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Abstract

The report outlines an information model that organizes the wealth of data used and
generated during the conceptual design stage of buildings. The building is represented as an
assembly of entities with relationships among them. Each entity represents a meaningful concept
to design participants such as a beam, a room or a structural frame. Each entity contains data
about its design aspect, its function aspect and its behavior aspect. Furthermore, each entity stores
its geometry, its topological relationships with other entities, its containment relationships (made-
of and part-of), a reference to the technology (knowledge and procedures) that is used to derive it,
and a set of classifiers. The geometry and topological relationships for the entity are obtained
from a non-manifold skeletal geometrical representation common across all views.
Representation of multiple views is supported by dividing the attributes of an entity into small
cohesive subsets, which we call components. These components are then used as construction
blocks to present different views of the entity. The goal of this representation is twofold: to store
the design data as it is generated during the conceptual design and to support case-based
reasoning.
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Chapter 1

Introduction

In this paper, we present a proposed information model for the Configuration module of
SEED (Software Environment to support the Early phases in building Design) currently under
development at Carnegie Mellon University [Hemming et al. 931. This module supports the
generation of a 3-dimensional configuration of spatial and physical building components based on
schematic layouts [Hemming and Woodbury 951. The objective of this information model is two-
fold. First, it records the design data as it is generated during schematic configuration design.
Second, it serves as the foundation for case-based design, allowing designers to retrieve and adapt
previous designs as an aid in solving the current design problem.

Several participants are involved in the building design process and each has a different
perception of the evolving product. A building information model needs to integrate all the views
of the design participants in order to ensure compatibility, reusability and integrity of the data.
Such an information model fosters efficient data communication between participants throughout
the hill life cycle of the building and would have a positive impact on productivity, costs and
quality.

The implementation environment envisioned for this information model is an object-oriented
database management system. Object-oriented database management systems combine the
richness of representation of object-oriented languages with the practical features of database
management systems and have a good potential for modelling complex applications. This
technology is chosen because of its ability to model and manage complex data types, its capacity
to model a problem domain more naturally and its suitability for implementing systems that are
more closely related to the model [Rivard 94].

The information model presented here addresses the early design stages and supports design
evolution. This contrast with the efforts for developing a Standard for the Exchange of Product
Model Data (STEP) which addresses a later stage of design and provides snapshots of the evolving
product but does not support design evolution (for a general overview of STEP see [Burkett and
Yang 951; for an overview of current European A/E/C standardization works see [Wix and
Bloomfield 95]).
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Chapter 2

Building Entities

Buildings are made of entities. An entity is a distinguishable object meaningful to a building
designer. An entity can be a system, a sub-system, a component, a part, a feature of a part, a space
or a joint [Gielingh 88]. An entity can then be a building itself or a building component at any
level of decomposition, from a building wing to a nail.

An entity is an object that is to be represented in the database [Date 95]. Information about
entities needs to be recorded for archival purposes, for communicating design decisions, for
obtaining approval by the owner, and so on. The entities have to be unique across the database.
An entity includes the six following categories of information: functional unit components; design
unit components; evaluation unit components; relationships; technologies; and classifiers. Figure
1 shows the six categories of information and their subcategories. The six categories are described
in greater detail in the following sub-sections.

Building Entity

Functional unit
FU components

Design unit
DU components
Geometric descriptions

Evaluation unit
Evaluation (behavior) unit components

Relationships
Containment

(decomposed from [1-M] decomposed into)
(elaborated from [1-M] elaborated into)

Domain-specific (e.g. supporting-supported by)
Group membership (similar, same, identical)

Technologies

Classifiers

Figure 1. A building entity description.

In order to address SEED-Config's data requirements, the underlying data model for the
SEED project, which consists of a functional unit - design unit - technology triad [Flemming and
Woodbury 95], is extended as follows:

• the evaluation unit is added to the triad in order to record the results of the frequent
evaluations required;

• the relationships are extracted from the design unit and functional unit and are added as a
separate category for ease of access;
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classifiers are added to allow the classification of the entities without the need for
inheritance based classification; and
the object's information is encapsulated by a container called an entity.

2.1 Functional Unit, Design Unit and Evaluation Unit

Designing involves the generation of design descriptions of a potential entity intended to
satisfy the specified qualities to be exhibited by that entity [Coyne et al. 901. These design
descriptions and requirements (i.e. qualities to be exhibited), as well as the behavior of the artifact,
can be represented as attribute-value pairs where the value may be an atomic type (e.g., integer,
float, string and boolean), a matrix, a derived value (which may depend on other attribute-value
pairs), and so on. In this model, a value cannot be a geometrical description, a relationship with
another entity nor a reference to a technology.

The data (i.e. attribute-value pairs) characterizing an entity are grouped into three subsets: the
functional aspect, the design aspect and the behavior aspect The functional aspect includes the
intended purposes, the requirements and the constraints on the entity; this aspect is called the
functional unit. The requirements have to be satisfied to realize the intended purpose. The
functional unit can be seen as a design-problem statement [Gielingh 881. The design aspect
includes all the physical and spatial characteristics that define the actual design of the entity; this
is called the design unit. The design unit can be seen as a solution to the design-problem. The
design aspect can be compared with the original requirements to verify compliance. The behavior
aspect includes the response to stimulations associated with different design conditions, and is
called the evaluation unit.

The cardinality of the three units for a given entity is as follows:
• an entity may have only one functional unit;
• it may have several design units, corresponding to different alternatives, but it may only

have one current design unit at any given time in a given design state; and
• it may have several evaluation units per design unit, corresponding to the different design

conditions.

These three sets of data are necessary to completely define an entity in terms of what it is
intended for, what it is, and how it responds throughout its working life. Thus, the reason which a
particular design was selected can be understood and justified from its function, behavior and
instantiating technologies. This represents a richer data model than the ones supported by current
CAD systems which store only the design results.

1.2 Geometrical Descriptions

We are following the approach developed by Zamanian for the geometrical description of
entities [Zamanian 921. This description is classified in two categories: the primary spatial
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representation of an entity is its high-level geometric description which is used primarily for
reasoning about its topological relations with other entities; while secondary representations of an
entity are its discipline-specific geometric representations. Each entity has only one primary
spatial representation, but it may have several secondary representations. This representation
scheme relies on the premise that topological relations of physical entities are invariant with
respect to their discipline-specific secondary representations.

The spatial extent of the primary spatial representation of an entity is defined by superior
elements. These superior elements are "reference geometric entities which can be linear or
curved, arranged in orthogonal or arbitrary directions, or be represented by zero- or higher-
dimensional geometric entities" [Zamanian 92]. The superior elements act as grids or boundaries
and hence formalize an intuitive and common technique where such elements are used to identify
and specify the spatial extent of individual entities or group of entities.

A non-manifold boundary representation scheme is used because topological relations can be
investigated without being affected by the various dimensionalities used in representing the
geometric entities. Since we often have to deal with line, plane and volume representations at the
same time (for beams, slabs and rooms, for instance), the selection of this modeling scheme is
justified. This scheme has the ability of "modeling and reasoning about mixed-dimensional
geometric models in a single, uniform paradigm" [Zamanian 92]. The non-manifold scheme has
also the advantage of being able to model "non-solid" objects.

Since the geometric descriptions are part of the design definition, their logical position in the
entity is in the design unit category.

2.3 Relationships

Every entity has some kind of interaction with other entities that need to be represented.
"Any dependency between two or more entities is a relationship" [Rumbaugh et al. 91]. Typical
relationships include directed actions (supports, drives), communication (talks to, controls),
ownership (has, part of) and so on. "Relationships are just as much a part of the data as are the
basic entities" [Date 95], hence they should be represented as well in the information model.
Furthermore, relationships should be bidirectional, meaning that they must be traversable in
either direction.

