
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Strictly Class-Based Modeling Considered Harmful

Birgitte Krogh, Sean Levy, Allen Dutoit
and Eswaran Subralunanian

EDRC 05-96-95

To appear in the Hawaii International Conference on System Sciences - £9, January 1996, Afaui, Hawaii.

Strictly Class-Based Modeling Considered Harmful
Birgitte Krogh

Department of Mathematics and Computer Science, Aaiborg University, Aaiborg, Denmark
Sean Levy, Allen Dutoit & Eswaran Subrahmanian

Engineering Design Research Center, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Many object-oriented methods have assumed class-

based approaches, without considering prototype-based
ones. Some authors, while admitting prototypes as a useful
concept, only envision their application in early phases of
systems development Others consider only the use of the
prototype concept in programming environments and not
with respect to the whole systems development process. We
propose that these omissions are neither necessary nor
useful and often can be harmful, in that methods grounded
in purely class-based assumptions do not reflect the nature
of problems inherent in modeling.

In this paper, we argue, using the principle of limited
reduction, that both class-based and prototype-based
approaches should be used in object-oriented methods,
respectively for controlling complexity, and capturing
enough detail for evolution.1

1. Introduction
Object-oriented software development methods

originated from the popularity of object-oriented
programming languages, which provide powerful tools for
dealing with the increasing complexity of software systems.
Object-oriented methods enable the developer to build and
refine a series of class-based models of both the problem
(e.g. managing accounts in a bank) and the solution (e.g.
software that help a bank manage its accounts).

The idea of modeling the world with class-based
techniques has its roots in Aristotelian concepts, where a
class consists of a set of defining properties, a set of
characteristic properties, and a set of names used for the
class. A class can be considered as a "template" describing
the set of objects which fit that template. The contrasting
notion of modeling the world with prototypes2 have been
gaining popularity in the world of object-
orientation[6,13,19]. A prototype is a class-free object,
completely defined by the properties which it possesses as

1. This work has been supported by the Engineering Design
Research Center, an NSF Engineering Research Center.

2. We wish to stress that in this paper, unless otherwise indicated,
we mean "prototype" as a class free object, as opposed to the
act of prototyping, i.e. creating a prototype of a piece of soft-
ware for review and feedback.

an individual, independently from any other object in the
system. At the implementation level, prototypes have been
found to better support experimentation and evolution
which are intrinsic characteristics of complex engineering
and software products. Modeling problems that prototype-
based approaches are better suited for include: multiple
classification hierarchies based on orthogonal
properties[6,18], unanticipated changes in the classification
and changes in classifications over time [14,19].

The Principle of Limited Reduction[ll,12]proposes a
relationship between the amount of information present in a
system development project {complexity) and the reliability
of that information {uncertainty): attempts to reduce either
complexity or uncertainty will necessarily be limited by an
increase in the other. In the context of system development,
reducing uncertainty means increasing the amount of
available information (e.g. requirements elicitation,
interviews, field tests). However, while reducing
uncertainty by increasing knowledge, one also increases the
amount and scope of information that one needs to deal
with, i.e. increases complexity. The same situation holds
when attempts are made to manage complexity, i.e. by
crystallizing information into a set of specification
documents. If such documents are to serve their function,
they must necessarily abstract away much from the total
corpus of information in order to provide clear, concise
guidelines on what the desired end results of the project
should be. In doing so, complexity is reduced, in the sense
that a mass of information has been, effectively, replaced
with a more concise description that is intended to provide
what was really important in the first place. However, this
necessarily produces an increase in uncertainty since,
especially for ill-defined problem domains, one can never
be sure that the specifications capture the model needed to
support the eventual users of the system.

In this paper we argue, using the principle of limited
reduction, that the use of a strictly class-based approach to
software development, which effectively deals with
complexity, can unnecessarily increase uncertainty. We
propose that using a combination of both class-based (or
generally Aristotelian) and prototypical approaches could
lead to similar reduction in complexity while providing
better representations for managing uncertainty, since

prototypes allow a less restrictive model of reality than
classes. We further propose that during the modeling
process, prototype-based concepts must be used by the
modelers, even while attempting to abstract the phenomena
at hand into more manageable, class-based structures.
Consequently, we recommend that object-oriented methods
which wish to support the broadest possible slice of the
lifecycle must acknowledge this fact, and provide somehow
for the incorporation of models which use prototype-based
object concepts, in some form or another, regardless of
whether or not the target implementation language supports
them.

