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1. Introduction

Despite its importance, the problem of modeling the nonlinear interaction of a viscous fluid
with a solid undergoing large deformation has remained a challenging problem in mechanics.
Its resolution is of significant practical importance to such disciplines as aerospace, marine,
automotive, and wind engineering. Such problems may arise, for instance, in the large-
amplitude vibration of flexible aerodynamic components such as high aspect ratio wings
and blades, in wind-induced deformation of towers, antennas, and lightweight bridges, in
hydrodynamic flows around offshore structures, and in the interaction of biofluids with elastic
vessels. The greatest difficulty here lies when two-way coupling occurs between fluid and
solid: viscous flow produces tractions that deform the solid, while deformation of the solid
influences the flow field and thus fluid tractions. Solid deformation influences the flow both
by altering the fluid domain as well as by creating solid tractions that must be in equilibrium
with the fluid tractions.

Because of its critical importance in aerospace applications, the problem of such non-
linear fluid-structure interaction has received considerable attention within the aerospace
literature, where it is known as aeroelasticity. Classical approaches based on linear theory
are well established [4], [8]. Certain nonlinear aeroelasticity phenomena have been amenable
to analytical and semi-analytical study, and significant understanding of the physics of these
problems has been elucidated in recent years [9]. Recently, interest has increased in compu-
tational aeroelasticity, i.e. in developing methods for direct numerical approximation of the
governing nonlinear partial differential equations of the fluid-solid system [15], [16], [17], [3],
[18], [10]. This interest has been motivated by advances in computational fluid dynamics
and computational structural mechanics, and in the rapid growth in computational power.

The methods that have emerged within the past several years in the computational aeroe-
lasticity literature employ different numerical approximations in fluid and solid domains,
typically finite difference or volume methods for the fluid and finite elements for the solid.
Fluid and solid are thus coupled after discretization. Since coupling is achieved after numeri-
cal approximation, and approximations may not be consistent across the interface, continuity
of interface tractions cannot be rigorously assured. In some approaches, fluid and solid are
solved separately using existing numerical codes; thus coupling consists of a mechanism to
transmit interface tractions between the two codes. Examples include [15], [16], [17], and
[18]. Other approaches solve the coupled discrete equations simultaneously as a single set
of nonlinear algebraic equations (in the context of steady problems) [10]. These methods
have been criticized for resulting in possibly ill-conditioned Jacobian matrices of the coupled
system, due to the disparity in solid and fluid behavior [18]. However, one ought to be able
to apply various numerical linear algebraic devices to overcome this problem, as we shall
do here. Nonlinear fluid-solid interaction problems have also been approximated by purely
finite element methods, e.g. [19], [2], [1]. Coupling is again effected at the discrete level.

In this article, we address the stationary fluid-solid interaction problem. We target this
problem because of its importance in optimal design, in which a design is optimized under
steady-state conditions. In steady problems, if the solid deformation is so small that it does
not change the fluid domain, the coupling is only one-way. In other words, we may solve
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the fluid equations, assuming a rigid solid, to obtain fluid tractions on the interface, and
then apply them to the solid to deform it. On the other hand, if the solid undergoes large
deformation, coupling is two-way, even if the flow is steady; thus, we are not able to solve
the fluid problem independently of the solid. This latter case is the subject of this article.

We are not aware of any variationally-coupled numerical solutions of viscous fluid-finite
elasticity interaction problems, a fact that motivates the present work. We develop a vari-
ational formulation that couples fluid and solid at the continuous level, and thus assures
continuity of interface tractions. We model the fluid by the stationary incompressible Navier-
Stokes equations in an Eulerian frame of reference, while a Lagrangian reference frame and
large displacement-small strain theory are used for the solid. Once coupled, we can system-
atically apply a numerical approximation—a Galerkin finite element method—to obtain a
single set of nonlinear algebraic equations. We may then seek appropriate numerical methods
for its solution, which may include linear algebraic devices such as domain decomposition to
avoid ill-conditioning. The two main advantages of this method are that the variational for-
mulation automatically insures continuity of interface tractions, and it can be systematically
translated into a unified finite element method for the coupled problem.

The rest of this paper is organized as follows. In §2, we develop the variational form
of the viscous flow-finite elasticity interaction problem. A finite element approximation is
constructed in §3, while §4 introduces a modified Newton method for solution of the resulting
discrete system. The method is illustrated in §5 through the solution of a problem of flow-
induced deformation of an infinite, elastic cylinder. We conclude with some remarks in
§6.

