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Abstract: Process simulation has emerged as a valuable tool for process design,

analysis and operation. In this work, we extend the capabilities of iterated linear

programming (LP) for dealing with problems encountered in dynamic nonsmooth process

simulation. A previously developed LP method is refined with the addition of a new

descent strategy which combines line search with a trust region approach. This adds more

stability and efficiency to the method. The LP method has the advantage of naturally

dealing with profile bounds as well. This is demonstrated to avoid the computational

difficulties which arise from the iterates going into physically unrealistic regions. A new

method for the treatment of discontinuities occurring in dynamic simulation problems is

also presented in this paper. The method ensures that any event which has occurred

within the time interval in consideration is detected and if more than one event occurs, the

detected one is indeed the earliest one. A specific class of implicitly discontinuous

process simulation problems, phase equilibrium calculations is also looked at. A new

formulation is introduced to solve multiphase problems.

Keywords: Nonsmooth Simulation, Iterated Linear Programming, Line Search,

Trust Region, Profile Bounds, Discontinuity.

1. Introduction

Recent years have seen the emergence of process simulation as a valuable tool for plant
design, analysis and operation. A variety of factors like increased safety concerns and
strict environmental regulations have contributed to this trend. Of increasing interest in the
simulation community is the development of efficient dynamic simulation tools. Many
authors have surveyed the present and future applications of such tools in chemical process
industries (Perkins, 1986; Marquardt, 1991; Naess etal:, 1992; Pantelides and Barton,
1993).
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Equation oriented simulators, as opposed to their sequential modular counterparts, rely on

an equation solving engine which must be able to handle poor starting points, inequality

constraints, singularities and ill-conditioning among others. Steady state and dynamic

chemical process simulation also invariably encounter variables which need to be restricted

within certain bounds. Typical examples are the nonnegativity restrictions on physical

quantities like mass, volume or temperature. Process models could show abnormal

behavior if these variables are allowed to take up values beyond these bounds because of

physical or mathematical infeasibility. A systematic treatment of these bounds by the solver

can avoid convergence failures which might arise due to ad hoc strategies currently

employed.

Another important issue is the treatment of nonsmooth relations characterized by

discontinuous derivatives or kinks, which are often enforced as procedures in the

sequential modular mode. Bullard (1991) examined some of these problems in the context

of steady state simulation. Marquardt (1991) on the other hand, points out that most of the

current dynamic simulation packages are developed to solve models of predominantly

continuous nature. However, few industrial processes could be considered to operate in a

truly continuous manner. Simulation of dynamic chemical processes often involve discrete

actions and logical constraints and these can lead to discontinuities in the modeling

equations. Process models can thus be nonsmooth at various points in state space, with

these points specified through explicit or implicit relations. Typical examples of these

include phase and flow transitions, heat and mass transfer correlations in various regimes

and startup and shutdown operations in continuous plants. The discontinuity might cause

either a switch in the model equations or even a change in the structure and dimensionality

of the plant model. Hence an effective and consistent representation mechanism of the

model discontinuities and their solution technique is very important in an equation based

modeling environment.

A method based on iterated linear programming is presented in this paper for the treatment

of variable bounds and nonsmoothness occurring in process simulation problems. In the

next section we look at a previously developed iterated linear programming technique for

constrained simulation problems modified with an improved descent strategy. The LP

based method provides a very natural way of incorporating variable bounds. Other than

bounds on variables, physically realistic conditions could also be added through simple

inequalities. Section 3 focuses on the need for an efficient treatment of variable bounds

and how the LP method provides a framework for the purpose. A new algorithm for the

treatment of discontinuities occurring in dynamic simulation problems is presented in



section 4. Section 5 describes the treatment of implicit discontinuities by looking at a

specific class of problems: phase equilibrium calculations. Conclusions and future work

are outlined in section 6.

2. Improved Iterated LP Method for Constrained Simulation
Problems

Bullard and Biegler (1991) introduced a technique based on iterated linear programming for
solving a nonlinear system of equations subject to inequality constraints and variable
bounds.

h/x) = 0

gk(x) < 0 (CSP)

xL<x<xu

This problem is termed as the constrained simulation problem (CSP). The basic idea of the
approach is to convert the equation solving problem to an optimization problem. A
sequence of linear programs is then solved to yield search directions that will lead to the
solution of the nonlinear problem.

To solve (CSP), a merit function is defined as

J

where gk(x*)+ = max [ 0 , £ 4 ( J O ] . Since /i > 0 has a minimum of zero if and only if (CSP)

is solved, JJL a non differentiate function, is minimized subject to xL < x < xv. By adding

auxiliary variables, this problem can be written as :

s.t.

gk(x)<sk (2)

xL<x<xu

pJfnJtsk>0

Barrodale and Roberts (1978) proved that for £pj + n} at a minimum, a complementarity
j

condition pp- =0 holds. Thus (p} +n}) represents \hj(x)\ and sk represents gk(x)+.