This paper is structured as follows: Section 2
summarizes the essential characteristics of object-oriented
methods in terms of their activities and products. Section 3
describes the differences between Aristotelian and
prototypical concepts in modeling, and observe that object-
oriented methods generally adopt an Aristotelian view of
the world. Section 4 introduces the abstraction process, by
which models are created and modified. Section 5
introduces the principle of limited reduction and argues the
use of prototypes in that light. Section 6 is a short example
illustrating the points made in Section 5

2. The Nature of Object-Oriented Modeling
This section summarizes the main activities and products

of object-oriented methods. We first describe the software
system development process in terms of phases. We then
examine the activities occurring during each phase as well
as their products.

2.1 Object-Oriented System Development
Object-oriented modeling is the creation and

modification of problem domain models (representing the
relevant parts of the real world) and solution domain
models (representing the system being built). In object-
oriented methods, the analysis phase is the construction of
an object model representing the problem domain. The
design phase is the refinement of the analysis model into an
object model representing the system. Ideally, the resulting
design model is a super set of the analysis model (the
additional classes representing non-domain related
phenomena, such as user interface and storage entities). The
implementation model (i.e. the code) is the realization of
the design model. The consequence of this approach is that
the same concepts are used at each level (analysis, design
and implementation) to represent the same set of
phenomena (the functionality available to the user). This
provides traceability across all models which enhances the
maintainability and understandability of the system. The
test phase is the validation of the software system against
the design model, the analysis model and the real world.

The relationship between these models and phases is
illustrated in Figure 1 (inspired from [12]). Each model is

represented as areas, and phases as arrows. The analysis
design and test phases are pictured as transformation
between areas.

All phases have effects on the models; if they do not
prescribe the modification of a model, they involve getting
new information on which to base or validate modifications.
Since, according to Figure 1, models are created and
modified in the analysis and design phases, a rigid view of
the process would infer that modeling is restricted to these
two phases. However, in reality phases overlap, feedback is
provided to the products of early activities by iterating, and
each activity that involves modifying a model requires a
"counter-activity" in which the new representation is
assessed[14].

Figure 1. Phases and models involved in a system
development project

Testing
lidationAnalysis

Solution Domain Model

f Problem Domain Model J

In the following section we describe the typical elements
of the analysis and design phases in object-oriented system
development processes.

2.2 Object-Oriented Modeling Activities
Even though we claim all phases influence modeling, we

focus on the analysis and design phases, since this is where
modeling is addressed explicitly. The parts of a process
where the purpose is to define the problem or perform tests
is definitely relevant to our discussion, but the details about
these activities is beyond the scope of this paper. The
concept of phases provides a high level and theoretical view
of a process. At a more detailed and practical level, we now
take a look at what kind of analysis and design activities are
recommended and supported in prevailing object-oriented
methods.

Monarchi and Puhr[12] identify the activities listed in
Table 1 as critical during the object-oriented analysis phase.
The analysis activities are categorized according to whether
they consist in finding relevant phenomena (identification),
organizing them based on properties (placement), or
specifying dynamic behavior. However, some object-
oriented methods may not emphasize all of these activities

in the same manner, or may not even provide support for all
of them.

Table 1 OOA activities

1. Identification of
a. Semantic classes
b. Attributes
c. Behavior
d. Relationships (gener-
alization, aggregation,
other)

2. Placement of
a. Semantic classes
b. Attributes
c. Behavior
3. Specification of dynamic
behavior

The activities under 1 and 2 primarily address structure,
whereas activity 3 addresses behavior. It should be noted
that methods generally advise that most of those activities
be performed concurrently once a core set of classes has
been identified. This usually allows the analysts to explore
trade-offs, e.g. whether to express specific properties as
attribute or as behavior (activities l(b) and (c)), whether to
abstract similar behavior into abstract classes (activities
I(d)and2(c)),etc.

According to the same authors, the design phase
encompasses the same set of activities applied to the
solution domain (vs. the problem domain), as listed in Table
1.

