common to both Sj and S2.

v
4 We realize that it is slightly unconventional to write the trivial equation for the exogenous variable Xi in
Terms of its error, but this serves to give the error variables a unified and special status as providing all the
exogenous sources of variation for the system.



X2 = Pll X l + 2̂

X3 = p32 X2 + £3

Figure 1: Structural Equations for SEMs St and S2

where P21 and ^2 are free parameters ranging over real values, and £,, £2 and £3 are error

variables. In addition suppose that £,, £2 and £3 are distributed as multivariate normal. In

Sj we will assume that the correlation between each pair of distinct error variables is

fixed at zero. The free parameters of Sx are Qx = <p, P>, where p is the set of linear

coefficients {p2I, p32} and P is the set of variances of the error variables. We will use

ZgjCGj) to denote the covariance matrix parameterized by the vector Qx for model Sp and

occasionally leave out the model subscript if the context makes it clear which model is

being referred to. If all the pairs of error variables in a SEM S are uncorrelated, we say S

is a SEM with uncorrelated errors.

S2 contains the same structural equations as S,f but in S2 we will allow the errors between

X2 and X3 to be correlated, i.e., we make the correlation between the errors of X2 and X3

a free parameter, instead of fixing it at zero, as in S x. In S2 the free parameters are 82 =

<P, P'>, where p is the set of linear coefficients {P2PP32} a n ^ Pf is the set of variances of

the error variables and the correlation between £2 and £3. If the correlations between any

of the error variables in a SEM are not fixed at zero, we will call it a SEM with

correlated errors.5

If the coefficients in the linear equations are such that the substantive variables are a

unique linear function of the error variables alone, the set of equations is said to have a

reduced form. A linear SEM with a reduced form also determines a joint distribution

over the substantive variables. We will consider only linear SEMs which have

coefficients for which there is a reduced form, all variances and partial variances among

the substantive variables are finite and positive, and all partial correlations among the

substantive variables are well defined.

It is possible to associate with each SEM with uncorrelated errors a directed graph that

represents the causal structure of the model and the form of the linear equations. For

example, the directed graph associated with the substantive variables in Sj is Xx-> X2 -»

5We do not consider SEMs with other sorts of constraints on the parameters, e.g., equality constraints.



X3, because Xx is the only substantive variable that occurs on the right hand side of the
equation for X^ and X^ is the only substantive variable that appeals on the right hand side
of the equation for X3. We generally do not include error variables in the causal graph
associated with a SEM unless the errors are correlated When the distinction is relevant to
the discussion, we enclose measured variables in boxes, latent variables in circles, and
leave error variables unenclosed.

Figure 2. SEM S2 with correlated errors

The typical path diagram that would be given for S2 is shown in Figure 2. This is not
strictly a directed graph because of the curved line between error variables 82 and Zy

which indicates that s^ and £3 are correlated. It is generally accepted that correlation is to
be explained by some form of causal connection. Accordingly if £^ and £3 are correlated
we will assume that either ^causes e, e3 causes e^ some latent variable causes both ^

and 83, or some combination of these. In other words, curved lines are an ambiguous
representation of a causal connection.

A SEM is said to be recursive (an RSEM) if its directed graph is acyclic; otherwise it is
non-recursive.6

A SEM containing disjoint sets of variables X, Y, and Z linearly entails that X is
independent of Y given Z if and only if X is independent of Y given Z for all values of
free parameters in the SEM. A DG G containing disjoint sets of variables X, Y, and Z
linearly entails that X is independent of Y given Z if and only if the SEM with DG G

and no correlated errors linearly entails that X is independent of Y given Z. Similarly we
may say that a SEM containing X, Y, and Z, where X * Y and X and Yare not in Z,
linearly entails that PXY.Z= 0, if and only if pxY.Z= 0 for all values of free parameters in
the SEM (where pxY.Z is the partial correlation of X and Y given Z.) DG G linearly
entails that PXY.Z= 0 if and only if the SEM with DG G and no correlated errors linearly

* Note that this use of cyclic directed graphs to represent feedback processes represents an extension of the
causal interpretation of directed graphs.



entails PXY.Z= 0- It follows from Kiiveri and Speed (1982) that if the error variables are

jointly independent, then any distribution that forms a linear, recursive SEM with a

directed acyclic graph G satisfies the local directed Markov property for G. One can

therefore apply d-separation to the DAG in a linear, recursive SEM to compute the

conditional independencies and zero partial correlations it linearly entails. The

d-separation relation provides a polynomial (in the number of vertices) time algorithm for

deciding whether a given conditional independence relation or vanishing partial

correlation is linearly entailed by a SEM with a given DAG.

Linear non-recursive structural equation models (linear SEMs) are commonly used in the

econometrics literature to represent feedback processes that have reached equilibrium.7

Corresponding to a set of non-recursive linear equations is a cyclic graph, as the

following example from Whittaker (1990) illustrates.

X3 = P31X1 + P34X4 + ex3

X4 = P42X2 + P43X3 + ex4

> £X2> £X3> 3X4 are jointly independent and normally distributed

• x

x2

Figure 3: Example of Non-recursive SEM

Theorem 3 and Theorem 4 state that the set of conditional independence relations (and

hence, zero partial correlations) linearly entailed by a SEM correspond to the

d-separation relations in the associated directed graph, even in the case of cyclic graphs.

(Theorem 3 was independently proved by J. Koster in Koster 1995.)

Theorem 3: The probability measure P over the substantive variables of a linear SEM L

(recursive or non-recursive) with jointly independent error variables satisfies the global

7Cox and Wcrmuth (1993), Wermuth and Lauritzen(1990) and (indirectly) Frydenberg(1990) consider a
class of linear models they call block recursive. The block recursive models overlap the class of SEMs, but
they are neither properly included in that class, nor properly include it Frydenberg (1990) presents

'•necessary and sufficient conditions for the equivalence of two block recursive models. The graphs of SEMs
without correlated errors are a subclass of the reciprocal graphs introduced in Koster (1995).

8



directed Markov property for the directed (cyclic or acyclic) graph G of L, i.e. if X, Y,

and Z arc disjoint sets of variables in G and X is d-separated from Y given Z in G, then X

and Y are independent given Z in P.

Theorem 4: In a linear SEM L with jointly independent error variables and directed

(cyclic or acyclic) graph G containing disjoint sets of variables X, Y and Z, if X is not

d-separated from Y given Z in G then L does not linearly entail that X is independent of

Y given Z.

Applying Theorem 3 and Theorem 4 to a linear SEM with the directed graph in Figure 3,

the conditional independence relations linearly entailed are: Xi is independent of X2; Xi

is independent of X2 given X3 and X4. It is easy to see from Theorem 3 and Theorem 4

that in a linear SEM L with jointly independent error variables and (cyclic or acyclic)

directed graph G containing substantive variables X, Y and Z, where X * Y and Z does

not contain X or Y, X is d-separated from Y given Z in G if and only if L linearly entails

that pxY.Z = 0 (even if the error terms are not normally distributed).

As in the acyclic case, d-separation provides a polynomial time procedure for deciding

whether a linear SEM with a cyclic graph linearly entails a conditional independence or

vanishing partial correlation.

In DAGs the global directed Markov property entails the local directed Markov property,

because a variable V is d-separated from its non-parental non-descendants given its

parents. However, this is not always the case in cyclic graphs. For example, in Figure 3,

X4 is not d-separated from its non-parental non-descendant Xi given its parents X2 and

X3, so the local directed Markov property does not hold.8

There is also a way to decide which partial correlations are entailed to be zero by a SEM

with correlated errors, such as S2 (Figure 2). This is done by first creating a directed

graph G with latent variables but no correlated errors, and then applying d-separation to

G to determine if a zero partial correlation is entailed. The latent variable directed graph

G (without correlated errors) that we will assocate with a SEM S with correlated errors is

created in the following way. Start with the usual graphical representation of S, that

contains undirected lines connecting correlated errors (e.g. SEM S2 in Figure 2). For each

8 We are indebted to C. Glymour for pointing out that the local Markov condition fails in Whittaker's
model. Indeed, there is no acyclic graph (even with additional variables) that linearly entails all and only
conditional independence relations linearly entailed by Figure 3, although the directed cyclic graph of

Vigure 3 is equivalent to one in which the edges from X1 to X3 and X2 to X4 are replaced, respectively, by
edges from X] to X4 and from X2 to X3.



pair of error variables £. and ^ connected by an undirected edge, introduce a new latent

variable T^, and edges from TV to Xj and X^ Finally remove all of the error variables from

the graph. When this process is applied to SEM S2, the result is shown in Figure 4.

figure 4. SEM S2': Correlated Errors in S2 Replaced by Latent Common Cause

In a SEM like S2, with correlated errors, one can decide whether pXî 3.x2 *s entailed to be

zero by determining whether {Xx} and {X3} are d-separated given {X2} in the directed

graph in Figure 4. In this way the problem of determining whether a SEM with correlated

errors entails a zero partial correlation is reduced to the already solved problem of

determining whether a SEM without correlated errors entails a zero partial correlation.

(In general if S is a SEM with correlated errors, and S* is the SEM with uncorrelated

errors and the latent variable directed graph associated with S, it is not the case that for

every instantiation 0, of the free parameters of S there is an instantiation 62 of the free

parameters of S' such that £s(6 t) = £s>(02). We are making the weaker claim that d-

separation applied to G correctly describes which zero partial correlations are linearly

entailed by S. See Spirtes et al. 1996a.)

4. The Discovery Problem

Suppose that we are given data sampled from a population whose causal structure is

correctly described by some non-recursive structural equation model M. Is it possible to

discover the causal graph of M from the data, or at least recover some features of the

causal graph from the data? In Spirtes et al (1995) the problem of discovering features of

the causal graph is considered under the assumption that it is acyclic, but that there may

be latent common causes (i.e. there may be unmeasured variables that are the direct cause

of at least two measured variables.) Here we will consider the problem of discovering

'features of the causal graph under the assumption that it may be cyclic, but there are no

10



latent common causes. Future research is needed on the problem of discovering the

causal graph when it may be cyclic and there may be latent common causes.

In order to make inferences about causal relations from a sample distribution it is

necessary to introduce some axioms that link probability distributions to causal relations.

The two assumptions that we will make are the Causal Independence and Causal

Faithfulness Assumptions, described in the next two subsections.

4.1. The Causal Independence Assumption

The most fundamental assumption relating causality and probability that we will make is

the following:

Causal Independence Assumption: If A does not cause B, and B does not cause A, and

there is no third variable that causes both A and B, then A and B are independent.

This assumption allows us to draw a causal conclusion from statistical data and lies at

the foundation of the theory of randomized experiments. If the value of A is randomized,

the experimenter knows that the randomizing device is the sole cause of A. Hence the

experimenter knows B did not cause A, and that there is no third variable which causes

both A and B. This leaves only two alternatives: either A causes B or A and B are

independent. If A and B are dependent in the experimental population, the experimenter

concludes that A does cause B, which is an application of the Causal Independence

Assumption.

The Causal Independence Assumption entails that if two error variables, such as e^ and £3

in Figure 2 are correlated there is a latent common cause of X, and X3 responsible for the

correlation. In other words, when X2and X3have correlated errors, we assume that the

distribution over X2 and X3 is the marginal of some other distribution including a finite

number of latent causes of Xj and X3 in which the error variables are unconelated. Since

we are making the assumption that there are no latent common causes, it follows that the

error variables of the causal graph are uncorrelated. The correctness of the d-separation

criterion for deciding which partial correlations are linearly entailed to be zero by a SEM

with an associated directed graph G then follows from Theorem 3 and Theorem 4.

4.2. The Faithfulness Assumption

In addition to the zero partial correlations that are entailed for all values of the free

parameters of a SEM with a given directed graph, there may be zero partial correlations

•Jhat hold only for some particular assignments of values to the parameters. For example,

11



suppose Figure 5 is the directed graph of a SEM that describes the relations among Tax

Rate, the Economy, and Tax Revenues, where pM fJ2 and p3 are free parameters.

Tax
Rate

Tax
Revenues

Figure 5. Economic Model

In this case there are no vanishing partial correlation constraints entailed for all values of

the free parameters. But if in the population (J, = - (p 2 x p3), then Tax Rate and Tax

Revenues are uncorrelated. The SEM postulates a direct effect of Tax Rate on Revenue

(p,), and an indirect effect through the Economy (p2 x p3). The parameter constraint

indicates that these effects exactly offset each other in the population, leaving no total

effect whatsoever. In such a case we say that the distribution is unfaithful to the directed

graph of the causal structure that generated it. A distribution is faithful to a directed

graph G if each vanishing partial correlation in the distribution is linearly entailed by G

(i.e. entailed for all values of the free parameters of the SEM with directed graph G and

no correlated errors).

