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Abdtract

In this second paper on collocation methods for distillation design, we
address the minimum reflux problem. Existing minimum reflux techniques do
not work for nonsharp splits, as they use approximate geometric criteria to
simplify modeling of minimum reflux conditions to a set of pinch point
calculations for sharp splits. Collocation allows exact calculation of nonsharp -
minimum reflux and provides the missing link that geometric criteria replace.

We examine the behavior of distillation near minimum reflux and get
results consistent with prior work. We also show that sensitivity of trace species
drops as less sharp splits for the key components are sought.

We have found that collocation can be applied to sharp split minimum
reflux problems, but we cannot exactly reproduce Underwood's values for
constant relative volatility systems due to breakdown of the model near saddle
pinches. We discuss the modeling of minimum reflux conditions with collocation
and discuss the difficulties we have encountered.

We can accurately calculate minimum reflux for nonsharp splits for
nonideal systems, even when approachi ng a sharp split. We overestimate the
minimum reflux for the sharp split case, using nonsharp calculations at very low
impurities. We encourage discussion of the problems we have encountered.

Thiswork has been partidly supported by the Engineering Design Research Center, a
NSF Engineering Research Center.




I ntroduction

Several researchers have explored and developed collocation for
digtillation column modeling. In thefirst paper in thisseries, we presented a
collocation model which expands on prior models, addressing the problems
gpecific to steady-state, continuous columns. In this paper we discuss use of the
collocation method for minimum reflux determinations.

Minimum reflux determination is useful during theearly stages of
ditillation design and for approximate design methods. Several methods of
varying complexity and accuracy exist for deter mining minimum reflux.
Underwood's [1945,1946,1948] method isvery quick but is accurate only for
ideal systems and only for sharp splits. Asdescribed in the motivation section of
paper | inthisseries, Doherty and coworkers[1990,1991] have donea greet deal
of work on distillation design and minimum reflux. Their methodsrely on
approximate geometrical conditions to remove the need for infinite column
section calculations. The development of their techniques demonstrates how
nonsharp splits should be handled, but their minimum reflux algorithmswere
developed only for sharp splits.

For sharp splits, Koehler et al. [1991] developed a minimum reflux
determination method that usesareversibledistillation model. They have shown
that for nonideal and azeotropic s/siemsthelr method provides accurate results,
based on comparisons to rigorous column modeISW|th alargenumber of trays.
However, their method requires the nonkey components to be nondistributing
and is based on the same geometric consider ations in Doherty and coworkers.

We present an approach for minimam reflux calculationsthat doesnot”
require approximate geometric congraints. We discuss some interesting insights
as one moves from nonsharp to sharp splits. We also discuss computational -«
difficulties we found in realizing the theory with collocation models. By
presenting both the strong and weak points of collocation for distillation




modeling we hopeto initiate discussions leading to better methods.

Pinch Points

When a digtillation section hasa very large number of traysin it, aregion
of constant composition occurs. Theliquid and vapor passing each other
approach being in equilibrium with each other, i.e., they approach being pinched.
Minimum reflux occurswhen at least one column section is pinched. When
modeling minimum reflux conditions, " pinch point” calculations can sometimes
remove the need for tray-by-tray models of column sections. A pinch pointis
calculated by requiring that the liquid and vapor passing each other arein
equilibrium and in mass and heat balance with the other end of the distillation
section. Therefore, if one half of a column has a largenumber of traysand is
pinched adjacent to the feed tray, the whole section can be modeled with only a
pinch point calculation. This smplification can be exploited for calculation of

minimum reflux.