Table 2 OOD activities

1. Identification of solution domain classes, attributes,
behavior and relationships
(same as 1. in Table 1 applied to solution domain classes)
2. Placement of solution domain classes, attributes and
behavior
(same as 2. in Table 1 applied to solution domain classes)
3. Specification of dynamic behavior
4. Optimization of problem and solution domain classes

The additional classes which are identified during this
phase model the user interface, the storage entities and
support code (e.g. low-level objects such as queues, stacks
and tables). In addition, the developer also takes into
account non-functional requirements (e.g. response time,
throughput and space requirements) during the design
phase (activity 4). At this stage of the lifecycle, the behavior
of classes is more formally described.

2.3 Object-Oriented Models
The result of both object-oriented analysis and design

phases are class models and behavior specifications.
Monarchi and Puhr [12] identify the modeling constructs
listed in Table 3 as critical. Again, not all methods make use
of all these constructs

Table 3 OOAD modeling constructs

Static view
Objects
Attributes

Dynamic view
Communication
Control/Timing

Constraints
On structure
On dynamic behav-
lor

Table 3 OOAD modeling constructs

Static view Dynamic view Constraints
Behavior
Relationships
(generalization,
aggregation,
other)

Given that most object-oriented methods primarily
descend from data modeling, the modeling of structure is
relatively similar across methods. However, object-oriented
methods differ in their representation of behavior. For
example, OMT[17] and Booch[2] use state transition
diagrams to specify behavior, while OOA/OOD[3,4] use
control flow diagrams. OOSE[8], which puts more
emphasis on behavior as early as the analysis phase,
introduces the concept of use cases. Use cases capture
functionality as natural language descriptions of possible
flows of events through the system. Each use case describes
a specific set of related functions that the user of the system
may accomplish.

3. Aristotelian and Prototypical Principles
Modeling is the representation of some chosen real world

phenomena, physical or in the mind, in a way that is
separate from the real world phenomena themselves. In the
terms of the Beta Project[9], a program execution is a
physical model simulating the behavior of a real or
imaginary part of the world. Thus, the system development
process is a modeling process, the purpose of which is to
represent the relevant part of the real world (the problem
domain) and the program execution (the solution domain).
In each of these domains, abstraction processes form the
connection between concepts and phenomena — the latter
referred to in the model system as objects. The aspects of
the real world in which the phenomena can be modelled as
parts of program executions have certain qualities:
substance, measurable properties thereof, and
transformations of the substance and hence the properties.
From an object-oriented modeling perspective, concepts of
the problem domain are represented in the solution domain
as class hierarchies.

A concept consists of the extension, a collection of
phenomena; the intension, a collection of properties; and
the designation. The latter is the collection of names used to
refer to the same concept. There are two extreme views on
how the intension characterizes the extension of a concept:

According to the Aristotelian view, the intension of a
concept has two sets of properties: the defining properties
that all the phenomena it refers to must have, and the
characteristic properties that the phenomena may have. The
extension of an Aristotelian concept is the set of all
phenomena that have the defining properties, and it is
objectively decidable whether or not any given object has

these properties.
According to the prototypical view, the intension is a set

of example properties that the phenomena in the extension
may, but do not need to have, and a set of prototypical
phenomena that are covered by the concept. It is not
objectively decidable whether or not a given phenomenon
belongs to the extension of a prototypical concept.

Most modeling constructs used by object-oriented
methods are Aristotelian. Classes are identified by their
name and defined by their attributes and behavior. The
extension of a class is objectively decidable. State transition
diagrams and control flow diagrams are also Aristotelian:
these representations unambiguously specify which
behaviors are legal (i.e. that the system should implement).

Prototype-based programming environments are now
emerging which allow the creation of class-free objects
(e.g. SPLINTER[6], SELF[19], BOS[13]). It has been
argued that prototype-based systems better support
evolution and experimentation: class-based systems require
the addition of a new class whenever the developer only
wishes to modify the properties for a proper subset of the
instances of a class; in prototype-based system, however,
the modifications need to be done only to the relevant
objects, since each individual carries a description of its
structure.