We isolate the containment relationships from others to ensure better access. The containment
relationship (also known as aggregation relationship) is very important in describing buildings
because it captures the link between an entity and its components. Building entities are usually
complex objects built from component entities which may be complex themselves. The complex
object is treated as a unit in many operations, although physically it is made of several component
objects. The containment relationship can be recognized by the phrase "part-of", which can be
used to describe the link between the component and the complex object, and "made-of", which
can be used to describe the inverse link between the complex object and the component. Other
relationships are frequently needed as well. For instance, the supporting-supported by
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relationship is used to define a load path among the structural entities. Topological relationships,
such as next to, above, spatially contained in and adjacent, are not stored explicitly in this
information model since they can be obtained directly from the geometric modeler.

2,4 Technologies

We want to record how an entity has been designed in order to be able to make inferences
about the processes used to design it. We also want to be able to adapt and redesign an entity
rapidly without having to start from "scratch". To support this, we organize design knowledge
into a hierarchically structured technology tree. Then, the design of an entity can be simply
described by referring to the technology node that created it.

A technology is viewed as "a collection of computational mechanisms that creates, details and
instantiates entities to satisfy the requirements defined in the functional unit of an entity in a
design context based on a specific construction technology or form generation principles"
[Woodbury and Fenves 941. Technologies are organized in the form of a tree. In the structural
design domain, the technology tree represents the various alternative structural systems,
subsystems and component types available to the designer. The root of a tree operates on an
abstract building as a whole, while succeeding levels of nodes operate on more and more specific
building elements. Hence, the technology tree may deal with elements ranging from the most
abstract (e.g., a full 3-D building for which a tube structure may be an alternative structural
system) to the most specific elements (e.g., individual beams or even connections, reinforcement,
etc.). Each node in the technology tree contains constraints on its applicability. These constraints
may arise from: functional requirements obtained from the functional unit; geometric limitations
obtained from the geometric description; or from relationships of the entity to other entities. If the
constraints are satisfied, the node defines procedures either to assign attributes and attribute
values to the design unit of a current entity, or to subdivide an entity into contained entities.
Hence, a technology node refines another if it provides additional level of detail by adding new
components to the design unit of the current entity, or a technology node elaborates another if it
subdivides the current entity into constituent sub-units by creating new entities and linking them
to the current entity through the containment relationship slot [Fenves et al. 951.

A sample technology tree segment for slabs supported on steel framing elements is depicted
in Figure 2. Each child technology of "Decking" shows two sets of constraints (the maximum and
minimum spans and the maximum and minimum loads) which determines the technology's
range of applicability. If the constraints are satisfied, the technology node generates an alternative
which may be selected by the designer. The constraints shown in the figure were taken from
current product catalogs; if a designer disagrees with the constraints provided, he or she can
modify them. The technology node "One-Way-Deck-on-Joists" is an example of an elaborating
technology which subdivides a slab entity into its constituent decking and joists entities. The
dashed node "Decking" shown as one elaboration component of "One-Way-Deck-on-Joists"
indicates the same subtree as "Decking", the child node of "One-Way". Thus, subtrees in the
technology can be used as elements of other technologies.
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Figure 2. A sample partial structural technology tree [Fenves et al. 951
There are three categories of technologies: decomposition technologies are used to break

down a complex design problems into sub-problems; elaboration technologies are used to
subdivide the current entity into constituent sub-entities; and refinement technologies are used to
provide additional detail to an entity. The first two categories are implemented in the same
manner with respect to the information model. Both categories create new entities and link them
to the current entity through the containment relationship slot. Refining technologies add new
components to the design unit of the current entity and can operate on both abstract or detailed
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entities. Figure 3 shows the relationship between an entity and the three types of technologies and
Figure 4 illustrates the creation of a hierarchy of entities using the three types of technologies.

Decomposed into Elaborated into

Decomposing^^
Technology " /

Decomposes Entity Elaborates

DUcomp.
Generates

Figure 3. Object model of the relationship between entity and technologies.

ABSTRACT LEVEL Refining
Technology,

Elaborating
Technology

Refining
Technology,

DETAILED LEVEL

Figure 4. Use of technologies in defining a hierarchy of entities.

2.5 Classifiers

Classification is the process of systematically arranging entities into groups [Harris and
Wright 81]. Classification is an important aspect of problem-solving tasks [Rich and Knight 91]. It
can be used to identify a given entity or to query the set of all entities for a given group. Building
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entities are classified through the use of classifiers. A classifier is an instance of a class which can
be part of a class hierarchy. Hence, a class can be the subclass of a more general class. An entity is
not limited to one classifier, but may have several classifiers. This approach for classification is
similar to the one used in the Context-Oriented Model [Kiliccote 92]. It circumvents many
anomalies and ambiguities that arise from the use of multiple inheritance in object-oriented
programming [Flemming et al. 951. Figure 5 shows an example of an entity being classified as a
framed tube. The fact that the entity's classifier is an instance of the class "Framed Tube" means
that the entity can be generally classified as a framing system, specifically classified as a tube
framing system, or even more specifically as a framed tube framing system.

Entity

Classifiers

Figure 5. Classifiers and class hierarchy.

An information Model for the Preliminary Design of Buildings 12



Chapter 3

Hierarchical Decomposition

When faced with a complex design problem, a designer usually solves it by reducing it into a
set of smaller more manageable sub-problems. These sub-problems are, in turn, decomposed such
that a solution can be easily determined. This "divide-and-conquer" strategy is typical for most
design processes. The information model must therefore be able to support the decomposition of
design problems. Such hierarchical decompositions are also used to distribute tasks and
responsibilities among designers [Gielingh 88].

A building can be considered as composed of four major systems [Rush 86]: structure,
enclosure, services and interior. These systems can be further decomposed into more detailed
hierarchical levels of subsystems, components, etc. all the way down to distinct materials. Figure
6 shows the hierarchical decomposition of the building into four systems with the structural
system further decomposed. The structure of a building may sometimes be broken down into
independent sub-systems depending on the building's complexity. These sub-systems, which we
call 3-D structural systems, occur in buildings with expansion joints or in buildings made of
several independent structural systems. The 3-D structural systems are decomposed into 2-D
structural elements such as frames, walls and slabs. The 2-D structural elements are further
decomposed into 1-D elements or 2-D sub-elements (e.g., beams, columns and slab elements).
Note that the figure does not show all the relationships which may exist among the entities shown
(e.g., supports and connected to). The black circle at the end of a link indicates that many entities
may be linked to the entity at the other end of the link.

Building

Enclosure
System

Structure
System

3-D Structural
System

Mechanical
System

Interior
System

Frame Slab

Column Beam Slab
Element

Wall

i i

Wall
Element

Systems

Volumes

Planes

Line Elements Plane Elements

Figure 6. Hierarchical decomposition of the building structure.
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This hierarchical decomposition of the structural system follows the total-system approach
promoted by T. Y. Lin and S. D. Stotesbury, where the designer focuses first on the three-
dimensional implications of architectural space-form options, then on the more-or-less planar sub-
systems which make up the structure, and finally on the elaboration and refinement of individual
elements and connection details [Lin and Stotesbury 811. Hence, a complex structural problem is
decomposed into simpler sub-problems that can be considered in a semi-independent fashion.
This "approach reflects the organic concept that the whole (of a design scheme) should give rise to
the need for details and not vice versa" [Lin and Stotesbury 81].

A similar hierarchical decomposition has been developed for the enclosure system and is
shown in Figure 7. The enclosure system of a building is decomposed into envelope planes such
as roofs, exterior walls, slab on grade and cantilevered floors. Each envelope plane can be
subdivided into envelope areas, each of which has one envelope section and corresponds to one
indoor space, and can be pierced by openings. An envelope section is a sequence of envelope
layers (i.e. construction products) such as cladding, membrane, insulation and finishing [Rivard et
al. 95].

i
Opening

Enclosure
System

i
Envelope
Plane

i

Envelope
Area

Envelope
Section

Envelope
Layer

Figure 7. Hierarchical decomposition of the enclosure system [Rivard et al. 951

The information model presented here supports such hierarchical decompositions. Systems
and subsystems can be modeled as entities linked by containment relationships. The result of the
hierarchical decomposition is a tree of entities. The designer can look at the system at any level of
abstraction simply by going to the corresponding depth in the tree.