2. Variational formulation

In this section we develop a variational formulation of the fluid-solid interaction problem
in the context of a stationary, viscous, incompressible, Newtonian fluid, described by the
Navier-Stokes equations, interacting with an isotropic piecewise-homogeneous elastic solid in
a Lagrangian frame of reference. We assume that the solid is capable of large displacements,
but that strains are small—a reasonable assumption for problems arising in aerospace, civil,
and mechanical engineering.

The finite nature of solid displacements implies a geometric dependence of the flow field
on the solid displacement. Consider a solid of finite extent surrounded by an infinite fluid, as
depicted in Figure 1. Define Clp as the fluid domain, Qs as the undeformed solid domain, T]r
as a boundary approximating the fluid far-field on which tractions are prescribed, Fj? as the
portion of the far-field fluid boundary on which velocity is prescribed, Tx

s as the undeformed
solid boundary on which tractions are prescribed, F| as the undeformed solid boundary on
which displacements are prescribed, F/o as the undeformed interface between solid and fluid,
and F/ as the deformed interface between solid and fluid. The fluid field quantities are the
pressure p, the velocity vector v, the stress tensor <7/r, and the rate of strain tensor d. In the
solid, the field quantities are the displacement vector u, the Piola-Kirchhoff stress tensor S,
and the Green strain tensor E. We shall have occasion to refer to the solid Eulerian stress



Figure 1: Problem of Fluid-Solid Interaction

tensor, which we denote <Ts- Material constants are the fluid viscosity \xF and density /), and
the Lame moduli of the solid, A and /is. We take v as the prescribed far-field fluid velocity,
tp as the prescribed fluid traction, u as the prescribed solid displacement, and t$ as the
prescribed solid traction. The fluid and solid body forces are denoted iF and is- Define
TF = Vl

F U F|r and Ts = Tl
s U r | . We also define n as the unit outward normal to a deformed

surface, no as the unit outward normal to an undeformed surface, n/F as the unit normal to
the deformed fluid-solid interface, directed away from the fluid, and n/s as the unit normal
to the deformed fluid-solid interface, directed away from the solid.

The conservation of momentum, conservation of mass, constitutive law, and strain rate-
velocity equations of the fluid are:

pF(v • V ) v — &\vcrF = ¥F in flF (1)

V - v = 0 inftF (2)

<rF = -pi + 2fiFd in Q,F (3)

d = - (Vv + VvT) in nF (4)

The constitutive law, equilibrium equations, and strain-displacement relations of the solid
are given by:

S = A tr(E)I + 2/i5E in Sls (5)

div [(I + Vu) S] = fs in ils (6)

E = - [Vu + VuT + VuVuT] in Sls (7)



At the interface, coupling between fluid and solid requires that tractions and velocity be
continuous:

crsnis + <rFniF =0 on T/ (8)

v = li = 0 on T/ (9)

Here, u is the solid velocity, which is zero according to the steady nature of the problem.
Thus we have a no-slip condition on fluid velocity at the interface. Finally, the boundary
conditions take the form

(TFnF = tF on Tp (10)

[(I + Vu) S] no = t5 onTl
s (11)

v = v on T^ (12)

u = u on T | (13)

Here we have used the symbols div and V to denote the spatial divergence and spatial
gradient, respectively. See for example [14] for derivations of the governing equations of
fluid and solid. Notice that the consequence of the small strain assumption is to allow the
use of Hooke's law for the solid constitutive relation (5).

We now proceed to establish the variational form of the problem. Let us assume, for
simplicity of presentation, that the fluid and solid do not experience body forces, and that
the fluid and solid prescribed tractions are zero, i.e. f/r, fs, tp, and ts are all zero. First, we
substitute the strain rate-velocity relationship (4) into the fluid constitutive law (3), which is
in turn substituted into the conservation of momentum equation (1). Then, multiplying the
residual of the resulting equation by the test function w, integrating over the fluid domain,
and applying Green's formula, we obtain the weak form of the conservation of momentum
equation:

a(v, w) + 6(p, w) + c(v, v, w) = / w • <rFn dTi(u) + I w • <rFn dTF(u) (14)
JTj JVF

where
a(v, w) = / — (Vv + Vv ) : (Vw + Vw ) dQ,F(u) (15)

