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Abstract:  Process simulation has emerged as a valuable tool for process design,
analysis and operation. In this work, we extend the capabilities of iterated linear
programming (LP) for dealing with problems encountered in dynamic nonsmooth process
simulation. A previously developed LP method is refined with the addition of a new
descent strategy which combines line search with a trust region approach. This adds more
stability and efficiency to the method. The LP method has the advantage of naturally
dealing with profile bounds as well. This is demonstrated to avoid the computational
difficulties which arise from the iterates going into physically unrealistic regions. A new
method for the treatment of discontinuities occurring in dynamic simulation problems is
also presented in this paper. The method ensures that any event which has occurred
within the timeinterval in consideration is detected and if more than one event occurs, the
detected one is indeed the earliest one. A specific class of implicitly discontinuous
process simulation problems, phase equilibrium calculations is also looked at. A new
formulation is introduced to solve multiphase problems.

Keywords: Nonsmooth Simulation, Iterated Linear Programming, Line Search,
Trust Region, Profile Bounds, Discontinuity.

1. Introduction

Recent years have seen the emergence of process ssimulation as a valuable tool for plant
design, analysis and operation. A variety of factors like increased safety concerns and
strict environmental regulations have contributed to this trend. Of increasing interest in the
smulation community is the development of efficient dynamic simulation tools. Many
authors have surveyed the present and future applications of such tools in chemical process
industries (Perkins, 1986; Marquardt, 1991; Naess etal:, 1992; Pantelides and Barton,
1993).
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Equation oriented smulators, as opposed to their sequential modular counterparts, rely on
an equation solving engine which mug be able to handle poor garting points, inequality
congtraints, singularities and ill-conditioning among others. Steady state and dynamic
chemical process amulation also invariably encounter variables which need to beredricted
within certain bounds. Typical examples are the nonnegativity restrictions on physical
quantities like mass, volume or temperature. Process models could show abnormal
behavior if these variables are allowed to take up values beyond these bounds because of
physcal or mathematical infeagbility. A sysematic trestment of these bounds by the solver
can avoid convergence failures which might arise due to ad hoc strategies currently
employed. '

Another important issue is the treatment of nonsmooth relations characterized by
discontinuous derivatives or kinks, which are often enforced as procedures in the
sequential modular mode. Bullard (1991) examined some of these problems in the context
of Seady state smulation. Marquardt (1991) on the other hand, points out that most of the
current dynamic smulation packages are developed to solve models of predominantly
continuous nature. However, few industrial processes could be considered to operatein a
truly continuous manner. Simulation of dynamic chemical processes often involve discrete
actions and logical constraints and these can lead to discontinuities in the modeling
equations. Process models can thus be nonsmooth at various pointsin sate space, with
these points specified through explicit or implicit relations. Typical examples of these
include phase and flow trangtions, heat and mass trandfer correationsin variousregimes
and dartup and shutdown operations in continuous plants. The discontinuity might cause
ether a switch in the mode equations or ‘even achangein the gructure and dimensionality
of the plant model. Hence an effective and consistent representation mechanism of the
mode discontinuities and ther solution techniqueisvery important in an equation based
modeling environment.

A method based on iterated linear programming is presented in this paper for the treatment
of variable bounds and nonsmoothness occurring in process smulation problems. In the
next section we look at a previousy developed iterated linear programming technique for
congtrained smulation problems modified with an improved descent strategy. The LP
based method provides a very natural way of incorporating variable bounds. Other than
bounds on variables, physically realistic conditions could also be added through smple
inequalities. Section 3 focuses on the need for an efficient treatment of variable bounds
and how the LP method provides a framework for the purpose. A new algorithm for the
treatment of discontinuities occurring in dynamic simulation problems is presented in
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section 4. Section 5 describes the treatment of implicit discontinuities by looking at a
gpecific class of problems. phase equilibrium calculations. Conclusions and future work
areoutlined in section 6. '

2. Improved lterated LP Method for Constrained Simulation
Problems

Bullard and Biegler (1991) introduced a technique based on iterated linear programming for
solving a nonlinear system of equations subject to inequality congtraints and variable
bounds. "

hix) = 0

axx) <0 (CSP)

x-ex<x"
This problem is termed as the constrained simulation problem (CSP). The basc idea of the
approach is to convert the equation solving problem to an optimization problem. A
sequence of linear programs is then solved to yield search directions that will lead to the
solution of the nonlinear problem.

To solve (CSP), a merit function is defined as
pix')= T+ T g, ' ()
J k

where gk(x’;)+ = max [O,£4(J-O]. Since /i & 0 has a minimum of zero if and only if (CSP)
issolved, JJL anon differentiate function, is minimized subject to x'—< %< x". By adding
auxiliary variables, this problem can be written as:

minZ(pj+n_,.)+ z:k
j k

st. Bi(x)=p,—n,
Ok(X) <« (2)
xt<x<x!
PaNxS>0

Barrodale and Roberts (1978) proved that for £pj + ny at a minimum, a complementarity
_ j

condition pp-,=0 holds. Thus (p, +n;) represents \hj(x)\ and s represents g (x)+.