Prototype concepts have not yet become part of object-
oriented methods. Most object-oriented methods use
Aristotelian concepts for representing structure (i.e. classes)
and behavior (e.g. state diagrams). Interestingly enough, the
few instances where prototypical concepts are used (timing
diagrams Booch [2] and interaction diagrams OOSE[8]) are
in behavior modeling activities, which are traditionally
recognized as the weaker side of object-oriented methods.
Interaction diagrams can be roughly described as high level
call graphs: given a use case (or event flow through the
system) an interaction diagram shows the sequence of all
the message sends and their answering methods. This
representation is prototypical, given that interaction
diagrams only represent the context in which a method is
invoked together with an informal description of what the
method does in that context. Once all the interaction
diagrams have been built, the designer may review all the
contexts from which a method is invoked, and build from
that information an Aristotelian view of the method (e.g. a
pseudo code description, a state diagram or a control flow
diagram).

4. The abstraction process
Abstraction processes are important to modeling

activities. They take place both with regard to perceiving
and structuring existing phenomena and concepts in the
relevant part of the real world, and when creating and
assessing the structures that form the model in the system

being built. We see abstraction as the cornerstone of
rational, i.e. complexity reducing, behavior. An abstraction
process is the organization of knowledge, and can be seen
as having three levels [9]:
• At the Level of Empirical Concreteness, phenomena are

conceived individually, as they appear. Prototypical
views (e.g. drawings, examples, simulations) are typi-
cally used at this level. The focus of this level is on
understanding the problem without necessarily attempt-
ing to reduce its complexity.

• At the Level of Abstraction, phenomena are analyzed
and concepts are formed to capture their common prop-
erties and organization. Concepts are typically
expressed using the Aristotelian view at this level. The
focus of this level is on expressing what was under-
stood. For this purpose, complexity is reduced through
classification and detail removal.

• The Level of Thought Concreteness expresses a further
understanding of the total system of concepts and phe-
nomena and provides through the structure of the con-
cepts a deeper insight into the interrelations and events
of the phenomena. At this level, the focus is on verify-
ing the representation developed at the previous level.

Object-oriented methods mostly provide support
activities at the level of abstraction. Once relevant
phenomena have been identified, plenty of techniques exist
for structuring and detailing class models. However, we
observe that little support is provided for understanding the
domain and the validation of concepts (level of empirical
concreteness and the level of thought concreteness). This
lack of support is especially visible in the behavior
modeling activities where more traditional (and non object-
oriented) representations are used. However, in a few
instances mentioned previously (Booch and OOSE)
prototypical representations are provided and appear to
make it easier to understand and verify behavior.

5. The Principle of Limited Reduction
Mathiassen and Stage[ll] introduced the Principle of

Limited Reduction to express the effectiveness of a design
effort. It is based on the relationship between, on the one
hand, what characterizes the situation at a given point in a
system development process, and on the other hand, the
nature of the operations to be performed in order to make
progress, i.e. to get closer to the desired end product:

"Relying on rational behavior to reduce complexity
introduces new sources of uncertainty requiring
experimental countermeasures. Correspondingly,
relying on experimental behavior to reduce
uncertainty introduces new sources of complexity
requiring rational countermeasures." [11]

Complexity is used to mean the amount of relevant
information that is available. Uncertainty is a measure of

the availability and reliability of relevant information. In a
situation that is mainly characterized by uncertainty about
system requirements or about the correctness of the
available data, building and testing prototypes3 of the
system, or just important aspects thereof, is an often
recommended strategy, as it can lead to a better knowledge
base for the further development (i.e. "experimental
countermeasures"). By contrast, in a situation where the
main problem at hand is overwhelming or
incomprehensible amount of data, the typically observed
approach is analytical, with the goal being to abstract,
simplify, and describe relevant information in specifications
(i.e. "rational countermeasures")- The Principle of Limited
Reduction proposes that the approach best suited to one
type of situation invariably brings a project closer to the
other type of situation.

Figure 2 shows a simple illustration of this principle. One
dimension represents the degree of uncertainty in a given
situation, the other the degree of complexity. Most projects
presumably start out with a relatively high degree of both.
The desired place to be is as close as possible to the origin
— marked in the diagram as the "reasonable" region. The
Principle of Limited Reduction proposes that it is not
possible to move along a direct line towards the desired
region; each step in the process will, depending on the
situation, be of a rational or experimental nature. And while
decreasing the degree in one dimension, that step will
invariably increase the other dimension. Please note that
time and other measurable entities are not depicted in the
diagram. It is merely meant as an illustration of a principle;
not of, say, the lifecycle of a project.