Jsip 2 v / \ • /

b(p, w) = - / pV • w dftF(u) (16)
JQ.Fn F

c(v, v, w) = / jow • (v • V) v dQ,F(u) (17)

and where the symbol : denotes the scalar product of two tensors. Since we wish to consider
problems in which the displacement of solid may be large enough to influence the flow, we
indicate the dependence of the fluid domain on the solid displacement in the definition of
the domains of integration of the the bilinear functional a(*, •) and &(•, •) and the trilinear
functional c(-, •, •). The second term on the right side of (14) can be rewritten as:

/ w crFn dVF(u) = / w • <rFn dVUxi) + f w-aFndT2
F(u) (18)

JrF Jr* Jr2
F



We shall require that the test function w satisfy the homogeneous essential boundary condi-
tion v = 0 on F|r, implying that that the second term on the right of (18) is zero. Further-
more, since iF is zero, and in light of (10), the first term on the right side of (18) vanishes.
Therefore,

/ w • <rFn dTF(u) = 0 (19)
JrF

Next, we write the conservation of mass equation in weak form by multiplying (2) by the
test function q and integrating over the domain of the fluid:

r) = 0 (20)

Again, note the dependence of the fluid domain, and thus weak form, on the solid displace-
ment.

The weak form of the solid equilibrium equation is established by first substituting the
expression for the Green's strain tensor (7) into the constitutive law (5), and then substi-
tuting the resulting expression for the Piola-Kirchhoff stress into the equilibrium equation-
Multiplying the residual of the resulting equation by the test function r, integrating over the
domain, and applying Green's formula, we obtain the weak form of the displacement form
of the equilibrium equations:

/ Vr : [(I + Vu) S(u)] dQs =

I r • [(I + Vu) S(u)] n0 dTIo + f r • [(I + Vu) S(u)] n0 dTs (21)

where the relationship between Piola-Kirchhoff stress and displacement is given by:

S(u) = -A tr [Vu + VuT + VuVuT] I + fis [Vu + VuT + VuVuT] (22)

Notice that, since we are in a Lagrangian frame of reference, the unit normal is with respect
to the undeformed geometry, and the interface is between fluid and undeformed solid, denoted
F/o. The solid boundary Ts consists of the portion on which displacements are specified, F| ,
and the portion on which tractions are specified, F^. Thus, the second term on the right of
(21) can be rewritten as:

.. Vu)S(u)]n odr s =

/ r • [(I + Vu) S(u)] n0 dTl
s + / r • [(I + Vu) S(u)] n0 dT| (23)

Jrs Jrs

Since is is zero, and in light of (11), the first term on the right of this equation is zero.
Furthermore, we shall require that the test function r satisfy the homogeneous essential
boundary condition u = 0 on F| . Therefore, the second term vanishes over F | . Thus,

/ r • [(I + Vu) S(u)] n0 dTs = 0 (24)
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The first term on the right of (21) can be transformed to the deformed geometry by noting
that (I + Vu)S = T, the Lagrangian stress tensor. The surface traction expressed in terms
of the Lagrangian stress at a point s' on the undeformed interface is identical to the surface
traction expressed in terms of the Eulerian stress at its image s" on the deformed interface.
Thus, we may write:

T(s')no(s') = <r5(s")n(s") (25)

Therefore, provided
r(s') = w(s") (26)

i.e. the restriction of the test functions r to the undeformed interface is equal to the restriction
of w to the deformed interface, the first term on the right side of (21) can be rewritten as

J r • [(I + Vu) S(u)] n0 dTIo = j w • <rsn dTt (27)

To simplify the left side of (21), we separate S into SL, a tensor that depends linearly on
displacement, and S", one whose dependence is nonlinear, in fact quadratic:

(28)

S* = ^A tr (VuVuT) I + (is (VuVuT) (29)

so that (22) can be rewritten as S = SL + S^. Thus, the domain integral on the left side of
(21) can be rewritten as the sum of terms that depend linearly, quadratically, and cubically
on the derivatives of u:

/ Vr : [(I + Vu) S(u)] dSls = <*(u, r) + e(u, u, r) + /(u, u, u, r) (30)

where
/ L (31)

e(u,u,r) = / Vr : [s"(u) + Vu SL(u)l <Kls (32)
Jns

 L J

and
/(u, u, u, r) = J Vr : [Vu SN(u)] dSis (33)

The condition of continuity of interface tractions can now be imposed. Adding equations
(14) and (21), and making use of (19), (24), and (27), gives:

o(v, w) + b(p, w) + c(v, v, w) + rf(u, r) + e(u, u, r) + /(u, u, u, r) =

/ w {<rF • nlF + as • nIs) dTr{n) (34)

The right side of this equation is just zero, in view of the continuity of traction condition
(8).