Linearizing the congtraints about X' leads to the following constrained simulation linear

program, CSLP.
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F; &
s.t. h(x')+Vh(x'JTd=p,—n,
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The solution of (CSLP) generates a search direction d. To stabilize the performance of the
algorithm, a line search is carried out to find somefraction a sothat Jcr+= x' + ad. It
should be noted that this method reduces to Newton's method in the absence of active
inequality congtraints and thus has the ability to converge quadratically to the solution.
This LP approach is also shown to generate a descent direction for the 1-norm of the
condraint violations. The method has global conver gence properties for a nonzero solution
of the linear program. The algorithm when tested on problems ranging from 2 to 977
eguations and compared favorably with the existing methods.

Here a new descent drategy is incorporated into the aforementioned algorithm by
combining two major classes of strategies used to ensure descent: line search and trugt
region methods. Dennis and Schnabd (1983) and Fletcher (1987) provide a detailed sudy
of these methods.

LineSearchMethods

The basic concept behind using line search methods is to choose a descent direction d
from the current point x* and select an 'acceptable’ point x™** in this direction at which
H(x) decreases. Theimplementation for the algorithm by Bullard and Biegler (1991) uses
the traditional monatonic, Armijo-type line search (Armijo,1966). The search direction d!
is obtained from the solution of (CSLP) and a condition (3) that requires a sufficient
decrease in the merit function is enfor ced.

u(x' \-ad’)- ii(x' )<0.1a Dgn ©

Here D, is an upper bound on the directional derivative of the merit function, which is

given by

Ddﬂ' 22(pj
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At the full step (a=l), (3) is evaluated. If satisfied, the variables are updated and a new
' step is calculated. Otherwise a new fractional step (5) is calculated from a quadratic
interpolation of the merit function and continued until a suitable ais found.
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Since the merit function is nondifferentiable, it is possible for the Maratos effect to occur
(Fletcher, 1987). Here xt may be arbitrarily close to the solution JC\ but a full step may
fail to reduce the merit function. A nonmonotonic line search such as the watchdog
technique (Chamberlein et. ai, 1982) or a second order correction (Fletcher, 1987) could
be used to overcome this effect.

Trust Region Methods

Search directions generated by CSLP are always descent directions (Dg{i <0) for d * O,
but they still may be poor if the problem is ill-conditioned. In such cases, the search
direction isrelatively large and is nearly orthogonal to the steepest descent direction. Trust
region methods avoid this problem by restricting the stepsize d" to an area A" around the
current point x'. The trust region is frequently adjusted after each step depending on how
valid the approximations of the model are. Most of the cunrent implementations increase or
decrease the trust region by comparing the actual reduction in the merit function and the
predicted reduction on linearization. The closer their ratio is to unity, the better the
agreement. Duff et. al, (1987) describe this strategy in the context of using linear programs
to solve sparse nonlinear equations.

A Combination

The main difference between line search and trust region methods lie in the sequence in
which they use the linear model and enforce the acceptable step length. The line search
methods uses a linear model to obtain a search direction d and then chooses a fractional step
a. Thus the line search océurs on a 1-dimensional subspace. On the other hand, trust
region methods first choose a maximum acceptable step length A and then use the linear
model to obtain a search direction d, the length of which cannot exceed A. The search here
isnot restricted to a lower dimensional subspace. The trust region step may not always be
the Newton direction as small A's will cause the step to be in the direction of steepest
descent. Nevertheless, both methods exhibit quadratic conver gence near the solution.

Relatively little work is necessary for the line search method as only one LP is solved at
each iteration. But, when trugt region methods are used, finding the ideal trust region




bounds is likely to require solution of more than one LP per iteration. However, trust
region methods require few major iterations as they use a Newton step if it lies within the
trust region.

In a combination of these two methods, the trugt region eliminates the possibility of a large
ill-conditioned L P step which result in slow convergence. On the other hand, aline search
helps to reduce the number of times the L P should be solved leading to less computational
expense. First thetrust region constraints are added to the linear model to generate a search
direction di A line search is done in this direction to get the new point x". The
predicted and actual reduction in merit function is then calculated on the basis of the new
point and the size of the trust region is then updated. The detailed algorithm is given
below.

0. i=0.
Set trugt region bounds
4=0.5 max(x>-x"x"-x°) y° =1
Initialize the problem (at the solution of the previous time step in the dynamic problem).

1. Evaluate h,Vh,g,Vg (constraints and their gradients).

Solve CSLPfx"d') with trust region constraints.

3. Computg ‘prediqted' change in exact penalty by linearization
u(x',d')-p(x' )= Aap,
If \Aji < e, return. Else go to 4.

4. Setct=l.
5. JC' =x +ad. Calculate A (exact penalty at the new point xV)

6. If the actual change in exact penalty An; = /iN-ii(X' )}<0J a Dgii, go to 7.

Ees a:ma>£W.OIa, S S 1 .go tO 5.

(Ddfi is an upper bound on the directional derivative evaluated from the solution of the
CSLP)

7. New point JC'* = C + ad*
8. Set thetrudt region radius for the next iteration

Calculate the ratio of actual to predicted change r, = Hix Tw{ }—,u(::_)
p(x',od')-p(x')




% if r,<p,
Y =dmy! ifn>p2

1Y otherwise

The next trust region 4~ = A max(/”',y")

9. i=i-h7. goto 2.