Figure 2. Complexity and Uncertainty

Empirical activity

"Reasonable" region
Uncertainty

Rational activity

•

The extremes, where the whole emphasis is on either the
rational or the experimental approach, axe referred to in [5]
as the construction and evolution - approaches.
Constructionism assumes a well defined problem that can
be treated in an analytical manner and where it is
objectively determinable whether or not requirements are
met. Evolutionism assumes a dynamic environment with
unstable requirements and confrontation as the only

3. In the sense of a piece of software.

feasible way to assess a given design.
We focus on system development settings where the

requirements are not well defined, where subjective
assessments are crucial, and where problem definitions are
part of the process. For the reasons expressed in the
principle of limited reduction, the main problem when
working top-down must be expected to be die lack of user
feedback and hence the risk of "building the wrong system
the right way". Similarly, in a bottom-up approach, the main
problem will be a superficially satisfying system with a
messy "interior" — due to lack of rationally designed
abstractions — and hence "building the right system the
wrong way".

Models of the system development process that use
mixed approaches which combine the benefits of rational
and experimental activities are generally accepted as better
than each of the extremes. A good example of this is the
Spiral Model presented in [1]. It takes into account the most
prominent aspects of the problem at a given state in the
development process, and defines the most efficient next
steps to be performed accordingly. Purely experimental
approaches (e.g. evolutionary prototyping) and purely
rational approaches (e.g. the Waterfall model) can both be
viewed as being subsumed by the Spiral model, and are
generally only recommended when the situation is
sufficiently well or ill defined for them to be applicable.

It is quite clear that there is a large gap between being
able to state the principles and concepts by which modeling
should be done and actually being able to operationalize
them in a real system development environment We can,
for instance, agree with any of the many object-oriented
modeling methods that arriving at a class hierarchy that
models the domain is a laudable goal, but when we
encounter difficulties, how are we to proceed?

The answer lies in attempting to maintain a balance,
instead of strict adherence to any one approach. Shifts in
orientation between, for instance, Aristotelian and
prototypical views of the modeled world are often
necessary, if only in order to clarify the direction that the
design of a class hierarchy should take next. Rather than
focusing only on the end result of a given modeling process,
i.e. a class hierarchy, attention should also be paid to the
actual modeling process itself, as well as "by-products" that
might result and which are not otherwise accommodated for
in a given method. Put in terms of uncertainty and
complexity, an Aristotelian view decreases complexity
significantly more than a prototypical view while
introducing more uncertainty. When validating concepts,
this larger uncertainty is more difficult to reduce given that
the Aristotelian view is a more restricted model of the real
world than the prototypical view. We suggest that the use
and alternation of both views enables a significant reduction
of complexity while managing uncertainty.

6. An Example
In this section, we will focus our attention on an example,

in order to illustrate the processes that take place during
modeling. This is not meant to be a complete analysis model
or any other sub-product of a systems development process,
let alone empirical "evidence" for our points. We have
merely attempted to present the modeling of part of a
problem from the real world in just enough detail to
illustrate the points relevant to our arguments without
having to descend into the depths of the modeled domain.
In addition, as much as possible, we have recorded the
events in the exercise in the order that we did them, so as to
retain the flavor of the process.

The problem domain being modeled consists of
equipment and processes in a chemical plant. The purpose
of the system considered is to simulate the behavior of the
plant and provide users with predictions about the effect of
changing the value of various factors. In particular we are
interested in modeling breakdowns, i.e. the causes and
consequences of failures in the equipment. The partial
modeling process presented here focuses on this aspect of
the system, and, where necessary, we have sacrificed
chemical engineering details in the interests of exposing
interesting modeling problems.

6.1 Pipes, Valves, and Explosions
First, we form an idea about the domain by identifying

relevant objects and their relationships in terms of a class
hierarchy, which serves to organize our thoughts on the
matter; the initial result is depicted in Figure 3. It shows
classes for the various identified objects and a superclass,
equipment, for modeling the properties all the other classes
have in common. The cardinalities show the number of
instances involved in a particular relationship, e.g. a pipe is
connected with zero, one, or two valves whereas a valve
always connects two pipes. Next we want to fill in more
details for the different types of objects.