The information model also supports the design process as it unfolds by allowing designers to
populate the design space in an intuitive manner from global system entities through sub-system
entities ail the way down to component entities. The root of a hierarchical decomposition tree is
recorded first, followed by the system entities, and so on. New entities, created from elaborations
of more abstract entities, are added to the existing ones, through containment relationship, as the
design proceeds and becomes more and more detailed.
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It is important to note that the hierarchical decompositions described in this section are
examples only. It does not mean that the hierarchical decomposition for the structure is fixed and
unchangeable. The power of this information model is that any hierarchical decomposition can be
supported. Hence, additional entities could be incorporated between the ones shown in the
examples, and different alternative design solutions could incorporate different hierarchical
decompositions.
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Chapter 4

Integration of Multiple Views

The entities presented in the previous section represent a logical manner for organizing the
building data and correspond to the way designers see the building. It may often happen that an
entity occurs in two different hierarchical decompositions. For instance, a load bearing exterior
wall is both an envelope plane in the enclosure system and a wall in the structural system. Hence,
there is a need to represent multiple views of an entity. In this section, we look at a mechanism to
record the set of attribute-value pairs in order to be able to provide different views.

4.1 Component Representation

The attributes of an entity may be organized as follows:
• the collection of all attributes defining an entity may be grouped into one flat structure;
• the attributes may be divided into small cohesive subsets; or
• each attributes may be represented as a distinct structure.

The first and last approach correspond to the two extremes of a scale. The first approach leads
to the creation of exceedingly complex entities which are difficult to understand (for a single
specialist), to maintain and to extend [Howard et al. 92]. In the third approach, at the other
extreme, each attribute is stored separately. The attribute values are accessed by attribute names.
This approach leads to complex naming conventions.

The representation approach that we are investigating is located between these two extremes.
We intend to divide the attributes of an entity into small cohesive subsets, each of which we call a
component. This approach, called the Primitive-Composite Approach (or P-C Approach), was
originally suggested by Phan and Howard (1993). It is a data model and a structured
methodology for modelling facility engineering processes and data to achieve integration. It has
the advantage that it supports multiple views, schema evolution and data integration.

Cohesion is the only criterion used in decomposing entities. It is defined as a measure that
shows how closely the attributes of an entity relate to one another [Phan and Howard 93]. They
characterized cohesion into five specific criteria: the data attributes are stored in one location
(access-cohesive), related to the same concept (concept-cohesive), not derived from each other
(source-cohesive), instantiated at the same time (time-cohesive) and used at the same time (use-
cohesive). A functional and data flow analysis of the building design process is needed to
evaluate the cohesion of the attributes of each entity.

Our definition of a component is slightly different. We keep only three of the five original
criteria. Hence, a component is defined to be a group of closely related attributes which are found
together in a repository (access-cohesive), which are instantiated at the same time (time-cohesive)
and which corresponds to the same concept (concept-cohesive). The access-cohesive criterion
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ensures that attributes from different views are not put together (e.g., data found in structural
drawings are not mixed with data found in construction estimates). The time-cohesive criterion
ensures that if a user tries to access some data and sees that the corresponding component exists,
he or she can assume that all the attributes in it have a value. If the component does not exist, it
means that the data has not been generated yet, and he or she may create a new component. This
criterion implies that each component is generated by only one technology node. The concept-
cohesive criterion divides the attributes in at least three broad classes: function, design (form) and
behavior which were presented earlier in section 2.1. This criterion may subdivide the attributes
further if more concepts are considered.

The use-cohesive criterion is not considered for efficiency. It is difficult to predict all possible
uses of an attribute, and hence the corresponding attributes may be overly subdivided. It does not
really matter if all data attributes of a component are used at the same time or not. We do not
agree with the source-cohesive criterion. We think that dependent data can be recorded in the
same component. Methods could be used from within the component to compute the dependent
information.

The component representation provides an abstraction of the entity to designers. Views hide
the actual complexity of the entity by providing only the relevant information while hiding the
unnecessary details. Figure 8 shows a wall entity decomposed into a set of components. Three
different views are shown as referring to a subset of the components. Two of the components are
shaded to show the sharing of information between the different views. Hence, this model
supports the integration of the various views required by the design participants. This
characteristic ensures compatibility, reusability and integrity of the data. It also fosters efficient
data communication between participants.

VIEWS

Energy
Analysis
View

Structural
Analysis
View

Construction
Planning
View

Entity

COMPONENTS

<^O Thermal Properties

-Q Azimuth

Weight

Dimensions

Structural Properties

Wind Loading

List of Materials

Activities Required

Costs

Figure 8. Multiple views of a wall entity [Rivard 941.
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4.2 A Generic Component Class

The definitions of the components are inherited from a common superclass, which is shown in
Figure 9. A component class should have a unique name. Each component stores the name of the
person who is responsible for its creation. It stores the initial time when it is created and when it
is last modified. It also stores a reference to the technology node that was used to instantiate it and
a status which could take one of three values: candidate (alternative is not explored yet), explored
(alternative has been explored but not selected) and committed (alternative represents the current
design). A component should include a reference to all the entities to which it belongs. The fact
that a given component may be referenced by several entities demonstrates the possibility for
reusing the same data (e.g., the type of concrete should be defined once and referenced by every
concrete member). Each component should have a built-in help mechanism that would allow the
user to obtain a description of the data stored in it A component can have both attributes and
methods (or procedures). Methods are used to compute values based on other components. The
use of methods provide support for dependencies among data.

Name of Component
Author
Instantiated time
Last modified

Set of attributes or methods

Technology node
Status
Entity(ies)
Help

Figure 9. A generic component class.

An advantage of encapsulating data within component objects is that the type of data stored
could be of multimedia type. The component has the appropriate methods to display, edit and
input its data. Therefore, a component could contain images, sounds, texts and even video. For
instance, an evaluation unit component could contain the bending moment diagram of a
structural beam.

Concurrent use has not been considered at this stage. Since changes are usually localized to
the component levels, only the components would need to be locked. The system could allow the
display of components created by other users but protect them from modification if a user does
not have write permission.

4.3 Relationship Between Components, Entities and Technologies

An entity contains a reference to the technology node that created it. As the entity is refined,
design unit components are added to the entity. Figure 10 shows the relationship between an
entity, its design unit components and a technology tree. This representation supports the
generation of solutions in staged steps so as to allow backtracking and generating different states
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within the design space, representing alternative design solutions for the same subproblem. The
hierarchical structure of the technology tree (and thus the knowledge base) serves to meet these
goals [Fenves et al. 951. The design process proceeds as follows: the child technology nodes of the
current technology test the entity against their own constraints and determine whether they are
applicable or not. If a technology node is applicable, it instantiates the appropriate design unit
component(s) and assigns corresponding design attributes. The designer selects one of the
candidate components to expand further with the technology tree. The selected component is
automatically incorporated into the entity.

Entity

DU
— DU components

Technology -

Technology Tree

Accumulated
DU components

Possible Refinements

Selected Refinements

Figure 10. An entity , its design unit components and a technology tree

4.4 Integration Across Hierarchical Decompositions

The primary spatial representation of a building entity, described in section 2.2, can be used to
identify an entity in the geometrical model and then to add appropriate components to the entity.
For instance, a structural function may be enforced to a building envelope entity (such as an
exterior wall), found in the geometrical model, by adding the proper relationships, FU
components and DU components. The designer could access the entity through the geometric
model and add it to the structure hierarchical decomposition. Hence, the exterior wall becomes
part of two hierarchical decompositions: the enclosure and the structure. The decomposition
hierarchies become lattices.
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4.5 Search Mechanism for Components Within Building Entities

The building entity's information is encapsulated within components. The information is
accessed through a search mechanism. First, the requester (which may be a user or a computer
application) must specify one of the subsets where the search is to be made: either functional unit,
design unit or evaluation unit. Second, the requester must provide the name of the component
that is of interest. For example, say someone is interested in checking the water-ratio of a concrete
structural element, s/he would access the corresponding building entity and provide the
following request: design-unit (concrete characteristics). The system would look among the
components stored in the design-unit and return the one with the matching name. Once the
requester has found access to the component, s/he can fire any of its methods such as display or
edit attributes. In our example, the person would request the display of the water-ratio attribute.