Parameters py, p, and m are fixed at 0.25, 0.75 and 2 respectively similar to the values
used by Zhang et. al. (1985). V' is set to 10°. The convergence criteria employed here is
[7ij) < £] (step 3). Note that if (3) is not satisfied and the line search fails, r;<0.10 and y
isautomatically decreased. If fig < &, the problem is solved. Otherwise, X' is a stationary
point which we term as a pseudosolution. Heuristic strategies for recovering from a
pseudosolution (e.g. rescaling the problem) are described by Bullard and Biegler (1991).

Numerical examples

The iterated LP method with the new descent strategy was tested on 14 small problems
reported in the literature. All the problems were solved using a Fortran program OPTLP
which implements the combined line search / trust region descent strategy. It uses QPSOL
(Gill et. al., 1983) for the solution of the LPs and implements a relaxation formulation to
handle inconsistent linearizations. The tolerance specified was that the 1-norm of the
constraint violations be less than 10"7. The numerical results for the solution of these
problems without scaling are listed in Table 1. Theindividual problem descriptions could
be found in Bullard and Biegler (1991) (The numbersin parenthesesin column 1 refer to

the problem numbers used in that paper).

The question which arises in the context of descent in this framework is when to apply
which strategy. In general, line search methods perform better than trust region methods
on well-conditioned problems whereas trugt region methods show better performance with
ill-conditioned ones. They also perform similarly in a vast majority of problems.

For problem 1 apuretrus region method (5 LPs solved) is a better strategy than a pure line
search method (18 LPs solved). However, the combined method solved the problem in 5
iterations, showing a performance similar to the better trust region method. On the other
hand, line search shows better performance than trust region in problems 2,3,4 and 14.
From the table it is evident that the combined method shows a performance similar to the
better strategy here, the line search. Hence, for the teﬁ problems considered, when thereis




a dgnificant difference in the two descent methods, the combined strategy shows a
performance smilar to the better method. '

Problem Number of Number of LPs solved
_ _ Line Search + _
Variables Line Search Trug Region Trugt Region
1 (21 1 18 5 5
2 (10) 2 12 12 21
3 (17) 4 11 11 18
4 (11 4 15 14 27
U 2 | 1w 10 14
5 dY) 2 10 9 9
U9 2 10 10 10
6 (2 2 6 6 6
74 2 14 13 13
8 (7) 2 7 . 7 7
9_® 2 5 5 5
10 (12) 2 ' 4 4 4
(15) 2 5 5 5
(16) 2 6 6 6
13 (9) 3 6 6 6
(19») 7 8 8 pseudo-solution
14 (19°) 7 15 15 >100
(19°) / 9 9 11

Table 1. Comparison of number of L Ps solved with pure line search, pure trast region and
a combination of line search and trud region methods.




For problems 5-13 there is not much difference between the line search and trust region
methods as the number of LPs solved are aimost the same. The combined method is as
good as either of them. Thus, in problems whére there is no sgnificant difference between
aline search and atrug region approach, a combination of the two methods does not lead
to a decrease in computational efficiency.

These observations are significant because the combined method performs at least as well
as either the trug region or the line search methods on all the problems, regardless of
whether there is a difference between the individual performance of these methods on a
particular problem. Larger numerical examples are currently under consideration. The
combined drategy is expected to perform better for larger problems as well.

3. Treatment of profile bounds

Converting the equation solving problem to an optimization framework allows for
inequalities and conditionals to be added easily. This allows the user to incorporate
physically meaningful conditionals and inequalities limiting the operation of the process
under consderation, in a natura fashion. These could be thermodynamic constraints
governing the behavior of the system or even simple physical constraints (For eg.
sum(component holdups) < volume of the vessel). Bounds on functions can thus be easily
added into this framework.

Chemical process smulation problems often contain variables like temperature, pressure
and molefraction, which are redtricted to be within a certain region. Process models are
often formulated with the assumption that the variables lie within their specified bounds. It
is quite likely that process models show egregious behavior if these variables are allowed to
venture out of their specified region. Hence it isimportant to avoid regions of physical and
mathematical infeasibility in process smulation problems. Most of the conventional
nonlinear equation solving techniques do not have a systematic and efficient technique for
enforcing bounds on variables. The LP based method presents a very natural way of
dealing with variable bounds. The LP method limits the iterates within the bounds on
variables and avoids the mathematical problems which arise otherwise.

In the following example we show how enfor cement of variable bounds in an LP method
helps to solve the problem by restricting the iterates from going into regions of
mathematical infeagblilty.




Example

Thisexampleisbased on aparamee esimation problem originally formulated by the Dow
Chemical Company (Blaueffl/., 1981).

N ==k Yy, (62)
dy;
—r = - [JW2+ Ksyw - AN (6b)
dy,
2 = vy kY. =0 5ny, (60
D1 - k32 + 0.5k, (6)
%i = _k;yayz - kij (6¢)
De ko (33, + Yeye) ¥ ks (1o +0.5%) (67)
@ Ys¥: +¥s5Y4 3 (Yo TU.2Y,
Yo ==K, ¥y, + Y+ ¥+ Yy (69)
K.y
=22 6h
Y K,+y, (6h)
K,y; )
= _D3¥3 (61)
Yo K, +y,
K,y .
-5 (63)
Yo K+, )
Vi =Kgin(y, +" | 6K)