In order to see how well our classification of the world
works, we decide to think about how some actual objects
instantiated from this hierarchy might look. We do this in
order to get a better idea of what properties and behaviors
the objects in our problem domain need to have to satisfy
our requirements. More specifically, we look at what kind of
things can happen in the pipe-valve relationship and what
this means for the model. For lack of better diagrammatic
conventions, a style of drawing the actual instances and
their relationships developed more or less spontaneously on
the blackboard, shown in part in Figure 4. Here we see the
interconnection of two pipes via a valve. Each of the ovals
in the figure represents an actual object (i.e. not a class)
because we are interested here in testing one specific
situation and finding out what influence it must have on the
class model. There are three distinct kinds of references

involved: the valve connects to the two pipes, i.e. its input
and output, and the pipes have input and output. The side-
bars attached to pipe 1 and the valve are lists of messages
that such objects might understand and/or properties they
might have. As we are still in the early stages of modeling
the problem, the distinction is not completely clear yet.

For instance, we can posit with reasonable certainty that
pipes and valves both have a diameter, a thickness and are
made of some material. What is not necessarily clear yet is
whether, for example, diameter is an entirely static property
or one which must be (at times) calculated (can the pipes in
our world become occluded?).

Figure 3. Partial Class Diagram4

i i

equipment

valve rack

pipe ZEE

- column
j

I

I
tray

Figure 4. Specific Configuration of Pipes and a Valve

connects

output

Given this crude model of a piece of the real world, our
next step is to think about how parts of it respond to
messages. As before, we start this out by depicting a
specific situation since we do not have an overall generic
description of the system's behavior. Figure 5 shows pipe 1
being told to set its rate of flow to 10000 units followed,
after some interval of time, by a message to the valve to shut
itself.

4. simplified Coad/Yourdon notation; a dotted line means an
abstract class, i.e. a class with no instances

Figure 5. One Possible Scenario

rateOfFIow: 10000

shut

Suppose that our model requires that when the valve is
shut, the incoming pipe should experience a failure, e.g.
explode. Clearly, a pipe which has exploded should answer
at least some of its messages differently than a pipe which
has not. Further, an exploded pipe can not make a transition
back to a "normal** state, as opposed to, for instance, a pipe
which has been exposed to extreme cold. This would seem
to indicate that there are at least two kinds of failures, which
might be called fatal and fixable. So we want to incorporate
this aspect of the pipes, having different kinds of failure
states, into the class model.

One possible way of dealing with the problem is to add a
property to all equipment, such as failureMode, and push
the solution into the behavioral part of the model. For
instance, for each message which must have a response that
varies with respect to failure, we may model it as a multi-
way decision based on the value stored in failureMode,
which might be one of ok, fatal ox fixable.

Although at first this may seem like a reasonable
solution, it quickly becomes apparent that there are
disadvantages to this approach, on several levels. If we
ignore problems of implementation and restrict our
attention to problems that appear at the design level, we see
two main difficulties. In an ideal object-oriented model, the
presence of many multi-way decisions in the specification
of behavior is a sign that the model itself is not rich enough,
i.e. the class structure does not adequately model the
domain. In other words, we are burying important structural
information in the description (or even the implementation)
of classes in such a way as to make the actual relationships
between the classes much richer than the diagram might
indicate. Further, such a strategy would mean that any
message that needed to be sensitive to failure would need to
be modeled as behavior, i.e. a method, instead of as a
property. This might, in the extreme, force the addition of
"methods" for calculating every property of a piece of
equipment, based on hidden internal state, a move which, at
the very least obfuscates the meaning of the model a great
deal.

An alternate approach would be to add a property to all

equipment which refers to a Failure object Functioning
equipment would refer to a dummy failure object whose
methods are null operations. A failed pipe would refer to a
failure object which represents the particular failure it
experienced. Then, all messages answered by a failed pipe
would be forwarded to the failure object it refers to, instead
of being directly answered by the Pipe class. This approach
would have the advantage of removing the multi-way
decisions introduced by the prior solution. However, this
solution still suffers the problem that all properties of all
types of equipment would have to be represented as
methods.

Figure 6. Revised "class" diagram
n — "i

equipment

i
valve

0,

1 2

rack

pipe

dm.