Nonsharp Splits

A separation where all the componentsare distrib.uted in some amount to
both productsisnonsharp. In the case of a nonsharp split, thereisafeasble
inter section region wherethe tray by tray trajectories from fhetop and bottom
product can intersect [Wahnschafft 1992]. Figure l'showsaternary diagram for a
nonsharp minimum reflux problem. The regions between the infinite reflux
(digtillation) and minimum reflux (pinch point) curves for both the top and
| bottom products are the only feasible regions wher e the trajectories can go. The
darkened region that shows the inter section of the feasible space for thetop and
. bottom trgjectories shows the only feasible region for the feed tray. At minimum
reflux, the bottom section will pinch in thisregion. Figure 2 shows a blowup of
thisregion. Any trajectory from the bottom of the column will terminate on the
pinch point curve as the number of trays increases. Asthetrajectory from the
bottom of the column movesto theright, the reboil ratio (R) increases. However,
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for thetop section, the pinch point curve, representing the lowest reflux ratio (R)
ison theright, and the infinite reflux curve ison the left. Therefore along the
pinch point curvefor thetop Half, the left most point correspondsto minimum R,
but maximum R, and the right most point correspondsto maximum R and
minimum R. However, R and R arelinked by the mass balances and quality of the
feed.

V=Va+ 1-@)F 1)
(R+1)D=RB + (I-q)F ' %)

For any given feasiblecolumn, R and R will decrease or increasetogether. Assume
that the grey point isa feasibleinter section point. To decreaseboth R and R the
column must move towar ds the pinch point curve. Therefore, we know that the
nonsharp minimum reflux solution for thistype of problem will have a pinched
bottom section and a finite top section. At some point alongthisline, R and R will
correspond to a feasible trajectory from the top of the column. The minimum
requirement to model this system is a pinch calculation from the digtillate, then a-
feed tray model, and then a tray-by-tray or reduced order model for the bottom
half of the column. We use the sandard collocation model in our first paper [Huss
and Westerberg, 1995a] by enforcing a pinch at thej unction of the two bottom
collocation sections and calculating the number of traysin the top section.

Figure 3 shows how this modelingrequirement maps onto the standard
collocation model. We enfor ce a pinch between sections 3 and 4 by adding
equationsforcing theliquid and vapbr passing each other at thejunction between
the two collocation sectionsto bein equilibrium and remoVing the requirement
that the liquid stream at the pinch must-be on the polynomial for section 4.
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Figure 3. Mapping of nonsharp minimum reflux on to standard collocation
model

Section 3 will have completely flat trajectories. We evenly split the number of
trays needed in the top section between collocation sections 1 and 2. The number
of trays in the top section is solved for when we completely specify the distillate.
Note that this example is for a direct separation, splitting between the lightest
component and the intermediate. For an indirect separation, splitting between the
heaviest component and an adjacent intermediate, the column structure would be

inverted, but the solution method the same.

Sharp Splits

When a sharp split is specified, one assumes that the non-key components
are nondistributing. This forces a saddle pinch, since it takes an infinite number of
trays to completely remove a component. Figure 4 shows the trgjectory for such a
case. When there is a saddl e pinch, the pinch point is not adjacent to the feed
because it takes an infinite number of trays to remove the nondistributed
components from the feed as well as an infinite number of trays to get from the




Heavy

Pinch point curves

Bottoms, very little A

Distillation curvj

Distillate, No C

. . Light -
Saddle pincﬁ _ Feasible trajectory space

Intermediate

Figure 4. Pinch behavior for ternary sharp split |

product to the pinch. When the pinch is not adjacent to the feed, a simple pinch
point calculation is not sufficient. A pinch point calculation could determine the
possible saddle pinch points, but any saddle pinch which is in mass balance with
the top of the column will necessarily be in mass balance with the feed tray. The

X's in Figure 4 show multiple saddle pinch points. The pinch points move to the
|eft as the reflux ratio increases. These points represent the binary pinch point
curve between the light and intermediate. There is some missing connection
between the correct saddle pinch and the feed tray. Levy et al. [1985] noticed that
for ideal three component systems, the saddle pinch point, the feed tray pinch
point and the feed composition are colinear for sharp splits. They used this
colinearity to identify the correct saddle pinch point. For more components, Julka
and Doherty [1990] required that a set of pinch points, the feed composition, and
the feed tray must be in a minimum volume. Kohler et al. [1991] used a minimum

angle criterion for multi-component systems to achieve the same effect.