Causal Faithfulness Assumption: If the directed graph associated with a SEM M

correctly describes the causal structure in the population, and Qpop are the population

parameter values, then if p ^ y = 0 in IVi^pop)' M linearly entails that pm = 0.

The faithfulness assumption limits the SEMs considered to those in which population

constraints are entailed by structure, not by particular values of the parameters. If one

assumes faithfulness, then if A and B are not d-separated givenC, then p A B c * 0>

(because it is not linearly entailed to equal zero.) Faithfulness should not be assumed

when there are deterministic relationships among variables, or equality constraints upon

free parameters, since either of these can lead to violations of the assumption. Some form

of the assumption of faithfulness is used in every science, and amounts to no more than

the belief that an improbable and unstable cancellation of parameters does not hide real

causal influences. When a theory cannot explain an empirical regularity save by invoking

12



a special parameterization, most scientists are uneasy with the theory and look for an

alternative.

It is also possible to give a personalist Bayesian argument for assuming faithfulness. For
any directed graph, the set of linear parameterizations of the directed graph that lead to
violations of linear faithfulness are Lebesgue measure zero. Hence any Bayesian whose
prior over the parameters is absolutely continuous with Lebesgue measure, assigns a zero
prior probability to violations of faithfulness. Of .course, this argument is not relevant to
those Bayesians who place a prior over the parameters that is not absolutely continuous
with Lebesgue measure and assigns a non-zero probability to violations of faithfulness.

The assumption of faithfulness guarantees the asymptotic correctness of the Cyclic
Causal Discovery (CCD) algorithm described in Section 4.4. It does not guarantee that on
samples of finite size this algorithm is reliable.

Given the Causal Independence Assumption, an assumption of no latent variables, a
linearity assumption, and the Causal Faithfulness assumption, it follows that in a
distribution P generated by a causal structure represented by a directed graph G, pXY z = 0
if and only if X is d-separated from Y given Z in G. So if we can perform statistical tests
of zero partial correlations then we can use that information to draw conclusions about
the d-separation relations in G, and then to reconstruct as much information about G as
possible. Henceforth we will speak of reconstructing features of G from d-separation
relations, and from zero partial correlation interchangeably, since given our assumptions,
these are equivalent. We assume that the discovery algorithm has access to a
d-separation oracle that correctly answers questions about d-separation relations inG. In
practice, of course, the oracle is some kind of statistical test of the hypothesis that a
particular partial correlation is zero in a population that satisfies the global Markov and
faithfulness properties for G. (The algorithm is correct for any distribution for which a
d-separation oracle is available, but because in the case where the functional relations
between variables are non-linear, non-recursive d-separation is not a sufficient condition
for conditional independence, the only case we know of in which such an oracle is
available is the linear case.)

Of course the number of distinct d-separation relations grows exponentially with the
number of variables in the directed graph. Therefore it is important to discover the
features of G from a subset of the set of all d-separation relations. The CCD algorithm
that we describe below chooses the subset of d-separation relations that it needs to

'reconstruct features of G as it goes along.

13



43. Output Representation - Partial Ancestral Graphs (PAGs)

In general, it is not possible to reconstruct a unique directed graph G given information

only about its d-separation relations, because there may be more than one directed graph

in which exactly the same set of d-separation relations hold. Two directed graphs G, G*

are said to be d-separation equivalent if the same set of d-separation relations holds in

both directed graphs. The set of directed graphs d-separation equivalent to a given

directed graph G is denoted by Equiv(G). (Note that there is a stronger sense of

equivalence, which we will call linear statistical equivalence between two directed graphs

G and G' which holds when for every instantiation 0, of the free parameters of SEM S

with directed graph G and no correlated errors, there is an instantiation 02 of the free

parameters of SEM S' with directed graph G' and no correlated errors, such that ^(G,) =

£5.(62), and vice versa. In the acyclic case it is known that d-separation equivalence

implies linear statistical equivalence, but it is known that this is not so for cyclic graphs.)

The members of Equiv(G) always have certain features in common. We now introduce

the formalism with which we will represent features common to all directed graphs in

Equiv(G) for some fixed G. A partial ancestral graph (PAG) is an extended graph

consisting of a set of vertices V, and a set of edges between vertices, where there may be

the following kinds of edges: A <-» B, A o—o B, A — B, A o-» B, A <-o B, A -> B, A <-

B, A o—B, and A — o B (The A <-» B, A <-o B, and A o-> B edges appear only in PAGs

for directed graphs with latent variables. Because in this paper we are considering only

directed graphs without latent variables, none of these types of edges occur in the PAGs

we consider here.) We say that the A endpoint of an A —> B, A — B , or A — o B edge is

"-"; the A endpoint of an A <-> B, A <-o B, or. A <- B edge is "<"; and we say the A

endpoint of an A o—o B, A o—» B, or A o— B edge is "o". The conventions for the B

endpoints are analogous. In addition pairs of edge endpoints may be connected by

underlining, or dotted underlining (illusttated below). A partial ancestral graph for G

contains partial information about the ancestor relations in G, namely only those ancestor

relations common to all members of Equiv(G). In the following definition, which

provides a semantics for PAGs we use "*" as a meta-symbol indicating the presence of

any one of {o, - , >}, e.g. A—* B represents any of the following edges: A — B, A —> B,

or A—oB.
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Partial Ancestral Graphs (PAGs)9

*F is a PAG for directed graph G with vertex set V, if and only if
(i) There is an edge between A and B in ^F if and only if A and B are d-connected in
G given any subset W c V\{AJB}.
(ii) If there is an edge in *F out of A (not necessarily into B), i.e. A—* B, then A is an
ancestor of B in every directed graph in Equiv(G).
(iii) If there is an edge in H* into B, i.e. A*->B, then in every directed graph in
Equiv(G), B is not an ancestor of A.
(iv) If there is an underlining A*—*B*—*C in *F then B is an ancestor of (at least
one of) A or C in every directed graph in Equiv(G).
(v) If there is an edge from A into B, and from C into B, (A—> B<— C), then the
arrow heads at B are joined by dotted underlining (A—>B<—C) only if in every
directed graph in Equiv(G) B is not a descendant of a common child of A and C.
(vi) Any edge cndpoint not marked in one of the above ways is left with a small circle
thus: o—*.

Two vertices, X and Y, in a directed cyclic graph G are p-adjacent if there is an edge
between them, X*—*Y, in any (hence every) PAG for G. It follows directly from the
definitions that a pair of vertices X, Y are p-adjacent in G if and only if X and Y are d-
connected given every subset of the other vertices inG.

Observe that condition (i) in the definition of the PAG differs from the other five
conditions in providing necessary and sufficient conditions on Equiv(G) for a given
symbol, in this case an edge, to appear in a PAG. The other five conditions merely state
necessary conditions. For this reason there are in fact many different PAGs for a directed
graph G. Although they all have the same p-adjacencies, the edges may be of different
types. Some of the PAGs provide more information than others about causal structure,
e.g. they have fewer Vs at the end of edges.10

9 The extended graphs which we introduce here - Partial Ancestral Graphs - use a superset of the set of
symbols used by Partially Oriented Inducing Path Graphs (POIPGs) descaribed in Spirtes et aL (1993) but
the graphical interpretation of the (mentations given to edges is different. However, it has been shown in
Sprites etaL (1996) that a POIPG can be interpreted directly as a PAG. A direct corollary is that PAGs can
be used to represent the d-separation equivalence class for directed acyclic graphs with latent variables. It is
an open question whether or not the set of symbols is sufficiently rich to allow us to represent d-separation
classes of cyclic graphs with latent variables.
10If one PAG for a graph G has a V at the end of an edge, then every other PAG for the same graph either

"has a V or a V in that location. Similarly if one PAG for a graph G has a -' at the end of an edge then
every other PAG for the same graph either has a'-' or an V in that location.
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If *F is a PAG for directed graph G, we also say that *F represents G. Since every clause
in the definition refers only to Equiv(G), it follows that if ̂ P is a PAG for directed graph
G, and G*e Equiv(G), then *F is also a PAG for G*. This is not surprising since, as the
output of the discovery algorithm we present below, the PAG is designed to represent
features common to all directed graphs in the d-separation equivalence class. However,
some PAGs may represent directed graphs from different d-separation equivalence
classes. This leaves open the possibility that an algorithm might output the same PAG
given directed graphs from different d-separation classes as input However, any PAG
output by the discovery algorithm we present provides sufficient information to ensure
that the algorithm never outputs the same PAG given oracles for two directed graphs
unless those directed graphs are d-separation equivalent. Hence the algorithm provides a
1-1 mapping from d-separation equivalence classes into PAGs.

The set of features described by a PAG is rich enough to enable us to distinguish between
any two d-separation equivalence classes, i.e. there is some set of features common to all
directed graphs in one d-separation equivalence class that is not true of all directed graphs
in another d-separation equivalence class, and this difference can be expressed by a
difference in the PAGs representing those d-separation equivalence classes.

Example:
Suppose G is as follows:

A

G

B
Figure 6

In this case it can be shown that Equiv(G) contains (only) two directed graphs:

A
Equiv(G)

Figure 7

The PAG which the CCD algorithm outputs given as input an oracle for deciding
conditional independence facts in G, is:
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Observe that the PAG tells us the following facts about Equiv(G):11

(a) X is an ancestor of Y, and Y is an ancestor of X in every directed graph in
Equiv(G).
(b) In no directed graph in Equiv(G) is X or Y an ancestor of A or B.
(c) In every directed graph in Equiv(G) both A and B are ancestors of X and Y.

Note that not every edge in the PAG appears in every directed graph in Equiv(G). This is
because an edge in the PAG indicates only that the two variables connected by the edge
are d-connected given any subset of the other variables. In fact it is possible to show
something stronger, namely that if there is an edge between two vertices in a PAG, then
there is some directed graph represented by the PAG in which that edge is present.12

This example is atypical in that the PAG given by the algorithm contains no V endpoints;
however it shows how much information a PAG may provide. Notice that the following
are also PAGs for G though they are less informative.

A feX A oX
Other PAGs
forEqui*G)

^ ; Y B

The CCD algorithm we describe does not always give the most informative PAG for a
given directed graph G in that there may be features common to all directed graphs in the
d-separation equivalence class which are not captured by the PAG that the algorithm
outputs. In this sense the algorithm is not complete. However, the algorithm is
d-separation complete in the sense that if the d-separation oracles for two different
directed graphs cause the algorithm to produce the same PAG as output then the two
directed graphs are d-separation equivalent.

**This is not an exhaustive list For example, the presence of the dotted line connecting the arrowheads on
the A —>X, and B—>X edges, tells us that in no graph in Equiv(G) are both of these edges present.

^Likewise with the dotted line connecting the arrowheads of the B—>Y, and A—>Y edges.
12See footnote 10.
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The following definition is required to state the algorithm. For graph *F,

Adjacencies^^:) is a function giving the set of variables Y s.t. there is an edge X*—* Y

in *F.13 *F is a dynamic object in the algorithm that changes as the algorithm progresses,

and hence AdjacenciesCP,X) also changes as the algorithm progresses. A trace of the

algorithm on a simple example is given in section 4.8.

4.4. The Cyclic Causal Discovery (CCD) Algorithm

The overall strategy for discovery is shown in Figure 10.

Discovery

Algorithm
- •PAG

epresents
features

common to

d-separation
equivalence

class

Figure 10

Note that once the following algorithm adds a "—", ">", or "<" endpoint to an edge it

never removes or changes it; similarly once it adds underlining (dotted or not) it never

removes it or changes it. For each pair of variables X and Y the set Sepset(X,Y) is

assigned a values at most once by the algorithm. For some pairs of variables the

algorithm does not assign a value to Sepset(X,Y), but in those cases, the values are not

needed by the algorithm. Similar remarks hold for Supsetset(X,Y,Z). The algorithm

correctly creates PAGs for acyclic as well as cyclic graphs.

CCD Algorithm

Input: An oracle for answering questions of the form: "Is X d-separated from Y given set
Z, (X,Y* Z) in directed graph GV

Output: A PAG for G.