The building entities have a mechanism to display all the attributes of their functional units,
design units and evaluation units for quick reference. Whenever someone requests that facility for
one of the subsets of data, the building entity displays all of its attributes and their values under
headings corresponding to their component names.
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Chapter 5

Grouping Entities

To facilitate the design process, a set of entities can be grouped together and designed
simultaneously. We have identified three different types of groups: "same" means that all the
entities are assigned the same design components according to the most constraining entity of the
group; "similar" means that all the entities are designed with the same technology but may have
design components with different attribute values; and "identical" means that all the entities in
the group have the same dimensions and are subject to the same conditions and hence can be
designed just by looking at one of the entities. As for "same", the entities grouped by "identical"
are assigned the same design components. While the two groups "same" and "similar" are
assigned by the user, the group "identical" is assigned by default by elaborating technologies.

As an example of the use of a "same" group, a structural engineer may want to assign the
same concrete characteristics to a group of entities. The engineer selects the group of entities and
the refining technology that assigns the concrete characteristics; the technology would check that
the structural material of each entity is concrete and would assign the specified concrete by adding
the same DU component to all entities. Having only one DU component for a group of entities
ensures that any changes will be applied to all entities (i.e. there is no unnecessary redundancies).
This example is illustrated in Figure 11 below. For a group of "similar" entities, the technology
would add a new DU component to each entity.

Group of Entities

DU Component

Name: Concrete Characteristics
f'c : 4000 psi
Water-cement ratio: 0.40
Air-content : 6%
Max. agg. size : 3/4"

Entity List

Figure 11. Designing a group of "same" entities.
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As an example of an 'identical" group, when elaborating a structural slabs into beams and
deckings, the technology creates a number of beam-entities and a number of deck-entities. All
these entities are associated to the slab-entity through the containment relationship. Each distinct
sub-entity is needed because each one has its own distinct primary spatial representation. But to
simplify design, all the beam-entities are automatically grouped into an "identical" group and
thus ensure consistency between the beams. When a technology refines the beam-entities, it
assigns the same DU components to all of the entities in the group. The same process applies for
the deck-entities. Figure 12 below illustrates the creation and design of the beam entities.

Slab Beams

/ i / i / i

r DU n

I Components I
i 1

Figure 12. The creation of an "identical" group of entities.
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Chapter 6

Case-Based Reasoning Support

Case-based reasoning is an analogical reasoning method which uses previously stored
solutions as a means to solve a new problem, to warn of possible failures, and to interpret a
situation [Kolodner 1993]. A design system based on this artificial intelligence methodology
would help the designer to remember previous and appropriate cases. The designer can use these
cases as sources of inspiration, or as drafts on the basis of which a more relevant solution to the
current problem can be developed. It is in the human nature to remember previous experiences in
order to develop solutions for new problems. Designers use previous designs because they save
time and effort and because the concept has been proven effective in a previous situation. Case-
based reasoning is an attempt to implement this natural design process in computers as a tool for
designers. The strength of computer programs augment the human abilities as follows:

• cases originating from different designers can be made available,
• cases are retrieved quickly and are not forgotten,
• a retrieved case can be used as a starting point to generate a new design, and
• the system ieams as new cases are added to the cast

We have presented in this paper an information model that can be used both for case
representation and for recording design data. Since the representation is identical for the two, no
translation is required to store the design data into a case. This simplifies the implementation of
the premise stated in [Flemming 94] that cases are accumulated as a side-effect of a firm's normal
design activities.

Hierarchical decomposition provides a mean of extracting cases at different level of details or
abstraction. It also provides the capability for retrieving solutions to any level of detaiL[Flemming
94]. Hence, a case can be retrieved at different levels: from the system level (e.g., the structure of a
building wing) to the component level (e.g., a roof truss).

Cases are searched based on the current functional unit, the current hierarchical
decomposition and the problem context. When an entity is retrieved, all its constituent sub-entities
are evaluated to see whether they also satisfy the new problem context. All the sub-entities that
are satisfactory are retrieved to a depth specified by the user. The unsatisfactory sub-entities are
pruned from the retrieved solution. Once a case is retrieved and approved by the user, it can be
added to the current design. It can then be modified, augmented, and reduced.

Sub-entities are pruned using the technology tree referenced by the retrieved entity (or case)
and the current design context. If the design of the retrieved sub-entity is still within the range
of applicability of the technology node once it is set in the new design context, its attributes are
re-evaluated, and matching continues at the successor level of the technology tree. If the design of
the sub-entity falls outside the range of applicability, it is removed from the design state together
with all its subsequent refinements and/or elaborations. The designer can then proceed to
redesign the eliminated sub-entities. Designers have two options to replace the pruned sub-
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entities: they can execute a new case retrieval at the new, more detailed level; or they can complete
the design by themselves or with the help of a technology tree.

The component representation, discussed in Section 4, supports the retrieval of cases (or
entities) with multiple functions (or views). Multifunction entities are frequent in building design
and must be supported by a case-based reasoning system. Whenever a case is retrieved for a
particular function and it is found to have more than one function, the designer has the choice to
keep those extra functions or to strip them from the case. Furthermore, searches for multi-
functional entities are supported. Hence, a designer is able to retrieve an entity that complies with
two or more functions. Here are a few illustrating examples:

• a case retrieved for an enclosure design problem may also be found to satisfy the
structural requirements of that entity;

• the case base may be searched for a case satisfying the requirements of more than one
view (e.g., the enclosure and the structural views of an exterior wall);

• a multi-function entity may be stripped of one of its design aspects if it is deemed useless
(e.g., one may remove the enclosure aspect of an exterior load-bearing wall case to be used
indoors).

The recording of a reference to a node of the technology tree in a case provides several
advantages. It records both the results of the design as well as the design process itself. By
referring to the technology nodes that were used in designing an entity, we are also recording a
reference to the knowledge and process used in designing it. This is as important to the designer
as the design descriptions. It allows the designer to reuse the same design process. It is also
possible to limit the search of a case to a given technology (or one of its children) or to exclude a
given technology from the search.

Flemming's case retrieval mechanism for a hierarchy of objects would work with this
information model [Flemming 94]. The only differences are that instead of traversing a hierarchy
of functional units, we are traversing a hierarchy of building entities; and that an additional
parameter is necessary when searching for an attribute: the name of the component which
contains the attribute of interest.

The fact that a component refers back to the entities it belongs to allows a case search to be
done from bottom up. All the components that satisfies a search criteria could be used as a basis
to find matching cases. The name of the components could be used as an index to limit the search
to a particular type of component. Once cases (or building entities) are retrieved through the
matching components, they can be pruned based on other search requirements. The classifiers are
another mean for retrieving cases. They support case retrieval from general to specialized entities.
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Chapter 7

Conclusion

In this paper, we presented an information model for the preliminary design stage of
buildings. This model decomposes buildings into hierarchies of entities which provide different
levels of abstraction. Each building entity contains:

• data organized into three subsets: function aspect, design aspect and behavior aspect;
• a high-level geometrical description which is used to reason about its topological relations

with other entities, and discipline specific geometric information;
• relationships with other entities;
• references to the computational mechanisms (or technologies) used in designing it; and
• a set of classifiers.

The data of an entity are further grouped into components in order to integrate multiple views, to
facilitate data exchange between design tasks, to improve communication between designers, and
to support the growth of data as the design process unfolds.