We are in a position now to state the unified variational form of the viscous flow-finite
elasticity interaction problem:
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Find v 6 HJ (ft), p e L2 (ft), and u € H£ (ft) such that:

a(v, w) + b(p, w) + c(v, v, w) + d(u, r) + e(u, u, r) + / (u , u, u, r) = 0

for all w G Hj (ftF) and r G Hj (ft5) (35)

6(g ,v) = 0 for all q € L2 (ftF)

where the functionals a(-,-), &(•,•)> c(-,-,-), d(-,-)> e(*>*>')> an(^ /("?'?'»') a r e defined by
expressions (15), (16), (17), (31), (32), and (33), respectively. Here, Hj(ftF) is the Sobolev
subspace of all functions having one square integrable derivative over ftF and that vanish on
Tjr and outside of ftF, L2 (ftF) is the space of functions that are square integrable over ftF and
that vanish outside of ftF, and HQ (fts) is the Sobolev subspace of all functions having one
square integrable derivative over fts and that vanish on F| and outside of fts. The essential
boundary conditions v = v and u = u must be enforced on F^ and F | , respectively, as must
the no-slip condition v = 0 on F/.

3. Finite element approximation

Let us define the finite element approximations v^, p^, and u^:

Vfc = i>,-(x)v,- (36)

(37)

(38)
A ; = l

where V{, Pj, and Uk are approximations of velocity, pressure, and displacement at nodes i.
j, and fc, respectively. The basis function families <f>^ Xji a n ( i ^k define finite element spaces
Vh, Vht and Uh for velocity, pressure, and displacement, respectively:

Vh= span {<£!,..., </v} (39)

Vh= span{xi,.. . ,Xnp} (40)

Uh = span{^ 1 , . . . , ' 0 n u} (41)

Let Vh C H^(ftF), Vh C L2(nF), and Uh C Hj(fts), i.e. the finite element spaces Vh, Vh, and
Uh are subspaces of the infinite dimensional spaces in (35). In order to satisfy the condition
(26), we require that fluid velocity and solid displacement shape functions be identical, when
restricted to the interface between solid and fluid. An example of this is given by combining
quadratic triangles in the solid with the Taylor-Hood element in the fluid. The Taylor-
Hood element employs a quadratic approximation of velocity in conjunction with a linear
approximation of pressure; thus, solid displacement and fluid velocity shape functions are
identical on the interface.



Applying the Galerkin method to the problem (35) yields the discrete problem:

Find vh eVh, Ph ZPh, and u^ G Uh such that

, vrh)+b(ph, w*)+c(v*, vh, wh)+d(uh,rh)+e(uh, uh, rh)+f(uh, uh, uh, rh) = 0

for all Wfc e Vh and r^ G Sh (42)

and
K^V0 = 0 for all qeVh

The discrete problem (42) is a system of nonlinear algebraic equations. To show the explicit
form of these equations, let us first distinguish between nodes lying in the interior and those
on the interface. Let

nv =

(43)

where the subscript F indicates the number of nodal unknowns belonging strictly to the
fluid domain, S the number of nodal unknowns belonging strictly to the solid domain, and /
the number of unknowns belonging to the interface. So, for example, the nv nodal velocities
are composed of nv

F fluid domain velocities as well as n\ interface nodal velocities. Notice
that the satisfaction of condition (26) implies that the number of interface nodal velocities
and displacements are equal. Let us call this number n/:

m = nv
F = nu

s (44)

Let the fluid nodal velocities be ordered such that velocities of nodes l , . . . , n j lie on the
interface and the ones of n/ + 1 , . . . , nv lie in the fluid domain as well as that portion of the
fluid boundary on which tractions are prescribed. Similarly, the solid displacement nodes
are ordered such that displacements of nodes 1 , . . . , nj lie on the interface and the ones of
ni + 1 , . . . , nu lie in the solid domain as well as that portion of the solid boundary on which
tractions are prescribed.