13Here as elsewhere '** as a meta-symbol indicating any of the three ends -, o, >.
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1A a) Form the complete graph *F, such that between every pair of variables A and B
there is an edge Ao—oB in *F.

b)n = O.
repeat

repeat
select an ordered pair of variables X and Y such that there is an
edge Xo—oY in *F and the number of vertices in
AdjacenciesCF,X)\{ Y} is greater than or equal to n;
repeat

select a subset S of AdjacendesOF,X)\{ Y} with n vertices;
if X and Y are d-separated given S delete edge Xo—oY
from*F and set Sepset(X,Y) = S and Sepset(Y,X) = S;

until every subset S of AdjacendesCF,X)\{Y} with n vertices
has been selected or some subset S has been found for which X
and Y are d-separated given S;

until all ordered pairs of p-adjacent vertices X and Y such that
AdjacenciesOF,X)\{Y} has greater than or equal to n vertices have
been selected;
n = n + 1;

until for each ordered pair of p-adjacent vertices X, Y, AdjacendesCF,X)\{Y}
has less than n vertices.

fB . For each triple of vertices A3,C such that the pair A,B and the pair B,C are each
p-adjacent in *F but the pair A, C are not p-adjacent in *P, then:

(i) orient A*—*B*—*C as A—>B<—C if and only if B £ Sepset<A,G>;

(ii) orient A*—*B*—*C as A*—*B*—*C if and only if B € Sepset<A,O.

1C. For each triple of vertices <A^X,Y> in *F such that

(a) A is not p-adjacent to X or Y in*F,

(b) X and Y are p-adjacent in *P,

(c) X £ SepseUA,Y>

if A and X are d-connected given Sepset<A,Y> then orient X o—o Y or X o— Yas
X<—Y

ID. For each vertex V in *F form the following set: Xe LocalOF,V) if and only if X is
p-adjacent to V in *F, or there is some vertex Y such that X—>Y<—V in *F.
(LocalCP,V) is calculated once for each vertex V and does not change as the
algorithm progresses.)
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m= 1.
repeat

repeat
select a pair of variables {A,C} and a third variable B such that A
and C are not p-adjacent, A—>B<—C, and
LocaI(^,A)\(Sepset<A,C> u {B,C}) has greater than or equal to m
vertices,
repeat

select a set T c LocalCP,A)\(Sepset<A,C> u {B,C}) with m
vertices; if A and C are d-separated given T u Sepset<A,C>
u {B} then orient the triple A—>B<—C as A—>B<—C, and
record T u Sepset<A,C> u {B} in SupSepset<A,B,C> and
SupSepset<CJB,A>.

until every subset T c LocaI(H/^A)\(Sepset<A,C> u {B,C}) with m
vertices has been selected or a d-separating set for A and C has
been recorded in SupSepset<A,B,C> and SupSepset<CJB,A>.

until all triples such that A—>B<—C, (i.e. not A—>B<—Q, A and C are
not p-adjacent, and LocaIOP,A)\(Sepset<A,C> u {B,C}) have greater
than or equal to m vertices have been selected,
m = m + l .

until each ordered triple <A,B,O such that A—>B<—C but A and C are not
p-adjacent, is such that LocalOF,A)\(Sepset<A,C> u {B,C}) has fewer than m
vertices.

fE. If there is a quadruple <A,B,C,D> of distinct vertices such that

(ii) A—>D<—C or A—>D<—C in *F

(iii) B and D are p-adjacent in *F

then orient B o—o D or B —o D as B—>D in *F if D is not in SupSepset<A,B ,C>

else orient B*--oD as B*—D in *F if D is in SupSepset<A3,C>.

fF. For each quadruple <A3,C,D> of distinct vertices such that

(i) A—>B<—C in ¥

(ii) D is not p-adjacent to both A and C in *F

(iii) B and D are p-adjacent in *F

if A and C are a pair of vertices d-connected given SupSepset<A,B,C> u {D}, then

orient the edge B o—o D or B —o D as B—>D in *F.
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Notes concerning the operation of the CCD Algorithm:

(fA) The search in iA looks for d-separating sets for pairs of vertices X, Y in G. If such a

set is found then it is recorded in Sepset(X,Y), and the edge between X and Y in ¥ is

deleted. It can be shown (see proof of Theorem 5) that if X and Y are not p-adjacent in G,

then f A is guaranteed to find a set which d-separates X and Y. Consequently at the end of

fA there is an edge between a pair of vertices V and W in Hf if and only if V and W are

p-adjacent in G. Since, further, all edges in ^ at this point take the form o-o, at this point

*F is a PAG for G, though not a very informative one.

f A always tests every subset of a given set before testing that set itself. It can be shown

(see Lemma 6, Corollary 2) that as a consequence every vertex in Sepset(X,Y) is an

ancestor of either X or Y in every directed graph in Equiv(G). Note that Sepset(X,Y) is

set at most once: the algorithm removes the edge between X and Y in ^P, as soon as a d-

separating set for X and Y is found, and only attempts to find such a d-separating set if

there is still an edge between X and Y in *F.

(fB) In section fB each triple of vertices <A,B,C> in *P, such that there is an edge

between A and B, and B and C, but there is no edge between A and C is either oriented as

A—>B<—C or as A*—*B*—*C. The orientation rule makes use of the property

(mentioned above) that every vertex in Sepset(A,C) is an ancestor of A or C. The rale

also uses the fact that if A and B, and B and C are p-adjacent, but A and C are not p-

adjacent, and B is an ancestor of A or C then B occurs in every set which d-separates A

and C (See Lemma 7). Note that the premise in fB that there is no edge between A and C

in *F ensures that Sepset(A,C) exists and has been set in 1 A. The proof of correctness for

the algorithm implicitly shows that this rule can never lead to contradictory conclusions

(e.g. a graph containing A—>B<—Q as long as the d-separation oracle gives correct

answers about d-separation in directed graph G.)

(f C) Section f C performs additional orientations in *P. The rule applies to certain triples

of vertices <A,X,Y>, where X and Y are p-adjacent, but A is not p-adjacent to X or Y.

The rule infers from the existence of a d-connecting path from A to X given Sepset(A,Y),

(Xg Sepset(A,Y)) and the absence of a d-connecting path from A to Y given

Sepset(A,Y), that X is not an ancestor of Y. The inference is based on the idea that if X

were an ancestor of Y then the d-connecting path from A to X could be Extended' to a

d-connecting path between A and Y, given Sepset(A,Y). Note again that the condition

that there is no edge between A and Y ensures that Sepset(A,Y) has been set in f A.
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(fD) In section ID, the algorithm considers each triple <A3,C> which is then oriented as

A—>B<—C in *F, and attempts to find a set Z which d-separates A and C, but contains

{B}u Sepset(A,C). If such a set is found then it is recorded in Supsepset<A3,C>, and

dotted underlining is added, linking the arrowheads at B thus: A—>B<—C.

Since fD looks for the smallest superset of {B}u Sepset(A,C), it can be proved (see

Lemma 6) that every vertex in Supsepset<A,B,O is an ancestor of A, B or C in every

directed graph in Equiv(G). (This makes use of the analogous property, mentioned

above, that Sepset(A,C) <= An({ A,C}) in every directed graph in Equiv(G).)

Note that fD looks for Supsepset<A,B,C> only if A—>B<—C in V, A and C are not

p-adjacent, and there is no underlining at B. Since underlining is added at B if a set which

satisfies the conditions on Supsepset<A,B,C> is found, it follows that

Supsepset<A3,C> is set at most otice by the algorithm.

(fE & fF) These last two sections make additional inferences concerning ancestor

relations by examining Supsepset<A,B,C>. Both rules make use of the fact that

Supsepset<AJB,C> c An({A,B,C}) as mentioned above. Note that antecedent (i) in fE

and fF ensures that Supsepset<A,B,C> exists and has been set by fD of the algorithm.

4.5. Propagation Rules

There are many inferences that are validated by the semantics of a PAG, without

referring to the d-separation oracle. For example the following inference rule:

The underlining at B asserts that B is an ancestor of A or C, while the arrowhead at B on

the A—>B edge asserts that B is not an ancestor of A, hence B is an ancestor of C. We

shall call such inferences propagation rules, since they 'propagate' information that is

already present in the PAG. The CCD algorithm as it stands includes almost no such

propagation rules.14 The development of a complete set of such propagation rules is an

area for future research.

It will follow from the completeness theorem (Theorem 7) that all of the structural

information about the directed graph that can ever be obtained from the oracle can be

14 In certain special instances rules fC, fE and IF may redundantly consult the d-separation oracle, in the
sense that the answer to the query could be inferred from orientations that are already present in the PAG.

"in such cases these rules behave as propagation rules. (We have not removed these redundant tests because,
so far as we can see, this would involve a substantial increase in computational complexity.)
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obtained by applying propagation rules (which do not require further oracle consultation)
to the output of the CCD algorithm. If any of the steps of the algorithm were omitted, this
would no longer be the case, i.e. in certain cases further consultation of the oracle would
be needed in order to find the most informative PAG.

4.6. Soundness

Theorem 5: (Soundness) Given as input an oracle for d-separation relations in the (cyclic
or acyclic) directed graph G, the output of the CCD algorithm is a PAG *P for G.

Theorem 5 is proved by showing that each section of the algorithm makes correct
inferences about the structure of G from the answers of the d-separation oracle for G.

In practice, an approximation to a d-separation oracle can be implemented as a statistical
test that the corresponding partial correlation vanishes. As the sample size increases
without limit, if the significance level of the statistical test is systematically lowered, then
the probabilities of both Type I and Type II error for the test approach zero, so that the
statistical test is correct with probability one. Of course, this does not guarantee that the
CCD algorithm as implemented is reliable on realistic sample sizes. The reliability of the
algorithm depends upon the following factors:

1. Whether the Causal Independence Assumption holds (i.e. there are no latent
variables).
2. Whether the Causal Faithfulness Assumption holds.
3. Whether the distributional assumptions made by the statistical tests hold.
4. The power of the statistical tests against alternatives.
5. The significance level used in the statistical tests.

In the future, we will test the sensitivity of the algorithm to these factors on simulated
data.

4.7. Completeness

The statement of the algorithm in §4.4 does not specify completely an order in which sets
are to be tested in fA and ID: it is only required that no set may be tested until all of the
sets of smaller cardinality have been tried, but the order in which sets of the same
cardinality are to be tested is unspecified.

If such an order is specified, and the process of selecting sets is deterministic then it
follows that given oracles for two d-separation equivalent directed graphs G\ and G2, the

'algorithm will generate the same PAG. This is because, relative to a fixed order of
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selecting subsets, the output is determined entirely by the responses of the oracle, and for

d-separation equivalent directed graphs the oracle, by definition, will give the same

responses.

However, this leaves open the possibility that different orderings of the oracle

consultations might generate different PAGs, given the same directed graph (or d-

separation equivalent directed graphs) as input. In fact this may occur in certain

circumstances: selecting sets in a different order may result in a different PAG as output.

It can in fact be shown that the operation of sections !A, IB, ID and IE will be

unaffected by the order in which subsets of the same cardinality are selected. However,

1C and IF may orient more edges under some orderings than others.

In spite of this it is still the case that if, given oracles for two directed graphs the CCD

algorithm produces the same PAG as output then the directed graphs are d-separation

equivalent. This remains true even if the PAGs were generated by different

implementations of the algorithm, which selected subsets differently:15

Theorem 7 (d-separation Completeness) If the CCD algorithm, when given as input

d-separation oracles for the directed graphs G\9 Gi produces as output PAGs *Fi, ¥2

respectively, then *Fi is identical to ¥2 only if G\ and G7 are d-separation equivalent, i.e.

G2 e Equiv(Gi) and vice versa.

The proof is based on the characterization of d-separation equivalence in Richardson

(1994b).

As argued above, relative to a fixed, deterministic method for selecting subsets, the

converse to Theorem 7 also holds: oracles for d-separation equivalent directed graphs

will produce the same PAG as output from the algorithm. Hence the CCD algorithm,

together with a fixed method of selecting sets, will produce the same PAG as output if

and only if given oracles for d-separation equivalent directed graphs as input

4.8. Trace of CCD Algorithm

The following illustrates the operation of the algorithm given as input a d-separation

oracle for the following directed graph:

15 This is not in conflict with the statement that different implementations may produce different PAGs. If
H*i and H*2 are different PAGs for the same graph resulting from different implementations, then any edge

Vndpoint oriented with a 4-' or a *>* in ¥1 but with a 'o' in *F2 could also be oriented in ¥2 ty applying a

propagation rule (see §4.5) to Y2 (and vice versa).
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G

Initial Graph ¥ :

Figure 12

Section fA:

Since A and B are d-separated given the empty set, the algorithm removes the edge

between A and B and records Sepset<A3> = Sepset<B,A> = 0 . This is the only pair of

vertices that are d-separated given a subset of the other variables. Hence after 1A *F,

which is now a PAG for G, is as follows:

A

Figure 13

Section IB

Since Xe Sepset<A3> and Ye Sepset<A3>, Ao-oXo-oB and Ao~oYo-oB are oriented

respectively as A->X<-B and A->Y<-B. The state of *¥ at the end of IB is shown in

Figure 14.