Here y's represent the sate variables and K's and ik's are parameters as reported by
R.H.Farris (Biegler etal., 1986). Valuesof the parameters are given by (7).
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k, = 1.8192

k, = 2.8595

ks = 2926

K= 2575x0-'®
K, =4.876 x 10~'*

K; = 1.7884x10™ @)
Ky = 1.31xI10-2

K,=1x107

Ks = Ixl0°

The problem was attempted under two conditions; one with the specification of bounds and
the other without. In the unbounded case, the solution of the first LP gave a search
direction which led to a negative value of y;. (6k) could not be evaluated at that point and
the method failed. However, in the bounded case, the variables y, to vy, were bounded
below by zero asthey represent concentrations in the original problem. The values of y;
obtained from solving the dynamic problem with the incorporation of bounds are plotted in
figure 1. y; isvery close to zero and with the imposition of bounds, the LP method never
allows the iterates to go beyond them, which caused the numerical difficulty in the previous
case. Solution of this problem required 1163 LP iterations for 494 time steps.

IE-11
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Figure 1. Solution of the problem with the incorporation of bounds
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Another “important aspect of the treatment of boundsisin step- size control. Although the
DAE solution profile lies within the specified bounds, the discretized equations could have
a solution which lie outsde the variable bounds. The methods which cannot handle the
treatment of bounds might accept this solution as the true solution and proceed with the
integration. The.LP method will terminate with a pseudo-solution (a solution at the
bounds) with the current step-size when there is no solution within the specified bounds
and the problem is then resolved with a smaller sep size for more accurate results.

4. Explicit discontinuities

Very few industrial processes operatein a 'truly* continuous manner. Discontinuitiesin the
modeling equations occur as a result of discrete actions and logical conditions, in the
dynamic smulation of these processes. In this section we look at various aspects of this
problem.

Discrete changes in the modeling equations are marked by the occurrence of an event. The
methods employed to solve the dynamic problem should thus be able to determine the time
of occurrence of these events. Two types of events can occur depending upon the manner
in which the time of occurrence of the event is determined (Barton, 1992): time and state
events. The time of occurrence of time events is known in advance making them easier to
deal with. However, state events occur as a result of the system satisfying certain logical
conditions and hence the time of occurrence is not known in advance. Hence the detection
of gate events calls for condition monitoring while the problem is being solved in a
particular time interval and determining the exact time at which the conditions are satisfied.

A rdated issue associated with these problems is the detection of the correct date event.
Congder the scenario in which more than one logical condition is satisfied within shon
times. The solution algorithm should be able to determine which of those logical
conditions is satisfied firg and identify the sate event associated with it. Thisisimportant
since, if the wrong logical condition is detected as having been satisfied first, we might end
up wi;h an entirdy different set of equationsin the next phase.

Dynamic smulation problemswithin a continuousinterval can, in most cases, be described
using a differential-algebraic equation (DAE) system. The differential equations describe
the time dependent behavior of the system whereas the algebraic equations enforce
physically meaningful relations. Once an event has occurred, the system is described by
new set of equations (DAES) and/or variables. A new set of initial values for these
variables is required for further solution of the dynamic problem. Typically, they are




determined from the final values of the variables in the previous interval and from the
conditions arising from the events themselves. In practice such an exercise is far from
trivial for most of the problems.

In short, three important issues are to be considered while dealing with nonsmooth
dynamic simulation problems - ‘

1. Detection of (sate) events which occur within a specified timeinterval

2. Exact location of the earliest event within that interval.

3. Reinitialization for resarting the integration following a discontinuity.

Here we seethat L P-based methods can aid in event detection and resolution.

ExistingMethods

According to Marquardt (1991), the date of the art in dynamic simulation with
discontinuities are the so-called discontinuity locking and switchingfunctions (Joglekar and
Reklaitis, 1984; Pantelides, 1988a; Smith and Morton, 1988). When integration iscarried
out, the model is locked in one continuous case and no discontinuity is allowed. The
switching functions are designed in such a fashion that their zeros correspond to the points
of discontinuity. The switching functions are designed in such a fashion that they show a
sign change when a switch in modd takes place during an integration step. Once a
discontinuity is detected, the occurrence time is located by an interpolation mechanism.
The integration proceeds from that time onwards with the newly activated model. Below,
we briefly examine some representative algorithms with respect to various aspects of this
problem.

Existenceof Solution

An issue which has often been of concern in techniques using discontinuity locking is the
question whether the current set of equations, which describes the region before the
discontinuity, can provide a solution in the region beyond the discontinuity also. Thisis
important because the discontinuity locking techniques require the current active set of
equations to give a solution across the discontinuity for the detection and even location of
the discontinuity (Figure 2). Nonexistence of solution across the discontinuity could cause
presently used discontinuity locking methods to fail (Joglekar and Reklaitis, 1984;
Pantelides and Barton, 1993)

The LP based approach however has the advantage of having a penalty function in (2) to
allow congraint relaxation if solutions do not exist. In this case, the algorithm will
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converge to a pseudosolution and we can use this to confirm that we have crossed a
discontinuity. ' '

Does this solution exist?
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Figure 2: Existence of solution in discontinuity locking methods

