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Abstract

This paper consider s the solution of systems of equations that are expressed by the two sets of equations: a global rectangular
system of equations involving more variables than equations, and a set of conditional equations that are expressed as
digunctions. The set of digunctions are given by equations and inequalities, where the latter define the domain of validity of
the equations. In this way the solution of such a system is defined by variables x satisfying the rectangular equations, and
exactly one set of equations for each of the digunctions. This paper focuses mainly in the solution of systems of linear
digunctive equations. Using a convex hull representation of the digunctions, the digunctive system of equations is converted
into an MELP problem. A sufficient condition is presented under which the model is shown to be solvable asan L P problem.
The extension of the proposed method to nonlinear digunctive equations is also discussed. The application of the proposed
algorithmsareillugrated with several examples.
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Introduction

A basic problem in Process Systems Engineering is the solution of sets of algebraic linear/nonlinear equations (Sargent, 1981).
. While a large body of literature has been reported on-these problems, much less attention has been given to the solution of
conditional models wher e the equations/inequalities of the unit depend on theregion that they were defined. A smple example
is the friction factor depending on whether the flow is laminar or turbulent Another example is when different empirical
correlations for mass balance are applied over several rangesin plant capacity. Stateva and Westerberg (1983) werethe firs
researchérsi to addresstheproblem, and developed a search method based on defining differem regionsd e p “ing on the possible
behavior of the unit Their method requires visiting the predefmedregk”™ OIK by one until the equations of a particular region
are satisfied. The extension of this solution approach with NL P techniques was performed by Zaher (1995). In a somewhat
related work, Billiard and Biegler (1992) extended their iterated L P techniques for systems of equations and inequalities to
gructured nonsmooth functions by using a continuous and an MILP formulation for the representation of max. functions by
Sahtnidisand Grossmann (1991).

Digunctive programming models that handle the conditional existence of process units in the optimization of linear
synthesis problems was proposed by Raman and Grossmann (1994). Aside from showing that generalized digunctive
programming facilitates the modeling of such systems they also proposed a logic based branch and bound algorithm to solve
digunctive linear programming models. TOrkay and Grossmann (1995a) addressed nonlinear digunctive programming models
for the synthesis of process systems, and proposed two logic based MINLP solution algorithms that improvetheefficiency and
robustness of the solution of these problems.

In this paper, it will be shown that the solution of conditional algebraic equations can be shown to be a particular case
of generalized digunctive programming models. Based on this observation, a solution approach for systems of linear
digunctive equations is proposed. To our knowledge this is the first time that an algorithm has been proposed for linear
conditional equations. The basic idea relies on using the convex hull representation for the systems of linear digunctive
equations, which givesrise to an MILP mode which has the important feature that it does not involve "big-M" congtraints.
Sufficient conditions are given that guarantee the proposed modd is solvable as a linear program. It is also shown that the
solution of systems of nonlinear digunctive equations can be achieved by extending the convex hull formulation of the
digunctionsin a Newton iteration scheme. The application of thealgorithmsis illugtrated with several examples including the
mass balance of process networks in which the linear equations are a function of the ranges of component flows, and smulation
of pipe networ ks with check valves.

Problem Formulation
Engineering design, synthesis and operation problems involving discrete choices can be modeled in the following digunctive
programming framework as shown in by Raman and Grossmann (1994):
min Z= £ Eciic+f(x)
€Dy k€K
st. g(x)=12
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When there is no objective function in the above problem, and no logic relations between the Boolean variables, problem (1)
reduces to the system of digunctive equations:
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f\ggjvill be shown in the next section a smplebut efficient solution method can bederived for thelinear casewith no degrees of
resdom.

Linear Systems
For theca$eof linear equationsand inequalities problem (2) is given by thefollowing sysem of dig unctiveequations,
Ax=b
Bax=bg :

i:/ Cikadi] Vkek )
whereit is assumed that x isan n-dimensional vector, the matrix of coefficients B& isftc* n-dimensional, and the dimension of
matrix A ismxn where m=n- £Pk ¢ Also for smplicity we assume that all the digunctions have the same number of

keK
terms. Hence, wedrop thesubscript k in theset D. To our knowledge, no method hasbeen proposed for solving problem (3).
A firg important question is the existence and uniqueness of solution for (3). It isclear that there existsat least one
solution X if the following condition holds:
Condition 1 Existence of a solution.
3ik Vk€K
suchthat .
Ax=b, BAxsbj*.andC/rxNd”
- -T
where the augmented matrix | AT, B?.B?2,.{ isnon-sngular.

Furthermore, the solution isuniqueif all but oneterm in each digunction arc not satisfied. That is,
cConditionll; CfcX>dfc Vi*i, keK.

