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Abstract

Execution of tasks in dynamic batch units provides additional op-
erating freedom via transient control profiles. When considered at the
design and scheduling stage, this freedom can stretch the limits of prof-
itability under strict market, facility and time constraints. The work in
this paper-mcorporatestdynamic processing conditions for products in a
multi-product batch plant, as opposed to fixing the process by recipes, in
the broader context of equipment design, production planning, scheduling
and inventory considerations. The objective is a general function of fixed
design costs, operating costs, production revenues etc. Decisions include
stage processing times for products, transient stage operating policies,
continuous design parameters, production capacity and production sched-
ules. The infinite dimensional optimal control problem for each operation
is solved using collocation over finite time elements ([6], [7]). Scheduling,
with its combinatorial complexity, is addressed in the scope of flowshop
plants for specific transfer policies using the Aggregated Scheduling model
in [3] and [4]. Two examples are solved via sequential and simultaneous
solution approaches. The smaller first example allows transient control
at the reaction stage for problems with relevant objectives in planning
and scheduling. The second example allows transient control at the re-
action and high purity separation stage for a general objective function.
Considerable savings achieved in most situations are reported, along with
moderate computational requirements for solving the examples.

* e-mail: lb01@matthew.cheme.cmu.edu



1 Introduction
Specialty chemical production faces strict and varying market constraints of
product quality and time. These are better addressed through flexible process-
ing in batch plants, whose features include adjustable unit-task assignments,
production schedules, storage and transfer policies etc. While much effort is
directed in integrating the flexibility at different levels of a batch operation
(e.g. [10], [4]), processing considerations are often avoided due to expensive
computational and modeling requirements. In particular, batch processing de-
cisions pertain to optimal state and control variable profiles for dynamic stages
providing transient operating freedom.

At the lowest level, stage processing times and operating conditions are fixed
by process recipes. While this simplifies an integrated solution for other aspects
of the problem, it overlooks the potential of optimizing the dynamics at each
processing stage in improving the integration. Rigorous dynamic modeling on
the other hand promises improved performance at the cost of a complicated
integration.

Operating considerations have been incorporated at other levels such as pro-
cess development ([1]) and plant design ([9],[8]) through sequential, nested or
bi-level solution approaches. Although these methods solve smaller subprob-
lems, their solutions are often suboptimal. A general MINLP formulation for
short term planning, where processing times form a sequence dictated by op-
erating conditionsJs proposed in [11]. Mom'SEcendy^et^ed 4

The work here includes dynamic models of processing tasks within the design
and scheduling formulation for a special class of batch operations. Stage oper-
ations with optimal control profiles are compared to those with best constant
control levels to improve overall profit objectives. Variables treated simultane-
ously as decisions in this work include:

• Processing

- Optimal stage operations

- State and control variable profiles

- Stage processing times

- Final batch state at each production stage

• Design

- Continuous equipment sizes

- Continuous design parameters

• Production Planning

- Production capacity



- Batch sizes and number of batches

• Scheduling

- Production span or cycle time ,

- Production sequence

The above problem is complicated most by solutions for optimal transient
operating conditions in various processing stages. Such decisions fall under
the class of infinite dimensional optimal control problems. These problems are
defined by a differential-algebraic (DAE) system of equations. While the method
of Control Vector Iteration used in [5] solves for control profiles, it does not
handle state path constraints directly. Path constraints are essential for quality
constrained batch processes. 'Collocation with finite elements, on the other hand,
allows convenient handling of path constraints for moderately sized problems.

The other aspect that poses a problem is the combinatorial nature of schedul-
ing decisions. To simplify the scheduling issue, this work confines itself to a
special class of batch problems, i.e. flowshop plants with Unlimited Intermedi-
ate Storage (UIS) and Zero Wait (ZW) transfer policies and with one unit per
stage.

2 Problem Formulation and Modeling
This section discusses measures taken to counter the complicating issues in the
overall problem as presented in section 1. Formulations for modeling different
aspects of the problem are also presented.

2.1 Processing and Design
Modelling dynamic processes in batch stages requires differential and algebraic
equations involving state and control variables. The optimization problem can
be written as:

• max #r(t)fu(0,*(*/)fp)

s.t. i(«) = /(*(«), u(t),p)
g(z(t)Mt),p)<0

(DAE)

where t/j is the objective function,
z(t) is the vector of state trajectories,



u(t) is the control profile,
p are continuous parameters,
tf is the stage processing time,
<j, h are inequality and equality path constraints,
ge,he are end point constraints at the initial and final time,
tt are initial and final time.

The method of Orthogonal Collocation over finite elements transforms this
infinite dimensional problem to a finite dimensional NLP problem. In this
method, time is divided into a number of elements and the state and control
profiles in each element are approximated by Lagrange polynomials of appro-
priate order, equations ( 1 and 2). Coefficients for these polynomials are then
treated as decisions in the exact solution for the system at collocation points
within each time element.

ncol ncol t \

Vi; * ( r ) = J I J( J \
m=0 m'=O;m'?£m^m m>'
ncol ncol * \

Mr) = X) uirn0m{r) VZ; 6m{r) - JJ / 1 l (2)
TF»—1 T71 = l , T 7 l Tpfn

where / are finite time elements (l,...,ne),
m are collocation points (l,...,ncof),
r is normalized time in each element, r € {0,1]
rm are normalized roots of Legendre polynomials
z/m, w/m are state and control profile parameters,
<t>m{t)y0m(t) are basis functions for Lagrange polynomials,

Division of the profile into elements allows control variable discontinuities to
exist, as in bang-bang control. Continuity of the state profile is enforced across
neighboring elements, for this purpose the order of the state approximation is
kept one higher than the control. The order of approximations and location of
collocation points are determined by stability and error properties of the sys-
tem. The model is exactly satisfied at collocation points and the approximation
error is controlled within each element. Using this technique the resulting NLP
problem then is of the form :

max
2|m,U|m,p,*T|

s.t. z(Tm) - Srif(zLm,uimyp) = 0

< 0 V/,m
,p,te) < 0 V/,m



p) = 0 V/,m
,P,te) = 0 V/,m

ncol

m'=0

= tf (NLPl)

where <$TJ is the length of finite time element /,
tim is the absolute time at point m in element /.

note Um = Y!I~1\ **

Properties of this method in solving for optimal control profiles together
with design decisions, are discussed in [6] and [7].