The missing connection is actually an infinite set of stage-by-stage
calculations connecting the saddle pinch and the feed tray, i.e., tiie saddle pinch
and thefeed tray must lie on the sametray by tray trajectory. We proposed that a
collocation model could approximate these calculations. We describe the details
of our collocation methods in full detail in the first paper of this series.- When
defining the polynomials in terms of stage location, it isimpossible to model an
infinite column section because the polynomials explode as the number of stages
increases. However, by performing a variable transformation on stage number, as
shown in equation 3, we can write the polynomialsin terms of a bounded
variable. Thetransformation variablez will goto 1 assgoesto infinity.

2 = 1 _e(—as) . 3)

We must show that a stage-by-stage trajectory from thispinch point leadsto both
the top product and the feed tray. Therefore, we need an infinite column section
model. This can be achieved by collocating and doing a variable transfor mation
on thetray number so that, asthetray number goesto infinity, the reference
variable goes to somefinite value.

Shortcut methods that require a sharp split determine a theor etical
minimum reflux for the case wher e the non-key components are non-distributing.
However, the actual column will not achieve thistheoretical split. The minimum
reflux for the actual separation will be different than that for the non-distributing
sharp split. Levy et al. [1985] has shown that minimum reflux decreases shar ply
astheimpurity of the heavy nonkey decreases from 10~ to 10" **.

Figure 5 shows how the sharp split problem maps onto the sandard
collocation model. It isvery smilar to the nonsharp case, but wewant sections 1
and 2 to bring us as close to the saddle pinch as they can. We have found that we
cannot enfor ce a saddle pinch in the same manner asthefeed pinch. When dack
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Figure 5. Mapping of sharp minimum reflux on to standard collocation model

variables are added to the equilibrium equations for the pinch point, we find that
we can approach the pinch, but we cannot force the slack variables completely to
zero. Inaccuracies occur that we cannot compensate for, which we will discuss
later in the paper. Therefore, we approximate a sharp split minimum reflux by
simulating alarge col umn section. The number of trays needed to approxi matean -

infinite number of trays is dependent on the relative volatilities. For components
with large relative volatilities, only afew trays are necessary to approximate an
infinite number of trays. Also, for multicomponent problems where a saddle |
pinch occurs in both column sections, we use the standard collocation model with
all four collocation sections as large as possible.

Trends of Large Column Sections
We did many éxampl es with constant relative volatility to compare with
“Underwood's method. We tested three ternary systems over arange of
separations. We examined systems with relative volatilities of 1.5,1.2,1.0;




3.0,2.0,1.0; and 9.0,3.0,1.0.

In each test, we did a direct split, forcing a pinch adjacent to thefeed in the
bottom of the column, and determiningthé reflux vs. thenumber of traysin the
top section. For every case, it was possibleto get exactly Underwood'sVaI ue of
thereflux ratio with some finite but large number of traysin thetop. However, it
was also possibleto increasethetraysand get lower than Underwood's reflux
ratio. When increasing thetraysto larger numbers, thetrajectory became
unsmooth, suggesting that the model was no longer accur ate.

Figure 6 showsthe different reflux ratios for various recovery
gpecifications on thelight and heavy key obtained by increasing the size of the top
section of the column, for thereativevolatilitiesof 3,2,1. Thelarge points mark
the number of trays and reflux required to get various levels of impurity of the
heaviest component in the distillate. These represent nonsharp minimum reflux
calculations. Beyond 10'® isbelow the error tolerance so we cannot deter mine
nonshar p minimum reflux for these points as anything other than the answer
determined for 10"°. We can continue to increase the number of traysand get
smaller values for the reflux ratio. The raight lines indicate the Underwood
valuefor the variousrecoveries. For each recovery specification, some number of
trayswill give us exactly Underwood's value, but for even more trays we go
below Underwood.