A

Section f C No orientations are performed in this case.

Section fD

Since A and B are d-separated given {X,Y}, the algorithm records SupSepset<A,X,B> =

SupSepset<A,Y,B> = {X,Y}, and it orients A->X<-B as A->X<-B, and A->Y<-B as

A->Y<-B. The state of PAG *F after ID is shown in Figure 15.
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Section )E

The quadruple <A,B,X,Y> is such that (i) A->X<-B, (ii) A->Y<-B, (iii) X and Y are
p-adjacent, thus it satisfies the conditions in section IE. Since Ye SupSepset<A,X,B>,
the edge Yo-o X is oriented as Y—oX. Since Xe SupSepset<A,Y3>, this edge is further
oriented as Y—X.

Section fF No orientations are performed in this case, hence the PAG that is output is:

PAGT

4.9. Complexity of CCD Algorithm
Let MaxDegrce(G) = Max\{X I Y <- X, or X <r- Y in G}|,

and MaxAdj(G) = Max|{X I X is p-adjacent to Yin any PAGforG}]

The number of d-separation tests performed by Step f A of the CCD algorithm will, in a
worst case, be bounded as follows:

Total number of < 2. (n)y f n~2\ < (k + l)n2(n-2)k+l

oracle consultations in 1A ~ ^2'^V ' / kl

where n = number of vertices in G, and k = MaxAdj(G). Since MaxAdj(G) <
(MaxDegree(G))2, with MaxDegree(G) = r this step is O(nr2+3). It should be stressed that
even as a worst case complexity bound this is a very loose one; the bound presumes that
there is a directed graph in which for every pair of vertices (X,Y), not p-adjacent in the
directed graph, X and Y are only d-separated given all vertices adjacent to X or all
vertices adjacent to Y.

Step IB performs no additional tests of d-separation.

Step f C performs at most one d-separation test for each triple satisfying the conditions
given. Thus this step is O(n3).

In a worst case the number of tests of d-separation that Step ID performs is bounded by
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Total number of < My/n-3 \ < (m + l)n\n-3)m+l

oracle consultations in IP "" W ^ l » / ~ m!

where m = Max\{X I X e LocalCP,Y)} in ID. Since m < (MaxDegree(G))2, this step is

O(nr2+4). Again this is a loose bound.

Step IE performs no tests of d-separation, while step flF performs at most one test for

each quadruple satisfying the conditions. Hence this step is O(n4), (though in many

directed graphs there may be very few quadruples satisfying all four conditions).

Thus overall the algorithm is of complexity O(nr*+4).

5. Conclusion

These results raise a number of interesting questions whose answers may be of practical

importance. Are there other parameterizations of directed cyclic graphs which entail the

global Markov condition? Richardson (1995) gives a polynomial time algorithm for

deciding whether two directed cyclic graphs are d-separation equivalent, based on the

characterization of d-separation equivalence given in Theorem 6. Spirtes and Verma

(1992) gives a polynomial time algorithm for deciding whether two directed acyclic

graphs with latent variables are d-separation equivalent over the subset of measured

variables. Is there a polynomial algorithm for determining when two arbitrary directed

graphs (cyclic or acyclic) have the same set of d-separation relations over a common

subset of variables O? As we have seen there are correct, polynomial time algorithms for

inferring features of sparse directed graphs (cyclic or acyclic) from a probability

distribution when there are no latent common causes. There are similarly correct, but not

polynomial time, algorithms for inferring features of directed acyclic graphs from a

probability distribution even when there may be latent common causes (see Spirtes, 1992,

Spirtes, Glymour and Schemes, 1993, and Spirtes, Meek, and Richardson 1995, Pearl and

Verma 1991). Are there comparable algorithms for inferring features of directed graphs

(cyclic or acyclic) from a probability distribution even when there may be latent common

causes?
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6. Proofs

6.1. Proof of Theorem 3

Some of the proofs are simplified by using a graphical relation (which we will call

"Lauritzen d-separation") shown in Lauritzen et al. (1990) to be equivalent to Pearl's

d-separation relation defined in Section 2. Several preliminary definitions are needed to

define Lauritzen d-separation. An undirected graph is an ordered pair of a finite set of

vertices V, and a set of undirected edges E. An undirected edge between A and B is an

unordered pair of distinct vertices {A3} in V. A sequence of edges <Ei3...JEn> in an

undirected graph H is an undirected path if and only if there exists a sequence of

vertices <Vi,...,Vn+i> such that for 1 < i < n {Vi,Vi+i} = £, and Ex * EM. Let G(X) be

the 'induced' directed subgraph of directed graph G that contains only vertices in X, with

an edge from A to B in G(X) if and only if there is an edge from A to B in G. Moral(G)

moralizes a directed graph G if and only if Moral(G) is an undirected graph with the

same vertices as G, and a pair of vertices X and Y are adjacent in Moral(G) if and only if

either X and Y are adjacent in G9 or they have a common child in G. In an undirected

graph H, if X, Y, and Z are disjoint sets of vertices, then X is separated from Y given Z

if and only if every undirected path between a member of X and a member of Y contains

a member of Z. If X, Y and Z are disjoint sets of variables, X and Y are Lauritzen

d-separated given Z in a directed graph G just when X and Y are separated given Z in

Moral(G(An(X u Y u Z))).

Since some of the vertices in the proofs are defined as satisfying certain properties in the

graph, if A and B are vertices, we write AsB when A and B arc different names for the

same vertex. If there is an undirected path U containing vertices A and B in directed

graph G, and there is only one subpath of U between A and B, then {/(AJB) is the subpath

of U between A and B.

Lemma 1: In a directed graph G with vertices V, if X, Y, and Z are disjoint subsets of V,

and X is d-connected to Y given Z in G, then X is d-connected to Y given Z in an acyclic

directed subgraph of G.

Proof. Suppose that U is an undirected path that d-connects X and Y given Z, and C is a

collider on U. Let length(C,Z) be 0 if C is a member of Z; otherwise it is the length of a

shortest directed path from C to a member of Z. Let size(U) equal the number of colliders

on U plus the sum over all colliders C on U of length(C,Z). U is a minimal d-connecting

,path between X and Y given Z, if U d-connects X and Y given Z and there is no other

path U' that d-connects X and Y given Z such that size(U') < size(U). If there is a path
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that d-connects X and Y given Z there is at least one minimal d-connecting path between

X and Y given Z.

Suppose X is d-connected to Y given Z. Then for some X in X and Y in Y, there is a

minimal d-connecting path [/between X and Y given Z. It follows immediately from the

definition of a d-connecting path that U is acyclic. First we will show that no shortest

acyclic directed path D( from a collider Q on U to a member of Z intersects U except at

Q by showing that if such a point of intersection exists then U is not minimal, contrary to

our assumption. See Figure 17.

U U%

Figure 17

Form the path U' in the following way. If D( intersects U at a vertex other than Q then let

Wx be the vertex closest to X on U that is on both Di and U, and Wy be the vertex

closest to Y on U that is on both Z), and U. Suppose without loss of generality that Wx is

after WY on £>,. Let U' be the concatenation of £/(X,Wx), A<WY,Wx), and l/(WY,Y). It

is now easy to show that U' d-connects X and Y given Z, and sizeHJJ9) < size(U) because

U' contains no more colliders than U and a shortest directed path from Wx to a member

of Z is shorter than D,. Hence U is not minimal, contrary to the assumption.

Next, we will show that if U is minimal, then it does not contain a pair of colliders C and

D such that a shortest directed path from C to a member of Z intersects a shortest path

from D to a member of Z. Suppose this is false. See Figure 18.
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Figure 18

Let D\ be a shortest directed acyclic path from C to a member of Z that intersects £>2, a

shortest directed acyclic path from D to a member of Z. Let the vertex on D\ closest to C

that is also on D2 be R. Let U' be the concatenation of £/(X,C), £>i(C,R), £>2(D,R), and

t/(Y,D). It is now easy to show that U' d-connects X and Y given Z and size(U') <

size(U) because C and D are not colliders on U\ the only collider on U' that may not be

on U is R, and the length of a shortest path from R to a member of Z is less than the

length of a shortest path from D to a member of Z. Hence U is not minimal, contrary to

the assumption.

For each collider C on a minimal path U that d-connects X and Y given Z, a shortest

directed path from C to a member of Z does not intersect U except at C, and does not

intersect a shortest directed path from any other collider D to a member of Z. It follows

that the directed subgraph consisting of U and a shortest directed acyclic path from each

collider on U to a member of Z is acyclic. .-.

Lemma 2 (Lauritzen et al.9 1990): In a directed (cyclic or acyclic) graph G, disjoint sets

of variables X, Y and Z, X and Y are Pearl d-connected given Z if and only if X and Y

are Lauritzen d-connected given Z.

Lauritzen et al.9 originally proved this for the acyclic case, but the proof goes over

essentially unchanged to the cyclic case. Since Lauritzen d-separation and Pearl

d-separation are equivalent, henceforth we will simply refer to "d-separation" when the

context makes clear which definition is being used.
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Theorem 3: The probability measure P over the substantive variables of a linear SEM L

(recursive or non-recursive) with jointly independent error variables satisfies the global
directed Markov property for the directed (cyclic or acyclic) graph G of L, i.e. if X, Y,
and Z are disjoint sets of variables in G and X is d-separated from Y given Z in G, then X
and Y are independent given Z in P.

Proof. Let Err(X) be the set of error variables corresponding to a set of substantive
variables X. In order to distinguish the density function for V from the density function
for the error variables we will use f\ to represent the density function (including marginal
densities) for the former and /En- to represent the density function of the latter. If V is the
set of variables in G, then by hypothesis,

/&r(Err(V))=
£€Err(V)

It is possible to integrate out the error variables not in Err(An(X)) and obtain

/Err(Err(Aii(X))) =
ceErr(Aii(X))

Because for each variable X in V, X is a linear function of its parents in G plus a unique
error variable ex, it follows that ex is a linear function gx of X and the parents of X in G.
Hence Err(An(X)) is a function of An(X). Following Haavelmo (1943) it is possible to
derive the density function for the set of variables An(X) by replacing each ex i&./En(£x)
by #x(X,Parents(X)) and multiplying by the absolute value of the Jacobian:

/v(An(X))=

where J is the Jacobian of the transformation. Because the transformation is linear, the
Jacobian is a constant. All of the terms in the multiplication are non-negative because
they are either a density function or a positive constant. It follows from Theorem 2 that if
X and Y are d-separated given Z then X and Y are independent given Z. .-.

6.2. Proof of Theorem 4

Theorem 4: In a linear SEM L with jointly independent error variables and directed
(cyclic or acyclic) graph G containing disjoint sets of variables X, Y and Z, if X is not
d-separated from Y given Z in G then L does not linearly entail that X is independent of
Y given Z.
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Proof. Suppose that X is not d-separated from Y given Z. By Lemma 1, if X is not
d-separated from Y given Z in a cyclic directed graph G, then there is some acyclic
directed subgraph G' of G in which X is not d-separated from Y given Z. Geiger and
Pearl (1988) have shown that if X is not d-separated from Y given Z in a directed acyclic
graph, then there is some distribution represented by the directed acyclic graph in which
X is not independent of Y given Z, and it has been shown (Spirtes, Glymour and
Schemes, 1993) that there is in particular an instantiation of a linear parameterization of a
SEM with directed graph G and no correlated errors in which X is not independent of Y
given Z. If P satisfies the global directed Markov property for G' it also satisfies it for G
because every d-connecting path in G' is a d-connecting path in G. Hence there is a
distribution represented by G in which X is not independent of Y given Z. .-.

63. Proof of Theorem 5

Theorem 5: (Soundness) Given as input an oracle for testing d-separation relations in the
directed (cyclic or acyclic) graph G, then the output is a PAG *F for G.

Proof. The proof proceeds by showing that each section of the CCD algorithm makes
correct inferences from the answers given by the d-separation oracle for G, to the
structure of G (and hence any directed graph in Equiv(G)).

Section <fA

Lemma 3: Let G be a directed graph with vertex set V, and X, Ye V. The following are
equivalent:
(a) 3Z c V\{X,Y} such that X and Y are d-separated given Z, i.e. X and Y are not

p-adjacent.
(b) {X,Y} is not an edge in Moral(G(An({X,Y}))).
(c) None of the following conditions hold in G:

(i) X is a parent of Y
(ii) Y is a parent of X
(iii) X and Y have a common child C that is an ancestor of X or Y.

32



Proof:

(a)=Kb) Observe that Moral(G(An({X,Y}))) is a subgraph of Moral(G(An({X,Y}uZ))).
The hypothesis implies that {X,Y} is not an edge in Moral(G(An({X,YuZ}))). Hence it
is also not an edge in Moral(G(Aii({X,Y}))).