2.2 Production Planning and Scheduling
Performance of periodic schedules can be characterized approximately by a cycle
time. To allow gradient based optimization, a closed form expression for the
cycle time must exist. The expression must model the combinatorial complexity
of the scheduling problems. This is challenging due to the sequence in which
processing stages are required for making a product as well as the sequence in
which product batches are made. An increase in either the number of products
or their batches adds to this complexity. Simplifying assumptions or special
cases must therefore be considered. Within the realm of flowshop problems,
the Unlimited Intermediate Storage (UIS) and Zero Wait (ZW) policies permit
sequence dependence to be contained in a closed form expression, as shown in
[3].

In flowshop problems, all products require processing stages in the same se-
quence. Production sequence is then handled relatively simply when considering
two special transfer policies.

UIS assumes an infinite storage facility at zero cost. This implies that a
stage, after processing a batch, becomes immediately available for processing
the next one. This is possible as the current batch can be moved to storage
in the event the next stage is still busy. Infinite storage thus has the effect of
decoupling successive stages. The cycle time for a stage then simply becomes
the total time required for processing all batches in that particular stage and
sequence dependence is eliminated from the problem.

ZW requires a batch be transferred to the next stage immediately after its
completion in the current one. This rigidity ensures availability of the current
stage to process the next batch as soon as the previous one is done, like in
UIS. In addition, a batch must be started at the first stage only when it can be
processed through each stage without delay. This leads to slacks or idle times
to exist at all stages but one (at least), the bottleneck stage, whose location



depends on the previous product in the sequence. Cycle time for a stage with
ZW policy thus becomes sequence dependent due to the slack times, the problem
is however tractable in the "aggregated" space of product pairs.

These ideas are exploited in [3], where the "aggregated" model (Ml) is pro-
posed to perform simultaneous production planning and vessel sizing for a least
design cost flowshop plant. It handles ZW and UIS policies, assuming one unit
per processing stage but considers recipe based processes with fixed processing
times for products in all stages.

s.t. Vj > S^Bi Vi,j (3)

m = %- v» (4)

= m Vi (5)

•nk Vfc (6)

E I"** + £SlikjNPRS* J < H Vi (7)

Vt\j,*; j ^ J (8)

- 1 Vt (9)

Vj^O.ni^O.BitO.NPRSik^O (Ml)

where j are stages in flowshop sequence (1,..,J),
t,fc are products (l,...,iVp),
a j , /Jj- are design cost co-efficients,
Vj are continuous equipment size parameters,
Sij are size factors for product i in stage j,
Bt is the size of all batches of product i,
fit is the number of batches of product i,
Qi is the amount of product i produced,
NPRSik is the number of product sequence ik pairs in the schedule,
Uj is the processing time for product t at stage j,
SLikj is the ZW slack at stage j for product sequence pair ik,
H is the planning horizon.

The objective is to minimize fixed equipment costs although a more general
objective could be accommodated within the formulation. The equipment is



designed large enough to accommodate all batches through equation( 3). Suf-
ficient batches of each product that satisfy market demands are ensured by
equation( 4). Equations ( 5) and ( 6) require a product to appear an appro-
priate number of times in each product pair. Equation ( 9) eliminates single
product subcycles from appearing in the schedule. Equation ( 7) ensures the
chosen schedule is completed in the available horizon.

The left hand side expression in equation( 7) models the cycle time at a
stage. In the context of ZW policy, a stage j becomes a bottleneck for a product
sequence pair ik if there is no idle time at this stage, i.e. SLikj is zero. For the
sequence independent UIS policy, all slacks must be set to zero. The number
of product pairs in the solution generate a family of schedules each having the
same cycle time. As discussed in [3], the makespan, or total time for which the
plant must be run depends on which product pair is split in the schedule family.

Figure 1: Calculation of slacks with "free" processing times.

When processing times Uj are fixed, an off-line slack calculation for each
pair would suffice. Considering dynamic processing freedom in this framework
must allow processing times Uj to vary and adopt optimal values that reduce the
overall idle times in the optimal schedule family. This would require variable
slacks SLikj causing the bottleneck stage location for each product pair to
shift during the solution. Discontinuities in the presence of such effects can be
avoided by ensuring feasible slack calculation via equations ( 8), which must be
included as developed in [2]. Allowing variable processing and slack times in
the formulation introduces bi-linear terms in the expression for cycle time.

The reliance on size factors to determine equipment sizes is inadequate when
considering process dynamics. For instance, different operating strategies can
cause different size batches to be realized in the same equipment. Since the
overall problem allows general operating profiles that are solved together with
continuous design parameters, feasibility of design is maintained for the multi-
product operation more rigorously. Size factors could still be used in forming a
resource function for stages that do not involve any modeling.

2.3 Overall Formulation

Problem formulation for simultaneous solution of all decisions in this work is
based on the representation in Figure 2. A total of J processing stages, in the
flowshop sequence, are considered for the production of Np product batches of
size Bi for each product t. Variables z®j and z{ • denote the initial and final
state of a batch of product i at stage j. The state trajectories Zij(t), for which
these variables are the boundary values, depend on the control profile U{j(t)



implemented for product i at stage j. Units that are modeled dynamically
belong to a subset •/<*. All units allow continuous design parameters pj to be
treated as decisions. Before the detailed problem formulation is presented, an
informal organization of interactions in the overall problem is presented.

7 Wu()\ T
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Figure 2: Problem representation.

Starting with stage operations for units that are modeled dynamically, dif-
ferent levels of process modeling can be considered that relate processing time
with equipment design and batch states. At the highest level lie dynamic models
(DAE) that allow a general control profile within specified operating bounds. At
lower levels, the operating profile structure can be specified such as piece-wise
constant, piece-wise linear or best constant operating level. This can be achieved
by placing constraints on the coefficients in the approximation for the control
profile. Processing time in these units depend on system dynamics, design pa-
rameters and initial and final states. Units not modeled dynamically could
still have processing time as a function of material transformation achieved in
the unit, possibly allowing some operating parameter decisions. Finally, recipe
based tasks, that provide no freedom as far as processing time or material trans-
formations are concerned, lie at the lowest level. All descriptions for residence
time of a batch in a unit are a special case of equation 10.