Linearizing the constraints about xl leads to the following constrained simulation linear
program, CSLP.



gk (x
l) + V gk (x

l )Td<sk (CSLP)

xL<xl+dl<xv

pJfnJfsk>0

The solution of (CSLP) generates a search direction d. To stabilize the performance of the
algorithm, a line search is carried out to find some fraction a so that JC*+^= xi + ad. It
should be noted that this method reduces to Newton's method in the absence of active
inequality constraints and thus has the ability to converge quadratically to the solution.
This LP approach is also shown to generate a descent direction for the 1-norm of the
constraint violations. The method has global convergence properties for a nonzero solution
of the linear program. The algorithm when tested on problems ranging from 2 to 977
equations and compared favorably with the existing methods.

Here a new descent strategy is incorporated into the aforementioned algorithm by
combining two major classes of strategies used to ensure descent: line search and trust
region methods. Dennis and Schnabel (1983) and Fletcher (1987) provide a detailed study
of these methods.

Line Search Methods

The basic concept behind using line search methods is to choose a descent direction dl

from the current point x1 and select an 'acceptable1 point x1*1 in this direction at which
H(x) decreases. The implementation for the algorithm by Bullard and Biegler (1991) uses
the traditional monotonic, Armijo-type line search (Armijo,1966). The search direction d!
is obtained from the solution of (CSLP) and a condition (3) that requires a sufficient
decrease in the merit function is enforced.

\-ad1)- ii(xl )<0.1a Ddn (3)

is an upper bound on the directional derivative of the merit function, which is

given by

t j k



At the full step (a=l), (3) is evaluated. If satisfied, the variables are updated and a new

step is calculated. Otherwise a new fractional step (5) is calculated from a quadratic

interpolation of the merit function and continued until a suitable a is found.

a = maxLoia,
')-n(x')- aDji

Since the merit function is nondifferentiable, it is possible for the Maratos effect to occur

(Fletcher, 1987). Here JC1 may be arbitrarily close to the solution JC\ but a full step may

fail to reduce the merit function. A nonmonotonic line search such as the watchdog

technique (Chamberlein et. ai, 1982) or a second order correction (Fletcher, 1987) could

be used to overcome this effect.

Trust Region Methods

Search directions generated by CSLP are always descent directions (Dd{i <0) for d * 0,

but they still may be poor if the problem is ill-conditioned. In such cases, the search

direction is relatively large and is nearly orthogonal to the steepest descent direction. Trust

region methods avoid this problem by restricting the stepsize dl to an area A around the

current point xl. The trust region is frequently adjusted after each step depending on how

valid the approximations of the model are. Most of the cunrent implementations increase or

decrease the trust region by comparing the actual reduction in the merit function and the

predicted reduction on linearization. The closer their ratio is to unity, the better the

agreement. Duff et. al, (1987) describe this strategy in the context of using linear programs

to solve sparse nonlinear equations.

A Combination

The main difference between line search and trust region methods lie in the sequence in

which they use the linear model and enforce the acceptable step length. The line search

methods uses a linear model to obtain a search direction d and then chooses a fractional step

a. Thus the line search occurs on a 1-dimensional subspace. On the other hand, trust

region methods first choose a maximum acceptable step length A and then use the linear

model to obtain a search direction d, the length of which cannot exceed A. The search here

is not restricted to a lower dimensional subspace. The trust region step may not always be

the Newton direction as small Afs will cause the step to be in the direction of steepest

descent. Nevertheless, both methods exhibit quadratic convergence near the solution.

Relatively little work is necessary for the line search method as only one LP is solved at

each iteration. But, when trust region methods are used, finding the ideal trust region



bounds is likely to require solution of more than one LP per iteration. However, trust

region methods require few major iterations as they use a Newton step if it lies within the

trust region.

In a combination of these two methods, the trust region eliminates the possibility of a large

ill-conditioned LP step which result in slow convergence. On the other hand, a line search

helps to reduce the number of times the LP should be solved leading to less computational

expense. First the trust region constraints are added to the linear model to generate a search

direction d\ A line search is done in this direction to get the new point xM. The

predicted and actual reduction in merit function is then calculated on the basis of the new

point and the size of the trust region is then updated. The detailed algorithm is given

below.

0. i=0.
Set trust region bounds
4=0 .5 max(x°-xL

tx
u-x°) y° = 1

Initialize the problem (at the solution of the previous time step in the dynamic problem).

1. Evaluate h,Vh,g,Vg (constraints and their gradients).

2. Solve CSLPfx^d') with trust region constraints.

3. Compute 'predicted' change in exact penalty by linearization

If \Ajia\ < en return. Else go to 4.

4. Setct=l.

5. JC" = xl + ad1. Calculate ^^(exact penalty at the new point xN)

6. If the actual change in exact penalty Ant = /iN-ii(x' )<0J a Ddii, go to 7.

Else set a = maxW.Ola,—°5cfD^ 1 Go to 5.