(b)<=>(c) By definition of the operation of graph moralization on G(An({X,Y})): there is
an edge between X and Y in Moral(G(An({X,Y}))) if and only if either there is an edge
between X and Y in G(An({X,Y})) and thus in G, i.e. (i) or (ii) holds, or X and Y have a
common child C in G(An({X,Y})), in which case (iii) holds.

(c)=Ka) Take Z=An({X,Y})\{X,Y}. By definition, every vertex in
Moral(G(Aii({X,Y}))) is an ancestor of X or Y. Since (c)=>(b) there is no edge between
X and Y in Moral(G(An({X,Y}))). Thus there is a vertex in Z lying on every path from X
to Y in Moral(G(An({X,Y}))) B Moral(G(Aii(Zu{X,Y}))). Hence X and Y are d-
separated given Z. .\

Corollary 1: In directed graph G, if X and Y are p-adjacent then either X is an ancestor
of Y, or Y is an ancestor of X (or both).

Proof: This follows immediately from the previous Lemma: if X and Y are p-adjacent
then either (i) X is a parent of Y, (ii) Y is a parent of X, or (iii) X and Y have a common
child C that is an ancestor of X or Y (or some combination). .\

Lemma 4: In directed graph G, if X and Y are not p-adjacent then X and Y are d-

separated given T ^ f VIV is adjacent to X in Moral(G(An({X,Y})))}.
Further, either T^ c: {VIV is p-adjacent to X in G} or X is an ancestor of Y in G.

Proof: Since X and Y are not p-adjacent it follows from Lemma 3 that there is no edge
between them in Moral(G(An({X,Y}))). Hence every path from X to Y in
Moral(G(An({X,Y}))) contains at least two edges. Hence the vertex closest to X on any
path is in T^y. So X and Y are d-separated given TX;Y.

We now show that either T^y g: {V IV is p-adjacent to X in G} or X is an ancestor of Y

in G. By the definition of graph moralization, in G every vertex in TX;Y is either (a) a

parent of X, (b) a child of X, or (c) a parent V of some vertex C, where C is also a child

of X and an ancestor of X or Y. Any vertex in the first two categories is clearly

p-adjacent to X. If C is an ancestor of X, then V is p-adjacent to X. If C is an ancestor of

Y, then X is an ancestor of Y. /.

Lemma 5: In a directed graph G, if A and B are not p-adjacent then either A and B are

d-separated by a set of vertices all of which are p-adjacent to A, or by a set of vertices all
fT>f which arc p-adjacent to B.
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Proof. Let TA;B, and TB;A be defined as in Lemma 4. It follows from this Lemma that A

and B are d-separated given TA;B and A and B are d-separated given TB;A. There are three

cases to consider:

Case 1: A is not an ancestor of B.
From Lemma 4, since A is not an ancestor of B, TA;B c {VIV p-adjacent to A}.

Case 2: B is not an ancestor of A. Symmetrical to Case 1.

Case 3: B is an ancestor of A, and A is an ancestor of B. Any vertex V in TA;B is either a
child of A, a parent of A, or a parent of some vertex C, which is also a child of A and an
ancestor of A or B. Clearly vertices in the first two categories are p-adjacent to A; as
before, vertices in the last category are p-adjacent to A if C is an ancestor of A. Since C is
an ancestor of A or B, and B is an ancestor of A, consequently C is an ancestor of A.
(Note that in this case every vertex in TB;A is also p-adjacent to B.) .\

Suppose that the input to the algorithm is a d-separation oracle for a directed graph G. To

find a set which d-separates some pair of variables A and B in G the algorithm tests

subsets of Adjacencies 0F,A) and subsets of Adjacencies 0F,B) to see if they d-separate

A and B. Since the vertices which are p-adjacent to A in G are at all times a subset of

Adjacencies 0F,A),16 and likewise the vertices p-adjacent to B are always a subset of

Adjacencies CP,B), it follows from Lemma 5 that step IA is guaranteed to find a set

which d-separates A and B, if any set d-separates A and B in G. Clearly the order in

which subsets of Adjacencies CF,A) and Adjacencies CP3) of a fixed cardinality are

tested in IA will not affect whether or not a d-separating set for a given pair of variables

is found: the above argument shows that the search in IA is guaranteed to find some d-

separating set for A and B if such exists (i.e. A and B are not p-adjacent). However,

which d-separating set the search finds first may be influenced by the ordering of the tests

in!A.17

Section fB

The next lemma and corollary give an important property of d-separating sets that are

found through a search which never tests a set unless it has already tested every proper

subset of that set (as in IA of the CCD algorithm).

16This is because if a pair of vertices X,Y are p-adjacent in G then no set is found which d-separates them,
and hence the edge between X and Y in ¥ is never deleted.
17 In this regard note that there may be vertices in Sepset(A,B) that are not p-adjacent to A or B. This is
because although, in searching for Sepset(A3) only subsets of Adjacencies 0F,A) and Adjacencies 0P,B)

'are tested, there may be vertices which are in these sets on account of edges in *P that have yet to be deleted
at that point in the search, i.e. vertices which are not p-adjacent to A or B.
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Lemma 6: Suppose that in a directed graph G, Y is not an ancestor of X or Z or R. If
there is a set S, such that R c S, Ye S, and for every set T s.L R £ T £ S\{ Y} X and Z
are d-connected given T in G, then S d-connects X and Z in G.

Proof. Let T* = An({X,Z}uR)nS. Since by assumption Ye An({X,Z}uR), Y«T*.
Now, R c T * , and T*cS\{Y}, so by hypothesis there is a d-connecting path, P, between
X and Z, conditional on T*. By the definition of a d-connecting path every vertex on P is
either an ancestor of one of the endpoints, or T*. Moreover, by definition, every vertex in
T* is an ancestor of X or Z or R. Thus every vertex on the path P is an ancestor of X or Z
or R. Since neither Y nor any vertex in S\T* is an ancestor of X or Z or R, it follows that
no vertex in SVT* lies on P. Since T* e S the only way in which P could fail to d-connect
given S would be if some vertex in S\T* lay on the path. Hence P still d-connects X and
Z given S./.

In a directed graph G , if X and Y are d-separated given S, and are d-connected given any
proper subset of S, then S is a minimal d-separating set for X and Y in G.

The following corollary is useful here:

Corollary 2: In a directed graph G, if S is a minimal d-separating set for X and Y, then

any vertex in S is an ancestor of X or Y in G.

Proof* The corollary follows immediately from Lemma 6, with R =0 via
contraposition. .*.

This shows that orientation rule IB(ii) is correct If A and B, and B and C are p-adjacent,
but Sepset(A,Q contains B, then we know from the search procedure that A and C are
not d-separated given any subset of Sepset(A,C). It follows that B is an ancestor of A or
C Hence A*—*B*—*C should be oriented as A*—*g*—*C in the PAG.

The following Lemma shows the correctness of the orientation rule fB(i):

Lemma 7: In a directed graph G, if A and B are p-adjacent, B and C are p-adjacent, and
B is an ancestor of A or C then A and C are d-connected given any set S, s.t A3,C « S.

Proof. Since A and B, and B and C are p-adjacent in G it follows from Lemma 3 that
{A,B} and {B,C} are edges in Moral(G(An({A,B}))) and Moral(G(An({B,C})))
respectively, hence also in Moral(G(An({A3,C}uS))). If B e An({A,C}), then
An({A3,C}uS) = An({A,C}uS), hence {A,B} and {B,C} are edges in
Moral(G(An({A,C}uS))). If B«S then A—B—C is a path circumventing S in
Moral(G(Aii({ A,C}uS))) hence A and C are d-connected given S. .\
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It follows by contraposition that if A and B are p-adjacent, B and C are p-adjacent, A and

C are d-separated given Sepset<A,C>, and Be Sepset<A,C>, then B is not an ancestor of

A or C, hence A*—*B*—*C should be oriented as A*—>B<—*C in the PAG. It then

follows from Corollary 1 that A is an ancestor of B, and C is an ancestor of B, hence

these edges are oriented as A—>B<—C.

Section fC

Lemma 8: In a directed graph G, suppose X is an ancestor of Y. If there is a set S such

that A and Y are d-separated given S, X and Y are d-connected given S, and X£ S, then A

and X are d-separated given S.

Proof. Suppose for a contradiction that A and X are d-connected given S. In that case

there is a path P between A and X in Moral(G(An({A,X}uS))) on which there is no

vertex in S. Since, by hypothesis X and Y are d-connected given S, there is a path Q

between A and X in Moral(G(An({X,Y}uS))) on which there is no vertex in S. Since

{X,Y}uS and {A,X}uS are subsets of {A,X,Y}uS path P and path Q exist in

Moral(G(An({A,X,Y}uS))). Since X is an ancestor of Y, An({ A,X,Y}uS) =

An({ A,Y}uS). Thus P and Q exist in Moral(G(Aii({ A,Y}uS))). Since P and Q intersect

at least once (at X), and do not contain any vertices in S, it follows that there is a path R

from A to Y in Moral(G(An({A,Y}uS))), which also does not contain any vertices in S.

But this is a contradiction. .\

Lemma 9: Let A, X and Y be three vertices in a directed graph G, such that X and Y are

p-adjacent. If there is a set S such that:

(ii) A and Y are d-separated given S, and
(iii) A and X are d-connected given S,

then X is not an ancestor of Y.

Proof. Suppose that there is such a set S. If X and Y are p-adjacent then X and Y are

d-connected by every subset of the other variables. In particular X and Y are d-connected

given S. Since S d-separates A and Y but d-connects A and X, it follows from Lemma 8

by contraposition that X is not an ancestor of Y. /.

Step IC simply applies Lemma 9. Suppose that <A,X,Y> is a triple such that:
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(i) A is not p-adjacent to X or Y,
(ii) X and Y are p-adjacent in *F, and
(iii)XeSepset<A,Y>.

fC is justified in the following way. Suppose that A and X are d-connected given
Sepset<A,Y>. Since X £ Sepset<A,Y>, setting S = Sepset<A,Y>, we can apply Lemma
9 to orient X o—o Y or X o— Y as X<-*Y. It then follows by Corollary 1 that Y is an
ancestor of X, hence the edge is oriented as X<—Y.

It is a feature of this orientation rule that X and Y may be arbitrarily far from A. Rules of
this type are needed by a cyclic discovery algorithm, because, as was shown in
Richardson (1994b), two cyclic directed graphs may agree 'locally' on d-separation
relations, but disagree on some d-separation relation between distant variables.18

We state without proof the following Lemma, used subsequently in the proof, which is an
easy generalization of Lemma 3.3.1 in Spirtes et al. (1993). The Lemma states conditions
under which a set of 'short* d-connecting paths may be put together to form a single d-
connecting path.

Lemma 10: (Richardson 1994b)

In a directed (cyclic or acyclic) graph G over a set of vertices V, if the following
conditions hold:

(a) R is a sequence of vertices in V from A to B, R = < A=Xo,...Xn+isB>, such that
Vi, 0 < i < n, Xi * Xi+i (the Xi are only pairwise distinct, i.e. not necessarily distinct),
(b)ZcV\{A3},
(c) T is a set of undirected paths such that

(i) for each pair of consecutive vertices in i?, Xi and Xi+i, there is a unique
undirected path in T that d-connects Xi and Xi+i given ZV{Xi, Xj+i},
(ii) if some vertex Xk in /J, is in Z, then the paths in T that contain Xk as an endpoint
collide at Xk, (i.e. all such paths are directed into Xk)
(iii) if for three vertices Xk-i, Xk, Xk+i occurring in R, the d-connecting paths in T
between Xk-i and Xk, and Xk and Xk+i, collide at Xk then Xk has a descendant in Z,

then there is a path U in G that d-connects AsXo and B^Xn+i given Z that contains only
edges occurring in T.

Section frD This section searches to find 'extra' d-separating sets for triples oriented as
X—>Y<—Z by IB (where X and Z are not p-adjacent). In the acyclic case, a triple of

*8 Whether or not such rules will ever be used on real data, in which 'distant' variables are generally found
to be independent by statistical tests is another question.
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vertices X*—-*Y*—*Z, where X and Y are p-adjacent, Y and Z are p-adjacent, but X and

Z are not p-adjacent, either has the property that every d-separating set for X and Z

contains Y, or that every d-separating set for X and Z does not contain Y. However, in

the cyclic case it is possible for X and Z to be d-separated by one set containing Y, and

one set not containing Y. We already know from Lemma 7 that if X and Z are

d-separated by some set which does not contain Y, then Y is not an ancestor of X or Z.

What can we infer if in addition X and Z are also d-separated by a set which contains Y?

This is answered by the next Lemma and Corollary.