Movement of a batch in the flowshop sequence requires starting conditions
at each stage to be determined by final conditions at the previous unit in the
sequence. For the case where material is added only at the first stage and
recovered only at the last one with unaltered batch transfer at intermediate
stages, initial conditions would be given by equation 11.

* & = * & - ! Vt,i; j * l (11)

When the initial and final state of all product batches at each processing
stage are fixed by recipes, dynamic optimization of the process at each stage
would realize specified transformations more efficiently. In this situation, stage
operations are decoupled as far as material state transformations are concerned.
Operation in a stage is however affected by processing time requirements at other
stages. In the more general context, when batch state trajectories as well as
their intial and final conditions at all stages are treated as decisions, control



over a product batch size is determined more strongly by the operations and
design of all stages through equation 11.

Bi = 4>B(Uj,Uij(t),zij(t)tpj) Vt (12)

Size of a product batch dictates the number of batches, which along with
processing times determine the optimal schedule cycle time at each stage.

CTj = 4>CT{tihni(Bi), NPRSik) Vj (13)

Ideally n« and NPRSik must be integers. Although this is guaranteed un-
der special conditions ([2]), for recipe processes, these and other integer design
variables could be treated as continuous to get a relaxed solution that is refined
further. The overall NLP model for the problem then becomes:
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where Zijim are state coefficients for product i in stage j,
Uijim are control coefficients for product t in stage j,
Sriji is the Z element length for operation ij,
^profit is the objective function,
Z{ji(t) is the state expression in element / for operation ij,
Uiji(t) is the control expression in element / for operation ij,
L, U represent lower and upper bounds,

3 Examples
The overall formulation is used to demonstrate improved objective function
values when considering process dynamics for relevant situations in planning
and scheduling. Two flowshop examples are constructed for this purpose. The
first example is kept small for motivating purposes. A larger problem is solved
next, sequentially as well as simultaneously, to understand some of the tradeoffs
more closely.

3.1 Example 1

Figure 3: Example 1 (dynamic reactor).

Three products, very similar in process, are to be made in a flowshop plant
(Appendix A). All products require three stages, a dynamic reactor and two
recipe based blenders (figure 3). The reaction mechanisms for all products are
similar as products differ only in the kinetic parameter values.
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A control profile Uij(t) exists for each product i in the reactor. Initial feed
charge in the reactor is fixed for each run. Dynamic control is then expected
to improve conversion of this charge to the desired product both in time and
extent, with competing reactions. Four problems involving scheduling, design
and processing tradeoffs are solved with constant and transient reactor control
profiles, for both the UIS and ZW policies.

• PI - Minimize Operating Cost

Minimize operating costs to achieve a production target in an existing
facility.

• P2 - Minimize Fixed Costs

Minimize equipment costs to achieve a production target in a specified
horizon.

• P3 - Maximize Revenues

Maximize revenues from operating in an existing facility for a specified
horizon.

• P4 - Maximize Overall Profit

Maximize an overall profit function of fixed costs, operating costs and net
revenues.

3.1.1 Solution Strategy

Control profile ttt,/(t) is resolved using four equal sized finite elements spanning
the processing time for each operation. Two collocation points are introduced
within each element. Intensive composition trajectories serve to define the dy-
namic system state. Equipment sizes are then related to product batch sizes
through size factors.

Problems PI - P4 are solved successively, for both UIS and ZW policies,
such that solution for one problem provides an initialization to the next one.
Problems PI are initialized by solving individual reactor subproblems that max-
imize conversion to each product in 1 hour. For problems PI, equipment sizes
and production targets are fixed. In problems P2, equipment sizes are relaxed
and stage cycle times are bounded by a horizon constraint. For problems P3,
equipment sizes are again fixed and production targets bounded from below.
Finally, for problems P4, equipment sizes and stage cycle times are relaxed and
production is bounded from above.

3.1.2 Results

For all problems, performance with the idealized UIS policy is better than with
the more constrained ZW policy (figure 4). In addition, dynamic control profiles
improve most cases beyond operating at the best constant level.

Reactor control profiles for a typical case are shown in figure 5. Operating at
the best constant control level starts off with a high conversion rate that reduces
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Problems

Figure 4: Results for example 1.

2

Constant

Dynamic

0—O<>

0.1 0.2 0.3 0.4 0.S 0.6 0 0.1 0.2 0.3 0.4 0.S 0.6

Time <hr.) Time (hr.)

Figure 5: Optimal profiles (product 1, problem P2, ZW policy).

as the reaction proceeds. An optimal profile roughly maintains the same steady
conversion rate throughout the operation. The difference in strategies becomes
significant close to the end of the operation, giving larger batches for the optimal
operation.

Problem PI - Minimize Operating Cost
With ZW policy, operating costs reduce by 6.8% for the dynamic case (ta-

ble 1). The reactor processes each product for 0.6 hours with both constant and
transient control. This eliminates slack times from two stages out of the three,
for all product pair combinations. A higher conversion with dynamic control
produces larger sized batches for all products. As a result fewer batches suffice
to meet production targets. Stage cycle times are thus reduced with dynamics
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Problem
PI
CTj (hr.)

*'„
Uj (hr.)
Problem
PI
CTj (hr.)
xi
Uj (hr.)

ZW

const. 0=26,72$
190.9, 190.9, 190.9
0.459, 0.492, 0.414

0.6, 0.6, 0.6
U

const. 0=23,5^8
153.9,143.0, 214.5
0.387, 0.411, 0.412
0.360, 0.343, 0.594

dyn. 0=24,922
178.0, 178.0, 178.0
0.495, 0.527, 0.442

0.6, 0.6, 0.6
S

dyn. 0=22,025
145.7, 132.8, 199.2
0.422, 0.445, 0.435
0.377, 0.359, 0.581

Table 1: Results for problem PL

even though reactor processing times in both cases are the same.
With UIS policy, 6.4% is saved by considering dynamics in the reactor.

Unequal cycle time values for each stage are a result of decoupling between suc-
cessive stages for the UIS case. Processing times are lower than 0.6 hours as
any improvement in time benefits the cycle time with UIS. Batch sizes are thus
smaller than in ZW case, due to shorter processing in the reactor. Dynamic
control still produces larger batches although, with slightly longer reactor opera-
tions. The reduction in number of product batches that satisfy demands however
compensates this increase in processing times. Cycle time is thus reduced in all
stages for the dynamic case, although the reduction is not as significant as in
the ZW case.