Figure 7 shows how the minimum reflux decreases in increasing amounts
asyou reducethe impurity. The grey points at zero are the Underwood values.
From this plot we can see that a sraight line extrapolation from two pointswith
impuritiesof 10'” and 10'® will over estimate the minimum reflux. The degr ee of
the overestimation depends on the degree of separation between light and heavy

key.

For nonideal systems, the techniques are the same as above. However, we
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have no Underwood value to compareto. For nonideal systemswe have
successfully enforced pinches adjacent to the feed, allowing many nonsharp
minimum reflux deter minations. For sharp splits, the behavior was smilar tothe
ideal examples, with inaccuracies forming at large numbers of trays. Figure 8
showsseveral column trajectoriesfor nonsharp minimum reflux calculationsfor a
propanol, isobutanal, butanol system, where propanol and isobutanol werethe

light and heavy key respectively. Recoveries of the light and heavy key in top and
bottom respectively were 0.8,0.9,0.95, and 0.99 for thefour diagrams. For each
example, wevaried the recovery of the heavy component, solving for the number
" of traysrequired in the top half of the column. The bottom half of the column was
pinched adjacent to the feed, smilar to the example shown in Figure 1. Note that
thelast curvesof plots (a) and (b) demonstrate the poor trajectories that can occur
when getting close to the saddle pinch.

Figure 9 showsthereflux ratio as a function of theimpurity of the heavy
component for each recovery. For lower recoveries the effect of the amount of
| impurity on thereflux ratio becomes smaller. For the 80% recovery example, the
sharp split minimum reflux could be extrapolated to zero with very littleerror.
However, for the 9% recovery the effect of theimpurity islarge, so we cannot be
sure how much we are over estimating the minimum reflux for a sharp split.

Figures 7 and 9 demonstrate how nonshar.p minimum reflux calculations
can beuseful for sharp split requirements. AsLevy et al. [1985] showed, thereflux
ratio can be very sensitive to the impurity of the nondistributing component.
However, for lower recoveries, this sensitivity decreases sgnificantly. Even for
relatively high recoveries, we can extrapolate nonsharp minimum reflux
calculationswith low impurities and at wor st dlightly overestimate the minimum
reflux ratjo.

11
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Error Detection

Figure 10 is an example of the inappropriate trajectories that can occur. It
shows the trgectories over the transform variable z. The top of the columnison
the left. The vertical lines show the boundaries of the collocation sections. The
slope of the light component becomes positive at the top of the second collocation
section. This should not occur. Once this ragged sort of trgjectory occurs, the
model can no longer be trusted. The model converges to a nonphysical solution.

Furthermore, even when the mole fraction trgectories appear smooth, the
trgjectories of the transformed mole fraction may not be smooth. As we describe
in the first paper of this series [Huss and Westerberg, 19954], we perform the

following transformation on mole fraction.

13
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2x.-1 = tanh(£,) | ©)

Figure 11 shows the mole fraction trgjectories (x) and transformed mole
fraction trgjectories (%) for the same column. The top figure looks fine, but the
bottom one shows the error occurring in the trace component. One might believe
that a mole fraction of less than 10* is not going to afect the model, but since we
perform a variable transformation, re-emphasizing the mole fractions near zero

and one, they can be very significant.