Lemma 11: In a directed graph G, Y is a descendant of a common child of X and Z then

X and Z are d-connected by any set containing Y.

Proof. Suppose that Y is a descendant of a common child C of X and Z. Then the path

X-»C<-Z d-connects X and Z given any set containing Y. /.

Corollary 3: If in a directed graph G, with vertices X, Y and Z, if there is some set S

such that YeS, and X and Z are d-separated given S, then Y is not a descendant of a

common child of X and Z.

It follows from Lemma 12 that if <X,Y,Z> is a triple such that X and Z are d-connected

given any set containing Y, and d-separated by some set not containing Y, then Y is a

descendant of a common child of X and Z.

Lemma 12: In directed graph G, if X and Z are not p-adjacent, and Y is not a descendant

of a common child of X and Z, then X and Z are d-separated by the set T, defined as

follows:

T = {VIV is adjacent to X in Moral(G(An({X,Y,Z})))}.

Further, if X and Y are p-adjacent then YeT.

Proof: Since X and Z are not p-adjacent it follows by Lemma 3 that X and Z are not

adjacent in Moral(G(An({X,Z}))). As Y is not a descendant of a common child of X and

Z, it then follows that X and Z are not adjacent in Moral(G(An({X,Y,Z}))). Hence Z^T

and every path from X to Z in Moral(G(An({X,Y,Z}))) contains some vertex in T. Thus

X and Z are d-separated given T.

If X and Y are p-adjacent in G then Y is adjacent to X in Moral(G(An(X,Y))), and

therefore in Moral(G(An({X,Y,Z}))). Thus Ye T..-.

Lemma 13: In directed graph G, if X and Z are d-separated by some set R, then for all

sets Q c An(R u {X,Z})\{X,Z}, X and Z are d-separated by Ru Q.
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Proof. If Q c An(Ru {X,Z})\{X,Z} then An(Ru {X,Z}) = A n ( R u Q u {X,Z}). It

follows that Moral(G(An(Ru {X,Z}))) = Moral(G(An(Ru Q u {X,Z}))). The result

then follows via the (Lauritzen) definition of d-connection. /.

The search in section ID considers in turn each triple A—>B<—C in *F, A and C not

p-adjacent, and attempts to find a set R which is a subset of LocalCF,A)\{B,C} such that

A and C are d-separated given R u {B} u Sepset<A,C>. It follows from Lemma 11, that

if there is some set which d-separates A and C, and contains B, then B is not a descendant

of a common child of A and C. It then follows from Lemma 12 that in this case there is

some subset, the set T given in the Lemma, which contains B, d-separates A and C and in

which every vertex is either a parent of A, a child of A, or a parent of a child of A and so

T £ LocalOF,X). Since Sepset<A,C> is a minimal d-separating set for A and C, it

follows that Sepset<A,C> e An({ A,C})\{ A,C} (£ An(T u{ A,C}). Hence by Lemma 13,

T u Sepset<A,O also d-separates A and C.

The reader may wonder why fD tests sets of the form T u Sepset<A,C>, (where

T c LocalOF,A)), instead of just testing sets of the form T c LocaICP,A)); Lemma 12

shows that a search of the latter kind would succeed in finding a d-separating set for A

and C which contained B. The answer is that from Lemma 13 we know that any set

T £ LocalCF,A) which d-separates A and C is such that T u Sepset<A,C> also

d-separates A and C, but the reverse is not true. In particular the smallest set T such that

T u Sepset<A,G> d-separates A and C may be considerably smaller than the smallest set

T which d-separates A and C alone, hence the search is significantly faster.19

We require one more lemma to explain why we initialize m = 1, and do not test T = 0 .

Lemma 14: In directed graph G, if X and Y are p-adjacent, Y and Z are p-adjacent, X

and Z are not p-adjacent, Y is not an ancestor of X or Z, and S is a minimal d-separating

set for X and Z then X and Z arc d-connected given S u {Y}.

Proof. According to Lemma 3, if X and Y are p-adjacent then either X->Y, Y-»X or

X^C<-Y, where C is an ancestor of X or Y. Thus under the hypothesis that Y is not an

ancestor of X it follows that X is an ancestor of Y. Moreover, it follows that there is a

directed path P from X to Y, on which every vertex except X is a descendant of Y, and

hence on which every vertex except X is not an ancestor of X or Z. (In the case X->Y,

19In some cases the cardinality of the smallest set (T u Sepset<A,C>) may be greater than the cardinality
of the smallest T; but this is not true in general, and since we only intend to discover linear models this is

* tnsignificant (With discrete models conditioning on a large set of variables in a conditional independence
test may reduce dramatically the power of the test.)
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the last assertion is trivial. In the other case it merely states a property of the path

X->C->... Y, where C is a common child of X and Y.) Likewise there is a path Q from Z

to Y on which every vertex except Z is not an ancestor of X or Z.

If S is a minimal d-separating set for X and Z every vertex in S is an ancestor of X or Z,

(and X,Z £ S). Hence no vertex on P or Q is in S. It follows that P d-connects X and Y

given S, and Q d-connects Y and Z given S. It then follows from Lemma 10 that these

paths can be joined to form a single d-connecting path, hence X and Z are d-connected

given S u { Y } . . \

This completes the proof that step ID of the algorithm will succeed in finding a set which

d-separates A and C, and contains B, for each triple A—>B<—C in the PAG, if any such

set exists. A number of the subsequent proofs make use of the following consequence:

For every triple A, B, C such that *F contains A—>B<—C, A and C are not p-adjacent in

*F, and B is not a descendant of a common child of A and C, ID orients A—>B<—C as

A—>B<—C.

Section fE

The following Lemma provides the justification of ̂ E where A—>B<—C, A—>D<—C,

and D is not in SupSepset<A,B,C>, in which case B o—o D or B —o D is oriented as

B—>D.

Lemma 15: If in a PAG *F for G, X—>V<—Z, X—>W<—Z, X and Z are not
p-adjacent, and W is an ancestor of V in G, then any set S such that Ve S, and X and Z
are d-separated by S, also contains W.

Proof. Suppose there were some d-separating set S for X and Z which contained V and

did not contain W. Then, since W is an ancestor of V and Ve S, but We S, it follows by

Lemma 10 that we could put together a d-connecting path from X to W given S and from

W to Z given S to form a new d-connecting path from X to Z given S (irrespective of

whether or not these paths collide at W). Such d-connecting paths between X and W, and

between W and Z exist (by Lemma 3) since X is p-adjacent to W and W is p-adjacent to

Z. This is a contradiction. .\

In the case in which A—>B<—C, A—>D<—C, and D is in SupSepset<A,B,C> the

algorithm orients B*—oD as B*—D, the inference can be justified as follows. If D is in

SupSepset<A,B,C> then it follows from Lemma 6 and the fact that section ID looks for

the smallest superset of {B} u Sepset<A,C> which d-separates A and C that D is an

•ancestor of {B} u Sepset<A,C>. Since Sepset<A,C> is a minimal d-separating set for A
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and C, every vertex in Sepset<A,C> is an ancestor of A or C. Thus if D is in

SupSepset<A,B,C>, D is an ancestor of A, C or B. However, since there are arrowheads

at D on the edges from A to D, and C to D in *F, it follows that D is not an ancestor of A

or C, and hence D is an ancestor of B. Thus it is correct to orient B *—o D as B*—D.

In the case in which A—>D<—C in *F, (A and C are not p-adjacent and there is no dotted
line A—>D<—C), it does not matter whether D is in SupSepset<A3,C> or not. A and
C are d-connected by any set S that contains D but does not contain A or C (because of
thelack of underlining in the edge pair A—> D <—C). It follows from Lemma 12 by
contraposition that D is a descendant of a common child of A and C. Moreover since A
and C are d-separated by some set containing B (because of the underlining in the edge
pair A—>B<—C), B is not a descendant of a common child of A and C. Hence B is not a
descendant of D. Thus in the case where in *F, A—>B<—C, A—>D<—C, B and D are
p-adjacent, B o—o D or B —o D should be oriented as B—>D.

Section

A and C are d-separated by SupSepset<A,B,C>, and Be SupSepset<AJB,C>. Hence by

Lemma 13, if D is an ancestor of B, then A and C are d-separated by

SupSepset<A,B,C> u {D}. Hence by contraposition, if A and C are d-connected given

SupSepset<A,B,C> u {D} then D is not an ancestor of B. (In fact, it follows that D is

not an ancestor of A3 or C.) Since D is not an ancestor of B, but B and D are p-adjacent

it follows by Corollary 1 that B is an ancestor of D. Thus B o—o D or B —o D should be

oriented as B—>D in *F.

This completes the proof of the correctness of the CCD algorithm. /.

6.4. Proof of Theorem 7

In order to prove the d-separation completeness of the CCD algorithm, all that is required

is to show that whenever the first input to the CCD algorithm is a d-separation oracle for

G\ that results in output *?i, and the second input to the CCD algorithm is a d-separation

oracle for Gi that results in output ¥2 , and ¥1 and ¥2 are identical, then G\ and G2 are

d-separation equivalent. We shall do this by proving that when d-separation oracles for

G\ and Gi are used as input to the CCD algorithm and produce the same PAG as output,

then Gi, and G% satisfy the five conditions of the Cyclic Equivalence Theorem CET(I)-

(V) (given below) with respect to one another. It has already been shown in

Richardson( 1994b) that two directed graphs G\ and Gi are d-separation equivalent to one

•another if and only if they satisfy these 5 conditions. These conditions lead directly to a
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polynomial-time (O(n9)>=O(n3e4)) algorithm, for determining whether or not two directed

cyclic graphs are d-separation equivalent, see Richardson (1994b, 1995).

Before stating the Cyclic Equivalence Theorem we require a number of extra definitions.
In a directed graph G, call a triple of vertices <A3,C> an unshielded triple if A and B
are p-adjacent, B and C are p-adjacent, but A and C are not p-adjacent.

Call an unshielded triple a conductor if B is an ancestor of A or C, otherwise, if B is not
an ancestor of A or C, call it a non-conductor. (Note that it follows from Corollary 1 that
if <A3,C> is a non-conductor then A and C are ancestors of B.) Call a non-conductor
perfect if B is a descendant of a common child of A and C, otherwise call it imperfect.

If <Xo,Xi,...Xn+i> is a sequence of distinct vertices s.t. Vi 0 < i < n, Xi and Xi+i are
p-adjacent then we will refer to <Xo,Xi,...X n+i> as an itinerary.
If <Xo,...Xn+i> (n > 2) is an itinerary such that:

(i) Vt 1< t < n, <Xt-i, Xt, Xt+i> is a conductor,
(ii) Vk 1< k < n, Xfc-1 is an ancestor of Xfc, and Xfc+1 is an ancestor of X& and
(iii) Xo is not a descendant of Xi, and Xn is not an ancestor of Xn+i,

then <Xo,Xi,X2> and <Xn-i>Xn,Xn+i> are mutually exclusive (m.e.) conductors on the
itinerary <Xo,...Xn+i>.20

If <Xo,...Xn+i> is an itinerary such that Vi j 0 < i < j - l < j ^ n+1 Xi and Xj are not
p-adjacent in the directed graph then we say that <Xo,...Xn+i> is an uncovered
itinerary, i.e. an itinerary is uncovered if the only vertices on the itinerary which are
p-adjacent to other vertices on the itinerary, are those that occur consecutively on the
itinerary.

Theorem 6: (Cyclic Equivalence Theorem, Richardson 1994b) Directed graphs G\ and

G2 are d-separation equivalent if and only if the following five conditions hold:

CET(I) G\ and G7 have the same p-adjacencies,
CET(II) G\ and G% have (a) the same conductors, and (b) the same perfect non-
conductors,

CET(m) For all triples <A,B,C> and <X,Y,Z>, <A3,C> and <X,Y,Z> are m.e.
conductors on some uncovered itinerary P =<A,B,C,...X,Y,Z> in G\ if and only if
<A,B,C> and <X,Y,Z> are m.e. conductors on some uncovered itinerary
Q=<A,B,C,...X,Y,Z>inG2,

CET(IV) If <A,X,B> and <A,Y,B> are imperfect non-conductors (in G\ and G2),
then X is an ancestor of Y in Gi if and only if X is an ancestor of Y in G2,

50 Note that a pair of m.e. conductors on an uncovered itinerary are a generalization of a non-conductor. In
both cases there is a set of vertices "in the middle" that are not ancestors of the vertices at the "ends".
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CET(V) If <A3,C> and <X,Y,Z> are mutually exclusive conductors on some
uncovered itinerary P s=<A3,C,...X,Y,Z> and <A,M,Z> is an imperfect non-
conductor (in G\ and G2), then M is a descendant of B in G\ iff M is a descendant
ofBinG2.