We believe that this information model has the potential to record design data as it is
generated during the design process and to support case-based reasoning. We intend to
implement this information model in an object-oriented database management system.
Subsequent validation with end users will show to what extent the approach is appropriate in
parts or in whole.
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Abstract

The report outlines an information model that organizes the wealth of data used and
generated during the conceptual design stage of buildings. The building is represented as an
assembly of entities with relationships among them. Each entity represents a meaningful concept
to design participants such as a beam, a room or a structural frame. Each entity contains data
about its design aspect, its function aspect and its behavior aspect. Furthermore, each entity stores
its geometry, its topological relationships with other entities, its containment relationships (made-
of and part-of), a reference to the technology (knowledge and procedures) that is used to derive it,
and a set of classifiers. The geometry and topological relationships for the entity are obtained
from a non-manifold skeletal geometrical representation common across all views.
Representation of multiple views is supported by dividing the attributes of an entity into small
cohesive subsets, which we call components. These components are then used as construction
blocks to present different views of the entity. The goal of this representation is twofold: to store
the design data as it is generated during the conceptual design and to support case-based
reasoning.
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Chapter 1

Introduction

In this paper, we present a proposed information model for the Configuration module of
SEED (Software Environment to support the Early phases in building Design) currently under
development at Carnegie Mellon University [Hemming et al. 931. This module supports the
generation of a 3-dimensional configuration of spatial and physical building components based on
schematic layouts [Hemming and Woodbury 951. The objective of this information model is two-
fold. First, it records the design data as it is generated during schematic configuration design.
Second, it serves as the foundation for case-based design, allowing designers to retrieve and adapt
previous designs as an aid in solving the current design problem.

Several participants are involved in the building design process and each has a different
perception of the evolving product. A building information model needs to integrate all the views
of the design participants in order to ensure compatibility, reusability and integrity of the data.
Such an information model fosters efficient data communication between participants throughout
the hill life cycle of the building and would have a positive impact on productivity, costs and
quality.

The implementation environment envisioned for this information model is an object-oriented
database management system. Object-oriented database management systems combine the
richness of representation of object-oriented languages with the practical features of database
management systems and have a good potential for modelling complex applications. This
technology is chosen because of its ability to model and manage complex data types, its capacity
to model a problem domain more naturally and its suitability for implementing systems that are
more closely related to the model [Rivard 94].

The information model presented here addresses the early design stages and supports design
evolution. This contrast with the efforts for developing a Standard for the Exchange of Product
Model Data (STEP) which addresses a later stage of design and provides snapshots of the evolving
product but does not support design evolution (for a general overview of STEP see [Burkett and
Yang 951; for an overview of current European A/E/C standardization works see [Wix and
Bloomfield 95]).
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Chapter 2

Building Entities

Buildings are made of entities. An entity is a distinguishable object meaningful to a building
designer. An entity can be a system, a sub-system, a component, a part, a feature of a part, a space
or a joint [Gielingh 88]. An entity can then be a building itself or a building component at any
level of decomposition, from a building wing to a nail.

An entity is an object that is to be represented in the database [Date 95]. Information about
entities needs to be recorded for archival purposes, for communicating design decisions, for
obtaining approval by the owner, and so on. The entities have to be unique across the database.
An entity includes the six following categories of information: functional unit components; design
unit components; evaluation unit components; relationships; technologies; and classifiers. Figure
1 shows the six categories of information and their subcategories. The six categories are described
in greater detail in the following sub-sections.

Building Entity

Functional unit
FU components

Design unit
DU components
Geometric descriptions

Evaluation unit
Evaluation (behavior) unit components

Relationships
Containment

(decomposed from [1-M] decomposed into)
(elaborated from [1-M] elaborated into)

Domain-specific (e.g. supporting-supported by)
Group membership (similar, same, identical)

Technologies

Classifiers

Figure 1. A building entity description.

In order to address SEED-Config's data requirements, the underlying data model for the
SEED project, which consists of a functional unit - design unit - technology triad [Flemming and
Woodbury 95], is extended as follows:

• the evaluation unit is added to the triad in order to record the results of the frequent
evaluations required;

• the relationships are extracted from the design unit and functional unit and are added as a
separate category for ease of access;
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classifiers are added to allow the classification of the entities without the need for
inheritance based classification; and
the object's information is encapsulated by a container called an entity.

2.1 Functional Unit, Design Unit and Evaluation Unit

Designing involves the generation of design descriptions of a potential entity intended to
satisfy the specified qualities to be exhibited by that entity [Coyne et al. 901. These design
descriptions and requirements (i.e. qualities to be exhibited), as well as the behavior of the artifact,
can be represented as attribute-value pairs where the value may be an atomic type (e.g., integer,
float, string and boolean), a matrix, a derived value (which may depend on other attribute-value
pairs), and so on. In this model, a value cannot be a geometrical description, a relationship with
another entity nor a reference to a technology.

The data (i.e. attribute-value pairs) characterizing an entity are grouped into three subsets: the
functional aspect, the design aspect and the behavior aspect The functional aspect includes the
intended purposes, the requirements and the constraints on the entity; this aspect is called the
functional unit. The requirements have to be satisfied to realize the intended purpose. The
functional unit can be seen as a design-problem statement [Gielingh 881. The design aspect
includes all the physical and spatial characteristics that define the actual design of the entity; this
is called the design unit. The design unit can be seen as a solution to the design-problem. The
design aspect can be compared with the original requirements to verify compliance. The behavior
aspect includes the response to stimulations associated with different design conditions, and is
called the evaluation unit.

The cardinality of the three units for a given entity is as follows:
• an entity may have only one functional unit;
• it may have several design units, corresponding to different alternatives, but it may only

have one current design unit at any given time in a given design state; and
• it may have several evaluation units per design unit, corresponding to the different design

conditions.

These three sets of data are necessary to completely define an entity in terms of what it is
intended for, what it is, and how it responds throughout its working life. Thus, the reason which a
particular design was selected can be understood and justified from its function, behavior and
instantiating technologies. This represents a richer data model than the ones supported by current
CAD systems which store only the design results.

1.2 Geometrical Descriptions

We are following the approach developed by Zamanian for the geometrical description of
entities [Zamanian 921. This description is classified in two categories: the primary spatial
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representation of an entity is its high-level geometric description which is used primarily for
reasoning about its topological relations with other entities; while secondary representations of an
entity are its discipline-specific geometric representations. Each entity has only one primary
spatial representation, but it may have several secondary representations. This representation
scheme relies on the premise that topological relations of physical entities are invariant with
respect to their discipline-specific secondary representations.

The spatial extent of the primary spatial representation of an entity is defined by superior
elements. These superior elements are "reference geometric entities which can be linear or
curved, arranged in orthogonal or arbitrary directions, or be represented by zero- or higher-
dimensional geometric entities" [Zamanian 92]. The superior elements act as grids or boundaries
and hence formalize an intuitive and common technique where such elements are used to identify
and specify the spatial extent of individual entities or group of entities.

A non-manifold boundary representation scheme is used because topological relations can be
investigated without being affected by the various dimensionalities used in representing the
geometric entities. Since we often have to deal with line, plane and volume representations at the
same time (for beams, slabs and rooms, for instance), the selection of this modeling scheme is
justified. This scheme has the ability of "modeling and reasoning about mixed-dimensional
geometric models in a single, uniform paradigm" [Zamanian 92]. The non-manifold scheme has
also the advantage of being able to model "non-solid" objects.

Since the geometric descriptions are part of the design definition, their logical position in the
entity is in the design unit category.

2.3 Relationships

Every entity has some kind of interaction with other entities that need to be represented.
"Any dependency between two or more entities is a relationship" [Rumbaugh et al. 91]. Typical
relationships include directed actions (supports, drives), communication (talks to, controls),
ownership (has, part of) and so on. "Relationships are just as much a part of the data as are the
basic entities" [Date 95], hence they should be represented as well in the information model.
Furthermore, relationships should be bidirectional, meaning that they must be traversable in
either direction.