(Ddfi is an upper bound on the directional derivative evaluated from the solution of the

CSLP)

7. New point JC'+/ = JC1 + ad1

8. Set the trust region radius for the next iteration

Calculate the ratio of actual to predicted change r, =



my1 ifn>p2

Y otherwise

The next trust region 4<>y = A max( / > ; , y')

9. i = i-h7. go to 2.

Parameters py, p2 and m are fixed at 0.25, 0.75 and 2 respectively similar to the values

used by Zhang et. al. (1985). y' is set to 10 3 . The convergence criteria employed here is

l^/ijj < £j (step 3). Note that if (3) is not satisfied and the line search fails, ri <0.10 and y

is automatically decreased. If fi • < e2, the problem is solved. Otherwise, xl is a stationary

point which we term as a pseudosolution. Heuristic strategies for recovering from a

pseudosolution (e.g. rescaling the problem) are described by Bullard and Biegler (1991).

Numerical examples

The iterated LP method with the new descent strategy was tested on 14 small problems

reported in the literature. All the problems were solved using a Fortran program OPTLP

which implements the combined line search / trust region descent strategy. It uses QPSOL

(Gill et. al., 1983) for the solution of the LPs and implements a relaxation formulation to

handle inconsistent linearizations. The tolerance specified was that the 1-norm of the

constraint violations be less than 10"7. The numerical results for the solution of these

problems without scaling are listed in Table 1. The individual problem descriptions could

be found in Bullard and Biegler (1991) (The numbers in parentheses in column 1 refer to

the problem numbers used in that paper).

The question which arises in the context of descent in this framework is when to apply

which strategy. In general, line search methods perform better than trust region methods

on well-conditioned problems whereas trust region methods show better performance with

ill-conditioned ones. They also perform similarly in a vast majority of problems.

For problem 1 a pure trust region method (5 LPs solved) is a better strategy than a pure line

search method (18 LPs solved). However, the combined method solved the problem in 5

iterations, showing a performance similar to the better trust region method. On the other

hand, line search shows better performance than trust region in problems 2,3,4 and 14.

From the table it is evident that the combined method shows a performance similar to the

better strategy here, the line search. Hence, for the test problems considered, when there is



a significant difference in the two descent methods, the combined strategy shows a
performance similar to the better method.

Problem

1 (21)

2 (10)

3 (17)

4 (11)

U«)
5 db)

Uc)

6 (2)

7 (4)

8 (7)

9 (8)

10 (12)

11 (15)

12 (16)

13 (9)

(19»)
14 (19b)

(19°)

Number of

Variables

1

2

4

4

2
2
2

2

2

2

2

2

2

2

3
7
7
7

Number of LPs solved

Line Search

18

12

11

15

10
10
10

6

14

7

5

4

5

6

6

8
15
9

Line Search +
Trust Region

5

12

11

14

10
9
10

6

13

7

5

4

5

6

6

8
15
9

Trust Region

5

21

18

27

14
9
10

6

13

7

5

4

5

6

6
pseudo-solution

>100
11

Table 1: Comparison of number of LPs solved with pure line search, pure trast region and
a combination of line search and trust region methods.
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For problems 5-13 there is not much difference between the line search and trust region
methods as the number of LPs solved are almost the same. The combined method is as
good as either of them. Thus, in problems where there is no significant difference between
a line search and a trust region approach, a combination of the two methods does not lead
to a decrease in computational efficiency.

These observations are significant because the combined method performs at least as well
as either the trust region or the line search methods on all the problems, regardless of
whether there is a difference between the individual performance of these methods on a
particular problem. Larger numerical examples are currently under consideration. The
combined strategy is expected to perform better for larger problems as well.

3. Treatment of profile bounds

Converting the equation solving problem to an optimization framework allows for
inequalities and conditionals to be added easily. This allows the user to incorporate
physically meaningful conditionals and inequalities limiting the operation of the process
under consideration, in a natural fashion. These could be thermodynamic constraints
governing the behavior of the system or even simple physical constraints (For eg.
sum(component holdups) < volume of the vessel). Bounds on functions can thus be easily
added into this framework.

Chemical process simulation problems often contain variables like temperature, pressure
and molefraction, which are restricted to be within a certain region. Process models are
often formulated with the assumption that the variables lie within their specified bounds. It
is quite likely that process models show egregious behavior if these variables are allowed to
venture out of their specified region. Hence it is important to avoid regions of physical and
mathematical infeasibility in process simulation problems. Most of the conventional
nonlinear equation solving techniques do not have a systematic and efficient technique for
enforcing bounds on variables. The LP based method presents a very natural way of
dealing with variable bounds. The LP method limits the iterates within the bounds on
variables and avoids the mathematical problems which arise otherwise.

In the following example we show how enforcement of variable bounds in an LP method
helps to solve the problem by restricting the iterates from going into regions of
mathematical infeasiblilty.



Example

This example is based on a parameter estimation problem originally formulated by the Dow
Chemical Company (Blaueffl/., 1981).