We are able now to elucidate the structure of the discrete problem (42). In the fluid, we
have the nv

F discrete conservation of momentum equations

, 4>e)Pi + E c(&> <*V, <t>t)Wr = 0 t = n, + 1 , . . . , nv (45)
i=l j = l z\r=l

and the np
F discrete conservation of mass equations

nv

J2 &(Xm, 4>i>i = 0 m = np + 1 , . . . , np (46)

In the solid, the n£ discrete equilibrium equations are given by

k=l



n = n/ + l , . . . , n u (47)

Finally, on the interface, we have the nj discrete t rac t ion continuity equat ions:

nv nP nv nu

h <f>y)Pj + £ C(<^> tr, <f>y)ViVr
t \r=l k=l

y 0 y = l , . . . , n / (48)

and the nPj discrete conservation of mass equat ions

np
I (49)

Let us define vectors of unknown nodal quantities: let vp G 5f?n^ represent the fluid
nodal velocities, p^ € 3?n^ the fluid pressures, V/ £ 3ftn/ the interface velocities, p/ G 3fJn/
the interface pressures, Us € 3ftn£ the solid displacements, and U/ G 3£nj the interface
displacements. We can rewrite the discrete equations (45)-(49) symbolically as

=0

=0

= 0 (50)

(vF, p F , V/, p / , U 5 , U7) = 0

h / (v F , v / , u / ) = 0

n/where h£ G 5Rn^ represents conservation of momentum in the fluid, h^ G 9?n/r conservation
of mass in the fluid, h£ G 5Rn^ equilibrium in the solid, h/ G 3?n/ continuity of interface
tractions, and hj G 3ftn' conservation of mass on the interface. It appears that we have
nv + np + nu — ni equations in nv + np + nu unknowns. However, the continuity of interface
velocity condition (9) implies that V/ = 0, and we are thus left with an equal number of
equations and unknowns upon enforcing this condition in (50).

Note that, in addition to h^, the fluid and interface residuals h£, hF , hj , and h/ depend
on the interface displacements u/. This is implied in the domain of integration of the
functional a(-, •) (15), 6(«, •) (16), and c(-, •, •) (17), i.e. in the dependence of the flow on the
interface geometry.

4. Solution of the discrete system

We discuss in this section a Newton-like method for solving the system of nonlinear algebraic
equations (50). Our discussion will be kept brief; a more extensive discussion of this and
other solution methods for finite element approximations of viscous flow-finite elasticity
interaction will be presented in the future [12].



Let us first begin by rewriting (50) as

hF (XF, XJ) =0

h 5 (x 5 ,x / )=0 (51)

/ ( F , 5 , / ) = 0

where

( h M f V F l
xF = { pF > x s = u/ x7 = u5 (52)

I P/ j
Note that the fluid equations hp = 0 include the equations for conservation of mass on the
interface, h!j = 0, and the fluid variables xF include the interface pressures p/. Accordingly,
the interface variables consist only of the interface displacements. The reason for this choice
of partitioning will become apparent.

Newton's method for the nonlinear system h(x) = 0 consists of iterating on solution of
the linear system

J(x*)(x*+1 - x*) = -h(x*) (53)

until convergence, given an initial iterate x°. Here, J is the Jacobian of h with respect to x.
A Newton step for the discrete system (51) takes the form:

P/F

where

JA; r\ jk
FF FI
n ik ik

jA: TA: TA: _I_ TA:
(54)

Ax = x*+1 - xfc (55)

Here, the superscript k indicates evaluation of the residual h and the Jacobian J at the point
xfc, and the interface-interface coupling matrix J// includes contributions from both solid
and fluid:

J// = J//F + 3 iis (56)

The Newton iteration (54) entails two difficulties. First, the Jacobian matrix, because of
the disparity between fluid and solid behavior, can be very ill-conditioned. Second, the
coupling terms between fluid and interface variables in general render the matrices 3pi
and J//F dense. The density of these matrices is a consequence of the dependence of the
domains of integration of a(-, •), &(•, •), and c(-, •, •) on the interface displacements. In the
case of J F / , all fluid nodal velocities and pressures may be coupled to all interface nodal
displacements, since a change in any interface displacement potentially moves the fluid mesh
everywhere. The matrix J//F derives its density from the fact that the interface traction
continuity equation (48) includes contributions from the first layer of fluid elements, which
change with a movement in the interface. Thus, the potential exists for coupling between
all interface variables. J//s contains nonzeroes contributed by the solid terms in (48), i.e.
the terms involving d(-, •), e(«, •, •), and /(•, •, •, •). These are just the standard solid stiffness
matrix coupling terms, so the coupling is local in nature.
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The exact sparsity pattern depends on the moving mesh scheme employed, but in gen-
eral, the storage requirements and arithmetic complexity associated with Jpi and J//F can be
quite severe. Therefore, we consider an approximate Newton's method obtained by ignoring
the fluid-interface coupling matrix Jpi and the contribution of the fluid to the interface-
interface coupling matrix, J//F. The resulting Jacobian in (54) becomes block-lower trian-
gular. Thus, the fluid variables can be found by solving the linear system