We isolate the containment relationships from others to ensure better access. The containment
relationship (also known as aggregation relationship) is very important in describing buildings
because it captures the link between an entity and its components. Building entities are usually
complex objects built from component entities which may be complex themselves. The complex
object is treated as a unit in many operations, although physically it is made of several component
objects. The containment relationship can be recognized by the phrase "part-of", which can be
used to describe the link between the component and the complex object, and "made-of", which
can be used to describe the inverse link between the complex object and the component. Other
relationships are frequently needed as well. For instance, the supporting-supported by
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relationship is used to define a load path among the structural entities. Topological relationships,
such as next to, above, spatially contained in and adjacent, are not stored explicitly in this
information model since they can be obtained directly from the geometric modeler.

2,4 Technologies

We want to record how an entity has been designed in order to be able to make inferences
about the processes used to design it. We also want to be able to adapt and redesign an entity
rapidly without having to start from "scratch". To support this, we organize design knowledge
into a hierarchically structured technology tree. Then, the design of an entity can be simply
described by referring to the technology node that created it.

A technology is viewed as "a collection of computational mechanisms that creates, details and
instantiates entities to satisfy the requirements defined in the functional unit of an entity in a
design context based on a specific construction technology or form generation principles"
[Woodbury and Fenves 941. Technologies are organized in the form of a tree. In the structural
design domain, the technology tree represents the various alternative structural systems,
subsystems and component types available to the designer. The root of a tree operates on an
abstract building as a whole, while succeeding levels of nodes operate on more and more specific
building elements. Hence, the technology tree may deal with elements ranging from the most
abstract (e.g., a full 3-D building for which a tube structure may be an alternative structural
system) to the most specific elements (e.g., individual beams or even connections, reinforcement,
etc.). Each node in the technology tree contains constraints on its applicability. These constraints
may arise from: functional requirements obtained from the functional unit; geometric limitations
obtained from the geometric description; or from relationships of the entity to other entities. If the
constraints are satisfied, the node defines procedures either to assign attributes and attribute
values to the design unit of a current entity, or to subdivide an entity into contained entities.
Hence, a technology node refines another if it provides additional level of detail by adding new
components to the design unit of the current entity, or a technology node elaborates another if it
subdivides the current entity into constituent sub-units by creating new entities and linking them
to the current entity through the containment relationship slot [Fenves et al. 951.

A sample technology tree segment for slabs supported on steel framing elements is depicted
in Figure 2. Each child technology of "Decking" shows two sets of constraints (the maximum and
minimum spans and the maximum and minimum loads) which determines the technology's
range of applicability. If the constraints are satisfied, the technology node generates an alternative
which may be selected by the designer. The constraints shown in the figure were taken from
current product catalogs; if a designer disagrees with the constraints provided, he or she can
modify them. The technology node "One-Way-Deck-on-Joists" is an example of an elaborating
technology which subdivides a slab entity into its constituent decking and joists entities. The
dashed node "Decking" shown as one elaboration component of "One-Way-Deck-on-Joists"
indicates the same subtree as "Decking", the child node of "One-Way". Thus, subtrees in the
technology can be used as elements of other technologies.
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Figure 2. A sample partial structural technology tree [Fenves et al. 951
There are three categories of technologies: decomposition technologies are used to break

down a complex design problems into sub-problems; elaboration technologies are used to
subdivide the current entity into constituent sub-entities; and refinement technologies are used to
provide additional detail to an entity. The first two categories are implemented in the same
manner with respect to the information model. Both categories create new entities and link them
to the current entity through the containment relationship slot. Refining technologies add new
components to the design unit of the current entity and can operate on both abstract or detailed
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entities. Figure 3 shows the relationship between an entity and the three types of technologies and
Figure 4 illustrates the creation of a hierarchy of entities using the three types of technologies.

Decomposed into Elaborated into

Decomposing^^
Technology " /

Decomposes Entity Elaborates

DUcomp.
Generates

Figure 3. Object model of the relationship between entity and technologies.

ABSTRACT LEVEL Refining
Technology,

Elaborating
Technology

Refining
Technology,

DETAILED LEVEL

Figure 4. Use of technologies in defining a hierarchy of entities.

2.5 Classifiers

Classification is the process of systematically arranging entities into groups [Harris and
Wright 81]. Classification is an important aspect of problem-solving tasks [Rich and Knight 91]. It
can be used to identify a given entity or to query the set of all entities for a given group. Building
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entities are classified through the use of classifiers. A classifier is an instance of a class which can
be part of a class hierarchy. Hence, a class can be the subclass of a more general class. An entity is
not limited to one classifier, but may have several classifiers. This approach for classification is
similar to the one used in the Context-Oriented Model [Kiliccote 92]. It circumvents many
anomalies and ambiguities that arise from the use of multiple inheritance in object-oriented
programming [Flemming et al. 951. Figure 5 shows an example of an entity being classified as a
framed tube. The fact that the entity's classifier is an instance of the class "Framed Tube" means
that the entity can be generally classified as a framing system, specifically classified as a tube
framing system, or even more specifically as a framed tube framing system.

Entity

Classifiers

Figure 5. Classifiers and class hierarchy.
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Chapter 3

Hierarchical Decomposition

When faced with a complex design problem, a designer usually solves it by reducing it into a
set of smaller more manageable sub-problems. These sub-problems are, in turn, decomposed such
that a solution can be easily determined. This "divide-and-conquer" strategy is typical for most
design processes. The information model must therefore be able to support the decomposition of
design problems. Such hierarchical decompositions are also used to distribute tasks and
responsibilities among designers [Gielingh 88].

A building can be considered as composed of four major systems [Rush 86]: structure,
enclosure, services and interior. These systems can be further decomposed into more detailed
hierarchical levels of subsystems, components, etc. all the way down to distinct materials. Figure
6 shows the hierarchical decomposition of the building into four systems with the structural
system further decomposed. The structure of a building may sometimes be broken down into
independent sub-systems depending on the building's complexity. These sub-systems, which we
call 3-D structural systems, occur in buildings with expansion joints or in buildings made of
several independent structural systems. The 3-D structural systems are decomposed into 2-D
structural elements such as frames, walls and slabs. The 2-D structural elements are further
decomposed into 1-D elements or 2-D sub-elements (e.g., beams, columns and slab elements).
Note that the figure does not show all the relationships which may exist among the entities shown
(e.g., supports and connected to). The black circle at the end of a link indicates that many entities
may be linked to the entity at the other end of the link.

Building

Enclosure
System

Structure
System

3-D Structural
System

Mechanical
System

Interior
System

Frame Slab

Column Beam Slab
Element

Wall

i i

Wall
Element

Systems

Volumes

Planes

Line Elements Plane Elements

Figure 6. Hierarchical decomposition of the building structure.
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This hierarchical decomposition of the structural system follows the total-system approach
promoted by T. Y. Lin and S. D. Stotesbury, where the designer focuses first on the three-
dimensional implications of architectural space-form options, then on the more-or-less planar sub-
systems which make up the structure, and finally on the elaboration and refinement of individual
elements and connection details [Lin and Stotesbury 811. Hence, a complex structural problem is
decomposed into simpler sub-problems that can be considered in a semi-independent fashion.
This "approach reflects the organic concept that the whole (of a design scheme) should give rise to
the need for details and not vice versa" [Lin and Stotesbury 81].

A similar hierarchical decomposition has been developed for the enclosure system and is
shown in Figure 7. The enclosure system of a building is decomposed into envelope planes such
as roofs, exterior walls, slab on grade and cantilevered floors. Each envelope plane can be
subdivided into envelope areas, each of which has one envelope section and corresponds to one
indoor space, and can be pierced by openings. An envelope section is a sequence of envelope
layers (i.e. construction products) such as cladding, membrane, insulation and finishing [Rivard et
al. 95].

i
Opening

Enclosure
System

i
Envelope
Plane

i

Envelope
Area

Envelope
Section

Envelope
Layer

Figure 7. Hierarchical decomposition of the enclosure system [Rivard et al. 951

The information model presented here supports such hierarchical decompositions. Systems
and subsystems can be modeled as entities linked by containment relationships. The result of the
hierarchical decomposition is a tree of entities. The designer can look at the system at any level of
abstraction simply by going to the corresponding depth in the tree.