Even though we have these clear signs of inaccuracies, some of the
constant relative volatility examples went below Underwood's value before the
clear signs showed up. We created an extra tray in each section to test the
accuracy. The test tray took its input streams from the polynomials, and we
compared the output streams to the polynomial. We placed the test tray near the

14




Figure 11. Example if inaccuracy in trace component Volatilities (3,2,1)
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end of the collocation sections adjacent to the expected saddle pi nch point. Figure
12 showsthe error in four different polynomials, for a column recovering 98% of
the light key and 2% of the heavy key inthe distillate. Cl and C3 were the active
components. The figure shows that C3 in section 1 (thetop section in the column)
ismost sensitive. This error reflects the behavior we see in Figure 11. The other
errors don't show any erratic behavior as the number of traysincreases. Figure 13
showstheerror in C3 in section 1 for several recoveries. They all display the same
behavior. Theerror in the trace component in top section of the column should be
agood indicator of the onset of inaccuracies. Combined with requirements that
the light compoheht monotonically decreases going down the column, and that
the transformed trace component monotonically increases going down the
column, we should detect any problems.
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Figure 12. Errar in polynomial prediction for isolated trays. Recovery of keys
98%, Relativevolatilities (3,2,1)
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Figure 13. Error in C3, section 1 for arange of recoveries. Relativevolatilities (3,
2,1)

Sharp Split Calculations
To guarantee appropriate trajectories, we added the following equations.

ca o
Xy X347 =4 , .n=Lnpoints (5)
~C3 .C3 o L3 .

N a1 = dtfff , n=1l.npoints (6)

L3
.
Furthermore, we place a test tray at the bottom of the top collocation section and

01 -
We put a lower bound of zero on d|ff;‘ and an upper bound of zero on difj
bound the error on C3 to be between 0.1 and -0.1. Then wetry to increase the

number of trays as far as possible without chssi ng those bounds. With this
technique, we tested the effect of the order of the collocation on the accuracy of

17




themodel. Figure 14 shows the data for the 3,2,1 system, using 2,3,4, and 5
pointsin each collocation section in the top of the column. The plot shows reflux
ratio as a function of recovery. Underwood's values are shown by the striped line.
Figure 15 showsthe same type of plot for the 9,3,1 system. Wewould expéct that
all the curveswould at least be above minimum reflux, which isreflected in
Figure 15, but the 4 point collocation in Figure 14 isbelow Underwood for every
recovery. It ispossiblethat error occursin the model beforethetrajectoriesreflect
thiserror. Figure 16 showsthe sametype of figure, but for 30trays, rather thanthe
maximum befor e crossing the bounds. The columnsin Figure 14 each reached
over 35trays Notethat none of the modelsin Figure 16 are under estimating the
minimum reflux, and as the number of collocation pointsincreases we get closer
to the Underwood value. This figure shows morewhat we would expect, getting
better accuracy asthenumber of collocation points ‘
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increases. It is possible that the 4 point collocation in Figure 14 isinaccurate

because the fourth order polynomial produces unrealistic trgectories.

When going to large number of trays, the choi cé of the parameter a in
equation 3 is potentially important. Experience has shown that avalue of 0.1 is
good for most normal problems. When we do wish to go to an infinite number of
trays, (z = 1), itis possible to choose a such that the trajectory of one of the
components is straightened out. However, our efforts to solve for the parameter a
have not been successful. We have experimented with different values for a with
some success. Figures 17 and 18 show the affect of a on the reflux calculations
when using 2 point and 5 point collocations respectively. Each figure shows
Underwood's values with a striped line and the closest approximation with a
thick grey line. These figures demonstrate that 2 and 5 point collocation do not
underestimate the minimum reflux when we use error detection. We believe that
2 point collocation sections are best for distillation modeling since higher order
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Figure 17. Efect of parameter a on reflux determination with 2 collocation
points.
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polynomials can have trgjectories that are not realistic for distillation. However,
the 5 point collocation demonstrates how the accuracy can be improved with very
high order, and what the trend of collocation will be if it is accurate.