Problem P2 - Minimize Fixed Costs

1 Problem
| | P 2
II Vj (1.)

It
II Uj (hr.)
II Problem

II P 2

ZW
const. 0=41,785
107.0, 111.5, 113.0
0.459, 0.446, 0.395

0.6, 0.440, 0.549
U

const. 0=41,641
|| Vj (1.) II 106.6, 111.2, 112.5

x;
R 0.463,0.444,0.395

|| Uj (hr.) || 0.650, 0.451, 0.543

dyn. 0=41,641
106.6, 111.2, 112.5
0.463, 0.444, 0.395
0.499, 0.385, 0.478

S
dyn. 0=41,641

106.6, 111.2, 112.5
0.463, 0.444, 0.395
0.510, 0.357, 0.477

Table 2: Results for problem P2.

Fixed costs reduce by a mere 0.34% for ZW policy with a dynamic profile
(table 2). This slight reduction is achieved by permitting the reactor to process
batches of slightly smaller size for product 2, which requires larger equipment
than others. Reaction is stopped for other products when their batches exceed
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the limit placed by equipment sizes corresponding to product 2. This permits
slack times to exist in the reactor for almost all product pairs with both constant
and dynamic control.

UIS shows no improvement for problem P2 with dynamics. Conversion to
products, and hence batch sizes, are the same as in the ZW case with dynamics
for both constant and dynamic UIS cases. The two UIS solutions differ in
reactor processing times for products. Both cases still allow longer processing
in the reactor than corresponding ZW cases. This is possible since the horizon
constraint is not active at these solutions. Results for problem P2 reflect small
sensitivity of fixed costs to introducing dynamics in the reactor.

Problem P3 - Maximize Revenues

Problem
P3
mBi (lb.)
xJ

R

Uj (hr.)
Problem
P3
TiiBi (lb.)
*'«
Uj (hr.)

ZW
const. V>=45,433
4800, 5545, 4800

0.459, 0.492, 0.414
0.6, 0.6, 0.6

U
const. ^=45,866
4800, 5688, 4800

0.438, 0.463, 0.476
0.519,0.493,0.818

dyn. t/>=48,995
4800, 6732, 4800

0.495, 0.527, 0.442
0.6, 0.6, 0.6

S
dyn. ^=49,357
4800, 6852, 4800

0.476, 0.501, 0.501
0.535, 0.510, 0.797

Table 3: Results for problem P3.

An improvement of 7.8% is observed with dynamics for ZW policy (table 3).
At the solution minimum demands are satisfied for all products. Beyond these,
production of product 2 is increased as revenues from its sales are the largest.
Conversion and processing time decisions are same as for corresponding PI
problems. The specified horizon is larger than stage cycle time values in PI.
Extra batches of product 2 are processed until the horizon constraint becomes
active. Dynamics allow a greater number of larger batches of product 2 to be
accommodated in the available horizon.

With UIS, increased production with dynamics improves the objective by
7.6%. Higher conversions are achieved with slightly longer*processing times in
the reactor, although product 3 behaves otherwise. While both policies operate
under the same horizon constraint, production is higher with UIS due to zero
slacks at the stages.

Problem P4 - Maximize Overall Profit
Overall profit is increased a little over 15% when reactor dynamics are con-

sidered with the ZW policy (table 4). Production reaches the upper bound for
all products in both cases. A higher conversion is achieved for all products in
the dynamic reactor. As a result, fewer batches exist in the schedule leading

14



Problem
P4
CT, (hr.)
Vj (I.)

Uj (hr.)
It Problem

II P 4
II CTi (hr.)
II Ys 0 0
II *p
II tt./ (hr.)

ZW
const. t/>=27,641
397.7, 397.7, 397.7
118.0, 123.0, 120.5
0.459, 0.492, 0.414

0.6, 0.6, 0.6

dyn. t/>=31,848
370.9, 370.9, 370.9
126.6, 131.8, 129.2
0.495, 0.527, 0.442

0.6, 0.6, 0.6
UIS

const. V=33,707
354.6, 279.7, 419.6
119.3, 123.7, 125.9
0.411, 0.435, 0.442
0.429, 0.408, 0.691

dyn. V=37,371
334.9, 259.9, 389.8
125.9, 130.6, 132.9
0.448, 0.472, 0.466
0.447, 0.426, 0.676

Table 4: Results for problem P4.

to smaller cycle times for the dynamic case, at the cost of a slight increase in
equipment sizes to accommodate the bigger batches.

With UIS policy, the increase in overall profit is 10.9% due to smaller vari-
ations in cycle time or equipment sizes. With optimal reactor control, higher
conversions are achieved in larger processing times for each product. This gives
a schedule with fewer: larger isized batches that performs better over the case
with a best operating level.

It is interesting to note that deriving the exact product sequence for all
problems studied is simple. UIS problems are sequence independent as discussed
earlier in this work. For ZW problems, with the exception of problem P2, all
products require processing in the reactor for the same time. Also, the reactor
becomes a bottleneck stage in all problems. All products thus become identical
in processing time requirments and this special condition renders the ZW case
to be sequence independent too. Determination of the exact makespan from the
family of schedules is similarly simplified. However, number of product pairs at
the solution for most cases reflect single product campaigns.

II Problem || ZW

II II " M i -
ll PI || 0.390

P2 0.390
P3 0.360

II P4 II 0.410

dyn.
0.370
0.360
0.310
0.390

UIS
const.
0.310
0.310
0.350
0.380

dyn.
0.300
0.300
0.310
0.310

Table 5: CPU seconds for solving example 1 using the NLP solver CONOPT
through the GAMS modeling system on an HP 9000/700 workstation.

This motivating example reflects some of the benefits in including dynamic
process models for different aspects of batch operations. A simultaneous in-
tegration of process considerations is achievable with modest computational
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requirements under the assumptions inherent in this work.

3.2 Example 2
A flowshop plant with four units, a reactor, a heat exchanger, a separator and
a binary distillation column converts feed of a fixed quality to three products
of different purity in the desired component (P). A total of three reactions
occur in the reactor, involving six components. Product P formed in the second
reaction, reacts to a waste G that separates when the mixture is sufficiently
cooled in the heat exchanger. All of waste G is then removed in the separator
and the remaining five component mixture is fed to the distillation column. Heat
exchanger and separator operations are modeled along recipes, with processing
times for all three products in these two units being fixed. No processing freedom
exists in these two operations.