Iff* '

—^column

I failedPipe functioningPipe

A better solution would be to consider the pipe objects as
belonging to different "classes" over time, e.g. & failedPipe
class and afuncHoningPipe class, depending on their failure
status. Better yet, individual pipe objects could be
dynamically changed depending on the kind of failures
which would happen to them. The concept of dynamic
inheritance and partial inheritance have been introduced for
at the programming language level ([19] and [6],
respectively. Use of such concepts could be extended to the
design or even analysis phases of an object-oriented
method. The revised "class" diagram is pictured in Figure 6.

It should be noted that the inheritance between
failedPipe, functioningPipe and pipe is not equivalent to a
standard class-based inheritance relationship. An instance
of pipe retains its identity through failures and repairs, i.e. it
is not replaced by a new instance of another class. This has
the advantage that other objects referring to the failed pipe
(e.g. a valve, a rack) need not change their references to the
failed pipe. This inheritance relationship is not equivalent to
multiple inheritance either, given that the pipe cannot be a
failedPipe and a functioningPipe at the same time.

6.2 Discussion of the Example
Revisiting to the three levels of modeling processes

presented in Section 2.5, we can categorize some of the

activities that occurred during modeling. It can be seen as a
series of informal sub-tasks each of which was focused on
either: further understanding the problem domain based on
the already available knowledge; structuring and otherwise
describing the properties of the elements of the problem
domain; or comparing the understanding and the
description in order to put both to a test. The former two
tasks were the most straightforward to perform, using
common sense aftd the recommendations and notations of
the method; the latter task were more critical and called for
more creative measures.

On the level of empirical concreteness, we followed the
prescriptions of at least the more widely accepted methods
in attempting first to identify the concepts in the domain
("look for the nouns," as e.g. [3] and [16] refer to this
activity). In fact, it was relatively easy, after some
consultations with chemical engineers, to produce a simple
class structure that described the concepts in question with
respect to their defining properties. This brings us to the
level of abstraction: the initial construction of the class
hierarchy of the identified phenomena. Our difficulties
began when we incorporate behavior into an initial model5.
Further, the line between what was a defining property and
what, in Aristotelian terms, were characteristic properties
became rather blurry when an actual situation was
considered. This attempt to verify or modify the model is on
the level of thought concreteness; we see the already
identified relevant phenomena in a new light, we obtain new
insight into what is and what is not captured in the model.

In this manner we continued to shift our view between
understanding the actual domain, expressing this
understanding in an abstract way and, always,
"confronting" these two levels with each other, which
usually caused both the understanding and the
representation (the current model) to change.

Although the "final" model may be a class-based model
(possibly augmented with prototypical concepts such as
dynamic inheritance[19], or partial inheritance[6]), the
prototypical representations created during the
modifications should become part of the outcome of the
process (i.e. made part of the model, such as interaction
diagrams in the OOSE method). The prototypical
representations may then be used during the next
modification of the model and provide a better context by
reducing uncertainty.

7. Conclusion
Class-based approaches are good at dealing with

complexity, but introduce uncertainty in that they can be too

removed from the real world problem that is being modeled.
Both Aristotelian and prototypical concepts are useful and
necessary in both the modeling process and the model. They
are useful at the process level because alternating between
understanding and expressing — between operating at the
object and class level, between constructing structures and
validating them — is an intrinsic part of any modeling
activity. They could also b6 useful at the product level since
parts of the real world are much better represented as
prototypes6 than instances of (sometimes artificial)
classes[6,13,15,18].

In the overall perspective, both Aristotelian and
prototypical approaches are complexity-reducing, but the
right use of the prototype concept, along with classes,
(re)introduces less uncertainty than a strictly class-based
approach. The advantages of having both types of concepts
to work with can be seen as an application of the principle
of limited reduction, only at a more detailed modeling level,
namely the "local" iteration between identifying and
abstracting phenomena (rational behavior) and validating
(experimental behavior) — as described by the three levels
of modeling processes. In some sense, one could think of
this as an application of the age-old adage: "As above, so
below."