Lemma 16: Given a sequence of vertices <Xo,. • -Xn+i> in a directed graph G having the

property that Vk, 0 < k < n, Xfc is an ancestor of Xk+i, and Xk is p-adjacent to Xk+i there

is a subsequence of the Xj's, which we label the Yj's having the following properties:

(b) Vj, Yj is an ancestor of Yj+i

(c) Vj X If j < k, Yj and Yk are p-adjacent in the directed graph if and only if k =

j+L i.e. the only Yk's which are p-adjacent are those that occur consecutively.

Proof. The Yk's can be constructed as follows:

Yk+i = X^ where t] is the greatest h > j such that Xh is p-adjacent to Xj where Xj=Yfc.

Property (a) is immediate from the construction. Property (b) follows from the transitivity

of the ancestor relation, and the fact that the Yk's are a subsequence of the X;'s. It is also

clear, from the construction that if k = j+1 then Yj and Yk are p-adjacent. Moreover, if

YjsXa
21 and Y^sXp are p-adjacent, and j < k, then it follows again from the construction

that if Yj+isXY, then {} < y, so k < j+1. (This is because the Yk's are a subsequence of the

Xfs.) Hence Y j + isYk . / .

Lemma 17: Let G\ and Gj be two directed graphs satisfying GET(I)-(III). Suppose there

is a directed path Di-».. .Dn , in G\. Let Do be a vertex distinct from Di,...,Dn, s.t. Do is

p-adjacent to Di in G\ and G2, Do is not p-adjacent to D2,...Dn in G\ or G7 and Do is not

a descendant of Di in G\ or G*i. It then follows that Di is an ancestor of Dn in G2.

Proof. It follows from Lemma 16 that in G\ there is a subsequence <Da(opDo,Da(i),

Da(2)...Da(m^Dn> such that the only p-adjacent vertices are those that occur

consecutively, and each vertex is an ancestor of the next vertex in the sequence. Since G\

and G2 satisfy CET(I), they have the same p-adjacencies, hence also in G2 the only

vertices in the subsequence that are p-adjacent are those that occur consecutively.

Moreover, since, by hypothesis, Do is not p-adjacent to Dj2,...Dn in G\ or G2 it follows

that Da(i)2Di in G\ and G2.

21 That is, the j* vertex in the sequence of Y vertices is the a* vertex in the sequence of X vertices.
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Suppose, for a contradiction that some vertex Da(k_i) is not an ancestor of its successor

Da(k) in the sequence in G2. Let r be the smallest k < m such that Da^\) is not an

ancestor of Da(k) in G2. Let s be the greatest j < r-1 such that Da(j) is not an ancestor of

Da(j_i)in G2. (Such a j exists since D^i^Di and Da(O)sDo is not a descendant of Di.)

There are now two cases: s = r- lor s < r -1 .

If s = r-1 then the unshielded triple <Da(s-i)»Do(s^Da(r.i)J)a(r)> is a non-conductor in G2,

since Do(S)S=Da(r.i) is not an ancestor of Do(S_i) or Da(r). But in G\9 by hypothesis, D a ^ )

is an ancestor of Da(r) hence <Da(s-i)»Da(s)sDa(r.i)JDa(r)> is a conductor in G2. But this is

a condtradiction since G\ and G2 have the same conductors by CET(IIa).

If s < r -1 then it follows that <Da(S_i),Ek(S),Da(s+i)> and <Da(r-2),Da(r.i),Da(r)> are

mutually exclusive conductors on the uncovered itinerary <Db(s-i)>---Da(r)> in G2. But

these two triples are not mutually exclusive in G\ since Da(r.i) is an ancestor of D ^ ) in

G\; hence G\ and G2 fail to satisfy CET(III), which is a contradiction.

It follows that Da(r_i) is an ancestor of Da(r) in G2. .'.

Theorem 7: (d-separation Completeness) If the CCD algorithm, when given as input

d-separation oracles for the directed graphs G\, G2 produces as output PAGs *Flf *F2

respectively, then *¥\ is identical to ¥ 2 only if G\ and G2 are d-separation equivalent, i.e.

G2 e Equiv(Gi) and vice versa.

Proof. We will show that if two directed graphs, G\ and G2 are not d-separation

equivalent, then the PAGs output by the CCD algorithm, given d-separation oracles for

G\ and G2 as input, would differ in some respect.

It follows from the Cyclic Equivalence Theorem that if G\ and G2 are not d-separation

equivalent, then they fail to satisfy one or more of the five conditions CET(I)-(V).

Case 1: G\ and G2 fail to satisfy CET(I).

In this case the two directed graphs have different p-adjacencies. It has already been

established (Theorem 5) that the CCD algorithm outputs a PAG. It follows from clause

(i) of the definition that G\ and G2 have different p-adjacencies if and only if the

corresponding PAGs, *Fi and ¥2 possess different adjacencies.

Case 2: G\ and G2 fail to satisfy CET(IIa). We assume that G\ and G7 satisfy CET(I). In

this case the two directed graphs have different conductors and hence different non-

conductors. Thus we may assume, without loss of generality, that there is some

44



unshielded triple of vertices <X,Y,Z> such that in Gi, Y is an ancestor of X or Z, while Y

is not an ancestor of either X or Z in G7.

If Y is an ancestor of X or Z then it follows from Lemma 7 that every set which

d-separates X and Z contains Y. Hence YeSepset(X,Z) in G\. It then follows from IB(ii)

If Y is not an ancestor of X or Z in G2, then Y is not in any minimal d-separating set for

X and Z. In particular Ye Sepset(X,Z) for G2. Again it follows from the correctness of

the algorithm that <X,Y,Z> is oriented as X->Y<-Z or X->Y<-Z in ¥2- Thus *Fi and *F2

are different.

Case 3: G\ and G2 fail to satisfy CET(IIb). We assume that G\ and G2 satisfy CET(I),

CET(IIa). In this case the two directed graphs have different imperfect non-conductors,

i.e. there is some triple <X,Y,Z> such that it forms a non-conductor in both G\ and G2,

but in one directed graph Y is a descendant of a common child of X and Z, while in the

other directed graph it is not. Let us assume that Y is a descendant of a common child of

X and Z in Gi, while in G2 it is not.

It follows from Lemma 11 that in G\9 X and Z are d-connected given any subset

containing Y. In this case the search in CCD section ID will fail to find any set

Supsepset<X,Y,Z>. Hence <X,Y,Z> will be oriented as X ->Y<- Z (i.e. without dotted

underlining) in *Pi.

If Y is not a descendant of a common child of X and Z in G2, then it follows from

Lemma 12 and Lemma 13 that there is some subset T of LocalOF2,X), such that X and Z

are d-separated given T u ( Y } u Sepset<X,Z>. Section ID will find such a set T, and

hence <X,Y,Z> will be oriented as X->Y<-Z in *?2- Since no subsequent orientation rule

removes or adds dotted underlining, it follows that *Pi and Y2 are different.

Case 4: G\ and G2 fail to satisfy CET(m). We assume that G\ and G2 satisfy CET(I),

CET(IIa), CET(IIb). In this case the two directed graphs have the same p-adjacencies,

and the same conductors, and perfect non-conductors. However, the two directed graphs

have different mutually exclusive conductors. Hence in both G\ and G2 there is an

uncovered itinerary, <Xo,...Xn+i> such that every triple <Xk_i,Xk^Ck+i> (1 < k < n) on

this itinerary is a conductor, but in one directed graph <Xo>Xi,X2> and <Xn.i,Xn,Xn+i>

are mutually exclusive, i.e. Xi is not an ancestor of Xo, and Xn is not an ancestor of Xn+i,

while in the other they are not mutually exclusive. Let us suppose without loss of

generality that <Xo^Xi,X2> and <Xn-i,Xn,Xn+i> are mutually exclusive in G\9 while in
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G2 they are not, and that no pair of mutually exclusive conductors on a shorter uncovered
itinerary have this property.

From the definition of a pair of m.e. conductors it follows that in G\ the vertices

Xi,...Xn, inclusive are not ancestors of Xo or Xn+i. Hence {Xi,...Xn} n

Sepset(Xo,Xn+i) = 0, since Sepset(Xo,Xn+i) is minimal, and so is a subset of

An({Xo^Cn+i}). (Here, Sepset(Xo^Cn+i) is calculated for Gv) For the same reason

Descendants({Xi,...,Xn}) n Sepset(Xo,Xn+i) = 0. It follows from the definition of a pair

of m.e. conductors on an itinerary that Xk is an ancestor of X^+i (1 < k < n), thus there is

a directed path P*= Xk->...->XjC+i in G\. Since no descendant of Xi,...,Xn is in

Sepset(Xo,Xn+i)* e a c h of the directed paths P* d-connects each vertex X^ to its successor

Xk+i (1 < k < n ) , conditional on Sepset(Xo,Xn+i). In addition, since XQ and Xi are

p-adjacent there is some path Q d-connecting XQ and Xi given Sepset(Xo,Xn+i). Since

each P( is out of X\ (i.e. the path goes Xi—»...-»Xi+i), by applying Lemma 10, with T =

{QJ*\,.Pn}* R = <Xo,...Xn>, and S = Sepset(X0^Xn+i) it follows that we can form a

path d-connecting Xo and Xn given Sepset(Xo,Xn+i). A symmetric argument shows that

Xi and Xn+i are also d-connected given Sepset(Xo^Xn+i)- It then follows that the edges

Xo*—*Xi and Xn*—*Xn+i are oriented as Xo—>Xi and Xn<—Xn+i in Yi by stage %C

of the CCD algorithm (unless they have already been oriented this way in a previous

stage of the algorithm). Thus again, by the correctness of the algorithm these arrowheads

will be present in *?i. (Subsequent stages of the algorithm only add f- and '>' endpoints,

not V endpoints. If either of the arrowheads at Xi or Xn were replaced with a -' the

algorithm would be incorrect.)

Since by hypothesis, no pair of conductors on the uncovered itinerary <Xo...Xn+i> are

mutually exclusive in G2, it follows from Lemma 17 that either Xi is an ancestor of Xo,

or Xn is an ancestor of Xn+i. It then follows from the correctness of the orientation rules

in the CCD algorithm that the pair of edges Xo*—*Xi and Xn*—*Xn+i will not both be

oriented as Xo*—>Xi and Xn<—*Xn+i in *F2. Thus *Fi and *F2 will once again be

different

Case 5: G\ and G2 fail to satisfy either CET(IV) or CET(V). We assume that G\ and G2

satisfy CET(IMin).22 If G\ and G2 fail to satisfy either CET(IV) or CET(V), then in

"^The conditions under which CET(IV) or CET(V) fail arc quite intricate precisely because the assumption
that CET(I)-(III) are satisfied implies that the graphs agree in many respects.
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either case we have the following situation: There is some sequence of vertices in G\ and

G2 <XoX\,.. .Xn, Xn+i,V>, » satisfying the following:

(a) if i > j then X{ and Xj are p-adjacent if and only if i = j+1,

(b) Xj is not an ancestor of Xo, and Xn is not an ancestor of Xn+i,

(c) Vk, 1 < k < n, X n , and Xk+i are ancestors of Xk,

(d) <Xo,V,Xn+i> is an imperfect non-conductor, and

(e) in one directed graph V is a descendant of Xi, while in the other directed

graph V is not a descendant of Xi

As explained in Case 3, condition (d) implies that in both *Fi and *F2, Xo—>V<—Xn+i.

Let us suppose without loss of generality that V is a descendant of Xi in G\9 and V is not

a descendant of Xi in G2. As in previous cases it is sufficient to show that if *Fi and *F2

are CCD PAGs corresponding to G\ and G2 respectively, then *Fi and *F2 are different.

We may suppose, again without loss of generality that V is the closest such vertex to any

Xk ( l < k < n ) in G\9 in the sense that a shortest directed path P=Xk-*...->V in G\

contains at most the same number of vertices as a shortest directed path in G\ from any

Xk (1< k < n) to some other vertex V satisfying the conditions on V.

Claim: Let W be the first vertex on P which is p-adjacent to V, (both in G\ and G2 since

by CET(I) G\ and G2 have the same p-adjacencies). We will show that the assumption

that V is the closest such vertex to any Xk (in G\) together with the assumption that G\

and G2 satisfy CET(I)-(III) imply that W is a descendant of Xi in G2. We prove this by

showing that every vertex in the directed subpath P(Xk, W)=Xk—K..W in G\ is also a

descendant of Xi in G2.

Proof of Claim: By induction on the vertices occurring on the path P(Xk, W).

Base Case: X^. By hypothesis Xk is a descendant of Xi in both G\ and G2.