Detectionandlocationof discontinuities

The first step in the treatment of discontinuities is their 'detection®. A broad spectrum of
algorithms base the detection of discontinuities on the signs of the switching functions and
thelr derivatives at the boundaries of the interval (e.g. Joglekar and Reklaitis, 1984). Such
a procedure can fail to detect multiple zero crossings of the switching function within that
interval (Park and Barton, 1993). An aternate method suggested to overcome this
difficulty is to construct a polynomial approximation of the switching function and to solve
for all the roots of this function within an interval (e.g. Park and Barton, 1993). The
earliest of such roots determined is identified as the offending discontinuity. Most of these
methods have been implemented in conjunction with the polynomia interpolation formulae
generated by the Backward Difference Formula (BDF) methods employed to solve the
DAEs themselves. These methods are promising, but there are some issues which need to
be considered for polynomial-based techniques. In many problems it is likely that
discontinuities are encountered one after the other in very short time intervals. In such a
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scenario, the problem isreinitialized over and over again. Nordsieck (1962) points out that
if the interval is changed while the strong transient is still present, thisinterval. change itself
resultsin a new shock excitation and theinterval control tends to become erratic. Thusthere
is a certain amount of nonconformity in starting and interval changing, as starting
essentially involves eliminating a very large transient and changing the interval during a
large transient can lead to erratic interval behavior. Also the interval control itself may
contain feedback loops and the polynomial coefficients may exhibit abnormal behavior. In
this case, the polynomial approximations of the switching functions can no longer be
trusted to determine the exact time of occurence of a discontinuity in such a scenario.
Another question which arisesin .this context is whether one can isolate the correct event as
occurring first with absolute certainty by using the polynomial abproximations, in the event
of more than one logical condition being triggered within short times. For reasons
mentioned above and due to frequently occuring jump discontinuities in the simulation
variables, it is quite possible that the wrong logical condition might be detected as having
satisfied first. This favors the need for an iterative solving procedure rather than relying
only upon the polynomial approximation for the detection of an event. Below we suggest
such a procedure.

Proposed Algorithm

0. £=0 xP known (Initial conditions)
1. Problem at the next time step: r** =€ + h*
Solve the discretized problem using the L P based algorithm described before.
Let x*™ bethe converged solution at that time.
2. Check for discontinuities (zeros of switching functions) within the time interval.
If no discontinuity detected, k = k+1, go to 1. Else, continue.
3. Solve for f from i~ =+ tolerance
(The sign depends on the direction of crossing of the switching function. If the
switching function is negative before the discontinuity, + sign is chosen and if it is
positive, - sign is chosen) '
4. Resolve the problem at t\
5. (a) If z¢ doesnot lie within the tolerance specifications at Tor
(b) If some other z is found to be crossing zero from the new polynomial constructed
from thisreduced interval, go to 3 to re-evaluate with the new polynomial. Else
6. Reinitialize the problem at f for the new set of equations describing the system.
k=k+l, goto 1.




Solving the problem at the point of discontinuity helpsto locate it accurately. Note that 5(a)
makes sure that the time of occurrence of the discontinuity is determined within a specified
tolerance and 5(b) ensures that the detected discontinuity isindeed the earliest one.

Modeling Explicit Discontinuities

The algorithm described in this section satisfies the requirements for dealing efficiently with
the three important aspects of nonsmooth dynamic simulation: detection of the earliest sate
event, location of that event within specified error bounds and reinitialization of the
problem for the next interval. Thereinitialization step has not been dealt with in detail here,
the systematic treatment developed by Pantelides (1988b) could be easily adapted to the
reinitialization step in this approach.

Nonsmooth dynamic simulation involves transition from one state of the system to another
or in other words, a change from one set of equations describing the process to another.
Toinitialize the problem, smooth inequality constraints can be added to the L P formulation
as described in Bullard and Biegler (1991) to determine the set of equations which are .
initially active. Once this is known, we need to keep track of the logical conditions
triggering a change from this model to a different one. This is where the switching
functions come into play. We know that an event has been triggered when one or more of
these switching functions crosses zero. The new set of equations associated with that
particular switching function takes over and the simulation proceeds.

Explicit discontinuities occurring in chemical process simulation could be classified as
history independent and dependent discontinuities. History independent discontinuities are
the ones in which the current state of the system is independent of the prior states. The
transitions between the system states are allowed in any direction and are triggered by the
same logical condition in all directions. Examples of these are simple pressure valves
(opening and closing triggered by a certain fixed pressure). On the other hand, the current
state of the system described by a history dependent discontinuity is dependent on the prior
states. They are tougher to solve when compared to their history independent counterparts.
Let usconsider an example to illustrate the method.

Example : Three Tanks with Hysteresis Valves

Here we consider a problem with 3 tanks interlinked with 4 hysteresis valves as shown in
figure3.
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Figure 3: Three tanks problem
Description of a hysteresis valve

Condder thevalve ij fitted between tanks/ andy. Let #s and hj betheliquid levelsin these

tanks. The hysteresis valve has two positions: closed (flow=0) and open
(flow=function(/i-, - hy)). The logical condition triggering a change in these two States are

1. Closed to open if h; -h>h" (8a)
2. Open toclosed if h, - hy<h¥ (8b)
F(h; —h))
llq .lij

Figure 4: Hysteresis curve showing flow in the pipes
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When h}‘ and hfj are set to different values, graphically, the valve behavior can be
represented using a hysteresis curve (Figure 4). Two sets of equations are to be looked at
when dealing with each valve: one which is valid when the valve is open and the other
when thevalveisclosed. Let y2beaflag for the current postion of the valveij.