Based on these observations, we recommend that object-
oriented methods take this into account by supplementing
existing notational constructs with additional structures to
express the concept of prototypical objects. These notations
could be used, for instance, in sub-tasks when the aim is to
build class structures, in which case they might be
considered by-products, as well as parts of the final model.
We view the construction of such notational devices as
interesting questions for future research. Further, the
incorporation of prototypes in to the implementation
vehicles available to designers could improve the over-all
process, by removing some of the artificial constraints on
the end-products of modeling that have been posited by
various groups. This does not necessarily mean switching to
a prototype-based programming language, as some authors
have begun to point out [7,13].

8. Acknowledgments
This work has been supported in part by the Engineering

Design Research Center, an NSF Engineering Research
Center. The authors would like to thank the anonymous
reviewers of this paper for their insightful comments and
their suggested edits.

5. This is not to say either that (a) we had the non-behavioral part
of the model right or (b) that there are not domains in which
modeling the actual things themselves is intrinsically difficult.

6. It Is to be noted that the term instance is sometimes used in
place of prototype [15].

9. References
[1] Boehm, B. (1988). "A spiral model of software development

and enhancement/* IEEE Computer, 21 (5):61-72.
[2] Booch, G. (1993). Object-oriented analysis and design with

applications. Benjamin/Cummings Publishing Co.,
Redwood City, CA, 2nd edition.

[3] Coad, P. and Youidon, E. (1992). Object-oriented analysis.
Yourdon Press, Englewood Cliffs, NJ.

[4] Coad, P. and Yourdon, E. (1992). Object-oriented design.
Yourdon Press, Englewood Cliffs, NJ.

[5] Dahlbom, B. and Mathiassen, L. (1993). Computers in
Context. Blackwell Publishers, Cambridge,
Massachusetts, USA.

[6] Demaid, A. and Zucker, J. (1992). "Prototype-oriented
representation of engineering design knowledge."
Artificial Intelligence in Engineering. (UK). 7(l)pp.47-
61.

[7] Gamma, E., Helm, R., Johnson, R.f and Vlissides, J. (1995).
Design Patterns: Elements of Reusable object-oriented
software. Addison-Wesley, Reading, Massachusetts.

[8] Jacobsen, I. etal. (1992). Object-oriented software
engineering: A use case driven approach. Addison-
Wesley, New York, NY.

[9] Madsen, O.L., Mfliler-Pedersen, B., and Nygaard, K.
(1993). Object-Oriented Programming in the BETA
Programming Language. Addison-Wesley, Reading,
Massachusetts.

[10] Mathiassen, L., Seewaldt, T. and Stage, J. (1995).
"Prototyping and Specifying: Principles and Practices of
a Mixed Approach.*' Scandinavian Journal of
Information Systems. 7(l):55-72.

[11] Mathiassen, L. and Stage, J. (1992). "The principle of limited
reduction in software design/* Information Technology
and People. 6(2-3): 171-85.

[12] Monarchi, D. and Puhr, G. (1992). "A research typology for
object-oriented analysis and design/* Communications
ofthe ACM, 35(9).

[13] fi-dim Group (1995). "An overview of the basic object
system." Technical Report EDRC 05-92-95,
Engineering Design Research Center, Carnegie Mellon
University, Pittsburgh, PA 15213, USA.

[14] Parnas, D.L. and Clements, P.C. (1986). "A rational design
process: How and why to fake it/* IEEE Transactions on
Software Engineering. SE-12(2):251-57.

[15] Parsons, J. (1994) "Instance-based Primitives for Data
Modeling", Proceedings of the Fourth Workshop on
Information Technologies and Systems, Vancouver,
Canada, pp. 215-24.

[16] Rubin, K. S. and Goldberg, A. (1992). "Object behavior
analysis." Communications of the ACM, 35(9):48-62.

[17] Rumbaugh, J. et. al. (1992). Object Modeling and Design.
Prentice-Hall, Englewood Cliffs, NJ.

[18] Sargent, P.M., Subrahmanian, E., Downs, M., Greene, R. and
Rishel, D. (1992) "Materials* Information and
Conceptual Data Modelling" Computerization and
Networking of Materials Databases: Third Volume,
ASTM STP 1140, Thomas I. Barry and Keith W.
Reynard, Ed., American Society for Testing and
Materials, Philadelphia.

[19] Ungar, D. and Smith, R. B. (1991). "SELF: the power of
simplicity." USP and Symbolic Computation, 4(3): 187-
205.