^ (6a)

dy-
—r = -*/JW2+ ksyw - ^^ (6b)

dy
.5^y9 (6c)

(6d)

(6f)

(6g)

+^j (6k)

Here, y's represent the state variables and K's and ik's are parameters as reported by
R.H.Farris (Biegler et al., 1986). Values of the parameters are given by (7).
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k, = 1.8192

k2 = 2.8595

k3 = 2926

K,= 2.575xlO-'6

K2 = 4.876 x 10~'4

K3 = 1.7884x10'"

K4 = 1.31xl0-2

(7)

'36 = lxl0

The problem was attempted under two conditions: one with the specification of bounds and

the other without. In the unbounded case, the solution of the first LP gave a search

direction which led to a negative value of y7. (6k) could not be evaluated at that point and

the method failed. However, in the bounded case, the variables y, to yw were bounded

below by zero as they represent concentrations in the original problem. The values of y7

obtained from solving the dynamic problem with the incorporation of bounds are plotted in
figure 1. y7 is very close to zero and with the imposition of bounds, the LP method never

allows the iterates to go beyond them, which caused the numerical difficulty in the previous

case. Solution of this problem required 1163 LP iterations for 494 time steps.

IE-11

9E-12-

8E-12-

7E-12-

6E-12 -

5E-12-

4E-12 •

0 100 200 300

time(hr)

Figure 1: Solution of the problem with the incorporation of bounds
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Another important aspect of the treatment of bounds is in step- size control. Although the
DAE solution profile lies within the specified bounds, the discretized equations could have
a solution which lie outside the variable bounds. The methods which cannot handle the
treatment of bounds might accept this solution as the true solution and proceed with the
integration. The.LP method will terminate with a pseudo-solution (a solution at the
bounds) with the current step-size when there is no solution within the specified bounds
and the problem is then resolved with a smaller step size for more accurate results.

4. Explicit discontinuities

Very few industrial processes operate in a 'truly1 continuous manner. Discontinuities in the
modeling equations occur as a result of discrete actions and logical conditions, in the
dynamic simulation of these processes. In this section we look at various aspects of this
problem.

Discrete changes in the modeling equations are marked by the occurrence of an event. The
methods employed to solve the dynamic problem should thus be able to determine the time
of occurrence of these events. Two types of events can occur depending upon the manner
in which the time of occurrence of the event is determined (Barton, 1992): time and state
events. The time of occurrence of time events is known in advance making them easier to
deal with. However, state events occur as a result of the system satisfying certain logical
conditions and hence the time of occurrence is not known in advance. Hence the detection
of state events calls for condition monitoring while the problem is being solved in a
particular time interval and determining the exact time at which the conditions are satisfied.

A related issue associated with these problems is the detection of the correct state event.
Consider the scenario in which more than one logical condition is satisfied within shon
times. The solution algorithm should be able to determine which of those logical
conditions is satisfied first and identify the state event associated with it. This is important
since, if the wrong logical condition is detected as having been satisfied first, we might end
up with an entirely different set of equations in the next phase.

Dynamic simulation problems within a continuous interval can, in most cases, be described
using a differential-algebraic equation (DAE) system. The differential equations describe
the time dependent behavior of the system whereas the algebraic equations enforce
physically meaningful relations. Once an event has occurred, the system is described by
new set of equations (DAEs) and/or variables. A new set of initial values for these
variables is required for further solution of the dynamic problem. Typically, they are

12



determined from the final values of the variables in the previous interval and from the
conditions arising from the events themselves. In practice such an exercise is far from
trivial for most of the problems.

In short, three important issues are to be considered while dealing with nonsmooth
dynamic simulation problems -
1. Detection of (state) events which occur within a specified time interval
2. Exact location of the earliest event within that interval.
3. Reinitialization for restarting the integration following a discontinuity.
Here we see that LP-based methods can aid in event detection and resolution.

Existing Methods

According to Marquardt (1991), the state of the art in dynamic simulation with
discontinuities are the so-called discontinuity locking and switching functions (Joglekar and
Reklaitis, 1984; Pantelides, 1988a; Smith and Morton, 1988). When integration is carried
out, the model is locked in one continuous case and no discontinuity is allowed. The
switching functions are designed in such a fashion that their zeros correspond to the points
of discontinuity. The switching functions are designed in such a fashion that they show a
sign change when a switch in model takes place during an integration step. Once a
discontinuity is detected, the occurrence time is located by an interpolation mechanism.
The integration proceeds from that time onwards with the newly activated model. Below,
we briefly examine some representative algorithms with respect to various aspects of this
problem.

Existence of Solution

An issue which has often been of concern in techniques using discontinuity locking is the
question whether the current set of equations, which describes the region before the
discontinuity, can provide a solution in the region beyond the discontinuity also. This is
important because the discontinuity locking techniques require the current active set of
equations to give a solution across the discontinuity for the detection and even location of
the discontinuity (Figure 2). Nonexistence of solution across the discontinuity could cause
presently used discontinuity locking methods to fail (Joglekar and Reklaitis, 1984;
Pantelides and Barton, 1993)

The LP based approach however has the advantage of having a penalty function in (2) to
allow constraint relaxation if solutions do not exist. In this case, the algorithm will
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converge to a pseudosolution and we can use this to confirm that we have crossed a
discontinuity.