Figure 6: Example 2, (dynamic reactor and distillation column).

Separation of the waste free material into high (P) purity products is achieved
in the distillation column. The column treats the feed for each multi-period run
as a binary one, where the first component is the desired product (P) and the
second a pseudo-specie of other intermediate and feed components remaining in
the mixture. Feed quality at the start of a column run is arrived at by a waste
G-free calculation on the final state of the reactor charge. This corresponds to
the separation unit, and consumes no degrees of freedom.

3.2.1 Solution Strategy

For reactor dynamics (problem details given in Appendix B), the alloted pro-
cessing time is discretized using eight finite time elements with 2 collocation
points each. To capture the steep initial part of the profile, four smaller sized
elements are used at the start and four larger elements are used for the rest of
the profile. Intensive weight fractions for five components out of the six present
represent the state at any time. This allows an optimal temperature profile to
remain valid for a scale up in the extensive initial charge in the reactor. Reac-
tor operations for each product are identical in processing time, final state and
temperature profiles for all products. Product batches gain identity only in the
distillation column.
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Column dynamics axe solved using the short-cut batch distillation model
in [7] without hold-up. Four finite equal sized time elements with 3 colloca-
tion points span the processing time to determine the optimal reflux profile for
each operation. For a binary feed, the model involves one intensive composi-
tion (xci(O) ^d o n e extensive load (5(0) variable. Apart from the residual
equations, other equations satisfied at the collocation points include equilib-
rium relations, Gilliland's correlation and Underwood's equations. Appropriate
purity constraints specify the product that is to be produced during any period.
Multi-period runs that produce the same product are also identical as in exam-
ple 1, implying that processing time, batch size and reflux profile for a product
in the column would be identical for all batches of that product irrespective of
their position in the schedule.

The reactor thus produces as much of P and the column separates it accord-
ing to specifications. Cooling and waste separation both require a time of 0.5
hours for all products.

Reactor Subproblems
RO Rl

Column Subprobtems
CO Cl

'uv
tToni MJUuimzaQon

so

Seouential

Reactor Model

Column Model

Profit Maximization

SM fixed (Zy.Zq)

SM* free (Z°j'4>

Simultaneous

Figure 7: Solution strategies adopted for example 2.

An overall profit objective is maximized sequentially as well as simultane-
ously for the ZW policy. For the sequential case, unit subproblems are first
solved to generate processing time and batch size data that is used in maxi-
mizing profit. In the simultaneous approach, dynamic models for the units are
included in profit maximization treating processing times and batch sizes as de-
cisions only. The final condition of the batches at the reactor, and thereby the
initial condition of the batches at the column, are constrained at values deter-
mined by the sequential approach. In the last case, final condition at the reactor
and initial condition for the column are also included as decisions. Problems are
solved for combinations of reactor/distillation column operating modes. This
strategy is discussed in detail next.

3.2.2 Problem Formulation

Unit Subproblems
For sequential solution, unit subproblems R0-C1 are solved first for the opti-

mal temperature and reflux profiles in the reactor and column respectively, with
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different perceived objectives. For column operations, a constant initial charge
and number of trays are used for all problems.

Reactor subproblems first maximize conversion to desired product in an
allocated time of one hour with the best constant operating temperature (Case
RO). A general transient profile is then allowed (Case Rl) and the problem
resolved for the shortest time that gives the same final state as in RO. The
column problems are similarly solved, first with the best constant reflux levels
to separate the largest product batches in an allocated time of two hours (Case
CO) and then allowing an optimal reflux profile to separate an equal batch in
the shortest time (Case Cl).

f ^ / ( * ' / ) st.(tiff = l) Vi (RO)

minTilit) Uj sX.(z{j = zf °) Vi (Rl)

B f ° = m*XniJVBi s.t.{Ujv = 2, z?f/l, = /(*{/)) Vi (CO)

****.,vm*ijv s t - « / v = /(*£/). B |>f l f ° ) Vi (Cl)

where zf° is the final state in reactor for problem RO,
Tu is the best constant temperature for product i,
Tu(t) is the optimal temperature profile for product i,
BfQ is product i batch size for problem CO ,
Rijv is the best constant reflux for product i,
Rijv(t) is the optimal reflux profile for product i ,
z®IV is the initial condition for a batch in the column,
z{ j is the final condition of a batch in the reactor.

Processing time and batch size data from solving these subproblems are
used in maximizing profit for four different operating combinations, depending
on whether the data chosen for a dynamic unit corresponds to an optimal profile
or a constant operating level. This corresponds to the sequential (SQ) cases,
where the overall profit is determined as a function of equipment sizes, stage
cycle times and number of product batches. For this purpose, stage operations
for each product are implicitly fixed by the solutions to the unit subproblems,
as in recipes. In particular, state and control profiles, initial and final batch
conditions, processing time requirements at each stage and batch sizes are fixed.

For simultaneous profit maximization (SM), reactor and column dynamic
models are included in the design and scheduling formulation along with con-
straints to relate the initial condition at the column with the final condition at
the reactor for a batch. This allows processing time in the reactor and column,
state and control profiles for each product and batch sizes to be treated as vari-
ables. For all SM cases, the final condition of a batch at the reactor as well
as the initial condition at the column are fixed at values corresponding to the
solutions of unit subproblems in the sequential approach. The SM cases would
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thus reflect improvement of a simultaneous approach over a sequential one, with
some processing potential left to be exploited.

In simultaneous SM* cases, final condition of batches in the reactor as well
as initial conditions in the column are also included as decisions. The overall
problem is solved as one to reflect processing tradeoffs between the reactor
and column operation, as far as sharing the "processing load" for. a product
goes. In all cases, problems are subjected to the same horizon and production
constraints.

max tl>Profit(Vj, CTj, n»)
s.t. {CTj<H, uij(t\

max
s.t.

max
s.t.

(SQ)

(SM)

All problems in each case are solved in the same order, starting with a
constant operation in both the reactor and column and allowing general profiles
to be included successively. Solution for a problem initializes the next one, in
the order ROCO, R0C1, RICO and R1C1. Reactor and column subproblems are
solved first to generate data for the SQ cases. These also provide initialization
for problems ROCO with constant operations in both simultaneous cases.