Following thetrestment by Balas (1985) (see also Tdikay and Grossmaim, 1995b for derivation) the convex: hull of the
digunctive sysem in (3) isgiven by thefollowing system in which the variables x are disaggregated for each digunction and
by introducing variablesyik for theterms of each digunction:
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The above can be formulated as an MILP modd by requiring integrality of they variablesand by defining a smple objective

function: .
min 33 yix
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While the size of themodd can become reatively large, the importance of (5) isthat it doesnot involve "bigNT condraints.
Furthermore, the solution of the MILP in (S) isoften attained in the LP rdaxation step. A sufficient condition is given by the
following propostion.
Prepesiten= Congder that conditions | and |1 are satisfied for the linear digunctive problem in (3). Aswmi%hat the

inequalities C&x £djx are inactive, there exists a basic solution in the LP relaxation of (5) such Y=t
yFO. ieD, kekK.

1
BixXik ="M"'k} ieD, keK

freef-  Thetotal numbe of variablesin (S) is given by ntHDHKINHDIIKI corresponding to the dimensions of x, X, and Yk

Thetatal number of equationsin (4) (except inequalities) isgiven by:
(n-SPk)+n+DQ;pk) +K (6)
k k

Rearranging (6) the number of equationsis:
2n+(D-1)EPk+K (7

k
Hence, thenumber of degreesof freedom in (4) is:
$H=[IDIIKI-I]n-(D-1)Xpx+IDITKI-K 8




Since n££pk and IKfd, IDic2, it follows that (IDIKI-DN £(D - Nn £(D I)£pk, which |nturn implies that

<i>’\IDIIKI K. Therefore, afeasible sdlection for abasisin (5) isto sdlect IDIIKI 1 non-basic vanabl&y" Snce

the equations £ yik=I. ke K areincluded, thisyidds yfc=l, yikeO» ie D, keK. Furthermore, the remaining non-basic
variables can easily be chosen among the disaggregated variables X&, i*i. QED
It should be noted that if one or more inequdities are active a the solution, then depending on the number of
digunctions IKI, and the corresponding number of terms IDI, the arguments of the proof of the above theorem may or may not
apply. Hence, in that case the likelihood of solving the MILPasan LPis generdly decreased.

[llustrative Example 1:

Condder thefollovvlng system of linear dlqunctlveequalonssfmn in Fig.l:
u+ve=2
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Fig.l. Sysem of Linear Digunctive Equations in Example 1.
It is seen from Fig.l. that only the l€ft side of the digunction satisfies the sysem at u=| and v=L The sygem of
digunctive equationsin (9) arc formulated with the MILP convex hull formulation of (5) asfollows:
mn Z»y;+yz
sL u+v=2

U=ui+ U2

vavj +V2
vi=u
wsy (%
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u,ui,u2, v\\(lli VZ’Z\O 1yi y2=0,l
The problem is solved as ardaxed LP in 1 smplex iteration with GAMS/OSL (Brooke, et a., 1992) yidding the solution
point u=I, v=I.
Astraghtforward gpproach isonein which (9) is solved with the following "big-M" formulation:
min Zayj +y,
St. u+vm?
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usl+51y-i) an
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Thesolution to (11) is not attained asarelaxed LP presumably because of the presence of the big-M congraints. TheLP
relaxation yieldsthe valuey 1=0.6, y2=0.4, u=2, v=0.

Systems of Nonlinear Disjunctive Equations

In this section we will outline the extension of the proposed method for the solution of systems of linear digunctive equalons
to the case of nonlinear digunctive equations using a Newton iteration scheme,
Condder the fallowing system of digunctive nonlinear equations:
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h
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Linearization of the above system at any point X' is given by:
g(x) + Vg(xT(x-x#)=0 :
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Following asimilar treatment as in the linear case, the convex hull representati on of digunctive system of equationsin (13) is
given by:

g(x) + Vg(x')'(x-x') =0
= Xk )
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In order to determine anew guess from the convex hull formulation of the linearized disjunctive system of equations,
an MUP problem similar to (5) will be formulated where an objective function is defined such that the summation of all binary
variables y* isto be maximized. An important difference, however; with the linear case is that linearizations of the nonlinear
equations may lead to infeasibilities even if there is a solution in a given region. For this reason we introduce slack variables
in the spirit of the work by Bullard and Biegler (1991) and redefine and augmented penalty function. Hence, the MILP
subproblems have the form:

mn ZXZyx+w Jp+pn}+w Jop+an)+w]s

st *g(x")+Vg(x") " (X-X"):=pp ~pn-
X Xik -

1
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The weights wp,wq,ws are assumed to be selected so as to be sufficiently large (e.g., 1000 times the lagrange multipliers asin
Viswanathan and Grossmann, 1990).