Does this solution exist?

— Solution of the model in I

Solution of the model in II

Figure 2: Existence of solution in discontinuity locking methods

Detection and location of discontinuities

The first step in the treatment of discontinuities is their 'detection1. A broad spectrum of
algorithms base the detection of discontinuities on the signs of the switching functions and
their derivatives at the boundaries of the interval (e.g. Joglekar and Reklaitis, 1984). Such
a procedure can fail to detect multiple zero crossings of the switching function within that
interval (Park and Barton, 1993). An alternate method suggested to overcome this
difficulty is to construct a polynomial approximation of the switching function and to solve
for all the roots of this function within an interval (e.g. Park and Barton, 1993). The
earliest of such roots determined is identified as the offending discontinuity. Most of these
methods have been implemented in conjunction with the polynomial interpolation formulae
generated by the Backward Difference Formula (BDF) methods employed to solve the
DAEs themselves. These methods are promising, but there are some issues which need to
be considered for polynomial-based techniques. In many problems it is likely that
discontinuities are encountered one after the other in very short time intervals. In such a
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scenario, the problem is reinitialized over and over again. Nordsieck (1962) points out that

if the interval is changed while the strong transient is still present, this interval change itself

results in a new shock excitation and the interval control tends to become erratic. Thus there

is a certain amount of nonconformity in starting and interval changing, as starting

essentially involves eliminating a very large transient and changing the interval during a

large transient can lead to erratic interval behavior. Also the interval control itself may

contain feedback loops and the polynomial coefficients may exhibit abnormal behavior. In

this case, the polynomial approximations of the switching functions can no longer be

trusted to determine the exact time of occurence of a discontinuity in such a scenario.

Another question which arises in this context is whether one can isolate the correct event as

occurring first with absolute certainty by using the polynomial approximations, in the event

of more than one logical condition being triggered within short times. For reasons

mentioned above and due to frequently occuring jump discontinuities in the simulation

variables, it is quite possible that the wrong logical condition might be detected as having

satisfied first. This favors the need for an iterative solving procedure rather than relying

only upon the polynomial approximation for the detection of an event. Below we suggest

such a procedure.

Proposed Algorithm

0. £=0 xP known (Initial conditions)

1. Problem at the next time step: r*+/ = tk + hk

Solve the discretized problem using the LP based algorithm described before.

Let x*+y be the converged solution at that time.

2. Check for discontinuities (zeros of switching functions) within the time interval.

If no discontinuity detected, k = k+1, go to 1. Else, continue.

3. Solve for f from i = ± tolerance

(The sign depends on the direction of crossing of the switching function. If the

switching function is negative before the discontinuity, + sign is chosen and if it is

positive, - sign is chosen)

4. Resolve the problem at t\

5. (a) If z* does not lie within the tolerance specifications at Tor

(b) If some other z is found to be crossing zero from the new polynomial constructed

from this reduced interval, go to 3 to re-evaluate with the new polynomial. Else

6. Reinitialize the problem at f for the new set of equations describing the system.

k=k+l, go to 1.

15



Solving the problem at the point of discontinuity helps to locate it accurately. Note that 5(a)

makes sure that the time of occurrence of the discontinuity is determined within a specified

tolerance and 5(b) ensures that the detected discontinuity is indeed the earliest one.

Modeling Explicit Discontinuities

The algorithm described in this section satisfies the requirements for dealing efficiently with

the three important aspects of nonsmooth dynamic simulation: detection of the earliest state

event, location of that event within specified error bounds and reinitialization of the

problem for the next interval. The reinitialization step has not been dealt with in detail here,

the systematic treatment developed by Pantelides (1988b) could be easily adapted to the

reinitialization step in this approach.

Nonsmooth dynamic simulation involves transition from one state of the system to another

or in other words, a change from one set of equations describing the process to another.

To initialize the problem, smooth inequality constraints can be added to the LP formulation

as described in Bullard and Biegler (1991) to determine the set of equations which are

initially active. Once this is known, we need to keep track of the logical conditions

triggering a change from this model to a different one. This is where the switching

functions come into play. We know that an event has been triggered when one or more of

these switching functions crosses zero. The new set of equations associated with that

particular switching function takes over and the simulation proceeds.

Explicit discontinuities occurring in chemical process simulation could be classified as

history independent and dependent discontinuities. History independent discontinuities are

the ones in which the current state of the system is independent of the prior states. The

transitions between the system states are allowed in any direction and are triggered by the

same logical condition in all directions. Examples of these are simple pressure valves

(opening and closing triggered by a certain fixed pressure). On the other hand, the current

state of the system described by a history dependent discontinuity is dependent on the prior

states. They are tougher to solve when compared to their history independent counterparts.

Let us consider an example to illustrate the method.