Minimum Reflux Algorithm

Figure 19 shows the suggested algorithm for minimum reflux calculations
using the collocation model. Thefirst step, solving the standard collocation model
to full equilibrium and heat balance is described in more detail in the third paper
of this series [Huss and Westerberg, 1995b]. Through this step, we get afully
thermodynamic, heat balanced model of a very small distillation column with
low reflux. If a pinch adjacent to the feed is expected, we enforce it, short
circuiting the collocation section between the pinch point and the end of the
column. The number of traysin this half of the column isno longer important, but
to get nice looking column profiles, we fix the average slope of one of the
components in that section and free up the number of trays. We discuss this
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techniquein detail in thethird paper of thisseries [Huss and Westerberg, 1995b].
If no pinch adjacent to the feed is expected, we go directly to the next step, -
meeting the recovery specification. Again, seethethird paper of this seriesfor a
detailed discussion of thistechnique. We free up thereflux ratio, distillate
flowrate, and number of traystop and bottofn whileincrementing therecovery of
the key components. The aver age slope technique mentioned above deter mines
the number of traysin each column section.

For nonsharp splits, the only remaining step istofix therecovery of athird
component and solve for the number of traysin the finite column section. For a
sharp split, werecommend two steps. First, we increase the number 6f traysin
each sectibn where a saddle pinch is expected, enforcing the bounds described
above. Thismay not work for azeotropic systems. For azeotropic systems, the
user would haveto look at the plots of the column and decide if klnksoccur or
only usethetest tray to detect error. The second method isto perform two
nonsharp calculations at very low impurities, but not close enough to zeroto
require enough trays for inaccuracies to occur. Using these two pointswe can
extrapolate thereflux ratio at zero impurity. |
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Figure 19. Minimum reflux algorithm

Difficulties

Aswe demonstrated in thefirst paper of this series [Huss and Wedterberg,. -
1995a], the variable transformations allow us to model larger columnswith
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higher purities. However, aswe've shown in this paper, difficulties still occur
when going towar ds saddle pinches. In this section we explicitly list the areas
wher ethis model breaks down, providing reasons wher ewe can. We provide this
deécription of difficulties to encourage discussion into the problems typically
enountered with any modeling technique. "

When modeling a large column section in which thetrgjectoriesareflat, the
collocation may develop kinks. The exponential transformation on trays reduces
this effect but does not eliminateit. For an infinite column section it is
theoretically possible to select a value for parameter a to straighten one of the
components. However, in practice it is difficult to solvefor the correct valuefor a.
Also, when dealing with afinite number of trays, z behaves somewhat smilarly
tos. When this problem occurs away from a saddle pinch, it ispossible to bypass
the difficulty by requiring a pinch point and ignoring a collocation point. But at
thispoint, we no longer have a collocation mode for that section of the column.

Further difficulties occur when we approach a saddle pinch. The kinksin
the trajectory begin to occur when going to a large number of trays, but the pinch
point bypass does not work. In the case of a pinch adjacent to the feed, the
collocation section adjacent to the feed will be completely flat, and the forced
pinch will be at the end of that collocation section, asdemonstrated in the right
half of Figure 10. In that case, we essentially short-circuit the collocation section at.
the very bottom of the column by ignoring the polynomial definition for the
liquid stream entering that section. The collocation section between the pinch
point and the feed tray is capable of remaining constant throughout. But for the
saddle pinch case, the collocation sections on either side of the saddle pinch have
substantial change. In Figure 10, above the saddle pinch, the two remaining
- components change. Below the pinch, all three components are moving. When we
'_ try to enforce the saddle pinbh by ignoring some polynomial definition in the top
collocation section, the model fails to converge.
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Conclusions

Theoretically, collocation provides the missing link for smulation of
minimum reflux conditions. For nonshar p splits, we can exactly calculate the
minimum reflux. For sharp splitswe can approximate minimum reflux,
overestimating the actual value. The minimum reflux problem exposes some
weaknesses of this collocation model. Even with variable transfor mations
enabling usto model higher puritiesand larger columns, the model breaks down
when approaching a saddle pinch. We observe that the approach allowsusto
extrapolate to the saddle pinch.
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Nomenclature

a Parameter for exponential transformation of stage location
S Stage number
z Transformation variable on stage number
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