3.2.3 Results

For all problems (ROCO - R1C1) profits are greatest for SM* cases and least
for SQ cases. In addition, for all cases (SQ, SM or SM*) profits improve when
optimal profiles are included in dynamic units for most problems.

Cases

Figure 8: Performance of cases for example 2.
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Results for reactor subproblems are compared in (Table 6). Final state for
RO yields a starting binary composition in the column of (0.233,0.767). Problem
Rl achieves the same starting composition in a time that is about 13 % less due
to the transient relaxation of temperature profiles.

|| Operation

1 Constant (RO)
|| Dynamic (Rl)

Uj (hr.)
1.0000
0.8765

*lrv ||
(0.233,0.767) II
(0.233,0.767) |

Table 6: Comparison of the reactor operations for example 2.

The optimal temperature profile starts at a high temperature as only the
first reaction is active in the beginning. As a result more C is favored in the
beginning. As soon as a significant amount of P is formed, a low temperature
prevents its degradation to waste G. Towards the end there is little time available
for degradation via the third reaction, as a result the temperature rises gradually
to convert C to P. Final state is thus achieved in a shorter time with a more
intense operation. An increasing reflux profile similarly separates the specified
size batch in a shorter time as compared to a constant operating level.

Figure 9: Comparison of profiles in example 2.

Table 7 shows processing time and batch size data from solving column sub-
problems with initial conditions determined by the solution of reactor subprob-
lems. Also shown are profit values for various SQ cases. Reactor and column
processing times for problem R0C0 are the largest although these were speci-
fied for the subproblems. Batches of purer products are smaller in size as all
products are started with identical initial conditions and processed for the same
time. Results must be compared keeping in mind that the processing times for
dynamic units were specified at will.

Sequential profit maximization provides no advantage of speeding up the
reactor operation (Rl vs. R0) when the column is the "bottleneck" stage. Time
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reduction in the column (Cl vs. CO) however allows more batches of the same
size to be processed in the available horizon. As product 3 is the most profitable,
38 extra batches of it are accommodated corresponding to an increase of $ 5,037
in value.

1 Prob.

II w-ROCO
RICO
ROC1

RlCl

tl (hr.)
U.l
1
0.8765
1
0.8765

h,iv
2
2
1.448
1.448

t/v (hr.
t2JV
2
2
1.447
1.447

|| Batch size (lb.)
Hjv II Bi
2
2
1.449
1.449

42.08
42.08
42.08
42.08

B2

43.12
43.12
43.12
43.12

# 3

44.08
44.08
44.08
44.08

1>profit
(*)

2,428
2,428
7,465
7,465

Table 7: Results of sequential subproblems (R0C0 - RlCl).

The SM cases perform considerably better, gaining both from a simultane-
ous formulation as well as "free" processing time. In all of the SM cases, all
products require processing in the reactor and column for the same time, allow-
ing idle times for each product pair to remain only in recipe based stages. Final
reactor states are constrained to provide initial conditions in the column that
are identical with the SQ case, after the effect of the separator is accounted for.

Problem
Id.
SMR0C0
SMR1C0
SMR0C1
SMR1C1

Time (hr.)
U.I
0.89
0.69
0.89
0.69

Ujv
0.89
0.69
0.89
0.69

Batch Sizes lb. || Profit
B\
32.08
28.05
33.97
29.25

B2

33.18
29.09
35.07
30.29

* 3 II (*)
34.19 II 12,189
30.03 15,114
36.07 13,481
31.23 II 16,169

Table 8: Results for SM cases.

Control profiles for both units suggest a more intensive operation where the
reactor achieves final state specifications as soon as possible (0.89 hours with
the best constant operating point and 0.69 hours with an optimal temperature
profile) and the column maximizes the separated batch while operating for the
same time. Because of a reduced time of 0.69 hours for the limiting bottleneck
stages (reactor and column) with transient reactor temperature profiles (case
R1C0 and RlCl), smaller batch sizes are more than compensated by increased
number of batches that can be accommodated in the available horizon.

When specifications on initial column conditions are relaxed and included
as decisions, all stage processing times reduce to 0.5 hours. This situation
corresponds to no slacks appearing anywhere in the schedule however for a
more general case it is expected that "free" processing times would adopt values
corresponding to the longest processing in all recipe based units. This result
could be useful in developing sequential strategies for very large scale problems.

Initial column conditions are better when a transient reactor temperature
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SQ

SM

SM*

IV

IV

Figure 10: Identical processing and slack times in example 2.

Problem
Id.

SM'ROCO
SM'RICO
SM'ROCl
SM'RICI

Time(hr.) |
Uj

0.5
0.5
0.5
0.5

| Batch Sizes
Ujv II Bi
0.5
0.5
0.5
0.5

21.75
22.14
22.31
22.70

B2

22.62
23.01
23.18
23.59

lb. 1

B3 1
23.40
23.80
23.96
24.38

1 ^profit
\ ($)

17,138
17,628
17,824
18,321

Table 9: Results for SAT cases.

profile is allowed (0.227,0.773) than when the reactor operates at the best con-
stant level (0.224,0.776). For both cases, upper bounds are active for the tem-
perature profiles close to the end.

Transient column reflux profiles are able to extract bigger batches than when
operating at the best constant reflux level. Processing times being the same for
all SM* cases, profits differ marginally due to unequal batch sizes, and hence
number of batches.

Cases J| R0C0

SQ
SM
SM'

0.09
2.00
1.82

R1C0

0.13
1.96
1.96

R0C1

0.07
1.98
1.98

R1C1

0.10
2.05
2.00

Table 10: CPU seconds for solving example 2 using the NLP solver CONOPT
through the GAMS modeling system on an HP 9000/700 workstation. Unit
subproblems require 2.42 CPU seconds in total.

It is worth pointing out that recipe based processes are generally operated
with simple operating profile structures such as a constant operating level, that
are arrived at by heuritics or crude experimentation. The incentive for allowing
transient profiles can be judged by comparison with a particular recipe. The
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Time (hr.)
Timc(hr)

Figure 11: Profiles for SMR1C1 and SWRICI cases.