Example : Three Tanks with Hysteresis Valves

Here we consider a problem with 3 tanks interlinked with 4 hysteresis valves as shown in

figure 3.
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13

Figure 3: Three tanks problem

Description of a hysteresis valve

Consider the valve ij fitted between tanks / andy. Let /*• and hj be the liquid levels in these

tanks. The hysteresis valve has two positions: closed (flow=0) and open
(flow=function(/i- - h})). The logical condition triggering a change in these two states are

1. Closed to open if ht -h;>h^

2. Open to closed if hL - h} < h~

(8a)

(8b)

Figure 4: Hysteresis curve showing flow in the pipes

17



When h~ and hfj are set to different values, graphically, the valve behavior can be
represented using a hysteresis curve (Figure 4). Two sets of equations are to be looked at
when dealing with each valve: one which is valid when the valve is open and the other
when the valve is closed. Let y? be a flag for the current position of the valve ij.

Consider the case when the valve is closed (y? = 0). From (8a) when A- - h} £ h", the

valve opens. So, the corresponding switching function will be

l * - ^ - ^ (9a)

The flow through the pipe Ff"*=0 (9b)

Similarly, when the valve is open (y? = 7), the switching function will be

The relief flow in this case is F°f€n = atJ ̂  - h- (10b)

We want to incorporate (9) when the valve is closed and (10) when the valve is open. The
final set of equations will be

Since y* represents the current state of the valve (which is known), (11) reduces to (9)

when the valve is closed and to (10) when the valve is open. A switch in valve position is
detected by a zero crossing of z and the value of y? is changed when the integration

continues from the point of discontinuity.

The hysteresis nature of the valves causes the history of the system to play an important
part in determining the position of any of these valves at a given time. Therefore, it is
simpler to model this system using the procedure described before. The position of each
valve being monitored by (11), the dynamics of the system of tanks and valves in figure 5
can be formulated as in (12).

18



^ ^ • - F " - F "

(12)

ij = 12,13,23,34

The variables /* are the liquid levels in the tanks, F the flowrates in the pipes and a the
valve constants. This system was simulated using our UP based algorithm. The values for
the valve constants and the breakpoints are given in Table 2. The initial conditions
correspond to all tanks empty and all valves closed. The constants were chosen to
demonstrate the opening and closing of all the valves within a shon time. Figure 5 shows
the levels of liquid in the three tanks. The driving force, the difference in liquids levels in
the tanks is plotted in figure 6. The flowrate in the pipes is shown in figure 7.

ij

12

13

23

3 out

hi

30

60

30

40

ul)
hij

75

100

50

50

aij

12

12

15

10

Table 2: Parameters for the three tanks problem
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Figure 5: Height of liquid in the tanks
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Figure 6: The difference in levels of liquid in the tanks
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Figure 7: Flowrates in the pipes

5. Implicit Discontinuities

In this section we consider a class of implicitly discontinuous problems encountered often
in chemical process simulation: calculation of phase equilibrium. Consider a simple
isothermal flash (figure 8) to highlight some of the basic issues which are relevant in this
problem.

z

V

y

1-V

Figure 8: Isothermal flash operation
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A feed stream of composition z enters the flash column at a specified temperature and
pressure. The products are a vapor phase stream of composition y and a fractional
flowrate V and/or a liquid phase stream of composition x. Different sets of equations are
valid depending on the number of phases present at equilibrium. For example, the
equilibrium equations are generally not valid in either of the single phase regions. The
combined set of equations is an implicitly nonsmooth problem with well defined smooth
regions. Thus, one of the basic problems associated with phase equilibrium calculations,
especially in an equation oriented simulation environment, is that the number of phases is
not known a priori.

Among the different approaches suggested to tackle this problem, the classical "sequential
modular" approach is the most familiar one (Boston and Britt, 1978; Nelson, 1987). In
general, these methods calculate the bubble and dew points ( in the case of two phase
calculations) and then determine the number of phases at equilibrium. The set of equations
applicable to that particular phase behavior is then solved. Such a procedure based
approach, however, can be difficult to incorporate in an equation oriented simulation
environment.

Phase equilibrium problems are an important class of problems which can be addressed
using our LP-based method. Bullard and Biegler (1993) applied a penalty based extension
of their LP formulation, P-SONATA, to deal with two phase vapor liquid equilibrium
(VLE) problems. The basic idea of their formulation was to introduce a 'pseudo* pressure
P^and use it to solve the equilibrium expression in all the regions. PP is allowed to differ
from the specified pressure Ps in the phase equilibrium expression if Ps goes above the
bubble or below the dew point pressures and the equilibrium expression is relaxed in the
one phase regions. A consistent set of equations is thus obtained in both one and two
phase regions by adding a penalty term to the objective to account for differences from
equilibrium. The pressure relaxation formulation gave promising results for steady state
two phase systems including isothermal flash problems with ideal and nonideal phase
equilibrium relations and limiting distillation cases. However, it would be difficult to
extend such a pressure relaxation formulation to a multiphase system. In the following
section we introduce a new formulation to deal with multiphase systems as well.