The information model also supports the design process as it unfolds by allowing designers to
populate the design space in an intuitive manner from global system entities through sub-system
entities ail the way down to component entities. The root of a hierarchical decomposition tree is
recorded first, followed by the system entities, and so on. New entities, created from elaborations
of more abstract entities, are added to the existing ones, through containment relationship, as the
design proceeds and becomes more and more detailed.
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It is important to note that the hierarchical decompositions described in this section are
examples only. It does not mean that the hierarchical decomposition for the structure is fixed and
unchangeable. The power of this information model is that any hierarchical decomposition can be
supported. Hence, additional entities could be incorporated between the ones shown in the
examples, and different alternative design solutions could incorporate different hierarchical
decompositions.
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Chapter 4

Integration of Multiple Views

The entities presented in the previous section represent a logical manner for organizing the
building data and correspond to the way designers see the building. It may often happen that an
entity occurs in two different hierarchical decompositions. For instance, a load bearing exterior
wall is both an envelope plane in the enclosure system and a wall in the structural system. Hence,
there is a need to represent multiple views of an entity. In this section, we look at a mechanism to
record the set of attribute-value pairs in order to be able to provide different views.

4.1 Component Representation

The attributes of an entity may be organized as follows:
• the collection of all attributes defining an entity may be grouped into one flat structure;
• the attributes may be divided into small cohesive subsets; or
• each attributes may be represented as a distinct structure.

The first and last approach correspond to the two extremes of a scale. The first approach leads
to the creation of exceedingly complex entities which are difficult to understand (for a single
specialist), to maintain and to extend [Howard et al. 92]. In the third approach, at the other
extreme, each attribute is stored separately. The attribute values are accessed by attribute names.
This approach leads to complex naming conventions.

The representation approach that we are investigating is located between these two extremes.
We intend to divide the attributes of an entity into small cohesive subsets, each of which we call a
component. This approach, called the Primitive-Composite Approach (or P-C Approach), was
originally suggested by Phan and Howard (1993). It is a data model and a structured
methodology for modelling facility engineering processes and data to achieve integration. It has
the advantage that it supports multiple views, schema evolution and data integration.

Cohesion is the only criterion used in decomposing entities. It is defined as a measure that
shows how closely the attributes of an entity relate to one another [Phan and Howard 93]. They
characterized cohesion into five specific criteria: the data attributes are stored in one location
(access-cohesive), related to the same concept (concept-cohesive), not derived from each other
(source-cohesive), instantiated at the same time (time-cohesive) and used at the same time (use-
cohesive). A functional and data flow analysis of the building design process is needed to
evaluate the cohesion of the attributes of each entity.

Our definition of a component is slightly different. We keep only three of the five original
criteria. Hence, a component is defined to be a group of closely related attributes which are found
together in a repository (access-cohesive), which are instantiated at the same time (time-cohesive)
and which corresponds to the same concept (concept-cohesive). The access-cohesive criterion
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ensures that attributes from different views are not put together (e.g., data found in structural
drawings are not mixed with data found in construction estimates). The time-cohesive criterion
ensures that if a user tries to access some data and sees that the corresponding component exists,
he or she can assume that all the attributes in it have a value. If the component does not exist, it
means that the data has not been generated yet, and he or she may create a new component. This
criterion implies that each component is generated by only one technology node. The concept-
cohesive criterion divides the attributes in at least three broad classes: function, design (form) and
behavior which were presented earlier in section 2.1. This criterion may subdivide the attributes
further if more concepts are considered.

The use-cohesive criterion is not considered for efficiency. It is difficult to predict all possible
uses of an attribute, and hence the corresponding attributes may be overly subdivided. It does not
really matter if all data attributes of a component are used at the same time or not. We do not
agree with the source-cohesive criterion. We think that dependent data can be recorded in the
same component. Methods could be used from within the component to compute the dependent
information.

The component representation provides an abstraction of the entity to designers. Views hide
the actual complexity of the entity by providing only the relevant information while hiding the
unnecessary details. Figure 8 shows a wall entity decomposed into a set of components. Three
different views are shown as referring to a subset of the components. Two of the components are
shaded to show the sharing of information between the different views. Hence, this model
supports the integration of the various views required by the design participants. This
characteristic ensures compatibility, reusability and integrity of the data. It also fosters efficient
data communication between participants.

VIEWS

Energy
Analysis
View

Structural
Analysis
View

Construction
Planning
View

Entity

COMPONENTS

<^O Thermal Properties

-Q Azimuth

Weight

Dimensions

Structural Properties

Wind Loading

List of Materials

Activities Required

Costs

Figure 8. Multiple views of a wall entity [Rivard 941.
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4.2 A Generic Component Class

The definitions of the components are inherited from a common superclass, which is shown in
Figure 9. A component class should have a unique name. Each component stores the name of the
person who is responsible for its creation. It stores the initial time when it is created and when it
is last modified. It also stores a reference to the technology node that was used to instantiate it and
a status which could take one of three values: candidate (alternative is not explored yet), explored
(alternative has been explored but not selected) and committed (alternative represents the current
design). A component should include a reference to all the entities to which it belongs. The fact
that a given component may be referenced by several entities demonstrates the possibility for
reusing the same data (e.g., the type of concrete should be defined once and referenced by every
concrete member). Each component should have a built-in help mechanism that would allow the
user to obtain a description of the data stored in it A component can have both attributes and
methods (or procedures). Methods are used to compute values based on other components. The
use of methods provide support for dependencies among data.

Name of Component
Author
Instantiated time
Last modified

Set of attributes or methods

Technology node
Status
Entity(ies)
Help

Figure 9. A generic component class.

An advantage of encapsulating data within component objects is that the type of data stored
could be of multimedia type. The component has the appropriate methods to display, edit and
input its data. Therefore, a component could contain images, sounds, texts and even video. For
instance, an evaluation unit component could contain the bending moment diagram of a
structural beam.

Concurrent use has not been considered at this stage. Since changes are usually localized to
the component levels, only the components would need to be locked. The system could allow the
display of components created by other users but protect them from modification if a user does
not have write permission.

4.3 Relationship Between Components, Entities and Technologies

An entity contains a reference to the technology node that created it. As the entity is refined,
design unit components are added to the entity. Figure 10 shows the relationship between an
entity, its design unit components and a technology tree. This representation supports the
generation of solutions in staged steps so as to allow backtracking and generating different states
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within the design space, representing alternative design solutions for the same subproblem. The
hierarchical structure of the technology tree (and thus the knowledge base) serves to meet these
goals [Fenves et al. 951. The design process proceeds as follows: the child technology nodes of the
current technology test the entity against their own constraints and determine whether they are
applicable or not. If a technology node is applicable, it instantiates the appropriate design unit
component(s) and assigns corresponding design attributes. The designer selects one of the
candidate components to expand further with the technology tree. The selected component is
automatically incorporated into the entity.

Entity

DU
— DU components

Technology -

Technology Tree

Accumulated
DU components

Possible Refinements

Selected Refinements

Figure 10. An entity , its design unit components and a technology tree

4.4 Integration Across Hierarchical Decompositions

The primary spatial representation of a building entity, described in section 2.2, can be used to
identify an entity in the geometrical model and then to add appropriate components to the entity.
For instance, a structural function may be enforced to a building envelope entity (such as an
exterior wall), found in the geometrical model, by adding the proper relationships, FU
components and DU components. The designer could access the entity through the geometric
model and add it to the structure hierarchical decomposition. Hence, the exterior wall becomes
part of two hierarchical decompositions: the enclosure and the structure. The decomposition
hierarchies become lattices.
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4.5 Search Mechanism for Components Within Building Entities

The building entity's information is encapsulated within components. The information is
accessed through a search mechanism. First, the requester (which may be a user or a computer
application) must specify one of the subsets where the search is to be made: either functional unit,
design unit or evaluation unit. Second, the requester must provide the name of the component
that is of interest. For example, say someone is interested in checking the water-ratio of a concrete
structural element, s/he would access the corresponding building entity and provide the
following request: design-unit (concrete characteristics). The system would look among the
components stored in the design-unit and return the one with the matching name. Once the
requester has found access to the component, s/he can fire any of its methods such as display or
edit attributes. In our example, the person would request the display of the water-ratio attribute.