j£FAxF = -h£ (57)

for Axjr. The change in the displacements (both interior and interface) can then be found
by solving:

[ J*s 3iIs J 1 Ax,i J 1 ) - - \ h} + J$FAxF J (58)

This method avoids the ill-conditioning associated with the coupled problem by employing
a "domain decomposition" into separate fluid and solid subdomains. Large storage require-
ments associated with geometric coupling matrices are avoided by ignoring these terms while
constructing the Jacobian. However, since the residual in (54) is calculated correctly, we are
guaranteed that, if the method converges, it must converge to the correct solution. This can
be seen from (53): the only way that Ax can be zero is for h to be zero, provided only that
J is nonsingular, regardless of whether or not it represents the true Jacobian. The price we
pay for this approximate Jacobian is that we must give up the Newton guarantee of local
quadratic convergence.

We now establish that the modified Jacobian is indeed nonsingular. First, the fluid
step (57) can be seen to be just a Newton step for the Navier-Stokes equations, with a rigid
boundary given by the current deformed interface, and a no-slip boundary condition imposed
on the interface. Thus, the linear system (57) has a unique solution (provided of course that
we are away from singular bifurcation or turning points). Second, the solid step (58) can also
be regarded as a Newton step for the solid equilibrium equations. The term J J F A X F is the
incremental "loading" that the linearized fluid induces on the solid interface. So this linear
step too must have a unique solution (provided again we are away from buckling points).
Thus, the solution of (54) is unique, and the approximate Jacobian is nonsingular.

We stress that this decoupling is a numerical device designed to remedy the twin problems
of ill-conditioning and storage and arithmetic complexity. The residual equations h = 0 still
contain the correct variational coupling between fluid and solid, and the solution reflects
that—only the convergence rate to the solution is affected.

5. Example: flow-induced deformation of an infinite elastic cylinder

We have built a code that implements the finite element approximation of §3 in two-
dimensions, and solves the resulting nonlinear algebraic system using the method of Newton
form described in §4. We employ a simple continuation strategy to help globalize the solu-
tion. Our code discretizes both solid and fluid with triangular elements, and uses quadratic
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shape functions for velocity and displacement, and linear shape functions to approximate
pressure. The Taylor-Hood element pair is known to satisfy the Ladyzhenskaya-Babuska-

6d

6d

tf 0 v2=0

d* 0.6cm

m 12:85 cmfc

6d 18d

Figure 2: Stationary flow passing an elastic circular cylinder

Brezzi stability condition, e.g. [5], and the complimentary choice of quadratic triangles for
the solid insures the satisfaction of the interface compatibility condition (26). The Taylor-
Hood element produces L2 norm errors of order h3 for velocity and h2 for pressure [13], while
quadratic triangles for elasticity problems produce L2 norm errors of order h3 for displace-
ments [6] (provided in both cases the solution is sufficiently smooth). The linear solves (57)
and (58) are performed using the unsymmetric multifrontal sparse LU factorization code
UMFPACK[7].

As the solid deformations change from one iteration to the next, the movement of the fluid
mesh is computed by the so-called elastic analogy, a common technique in the aeroelasticity
literature. The fluid domain is treated as an elastic solid, and the move in the location of
the interface is expressed through imposed displacements. Solution of this elastic analogy
yields the change in location of fluid nodes. This technique was apparently first used in [1].