Formulation for multiphase systems

The following formulation is based on the idea that if two phases do not coexist at
equilibrium, then the corresponding equilibrium expression could be relaxed. This could
be done by relaxing the equilibrium constant itself, rather than dealing with pressure as in
Bullard and Biegler (1993). NLP (13) is formulated based on such a relaxation. Thus the
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new formulation is not limited to VLE systems and could be used for multiphase systems

as well.

p

s.t. F -

= 0

= 0

- 0

i

p

[•

i

I

1 = 1

= 1,

= 1,

o —'.

7 = ]

,ne

np,

lnp

lnp

. P

. P

lP*

*Pr<f

*Pr*

0 < x? < 1

0 < M^ < F

Mp is the molar flowrate of phase p, xf is the moie fraction of component i in phase p and

pre/ is a reference phase based on which the equilibrium expressions are defined. K? is a

fpseudof equilibrium constant, which is defined as K? = YpK*, where K* is the

equilibrium constant computed at the specified temperature and pressure.

The approach we propose here is related to a Gibbs free energy minimization formulation.

In the Appendix we show that the Kuhn-Tucker conditions of the Gibbs minimization

problem are equivalent to the solution of (13) for a multiphase system. The relationship of

Yp at the solution to the existence of phases is also given in the Appendix. For a two-phase

flash, (13) reduces to (14).
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min S

s.t. F-L-V = O
ziF-xiL-yiV = O i = l,n
yi-yKi(P,T,x)xi=O i = \,n

8>y-\

In the two phase region, y=\ and the equilibrium expression is satisfied. In the single
phase regions, y differs from 1 and the equilibrium expression is relaxed. In the Appendix
we show that y > 1 in the single phase liquid region and y < 1 in the single phase vapor
region.

Recently Swaney and Kendlbacher(1994) expressed the complementarity condition
equivalently as

?-]+vP=0 (15a)

where the slack y/p and the phase amount Mp (e.g., V or LP) are complementary.

Mp>0, \ffp>Ot Mpy/p=0 (15b)

Such a formulation could also be solved reliably using iterated LP.

Examples

1. Dynamic Simulation of a Two-Phase Flash Tank Covering Three Regimes of Operation
In this example we consider an n-butane, n-pentane, n-hexane system where the ideal flash
unit is modeled using the Antoine equation. A constant feed of molefractions 0.3,0.3 and
0.4 for the respective components is supplied to the unit. The flash is carried out at a
pressure of 7600 mm Hg. The temperature is varied linearly from r,=385K to r /=420K
from time /0=0 to /7=10. It should be noted that the dew and bubble points of the feed lie
in this range. The motivation behind choosing this example problem is to see whether the
algorithm could capture the transition from a single phase region to a two phase region and
vice versa as the temperature was varied.
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Mind

,.,. ^L = f-Vy-Lx
dt

H = M,x

y=yK(T)x

i

= T(t)

(16)

The flash unit was modeled as in (16) where L is the liquid flowrate, V is the vapor

flowrate, H is the component molar holdup, x and y are the component molfractions in the

liquid and vapor phases and M, is the total liquid holdup. All variables in (16) are functions

of time. Vapor holdup is neglected in this formulation. The holdups were discretized

using implicit Euler and the corresponding set of equations were solved using iterated LP at

time steps of 0.1. Figure 9 shows the liquid and vapor stream flowrates with time.

L

V

Figure 9: Liquid and vapor flowrates in example 1
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The plot indicates that the algorithm handled the transition from the single phase liquid
region to the two phase region and then to the single phase vapor region well. The average
number of iterations for solving the problems per time step were 4.1. In the single phase
regions, solution of the discretized equations on an average took 3 iterations.

2. Dynamic Simulation of a Nonideal Three Phase Flash
This example examines a benzene - isopropanol - water system considered in steady state
by Pham and Doherty (1990). For different temperature - pressure conditions this system
could exist as a LLV (liquid-liquid-vapor) or LL (liquid-liquid) or LV (liquid-vapor) or just
as a single phase liquid or single phase vapor. To accommodate this possibility, we posed
the formulation (17) for the dynamic simulation of this system.

Min8J + 8IJ

s.t.
dt

H = M\xl + M/'x"

y = ylKlxl

y=Y"K"x"

= T(t) (17)

As in example 1, a constant feed of molefractions 0.5, 0.08 and 0.42 of benzene,
isopropanol and water respectively were fed into the flash tank. At constant pressure of 1
atm, the temperature is decreased linearly from 70°C to 68°C. The initial conditions
correspond to steady state values at 70°C. The activity coefficients for this system were
calculated using the regular solution model. Figure 10 plots the flowrates of the two liquid
and the vapor streams with time. Liquid phases 1 and 2 correspond to the water rich and
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benzene rich phases respectively. As shown in the figure, initial conditions correspond to a

liquid-vapor system. A second liquid phase appears later on and the system enters the three

phase ll - Lu - V region. Upon further decrease of temperature, the vapor phase vanishes

altogether, resulting in a two phase liquid region. The algorithm was thus successful in

simulating the three phase LLV and the two phase LV and LL regions with a single

formulation. An average of 3.4 iterations were required to solve the descretized equations

at each time step.