ROCO cases here represent the best that can be achieved with recipes of one
specified structure i.e. constant operation, as .their solution employs dynamic
models of the process. The improvement over these cases is therefore the small-
est over any constant operation recipe.

4 Inventory Considerations
The impact of operating profiles through processing time and batch size de-
cisions in resolving inventory and production tradeoffs is explored next. For
this purpose the formulation in [10] is utilized. This formulation considers ZW
policy, where storage costs can be related to final levels of each product. These
levels build up during the part of the campaign dedicated to the production
of the particular product (T<) and are depleted by constant market demands.
If the number of batches of each productitis^ufficiently large, storage costs are
related with appropriate cost co-efficients (//,) to the area of inventory triangles
(figure '12)*constructed by approximating the production as continuous.

Figure 12: Inventory triangles - two product case.

(14)
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The production targets for the horizon are divided equally over a number of
identical production cycles of single product mode and duration P each. If costs
are associated with changing over from one product to another then operating
with a large number of cycles would not be profitable. A tradeoff therefore
exists between the number and length of these cycles. Larger cycles would
require greater inventory costs but reduced changeover costs. Smaller cycles on
the other hand lead to large changeover costs with low storage costs.

4.1 Formulation

The model for inventory considerations in [10] considers the following formula-
tion.

min

s.t. Vjt-SijBi V*,j (15)

* = | j " V * (16)

=rii Vi (17)

"P

J2^PRSik=nk Vfc (18)

t=i

Ti = ( nfitf + £ SL^. NPRSik J j' = J (19)

Np

H + Y , S L i k j N P R S i k \ < P V j (20)
SLikj + tkj

NPRSu = n
Hqt = PQi
H/P = NC
Vj > 0,ni,B.

i - 1

Vt

i > 0 ,

+i+5L<fcj+i Vt.j.A;;

Vt

NPRSik >0,P>0

(21)
(22)
(23)
(24)

where P is the duration of each cycle,
i T< f? is the part of P dedicated for product t , J

are the number of cycles (relaxed from integers),
is the amount of product t to be produced in each cycle.

Equation( 16) gives the number of product batches in each cycle. Equa-
tion( 19) gives the time dedicated to the production of each product at the last
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stage. The equality in equation( 22) specifies single product campaigns. Equa-
tions( 23) and ( 24) ensure that the horizon and production targets are divided
equally over the NC production cycles.

Although a rigorous MILP solution method is suggested for this problem
in [10], for. the purpose of this work the number of cycles variable is relaxed
from taking integer values. Our intention here is to assess the role of dynamic
process modelling in improving the inventory planning problem for which reason
the issue of rounding off these relaxed integer variables will not be considered.
Since the model is solved to meet fixed production targets, a revenues term in
the objective would not be required. Instead incentive is provided for achieving
the targets soon, through an operating cost term proportional to the production
horizon which is treated as variable. Equipment costs are not included in the
objective as equipment sizes were found to be insensitive to operating decisions
when the amount of initial load to the column is held fixed. The overall cost
objective to be minimized with process operating decisions is of the form:

The formulation is used to explore the impact of processing decisions in
inventory consideration for example 2.

4.2 Solution Strategy
Processing time and batch size data from the solution of unit subproblems
is used to minimize the cost objective for the sequential solution (SQ cases).
The simultaneous approach includes unit models within the cost minimization
allowing processing times and batch sizes to be determined more sensibly, with
fixed (SM cases) and relaxed (SM*) reactor final conditions. The problems
are solved successively with transient relaxation of reactor and column control
profiles, as in previous cases. However, one of the SM cases (SMR1C1) had to
be initialized with the solution of case SMR0C0.

4.3 Results
All problems give reduced costs when operating profiles are considered as de-
cisions in the minimization. Again, SM* cases perform best being the most
general and relaxed formulation out of all studied. Sequential solutions do not
exploit the tradeoffs between processing decisions and give highest costs for all
cases.

For the SQ cases processing time and batch size data from the solution of unit
subproblems is used (Table 7). Allowing a dynamic temperature profile in the
reactor provides no improvement when the column introduces a bottleneck in
time. Cases SQR0C0 and SQR1C0 perform identically as a result even though
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Figure 13: Results for example 2.

\\ Cases SQ

Vw($)
1>inv ($)
Ipchange ($)
1>OP ($)
P (hr.)
H (hr.)
ATC

ROCO

97,478
47,769
35,000
14,708
191.0

6,685.5
35

RICO
97,478
47,769
35,000
14,708
191.0

6,685.5
35

R0C1
80,231
34,791
34,791
10,648
139.1

4,840.3
34.8

R1C1 ||
80,231
34,791
34,791
10,648
139.1

4,840.3
34.8

Table 11: Results for SQ cases.

the reactor processing time is reduced to achieve the same final state. The
inventory and changeover costs are unbalanced only for these two cases, all other
cases give these two terms in the objective to be equal. Case SQR0C1 shows
an improvement over these cases in all the three objective terms. A reduction
in the column processing time allows a slight increase in production per cycle
with cycles of much shorter duration. As a result the production horizon is also
reduced. In case SQR1C1, the reactor profile is also allowed although this only
speeds up the process unnecessarily and provides no other benefit.

Minimizing the costs simultaneously with a specification on the final state
of the reactor corresponding to that in the SQ cases leads to further savings
due to a more general formulation. All processing decisions are resolved as in
the previous cases for scheduling and are not presented again. Both the reactor
and column processing times take equal values, not speeding up the process in
any unit beyond what is required. For the SMR0C0 case, fewer cycles than in
SQ cases are required. This means the production demand to be met in each
cycle will be higher. The batch sizes for each product are also smaller implying
a greater number of batches of each would be required. A higher production
rate is however made possible by restricting the processing time in the column
at 0.89 hours thus increasing utilization in the more efficient region. With an
operating profile in just the reactor (temperature), its final state is achieved in
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Cases SM

Vw ($)
* . . (S)
1>chanQe ($)
1>op ($)
P (hr.)
ff (hr.)

ROCO

70,688
31,094
31,094
8,449
124.3

3,864.2
31.1

RICO

66,184
29,315
29,315
7,553
117.1

3,418.0
29.3

R0C1

68,522
30,240
30,240
8,040
120.9

3,654.8
30.2

R1C1 J]
64,702
28,725
28,725
7,252
114.8

3,286.1
28.7

Table 12: Results for SM cases.

a time that is less and limits the column operating time. As a result batches
are slightly smaller giving a higher production rate in a smaller horizon.