Induction Case: Consider Yr, where P(Xk, W)sXk->Yi->...->Yr->...Y tsW. By the

induction hypothesis, for s < r, Ys is a descendant of Xi in G2 . Now there are two

subcases to consider:

Subcase 1: Not both Xo and Xn+i are p-adjacent to Yr. Suppose without loss that Xo is

not p-adjacent to Yr. Since in G\ there is a directed path Xo-»...Xk—»Yi-»...Yr, by

Lemma 16 it then follows that there is some subsequence of this sequence of vertices,

£?s<Xo,...Yr> such that consecutive vertices in Q are p-adjacent, but only these vertices

23 In the case where CETflV) fails n=l, while if CET(V) fails, n>l.
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are p-adjacent. Moreover, since Xo is not p-adjacent to Yr, this sequence of vertices is of

length greater than 2, i.e. (?=<Xo,D...Yr> where D is the first vertex in the subsequence

after Xo, hence either D=XK (1 < K < k) or D^Y^, (1 < p, < r). Since in either case D is a

descendant of Xi in both G\ and G2, (either by the induction hypothesis or by the

hypothesis of case 5), but Xo is not a descendant of Xi in G\ or Gi it follows that D is not

an ancestor of XQ in G\ or G2. Hence we may apply Lemma 17, to Q to deduce that Yr is

a descendant of D. Hence Yr is a descendant of Xi in G2 since Xi is an ancestor of D.

Subcase 2: Both Xo and Xn+i are p-adjacent to Yr First note that in G\ the vertex Yr is a

descendant of X^, and X^ is not an ancestor of XQ or Xn+i. It follows that Yr is not an

ancestor of Xo or Xn+i in G\ . Moreover, since XQ and Xn+i are not p-adjacent, <X<> Yr,

Xn+i> forms a non-conductor in G\. Hence <Xo, Yr,Xn+i> forms a non-conductor in G2,

since by hypothesis G\ and G2 satisfy CET(D[a). So Yr is not an ancestor of Xo or Xn+i in

G\ or G2. Further, since Yr is an ancestor of V in Gi and V is not a descendant of a

common child of Xo and Xn+i in G\, it follows that Yr is not a descendant of a common

child of Xo and Xn+i in G\. Thus <Xo,Yr,Xn+i> forms an imperfect non-conductor in G\.

Since G\ and G2 satisfy CET(I), CET(IIa), and CET(IIb), <Xo,Yr,Xn+i> forms an

imperfect non-conductor in G2. Now, if Yr were not a descendant of Xi in G2, then Yr

would satisfy the conditions on V, yet be closer to X^ than V (Yr occurs before V on a

shortest directed path from X^ to V in G\). This is a contradiction, hence Yr is a

descendant of Xk in G2.

This completes the proof of the claim. We now show that *Fi and ¥2 *& different.

Consider the edge W*-*V in *¥\. In G\9 W is an ancestor of V, hence it follows from the

correctness of the algorithm that in *Fi this edge is oriented as Wo—*V or W—*V. In

G2, however, since Xi is not an ancestor of V, but, as we have just shown Xi is an

ancestor of W, it follows that W is not an ancestor of V. Further, since W is a descendant

of Xi and so also of Xn, it follows from (b) that W is not an ancestor of Xo or Xn+i. There

are now two cases to consider:

Subcase 1: W is p-adjacent to both Xo and Xn+i- Since W is not an ancestor of Xo or

Xn+i in G\ or G2, <Xo, W, Xn+i> is a non-conductor in both G\ and G2. Further, since

Xo —>Y<—Xn+i in ¥1 (and *F2), and W is an ancestor of V in G\9 it follows that W is

not a descendant of a common child of Xo and Xn+i in G\. Thus Xo —>W<—Xn+i in *Fi

and hence, by CET(II), also in ¥2- Supsepset(Xo,V,Xn+i) is the smallest set containing

Sepset(X0,Xn+i)u{V} which d-separates Xo and Xn+i. It follows from Lemma 6 (with R
ft Sepset(X0,Xn+1)u{V}) that Supsepset(X0,V,Xn+1) c An(Sepset(X0^n+i) u{X0 ,
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Xn+i, V}). Since SepsetQCo^i) c An({Xo, Xn+i}),

Xn+i, V}). We have already shown that W is not an ancestor of Xo, Xn+i, or V in G2.

Hence in step ID of the algorithm given a d-separation oracle for Gi as input We

Supsepsct(X0,V,Xn+i). Thus step flE of the CCD algorithm will orient Wo 0—0 V or an

edge Wo o—V in ¥ 2 as W<—V (unless they have already been oriented this way in a

previous stage of the algorithm). Thus *Fi and ¥ 2 are not the same.

Subcase 2:W is not p-adjacent to both Xo and Xn+i.

Claim: Xo and Xn+i are d-connected given Supsepset(Xo,V,Xn+i)u{W} in G2.

Proof. Since in both G\ and G7 Xo is p-adjacent to Xi, but Xi is not an ancestor of Xo, it

follows from Corollary 1 that Xo is an ancestor of Xi. Hence in both G\ and Gj there is a

directed path Po from Xo to Xi on which every vertex except for Xo is a descendant of

Xi. (In the case Xo->Xi, the last assertion is trivial. In the case where Xo and Xi haVe a

common child that is an ancestor of Xo or Xi, and Xi is not an ancestor of Xo, it merely

states a property of the path Xo—>C-»...Xi, where C is a common child of Xo and X\.)

Since W is a descendant of Xi, it follows that there is a directed path Pi from Xi to W.

Concatenating Po and Pi we construct a directed path P* from Xo to W on which every

vertex except Xo is a descendant of Xi. Since Xi is not an ancestor of Xo, Xn+i or V, it

follows that no vertex on P*, except Xo, is an ancestor of Xo, Xn+i or V. Similarly we can

construct a path from Q* from Xn+i to W on which no vertex, except Xn+i, is an ancestor

ofX0 ,Xn + 1orV.

Since every vertex in Supsepset(Xo,V,Xn+1) is an ancestor of Xo, Xn+i or

Sepset(Xo^n+i)^{ V}, it follows as before that every vertex in Supsepset(Xo,V,Xn+i) is

an ancestor of Xo, Xn+i or V. Thus no vertex in Supsepset(Xo,V^Cn+i) lies on P* or Q*

(Xo, Xn+i £ Supsepset(Xo,V^n+i) by definition). It now follows by Lemma 10 that we

can concatenate P* and Q* to form a path R which d-connects Xo and Xn+i given

Supsepset(Xo,V^n+1)u{W}.

Since W is not p-adjacent to both Xo and Xn+i it follows directly from this claim that step

IF of the CCD algorithm will orient the edgeV o—o W or V —o W as V—>W in *F2

(unless they have already been oriented this way in a previous stage of the algorithm).

Hence *Fi and ¥2 are different.

Since Cases 1-5 exhaust the possible ways in which G\ and G2 may fail to satisfy CET(I)-
(V), this completes the proof. /.

49



7. References

Cooper, G., & Herskovits, E. (1992). A Bayesian method for the induction of
probabilistic networks from data. Machine Learning, 9, 308-347.

Cox, D.R., and Wermuth, N. (1993) Linear dependencies represented by chain graphs. In
Statistical Science, 1993, 8 No.3 , 204-283.

Dawid, A. P. (1979) Conditional Independence in statistical theory (with discussion)
Journal Royal Statistical Society Ser. B 41, 1-31. Frydenberg, M., (1990) The chain
graph Markov property, Scandinvaian Journal of Statistics, 17, 333-353.

Geiger, D. (1990). Graphoids: a qualitative framework for probabilistic inference. PhD
dissertation, Univ. California, Los Angeles.Geiger, D., and Pearl, J., (1988) Logical and
Algorithmic properties of Conditional Independence. Technical Report R-97, Cognitive
Systems Laboratory, University of California, Los Angeles.

Goldberger, A. S. (1964). Econometric Theory. Wiley, New York.

Haavelmo, T., (1943) The statistical implications of a system of simultaneous equations,
Econometrica, 11,1-12.

Heise D.(1975). Causal Analysis. Wiley, New York.

Kiiveri, H. and Speed, T., (1982) Structural analysis of multivariate data: A review,
Sociological Methodology, Leinhardt, S. (ed.). Jossey-Bass, San Francisco.

Kiiveri, H., Speed, T., and Carlin, J., (1984) Recursive causal models, Journal of the
Australian Mathematical Society, 36, 30-52.

Koster, J., (1995) Markov Properties of Non-Recursive Causal Models, To appear in the
Annals of Statistics, November 1995.

Lauritzen, S., and Spiegelhalter, D., (1988) Local computation with probabilities in
graphical structures and their applications to expert systems, Journal of the Royal
Statistical Society B, vol. 50, No. 2.

Lauritzen, S., Dawid, A., Larsen, B., Leimer, H., (1990) Independence properties of
directed Markov fields, Networks, 20,491-505.

Mason, S., (1953) Feedback theory-some properties of signal flow graphs, Proceedings of
the IRE, 41.

Mason, S., (1956) Feedback theory-further properties of signal flow graphs, Proceedings
of the IRE, 44.

Pearl, J., (1986) Fusion, propagation, and structuring in belief networks, Artificial
Intelligence 29, 241-88.

•Pearl, J., (1988). Probabilistic Reasoning in Intelligent Systems, (Morgan Kaufman: San
Mateo, CA).

50



Pearl, J. and Verma, T. (1991) A theory of inferred causation, in Principles of Knowledge
Representation and Reasoning: Proceedings of the Second International Conference
(Morgan Kaufmann, San Mateo, CA).

Richardson, T. (1994a). Equivalence in Non-Recursive Structural Equation Models.
ProceedingsiCompstat 94 , Physica Verlag.

Richardson, T. (1994b). Properties of Cyclic Graphical Models. MS Thesis, Carnegie
Mellon University.

Richardson T.(1995). A polynomial-Time Algorithm for Deciding Markov Equivalence
of Directed Cyclic Graphical Models, Technical Report CMU-PHIL-63, Philosophy
Department, Carnegie Mellon University.

Sosa, E. (1975). Causation and Conditionals (Oxford University Press, London,
England).

Spirtes, P. (1993) Directed Cyclic graphs, Conditional Independence and Non-Recursive
Linear Structural Equation Models. Philosophy, Methodology and Logic Technical
Report 35, Carnegie Mellon University.

Spirtes, P. and Glymour, C, (1990) Causal Structure Among Measured Variables
Preserved with Unmeasured Variables. Technical Report CMU-LCL-90-5, Laboratory
for Computational Linguistics, Carnegie Mellon University.

Spirtes, P., and Glymour, C, (1991) An algorithm for fast recovery of sparse causal
graphs, Social Science Computer Review, 9, 62-72.

Spirtes, P., Verma, T. (1992) Equivalence of Causal Models with Latent
Variables."Technical Report CMU-PHIL-33, Department of Philosophy, Carnegie
Mellon University, October, 1992.

Spirtes, P., Glymour, C, and Schemes, R., (1993) Causation, Prediction, and Search,
(Springer-Verlag Lecture Notes in Statistics 81, New York).

Spirtes, P. Directed Cyclic Graphical Representation of Feedback Models, in Proceedings
of the Eleventh Conference on Uncertainty in Artificial Intelligence, ed. by Philippe
Besnard and Steve Hanks, Morgan Kaufmann Publishers, Inc., San Mateo, 1995.

Spirtes, P., Meek, C, and Richardson, T.,(1996) Causal Inference in the Presence of
Selection Bias, Technical Report CMU-PHIL-64, Philosophy Department, Carnegie
Mellon University.

Spirtes, P., Richardson, T., Meek, C, Scheines, R., and Glymour, C, (1996a) Using D-
separation to Calculate Zero Partial Correlations in Linear Models with Correlated Errors,
Technical Report CMU-Phil-72, Philosophy Department, Carnegie Mellon University.

Verma, T. & Pearl, J., (1990). On Equivalence of Causal Models. Technical Report R-
150, Cognitive Systems Lab., UCLA.

Wermuth, N., (1980) Linear recursive equations, covariance selection and path analysis,
Journal of the American Statistical Association, 75, 963-972.

51



Wermuth, N. and Lauritzen, S., (1983) Graphical and recursive models for contingency
tables, Biometrika, 72, 537-552.

Wermuth, N. and Lauritzen, S., (1990) On substantive research hypotheses, conditional
independence graphs and graphical chain models, Journal of the Royal Statistical Society,
Series B, 52, 21-50.

Whittaker, J., (1990) Graphical Models in Applied Multivariate Statistics (Wiley, New
York).

Wright, S. (1934) The method of path coefficients, Annals of Mathematical Statistics 5,
161-215.

52