The building entities have a mechanism to display all the attributes of their functional units,
design units and evaluation units for quick reference. Whenever someone requests that facility for
one of the subsets of data, the building entity displays all of its attributes and their values under
headings corresponding to their component names.

An Information Model for the Preliminary Design of Buildings 20



Chapter 5

Grouping Entities

To facilitate the design process, a set of entities can be grouped together and designed
simultaneously. We have identified three different types of groups: "same" means that all the
entities are assigned the same design components according to the most constraining entity of the
group; "similar" means that all the entities are designed with the same technology but may have
design components with different attribute values; and "identical" means that all the entities in
the group have the same dimensions and are subject to the same conditions and hence can be
designed just by looking at one of the entities. As for "same", the entities grouped by "identical"
are assigned the same design components. While the two groups "same" and "similar" are
assigned by the user, the group "identical" is assigned by default by elaborating technologies.

As an example of the use of a "same" group, a structural engineer may want to assign the
same concrete characteristics to a group of entities. The engineer selects the group of entities and
the refining technology that assigns the concrete characteristics; the technology would check that
the structural material of each entity is concrete and would assign the specified concrete by adding
the same DU component to all entities. Having only one DU component for a group of entities
ensures that any changes will be applied to all entities (i.e. there is no unnecessary redundancies).
This example is illustrated in Figure 11 below. For a group of "similar" entities, the technology
would add a new DU component to each entity.

Group of Entities

DU Component

Name: Concrete Characteristics
f'c : 4000 psi
Water-cement ratio: 0.40
Air-content : 6%
Max. agg. size : 3/4"

Entity List

Figure 11. Designing a group of "same" entities.
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As an example of an 'identical" group, when elaborating a structural slabs into beams and
deckings, the technology creates a number of beam-entities and a number of deck-entities. All
these entities are associated to the slab-entity through the containment relationship. Each distinct
sub-entity is needed because each one has its own distinct primary spatial representation. But to
simplify design, all the beam-entities are automatically grouped into an "identical" group and
thus ensure consistency between the beams. When a technology refines the beam-entities, it
assigns the same DU components to all of the entities in the group. The same process applies for
the deck-entities. Figure 12 below illustrates the creation and design of the beam entities.

Slab Beams

/ i / i / i

r DU n

I Components I
i 1

Figure 12. The creation of an "identical" group of entities.
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Chapter 6

Case-Based Reasoning Support

Case-based reasoning is an analogical reasoning method which uses previously stored
solutions as a means to solve a new problem, to warn of possible failures, and to interpret a
situation [Kolodner 1993]. A design system based on this artificial intelligence methodology
would help the designer to remember previous and appropriate cases. The designer can use these
cases as sources of inspiration, or as drafts on the basis of which a more relevant solution to the
current problem can be developed. It is in the human nature to remember previous experiences in
order to develop solutions for new problems. Designers use previous designs because they save
time and effort and because the concept has been proven effective in a previous situation. Case-
based reasoning is an attempt to implement this natural design process in computers as a tool for
designers. The strength of computer programs augment the human abilities as follows:

• cases originating from different designers can be made available,
• cases are retrieved quickly and are not forgotten,
• a retrieved case can be used as a starting point to generate a new design, and
• the system ieams as new cases are added to the cast

We have presented in this paper an information model that can be used both for case
representation and for recording design data. Since the representation is identical for the two, no
translation is required to store the design data into a case. This simplifies the implementation of
the premise stated in [Flemming 94] that cases are accumulated as a side-effect of a firm's normal
design activities.

Hierarchical decomposition provides a mean of extracting cases at different level of details or
abstraction. It also provides the capability for retrieving solutions to any level of detaiL[Flemming
94]. Hence, a case can be retrieved at different levels: from the system level (e.g., the structure of a
building wing) to the component level (e.g., a roof truss).

Cases are searched based on the current functional unit, the current hierarchical
decomposition and the problem context. When an entity is retrieved, all its constituent sub-entities
are evaluated to see whether they also satisfy the new problem context. All the sub-entities that
are satisfactory are retrieved to a depth specified by the user. The unsatisfactory sub-entities are
pruned from the retrieved solution. Once a case is retrieved and approved by the user, it can be
added to the current design. It can then be modified, augmented, and reduced.

Sub-entities are pruned using the technology tree referenced by the retrieved entity (or case)
and the current design context. If the design of the retrieved sub-entity is still within the range
of applicability of the technology node once it is set in the new design context, its attributes are
re-evaluated, and matching continues at the successor level of the technology tree. If the design of
the sub-entity falls outside the range of applicability, it is removed from the design state together
with all its subsequent refinements and/or elaborations. The designer can then proceed to
redesign the eliminated sub-entities. Designers have two options to replace the pruned sub-
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entities: they can execute a new case retrieval at the new, more detailed level; or they can complete
the design by themselves or with the help of a technology tree.

The component representation, discussed in Section 4, supports the retrieval of cases (or
entities) with multiple functions (or views). Multifunction entities are frequent in building design
and must be supported by a case-based reasoning system. Whenever a case is retrieved for a
particular function and it is found to have more than one function, the designer has the choice to
keep those extra functions or to strip them from the case. Furthermore, searches for multi-
functional entities are supported. Hence, a designer is able to retrieve an entity that complies with
two or more functions. Here are a few illustrating examples:

• a case retrieved for an enclosure design problem may also be found to satisfy the
structural requirements of that entity;

• the case base may be searched for a case satisfying the requirements of more than one
view (e.g., the enclosure and the structural views of an exterior wall);

• a multi-function entity may be stripped of one of its design aspects if it is deemed useless
(e.g., one may remove the enclosure aspect of an exterior load-bearing wall case to be used
indoors).

The recording of a reference to a node of the technology tree in a case provides several
advantages. It records both the results of the design as well as the design process itself. By
referring to the technology nodes that were used in designing an entity, we are also recording a
reference to the knowledge and process used in designing it. This is as important to the designer
as the design descriptions. It allows the designer to reuse the same design process. It is also
possible to limit the search of a case to a given technology (or one of its children) or to exclude a
given technology from the search.

Flemming's case retrieval mechanism for a hierarchy of objects would work with this
information model [Flemming 94]. The only differences are that instead of traversing a hierarchy
of functional units, we are traversing a hierarchy of building entities; and that an additional
parameter is necessary when searching for an attribute: the name of the component which
contains the attribute of interest.

The fact that a component refers back to the entities it belongs to allows a case search to be
done from bottom up. All the components that satisfies a search criteria could be used as a basis
to find matching cases. The name of the components could be used as an index to limit the search
to a particular type of component. Once cases (or building entities) are retrieved through the
matching components, they can be pruned based on other search requirements. The classifiers are
another mean for retrieving cases. They support case retrieval from general to specialized entities.
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Chapter 7

Conclusion

In this paper, we presented an information model for the preliminary design stage of
buildings. This model decomposes buildings into hierarchies of entities which provide different
levels of abstraction. Each building entity contains:

• data organized into three subsets: function aspect, design aspect and behavior aspect;
• a high-level geometrical description which is used to reason about its topological relations

with other entities, and discipline specific geometric information;
• relationships with other entities;
• references to the computational mechanisms (or technologies) used in designing it; and
• a set of classifiers.

The data of an entity are further grouped into components in order to integrate multiple views, to
facilitate data exchange between design tasks, to improve communication between designers, and
to support the growth of data as the design process unfolds.

We believe that this information model has the potential to record design data as it is
generated during the design process and to support case-based reasoning. We intend to
implement this information model in an object-oriented database management system.
Subsequent validation with end users will show to what extent the approach is appropriate in
parts or in whole.
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