In order to illustrate our methodology, we next present results of a physical problem
solved by our code. The problem is viscous flow about an infinite elastic cylinder, and is
depicted in Figure 2. The problem thus is two-dimensional. The cylinder is of diameter d
and thickness i, and is composed of material having elastic modulus E and Poisson ratio v.
The fluid is characterized by density p and viscosity /x. The computational domain extends
a distance of 6e/ upstream of the cylinder, 18d downstream, and Yld above and below its
center. Flow is from left to right with a free-stream horizontal velocity of U and no vertical
velocity. Boundary conditions downstream of the cylinder are that the flowfield is traction-
free. On the top and bottom boundaries are imposed zero vertical flow and zero horizontal
traction. Both vertical and horizontal components of displacement are fixed at nodes along
the horizontal axis of symmetry at the downstream end of the cylinder. Nodes lying on the
upstream end of the horizontal axis of symmetry are prevented from moving vertically but
are free to translate horizontally. The inner boundary of the cylinder is traction-free. Two
cases are solved: one for which the cylinder is nearly rigid, and one for which the cylinder
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is quite flexible. Values of />, /z, d, and U used in the computation are given in the

-4.00 1Z00

Figure 3: Finite element mesh

Table 1: Mesh data

item
solid nodes
fluid nodes
interface nodes
boundary nodes
total nodes
solid elements
fluid elements
total elements
velocity unknowns
pressure unknowns
displacement unknowns
interface unknowns
total unknowns

number
416

3552
104
152

4224
208

1840
2048
7166
984
824
205

9179

figure. These correspond to a Reynolds number of about 50, which is kept low to prevent
the formation of the Karman vortex street. A Poisson ratio of 0.3 is taken for the solid.
The undeformed mesh is shown in Figure 3. Although it cannot be seen in the figure, two
quadratic elements are used through the thickness of the cylinder.

Data describing the mesh are given in Table 1. A convergence criterion of || h ||< 10~6 is
used to terminate the Newton iteration at each continuation step.

Figure 4 shows streamlines corresponding to the converged flowfield in the vicinity of the
cylinder for the case of the nearly rigid cylinder (E'= 10000, t = 0.06).
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Figure 5 shows a close-up of the velocity field for this case. The resulting displacement of
the cylinder is negligible and does not affect the flow field. Two standing eddies of moderate
size, symmetric about the horizontal axis, are observed behind the cylinder, as expected for

-2

-3

-3.61 0 10

Figure 4: Streamlines about a nearly-rigid cylinder.

Figure 5: Close-up view of the velocity field corresponding to the nearly-rigid cylinder,

flow around a rigid cylinder in this regime.

Figure 6 shows the resulting displacement and a portion of the flow field when the cylinder
is more flexible (E = 1000, t = 0.02) and thus undergoes large displacement. A close-up
view of the velocity field for this case is depicted in Figure 7.

The undeformed shape of the cylinder is shown in addition to the deformed shape. The
flow field depicted corresponds to the converged solution, i.e. to the deformed shape. The
standing eddies extend more than twice as far downstream as in the rigid case, due to the
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much more bluff shape assumed by the deformed cylinder.

-3.61

Figure 6: Streamlines about an elastic cylinder.

In the latter case of the elastic cylinder, convergence is obtained in a total of 38 iterations
by a simple continuation scheme, first increasing the Reynolds number to the desired value,
then decreasing the solid stiffness. The iteration history for the case of the elastic cylinder

Figure 7: Close-up view of the velocity field corresponding to the elastic cylinder.

is shown in Figure 8. The abscissa represents cumulative Newton (linear) steps. The ordi-
nate represents the value of the residual for the given values of Reynolds number and solid
stiffness. As the figure shows, the appropriate nonlinear parameter is advanced when the
residual falls below the convergence tolerance, always using the converged field quantities
corresponding to the previous parameter to initiate the approximate Newton method. The
dotted line indicates increasing Reynolds number, while the solid line represents decreasing
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solid stiffness. Although the convergence scheme is conservative, it is quite effective, and we
have been able to solve a number of flow-induced large displacement problems using it.

Increasing Reynold number

Decreasing solid stiffness

10 15 20 25 30 35
Number of Newton Iterations

Figure 8: Iteration history showing continuation steps and cumulative Newton iterations.

6. Concluding remarks

We have developed a methodology for numerical approximation of the interaction of a sta-
tionary viscous fluid with a elastic solid that undergoes large displacement. The fluid is
modeled with respect to an Eulerian frame of reference by the stationary incompressible
Navier-Stokes equations, while a Lagrangian reference frame and large displacement-small
strain theory is used for the solid. A variational formulation of the problem is developed that
insures satisfaction of continuity of interface tractions and velocities. The variational formu-
lation is approximated by a Galerkin finite element method, yielding a system of nonlinear
algebraic equations in unknown fluid velocities and pressures and solid displacements. A
Newton-like method is introduced for solution of the discrete system. The method employs
a modified Jacobian that enables decomposition into separate fluid and solid subdomains.
This domain decomposition avoids possible ill-conditioning of the Jacobian, as well as the
need to compute and store geometric coupling terms between fluid and interface shape. The
method is illustrated by solution of a problem of the flow-induced large deformation of an
elastic cylinder.