Consider the case when the valve is closed (y7 =0). From (8a) when A--h £h;, the
_valve opens. So, the corresponding switching function will be

i = koA (9a)
Theflow through thepipe  Ff"*=0 (9b)
Smilarly, when the valveis open (y7 = 7), the switching function will be

27" =h—h -k (10a)
Therdief flow in thiscaseis F°f€” = atf‘m-_h,: (10b)

We want to incorporate (9) when the valveis closed and (10) when the valveis open. The
final set of equations will be

2,= (b —h,— B 1= y§)+(h —h;— K )y}
F‘}, = yg(a‘”/h'- —hj)

Since y; represents the current state of the valve (which is known), (11) reduces to (9)

(11

when the valveis closed and to (10) when the valve isopen. A switch in valve position is
detected by a zero crossing of z and the value of y? is changed when the integration

continues from the point of discontinuity.

The hysteresis nature of the valves causes the higory of the system to play an important
part in determining the position of any of these valves at a given time. Therefore, it is
smpler to modd this system using the procedure described before. The position of each
valve being monitored by (11), the dynamics of the system of tanks and valves in figure 5
can be formulated asin (12).
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12)
F. = fa...{ —h
i yl.r( i hl U;) ] L, ”212’13’23’34
;= (hi"hj"hy Xf—yg}"-(hi-hj_hﬁ)ygj
(h,=0)

The variables /* are the liquid levels in the tanks, F the flowrates in the pipes and a the
valve congants. This system was smulated using our UP based algorithm. Thevaluesfor
the valve congtants and the breakpoints are given in Table 2. The initial conditions
correspond to all tanks empty and all valves closed. The constants were chosen to
demongrate the opening and closing of all the valves within a shon time. Figure 5 shows
the levels of liquid in the three tanks. The driving for ce, the difference in liquids levelsin
the tanksis plotted in figure 6. The flowrate in the pipesis shown in figure 7.

i hi i aij
30 75
60 100
23 30 50
3out 40 50 10

Table 2: Parametersfor the three tanks problem
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Figure 5: Height of liquid in the tanks
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Figure 6: The differencein levelsof liquid in the tanks

20

hi

h3

hi-h2

hl-h3

h2-h3

h3




150
100- i P 112
L] 1 ]
=“ : ‘E ..........
: } E H f13
5 1" ! ,-r-'f.~
= = A 123
] H 1 .
i : ¢
50 = : E H ! H meawmras - fdout
I R S
;o iob g
I -
] t » 1 H
bl : I
N
0 ; . Y -
0 1 2
time

Figure 7: Flowratesin the pipes

5. Implicit Discontinuities

In this section we consider a class of implicitly discontinuous problems encountered often
in chemical process smulation: calculation of phase equilibrium. Consider a smple
isothermal flash (figure 8) to highlight some of the basic issues which are relevant in this
problem.

Y et
V
Z
rrrre—— - TP
1-v
-
X

Figure 8. Isothermal flash operation
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A feed sream of composition z enters the flash column at a specified temperature and
pressure. The products are a vapor phase sream of composition y and a fractional
flowrate V and/or a liquid phase stream of composition x. Different sets of equations are
valid depending on the number of phases present at equilibrium. For example, the
equilibrium equations are generally not valid in ether of the single phase regions. The
combined set of equations is an implicitly nonsmooth problem with well defined smooth
regions. Thus, one of the basic problems associated with phase equilibrium calculations,
especially in an equation oriented smulation environment, is that the number of phasesis
not known apriori. '

Among the different approaches suggested to tackle this problem, the classical " sequential
modular" approach is the most familiar one (Boston and Britt, 1978; Nelson, 1987). In
general, these methods calculate the bubble and dew points (in the case of two phase
calculations) and then determine the number of phases at equilibrium. The set of equations
applicable to that particular phase behavior is then solved. Such a procedure based
approach, however, can be difficult to incorporate in an equation oriented smulation
environment.

Phase equilibrium problems are an important class of prablems which can be addressed
using our L P-based method. Bullard and Biegler (1993) applied a penalty based extension
of their LP formulation, P-SONATA, to deal with two phase vapor liquid equilibrium
(VLE) problems. The badc idea of their formulation was to introduce a 'pseudo* pressure
P*and use it to solve the equilibrium expression in all theregions. Pp isallowed to differ
from the specified pressure Psin the phase equilibrium expression if Psgoes above the
bubble or below the dew point préﬁura and the equilibrium expression is relaxed in the
one phase regions. A consistent set of equations is thus obtained in both one and two
phase regions by adding a penalty term to the objective to account for differences from
equilibrium. The pressure reaxation formulation gave promising results for seady sate
two phase systems including isothermal flash problems with ideal and nonideal phase
equilibrium reations and limiting digtillation cases. However, it would be difficult to
extend such a pressure relaxation formulation to a multiphase system. In the following
section we introduce a new formulation to deal with multiphase systems as well.