An operating profile in just the column (reflux) performs better than case
SMR0C0 but not as well as SMR1C0. This is because the reactor takes a
longer time (0.89 hrs. vs. 0.69 hrs.) with a constant temperature operation
to realize the final state specification. The benefit of a profile in the column
then is to extract a larger batch in the less efficient part of its operation. As
a result batches are bigger in size leading to a slightly higher production rate.
The horizon, length and number of cycles all reduce correspondingly. Finally
in SMR1C1, both the profiles contribute to improving production rate. The
demand met in each cycle goes up with a reduction in their duration.

Cases SM* j

i>co»t ($)
* . . ($)
^change ($)
f/fop ($

P (hr.)
i/ (hr.)
iVC

I ROCO
63,539
28,260
28,260
7,018
112.8

3,181.0
28.2

RICO
62,930
28,016
28,016
6,897
111.9

3,131.3
28.0

R0C1

62,672
27,912
27,912
6,847
111.5

3,112.3
27.9

R1C1

62,077
27,673
27,673
6,730
110.5

3,059.8
27.7

Table 13: Results for SAT cases.

Finally when final state specifications for the reactor operation are dropped,
overall costs reduce slightly. A transient relaxation of operation in the reactor
and column reduce these costs further but only marginally.

5 Conclusions
Batch operations provide many interesting tradeoffs between various aspects of
production. A detailed description of these is presented in [10]. At the heart of
batch operations lies the process. In particular, processing times for products
at different stages play a critical role in limiting the benefits of accounting for
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these tradeoffs.
Although the work here concerns tradeoffs between equipment and batch size

decisions vs. production span for a limited class of batch operations, examining
these tradeoffs with more detailed models is a potentially.,lucrative proposition.
In view of its reasonable computational requirements, the collocation method
embedded in (NLP1) in addressing process decisions is very promising.

This work relies on many simplifying assumptions that can limit its scope,
as well as the acceptability of the solution. For instance all integer variables,
such as the number of column trays, the number of batches and product pairs,
are either fixed or treated as continuous. Equipment sizes generally come in
discrete sizes. In this light, the solution provided is only a preliminary one that
must be refined further. Extensions with integer variables would necessitate the
use of MINLP methods that require added computational load.

It would be interesting to consider process decisions in relation with plant
superstructure, unit task assignments etc.

Processing considerations can transform a situation in less expected ways.
For instance, in problems with ZW policy in this work, the processing times
for all products that are left as decisions are decided with the same value.
This implies that all products become identical as far as stage requirements
go. The difference only appears in the operating policies. It is also expected
that at least the stages with "free" processing times would be bottlenecks in
the ZW context, unless there are high costs associated that prevent this. For*
the examples in this work ik becomes very simple to determine the schedule
which now becomes sequence independent even for the ZW case. This however
will not usually be true when recipe based stages process the products for an
unequal duratiori^pr when unequal cleaning and transfer times exist for different
products. Finally, dynamic optimization is expected to be most critical in units
that form bottlenecks. Depending on how sensitive a bottleneck operation is to
dynamics, extra equipment at that stage operating in or out of phase could be
avoided by considering optimal dynamic processing.

The assumption of perfect dynamic models inherent in this work is a very
strong one. Most of the challenge in including dynamic process considerations
would rest on how reliable the models are. Deriving appropriate models for
different stages or appropriate techniques to deal with imperfect models will be
a critical step in adding confidence to the results of such integration. This is
the focus of our future work. ,

Nevertheless, this paper shows dynamic process considerations can con-
tribute significantly to increase profitability through reduced investments or
increased returns by addressing the problem at a critical level. Also, collocation
over finite time elements can serve to include dynamic process considerations
very efficiently in planning, scheduling and other strategic levels.
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Data for example 1
Stage I Dynamic Reactor

- Reaction

A
A

B* desired
C
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- Mass balances

Vz
Vi
Vi

- Reaction parameters

i 1 2 3
at- 2 2 3
ft 0.5 0.4 0.5

Stage II and III

*i , / /= 0.4 Vi
UJII = 0.6 Vi

• specifications

Reactor load = 100 units; z£7 = (1,0)

ij>Pi = 60CT/ + 40CT// 4- 40CT///
Vj = 150/. Vj, Q i = 4 8 0 0 Vi,

= 300V709 4- 230V}0/8 + 210V?/?5

= 4800/6. Vi, CTj < 200 Vj
E

s.t.Vj = 150/. Vi, CTj < 200/irs.

s.tJQi < 10000 Vi

B Data for example 2
• Stage I Dynamic Reactor

- Reaction

~%C kx{T) = (5.9755 x

P + E k2(T) = (2.5962 x

G kz{T) = (9.6283 x

— Material balances
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wA = -ki(
WB = —ki(
wc = +2hi(T)wAwB -

wG = +l.5k3(T)wPwc

WA + WB + we + WE + wp + WG = 1

• Stage II and III Recipe Based

UJJ = 0.5 Vi
*i,///=0.5 Vi

• Stage IV Dynamic Distillation Column

- Mass balances

— Underwood's Correlation

a\— 7 QT2— 7

a , _ 7 T O 2 - 7

Gilliland's Correlation

v - 1 - exv

- Hengstebeck-Geddes' Equation

- Purity Constraints
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where 5 is mass in the column
R is reflux ratio,
xl

d is distillate composition for component 1,
x\ is reboiler composition for component 1,
e*2 is relative volatility,
7 are Underwood roots,
Xd final average composition of ditillate.

Specifications

z?j = (0.30303,0.69697)
550H < T < 6S0R

Column vapor rate = 300*=^ Number of trays = 10
0 < R < 25
Intial Ioad50 < 200
CTj < 200
Qi>1200 Vt

= (2.2niBi + 2.5n2JB2 + 3JI3B3)
+ Vj-B + l.lV^5 + 1.5V?8)

-(12CTi + 8CT2 + 8CT3 + 16CT4) $

Inventory Problem

Qi = 48,000 Vi
^ = 0.004,0.005,0.0066
OCj = 0.6,0.4,0.4,0.8
7 = 1000
15 < NC < 35
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