The Newton solution algorithm consists then of the following steps:
L Set/=1, select tolerance e (e.g. &S10" ) set step reduction factor a (e.g. a=0. 25) select initial point x', and set initial error
4 wo,
2. Linearize the system of equations at the point X as in (13).

3. Formulate and solvethe MILP problem in (I S) to determine new values x'* of the continuous variables.
4. Determine the error of the function values y " as follows:

V=abs(g(x))+abs(h (X'} yiy W+
where  r=abs(ra(x) yL) if rg (xH>0

r=0 otherwise
a) If~ft, stop.
b) IV totf, setx’*’—x +a(x"-x"). Set/=/+/, go to step 2.
0) If Vet st XM=, set /=/+7, go to step 2.

Illustrative Example - 2:

Consider the following system of nonlinear digunctive equations that is shown in Fig.2:
u+v=2

(16)
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Fig.2. Sygem of Nonlinear Digunctive Equations in Example 2.

Applying the proposed procedure with a tolerance of t=\0" the problem is solved in 13 iterations starting from the initial point
(0,0). '




Examples
In this section we present larger examplesto illustrate the application of the proposed methods.

Example 3. Linear Process Simulation Problem

Fig.3. Flowsheet of the Linear Process Simulation Problem.

In this problem, there are 6 processing units with multiple input/output streams as shown in Fig.3. Each unit has
three operating regions with different equations depending on their primary product flowrate as shown in Table 1. Fixing Fi to
47.5, the digunctive mode consists of 13 variables, 2 global linear equations and 6 digunctions each consisting of 3 terms
with one or more equations. The MILP corresponding to (5) consists of 18 0-1 variables, 66 continuous variables and 89
equations. Theproblem was solved in 38 iterationswith GAM SOSL and only Snodesarevisited wereexamined in thebranch
and bound search requiring a total CPU time of 0.43 seconds on an IBM RS6000/530. The same problem is solved in 158
iterationsand 38 nodesin 1.32 secondswith the" big-M" formulation.

Table 1. Material balance equations for units in Example 2.

Unit  Main Prod Interval LB B Mass Balance Coefficients
1 =1 -1 0 50 Fe: 110 F10:0.05
2 50 80 115 0.10
3 80 150 120 0.20
2 Fy 1 0O . B F,:0.50 F;: 0.80
2 50 100 047 0.75
3 100 150 , 045 0.70
3 F4 1 0 Fg 170 Fo: 0.67
2 50 rh%) 180 0.70
3 1 187 0.75
4 Fis 1 né) Fs 118 F1,:0.23
2 50 90 115 0.25
3 90 140 110 030
5 Fl4 1 0 40 F.:0.37 F13:1.20
2 40 80 035 : 125
3 80 130 030 130
6 Fs 1 0 20 F14:1.15
2 20 45 110
3 45 ) 102

Example4: Nonlinear Systems of Equations
The following system of digunctive nonlinear equations were considered in thisexample:
X1t X2 = 14

[xa = (xz)z] v [xl =(xy +Ji)=]

x1 56

[xz= X3+2 [x; =4J ] 7
x3<2 ] X222
[xs—(xnl)’] [X3 (x4+2)2]

X352 x322

Using as a darting point x= (I 1,1,1) and a tolerance of e=10** the algorithm converged to the solution
x=(12.2343,1.7657,1.1 177,0.0572) in 4 iterations requiring 11 seconds with GAMSOSL on an IBM RS6000/530.

Example 5. PipeNetwork

Condder the pipe network described in Bullard and Biegler (1992), consisting of 22 nodes, 38 pipes and 5' check valv&as
shown in Fig. 4. The pipe network can be modeled by the following system of digunctive equations:
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TQi _Qji=wi Vnodei
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Hj; = K sign(Q;))Q? Varcsi,j without valve

KQ KQJ-Hy L (18)
[ HI]SS ]v[ Hijzs Varcsi,j with valve
Qij~0O - Varcsi,j with valve
where5isasmall tolerance

3

Fig.4. Pipeline example with five check valves.

Applying the proposed method with a tolerance of e=10**% convergence isachieved in 10 iterationsrequiring 3.8 CPU seconds
with GAMSOSL on an IBM RS6000/530 wor kstation. The progress of iterationsis summarized in Table 2.
Table 2. Summary of iterations for pipe.network example.

Iteration Initial 1 2 3 4 5 6 7 8 9 10
Error 34.96303 8.47843 2.10858 0.53012 0.13250 0.03312 0.00828 0.00207 0.00051 0.00012 0.00003

Conclusions
This paper has addressed the solution of algebraic digunctive equations. For thelinear case, it has been shown that the problem
can be solved as an MILP problem that is often solvable as an LP. The extension to the nonlinear case has also been

considered although no theoretical guarantee of conver gence was given. The effectiveness of the proposed methods has been
illustrated with several example problems.
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