Formulationfor multiphasesystems

The following formulation is based on the idea that if two phases do not coexist at
equilibrium, then the corresponding equilibrium expression could be relaxed. This could
be done by relaxing the equilibrium congant itsdf, rather than dealing with pressure asin
Bullard and Biegler (1993). NLP (13) isformulated based on such aredaxation. Thusthe
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new formulation is not limited to VLE systems and could be used for multiphase systems

. as well.,
mmzap

p
st. F-ZMP——-O
P
Fz,~Y Mx! = 1=1n,
r

x = v,Kxf =0 p=1np P3px
i= 1n

Zx'!’-v _Exl,’ -0 P=Ln, p#p,

5,27,-1 i0="1ny . P *pret (13)

5,21-7, 17=1Np . P *pr»

0<x?<1

Os<M*<F

Mp is the molar flowrate of phasep, xf isthe moie fraction of component i'in phasep and
pre is areference phase based on which the equilibrium expressions are defined. K",’ isa

‘pseudo’ equilibrium constant, which is defined as K? = Y,Kf, where Ki is the

equilibrium constant computed at the specified temperature and pressure.

The approach we propose here is related to a Gibbs free energy minimization formulation.
In the Appendix we show that the Kuhn-Tucker conditions of the Gibbs minimization
problem are equivalent to the solution of (13) for a multiphase system. The relationship of
Y, at the solution to the existence of phases is also given in the Appendix. For a two-phase
flash, (13) reduces to (14).
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‘min'S
st. F-L-v =0
zF-xiL-yV = O i=1n
yi-yKi(P,T,x)x=0 i =\,n
Z)’.‘ - zx.‘ =0
82y-\
§21-y (14)
620
0<x,y €1
0<LV<F

In the two phase region, y=\ and the equilibrium expressién is satisfied. In the single
phaseregions, ydiffersfrom 1 and the equilibrium expression isrelaxed. In the Appendix
we show that y > 1 in the single phase liquid region and y< 1 in the single phase vapor
region.

Recently Swaney and Kendlbacher(1994) expressed the complementarity condition
equivalently as

2 x2-]1+v"=0 | (153a)

where the slack y/® and the phase amount MP (e.g., V or L P) are complementary.

MP=0, \ffP=0, MPy/’=0 (15b)
Such aformulation could also be solved reliably using iterated LP.
Examples

1. Dynamic Simulation ofa Two-Phase Flash Tank Covering Three Regimes of Operation
In thisexample we consider an n-butane, n-pentane, n-hexane system where the ideal flash
unit is modeled using the Antoine equation. A constant feed of molefractions 0.3,0.3 and
0.4 for the respective components is supplied to the unit. The flash is carried out at a
pressure of 7600 mm Hg. The temperaluré isvaried linearly from r,=385K to r,=420K
from time /o=0to /;=10. It should be noted that the dew and bubble points of the feed lie
in this range. The motivation behind choosing this example problem is to see whether the
algorithm could capture the trangtion from a single phase region to a two phase region and
vice versa as the temperature was varied.
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Mind

N -
yuye dt L = ny LX
dM, v
- 2fimvoL
H = Mx
y=yK(T)xX
2 =0 (16
T=T(1)
-0<sy-1<4
0<x,y, €1

The flash unit was modeled as in (16) where L is the liquid flowrate, V is the vapor
flowrate, H isthe component molar holdup, x and y are the component molfractionsin the
liquid and vapor phases and M, isthe total liquid holdup. All variablesin (16) are functions
of time. Vapor holdup is neglected in this formulation. The holdups were discretized
using implicit Euler and the corresponding set of equations were solved using iterated LP at
time steps of 0.1. Figure 9 shows the liquid and vapor stream flowrates with time.
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Figure 9: Liquid and vapor flowratesin example 1
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The plot indicates that the algorithm handled the trangtion from the single phase liquid
region to the two phaseregion and then to the single phase vapor region well. The average
number of iterations for solving the problems per time step were 4.1. In the single phase
regions, solution of the discretized equations on an average took 3 iterations.

2. Dynamic Simulation of aNonideal ThreePhaseFlash

This example examines a benzene - isopropanol - water system considered in seady sate
by Pham and Doherty (1990). For different temperature - pressure conditions this system
could exist asaLLV (liquid-liquid-vapor) or LL (liquid-liquid) or LV (liquid-vapor) or just
asa single phaseliquid or single phase vapor. To accommodate this possibility, we posed
the formulation (17) for the dynamic smulation of this system.

Ming’ + 8"
st. %=f—Vy—L’x' ~ L' x"
%(M:_i_M!H) f"_V—L’_LH

H =MW + M/x"
L'=a' M/

Lﬂ = aﬂ M;"

Y= YK
y=Y" K" x"

Z)’i - zx: =0
Zy'. - Zx:.” ={

T=T() (17)
-8 <y -1gé
-5”57”—155”

-
0<x,x",y.<1

 Asin example 1, a congtant feed of molefractions 0.5, 0.08 and 0.42 of benzene,
isopropanol and water respectively were fed into the flash tank. At constant pressure of 1
atm, the temperature is decreased linearly from 70°C to 68°C. The initial conditions
correspond to seady date values at 70°C. The activity coefficients for this system were
calculated using the regular solution model.  Figure 10 plots the flowr ates of the two liquid
and the vapor sreams with time. Liquid phases 1 and 2 correspond to the water rich and
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benzenerich phasesrespectively. Asshown in thefigure, initial conditions correspond to a
liquid-vapor system. A second liquid phase appears later on and the system entersthe three
phase Il - L" - Vregion. Upon further decrease of temperature, the vapor phase vanishes
altogether, resulting in a two phase liquid region. The algorithm was thus successful in
simulating the three phase LLV and the two phase LV and LL regions with a single
formulation. An average of 3.4 iterations were required to solve the descretized equations
at each time step.