Work is underway to extend the methodology to unsteady problems. In another thrust,
we have developed methods for sensitivity analysis of the models described here [11]. To-
gether, these methods should prove useful for solving problems in multidisciplinary design
optimization.

16



Acknowledgments

We thank Jacobo Bielak and Earl Dowell for their comments and suggestions, as well as
those of an anonymous referee. This research was partially supported by Algor, Inc., and by
the Engineering Design Research Center, an NSF Engineering Research Center at Carnegie
Mellon University. In addition, the work of the first author was supported by NSF grant
DDM-9114678. This work was conducted on computers purchased with funds provided in
part by NSF equipment grant BCS-9212819.

References

[1] J. Argyris, J.St. Doltsinis, H.Fischer, and H. Wiistenberg. Tex nai/ra pet. Computer
Methods in Applied Mechanics and Engineering, 51:289-362, 1985.

[2] T. Belytschko, E.J. Plaskacz, J.M. Kennedy, and D.L. Greenwell. Finite element anal-
ysis on the Connection Machine. Computer Methods in Applied Mechanics and Engi-
neering, 81:229-254, 1990.

[3] O.O. Bendiksen. A new approach to computational aeroelasticity. In 32nd Structures,
Structural Dynamics, and Materials Conference, pages 1712-1727. AIAA, 1991.

[4] R.L. Bisplinghoff and H. Ashley. Principles of Aeroelasticity. Wiley, 1962.

[5] J. Boland and R. Nicolaides. Stability of finite elements under divergence constraints.
SI AM Journal on Numerical Analysis, 20:722-731, 1983.

[6] P. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amster-
dam, 1978.

[7] T. Davis. A unsymmetric-pattern multifrontal method for sparse LU factorization.
Technical Report TR-93-018, submitted to the SIAM, 1993.

[8] E.H. Dowell, H.C. Curtiss, R.H. Scanlan, and F. Sisto. A Modern Course in Aeroelas-
ticity. Sijthoff and Noordhoff, the Netherlands, 1980.

[9] E.H. Dowell and M. Ilgamov. Studies in Nonlinear Aeroelasticity. Springer Verlag,
1988.

[10] F.F. Felker. Direct solution of the two-dimensional Navier-Stokes equations for static
aeroelasticity problems. AIAA Journal, 31(1):148—153, 1993.

[11] O. Ghattas and X. Li. A variational f.e. method for nonlinear fluid-solid interaction
and its sensitivity analysis. 5th AIAA/USAF/NASA/ISSMO Symposium on Multidis-
ciplinary Analysis and Optimization, 1994.

[12] O. Ghattas and X. Li. Variational methods for nonlinear stationary problems of fluid-
solid interaction. Journal of Computational Physics, submitted, 1994.

17



[13] M. Gunzburger. Finite Element Methods for Viscous Incompressible Flows. Academic
Press, 1989.

[14] M.E. Gurtin. Introduction to Continuum Mechanics. Academic Press, 1981.

[15] G.P. Guruswamy. Unsteady aerodynamic and aeroelastic calculations for wings using
the Euler equations. AIAA Journal, 28(3):461-469, 1990.

[16] G.P. Guruswamy. Vortical flow computations on swept flexible wings using Navier-
Stokes equations. AIAA Journal, 28(12):2077-2084, 1990.

[17] G.P. Guruswamy. Vortical flow computations on a flexible blended wing-body config-
uration. In 32nd Structures, Structural Dynamics, and Materials Conference, pages
719-734. AIAA, 1991.

[18] G.P. Guruswamy. Coupled finite-difference/finite element approach for wing-body
aeroelasticity. In Fourth AIAA/USAF/NASA/OAI Symposium on Multidisciplinary
Analysis and Optimization, pages 1-12, 1992.

[19] T. Nomura and T.J.R. Hughes. An arbitrary lagrangian-eulerian finite element method
for interaction of fluid and a rigid body. Computer Methods in Applied Mechanics and
Engineering, 95:115-138, 1992.

18