Both examples show that the penalty based iterative LP strategy could be a strong tool for

solving dynamic problems involving phase transitions, without having to compute the dew

and bubble points and then determining the number of phases at any time. The transitions

between phase combinations were handled efficiently by a single consistent formulation.

Recently, a lot of research is being done on developing global algorithms for solving phase

equilibrium problems of this type. Beyond initialization, however, applying a global

optimization algorithm to dynamic phase equilibrium problems could be expensive and is

often unnecessary. The reason here is that the solution at a particular time step gives good

starting points for the problem at the next time step. A formulation such as the one

presented in this paper has its relevance in this context. It can efficiently tackle the problem

of phase change and at the same time is far less expensive than a global optimization

approach.

0.8

0.6 -

0.4 -

0.2

0.5 1.5

Figure 10: Flowrates of the two liquid and vapor streams in example 2
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6. Conclusions

A previously developed LP-based method has been extended to a variety of dynamic

simulation problems. The method has been refined with the addition of a new descent

strategy which combines line search with a trust region approach. The LP based method

has been demonstrated to be an effective way for the imposition of bounds on variables in

dynamic simulation problems. An improved method for the treatment of discontinuities

occurring in nonsmooth dynamic simulation problems has been developed. The method

ensures that any event which has occurred within the time interval in consideration is

detected and if more than one event occurs, the detected one is indeed the. earliest one. In

the case of nonexistence of solution across a discontinuity, a penalty term introduced in our

approach makes it less likely to fail when compared to the presently used discontinuity

locking methods. A specific class of process simulation problems, phase equilibrium

calculations has been looked at as a special case. A new formulation for solving multiphase

equilibrium problems has been presented. A penalty term introduced in the objective takes

care of the appearance and disappearance of phases. Example problems have been solved

to demonstrate the feasibility of the approach.

With the results from small problems being encouraging, future work will focus on solving

large scale problems. An LP interface to a sparse DAE solver like SDASSL is expected to

be an efficient way of dealing with large nonsmooth dynamic simulation problems. The LP

will provide an efficient way for dealing with variable bounds and conditionals whereas the

DAE solver will automatically generate the polynomial functions for the detection of

discontinuities.
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Appendix : Multiphase formulation

We show that the solution of the formulation (16) for multiphase systems would satisfy the

Kuhn-Tucker conditions of a Gibbs free energy minimization formulation.

For an n component, p phase mixture, the Gibbs minimization formulation would be

Min G = XX«r(4G/ + RTlnf?)

? = n! i = l,nc

s.t ' (A.1)
>

where nf denotes the moles of component/ in phase p. Simplifying (Al),

Min G =

s.t ' (A.2)
5>^0 p = l,np

The Kuhn-Tucker conditions of the problem can be simplified to

30



+ at; - p p = 0 i = l,nc, p = \,np (A.3a)

(A.3b)

where Oi and /5̂  are the multipliers for the equalities and the inequalities respectively.

From the Gibbs-Duhem theorem, ]£ £ nf " p = 0
7T

Define pp = RTlnrp (A.4)
p

(A3a) reduces to RTln— = a-, a constant for component i in all phases

or JLL—= 2i— Vpm,pn (A.5)
A>. P .

If ] ^ n f = A/ ' = 0, where A/p is the molar flowrate of phase p, (A3b) =* f}P > 0 and

hence (A4) =» F/>> 1.

On the other hand if Mp > 0, (A3b) =^ j3/> = 0 and hence ( A 4 ) . => Tp = 1

ie Fp = 1 =^ phase p exists

Jp > 1 =* phase p does not exist (A.6)

Define a reference phase p ,

(A5) can be written as ^-~- = —— ' P' ref (A.7)
fi FP i = hne

But / ; = PxW (A.8)

(A7) simplifies to jcf" =
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r
where yp = ——, a constant (A. 11)

* p

0P

and K? = -z^—, the equilibrium constant for phases p and p-

(A10) could be written as x?« = iff JC/* (A.12)

where Kfis apseudo equilibrium constant. Note that K? = /jf* when both phases p and

pref coexist.

For the flash operation, nf = Af ̂ jcf f so we can express the flash problem using the penalty

formulation as in (7), which will reduce to (8) for a two phase system (with the vapor

phase as the reference phase).

The following shows the correlation of the values of yp to the existence of phases

(a) yp < 1 => Fp> Fp => Fp > 1 =^ phase/? does not exist

(b) yp > yp => Fp > Tp => Fp > 1 => phase pn does not exist.

(c) Any yp > 1 => Fp^ > Fp => Fp^ > 1 => phase pref does not exist.

For a two phase system this becomes:

y = 1 => both liquid and vapor phases exist

y> 1 => vapor phase does not exist

Y < 1 =» liquid phase does not exist
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