Both examples show that the penalty based iterative LP strategy could be a strong tool for
solving dynamic problems involving phase transitions, without having to compute the dew
and bubble points and then determining the number of phases at any time. The transitions
between phase combinations were handled efficiently by a single consistent formulation.
Recently, a lot of research is being done on developing global algorithms for solving phase
equilibrium problems of this type. Beyond initialization, however, applying a global
optimization algorithm to dynamic phase equilibrium problems could be expensive and is
often unnecessary. Thereason hereis that the solution at a particular time step gives good
starting points for the problem at the next time step. A formulation such as the one
presented in this paper hasits relevance in this context. It can efficiently tackle the problem
of phase change and at the same time is far less expensive than a global optimization
approach.

% B5566506%

06 - :
0.4

0.2

Figure 10: Flowrates of the two liquid and vapor streamsin example 2
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6. Concl‘usi ons

A previously developed LP-based method has been extended to a variety of dynamic
smulation problems. The method has been refined with the addition of a new descent
grategy which combines line search with a trus region approach. The LP based method
has been demongrated to be an effective way for the imposition of bounds on variablesin
dynamic smulation problems. An improved method for the treatment of discontinuities
occurring in nonsmooth dynamic smulation problems has been developed. The method
ensures that any event which has occurred within the time interval in consideration is
detected and if more than one event occur s, the detected one isindeed the earliest one. In
the case of nonexistence of solution across a discontinuity, a penalty term introduced in our
approach makes it less likely to fail when compared to the presently used discontinuity
locking methods. A specific class of process smulation problems, phase equilibrium
calculations has been looked at as a special case. A new formulation for solving multiphase
equilibrium problems has been presented. A penalty term introduced in the objective takes
care of the appearance and disappear ance of phases. Example problems have been solved
to demondrate the feasbility of the approach.

With the resultsfrom small problems being encouraging, future work will focus on solving
large scale problems. An LP interface to a sparse DAE solver like SDASSL is expected to
be an efficient way of dealing with large nonsmooth dynamic smulation problems. TheLP
will provide an efficient way for dealing with variable bounds and conditionals whereas the
DAE solver will automatically generate the polynomial functions for the detection of
discontinuities. '
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Appendix : Multiphase formulation

We show that the solution of the formulation (16) for multiphase systems would satisfy the
Kuhn-Tucker conditions of a Gibbs free energy minimization formulation.

For an n component, p phase mixture, the Gibbs minimization formulation would be

Min G =XX«r(4G/ + RTInf?)

P i
Y n?=n! i=1n
st ' (A1)
320 p=ln,
where nf denotesthe moles of component/ in phasep. Smplifying (Al),
Min  G=.nAG/ +X Y nfRTInf!
i p i
Zn}’ =n' i=ln,
st ' (A.2)
5>%0 p=1lng

The Kuhn-Tucker conditions of the problem can be smplified to
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alnf

RTinf’+RTZZ ——t+a-p,=0  T=ln,p=\n, (A.3a)

B,Xn'=0  p=ln, . (A3b)
“where Oi and /5" arethe multipliersfor the equalitiesand theinequalitiesrespectively.

From the GibbsDuhem theorem, JE£nf ‘5';- f7_
7T i

Define p, = RTI nrp (A4

[4
(A3a) reducesto RTInF‘ = a-, acongant for component i in all phases

r

or JLL—= 2— VPm,Pn "~ (A5)
r

A>. P.

If ]"nf = A/' =0, where A/’ is the molar flowrate of phase p, (A3b) =* f}p > 0 and

hence (A4) =» F/>> 1.
On the other hand if MP> 0, (A3b) =" j3> = 0and hence (A4).=> Tp=1
ie Fp=1 =" phasep exists
Jp>1 =* phasep doesnot exist ' (A.6)

Define a reference phase,%,

cfe I =1n *
(A5) can be written as Mo = —Pe P=%% P Ry (A7)
i’ Fe i =hne
But ' l; =PxW _ (A.8)
=ln, p=
(A7) smplifiesto [ I‘V P : o+ P * Dy (A.9)
L i= ,n‘
X/~ = }’,K.’x.’ . (A.10)
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o,

where Yp = —F—, a constant (A.11)
*p
of

and K? a-%—, the equilibrium constant for phasesp andng

(A10) could be written as x?« = iff X’ (A.12)

where Kfis apseudo equilibrium constant. Note that K?-‘ = fif*; when both phases p and

P COEXist.

For the flash operation, nf = Af”j¢f; so we can express the flash problem using the penalty
formulation as in (7), which will reduce to (8) for a two phase system (with the vapor

phase as the reference phase).
The following shows the correlatidn of the values of yp to the existence of phases

(@ yp<1=> Fp>F,_=>F,>1=" phase/? does not exist
() Yo, > Yo =>Fp >Tp, =>F, >1=> phasep, does not exist.
(0 Any y, >1=>F, >F,=>F, >1=> phasep.fdoes not exist.

For a two phase system this becomes:

y=1 => both liquid and vapor phases exist
y> 1 => vapor phase does not exist
Y < 1 =» liquid phase does not exist
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