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Abstract
This paper considers the solution of systems of equations that are expressed by the two sets of equations: a global rectangular
system of equations involving more variables than equations, and a set of conditional equations that are expressed as
disjunctions. The set of disjunctions are given by equations and inequalities, where the latter define the domain of validity of
the equations. In this way the solution of such a system is defined by variables x satisfying the rectangular equations, and
exactly one set of equations for each of the disjunctions. This paper focuses mainly in the solution of systems of linear
disjunctive equations. Using a convex hull representation of the disjunctions, the disjunctive system of equations is converted
into an MELP problem. A sufficient condition is presented under which the model is shown to be solvable as an LP problem.
The extension of the proposed method to nonlinear disjunctive equations is also discussed. The application of the proposed
algorithms are illustrated with several examples.
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Introduction
A basic problem in Process Systems Engineering is the solution of sets of algebraic linear/nonlinear equations (Sargent, 1981).
While a large body of literature has been reported on these problems, much less attention has been given to the solution of
conditional models where the equations/inequalities of the unit depend on the region that they were defined. A simple example
is the friction factor depending on whether the flow is laminar or turbulent Another example is when different empirical
correlations for mass balance are applied over several ranges in plant capacity. Stateva and Westerberg (1983) were the first

i to address the problem, and developed a search method based on defining differem regions d e p ^
behavior of the unit Their method requires visiting the predefmedregk^ OIK by one until the equations of a particular region
are satisfied. The extension of this solution approach with NLP techniques was performed by Zaher (1995). In a somewhat
related work, Billiard and Biegler (1992) extended their iterated LP techniques for systems of equations and inequalities to
structured nonsmooth functions by using a continuous and an MILP formulation for the representation of max. functions by
Sahtnidis and Grossmann (1991).

Disjunctive programming models that handle the conditional existence of process units in the optimization of linear
synthesis problems was proposed by Raman and Grossmann (1994). Aside from showing that generalized disjunctive
programming facilitates the modeling of such systems they also proposed a logic based branch and bound algorithm to solve
disjunctive linear programming models. TOrkay and Grossmann (1995a) addressed nonlinear disjunctive programming models
for the synthesis of process systems, and proposed two logic based MINLP solution algorithms that improve the efficiency and
robustness of the solution of these problems.

In this paper, it will be shown that the solution of conditional algebraic equations can be shown to be a particular case
of generalized disjunctive programming models. Based on this observation, a solution approach for systems of linear
disjunctive equations is proposed. To our knowledge this is the first time that an algorithm has been proposed for linear
conditional equations. The basic idea relies on using the convex hull representation for the systems of linear disjunctive
equations, which gives rise to an MILP model which has the important feature that it does not involve nbig-Mn constraints.
Sufficient conditions are given that guarantee the proposed model is solvable as a linear program. It is also shown that the
solution of systems of nonlinear disjunctive equations can be achieved by extending the convex hull formulation of the
disjunctions in a Newton iteration scheme. The application of the algorithms is illustrated with several examples including the
mass balance of process networks in which the linear equations are a function of the ranges of component flows, and simulation
of pipe networks with check valves.

Problem Formulation
Engineering design, synthesis and operation problems involving discrete choices can be modeled in the following disjunctive
programming framework as shown in by Raman and Grossmann (1994):

min Z= £ Eciic+f(x)
i€Dk k€K

s.t. g(x) = l

V h ik(x)
k e K (1)

:Yik
:True

x e X, cue ^ 0, Y = {True,False}
When there is no objective function in the above problem, and no logic relations between the Boolean variables, problem (1)
reduces to the system of disjunctive equations:

g(x) = 0

xeX



As will be shown in the next section a simple but efficient solution method can be derived for the linear case with no degrees of
freedom.

Linear Systems
For the ca$e of linear equations and inequalities problem (2) is given by the following system of disjunctive equations,

Ax=b

where it is assumed that x is an n-dimensional vector, the matrix of coefficients B& is ftc* n-dimensional, and the dimension of
matrix A is mxn where m = n - £Pk • Also for simplicity we assume that all the disjunctions have the same number of

keK
terms. Hence, we drop the subscript k in the set D. To our knowledge, no method has been proposed for solving problem (3).

A first important question is the existence and uniqueness of solution for (3). It is clear that there exists at least one
solution x if the following condition holds:
Condition I: Existence of a solution.

3ik Vk€K
such that
Ax = b, B^xsbj^.andC^x^d^

where the augmented matrix I AT ,B?,B?2 , .J is non-singular.

Furthermore, the solution is unique if all but one term in each disjunction arc not satisfied. That is,
ConditionII: CfcX>dfc V i * i , k e K .

Following the treatment by Balas (1985) (see also Tdikay and Grossmaim, 1995b for derivation) the convex hull of the
disjunctive system in (3) is given by the following system in which the variables x are disaggregated for each disjunction and
by introducing variables yik for the terms of each disjunction:

Ax = a

i€D
x e X , yik^O

The above can be formulated as an MILP model by requiring integrality of the y variables and by defining a simple objective
function:

s.t. Ax = a
= I>ik k e K

l

i€D
x e X , yfc=0,l

While the size of the model can become relatively large, the importance of (5) is that it does not involve "big-NT constraints.
Furthermore, the solution of the MILP in (S) is often attained in the LP relaxation step. A sufficient condition is given by the
following proposition.
Proposition: Consider that conditions I and II are satisfied for the linear disjunctive problem in (3). Assuming that the

inequalities C?.x £ dj. are inactive, there exists a basic solution in the LP relaxation of (5) such
y

Proof: The total number of variables in (S) is given by n+IDHKIn+IDIIKI corresponding to the dimensions of x, xik and
The total number of equations in (4) (except inequalities) is given by:

( n - S P k ) + n + DQ;pk) + K (6)
k k

Rearranging (6) the number of equations is:
2n + ( D - l ) £ P k + K (7)

k

Hence, the number of degrees of freedom in (4) is:
<l> = [IDIIKI-l]n-(D-l)Xpk+IDIIKI-K (8)



Since n £ £ p k and IKfel, IDfc>2, it follows that (IDIIKI-l)n £ (D - l)n £ (D - l ) £ p k , which in turn implies that
k k

<!> ̂ IDIIKI-K. Therefore, a feasible selection for a basis in (5) is to select IDIIKI-1 non-basic variables y^. Since

the equations £ yik=l. ke K are included, this yields yfc=l, yik=O» ie D, ke K. Furthermore, the remaining non-basic
variables can easily be chosen among the disaggregated variables X&, i*i. Q ED

It should be noted that if one or more inequalities are active at the solution, then depending on the number of
disjunctions IKI, and the corresponding number of terms IDI, the arguments of the proof of the above theorem may or may not
apply. Hence, in that case the likelihood of solving the MILP as an LP is generally decreased.

Illustrative Example 1:
Consider the following system of linear disjunctive equations shown in Fig.l:

VU
Fig.l. System of Linear Disjunctive Equations in Example 1.

It is seen from Fig.l. that only the left side of the disjunction satisfies the system at u=l and v=L The system of
disjunctive equations in (9) arc formulated with the MILP convex hull formulation of (5) as follows:

min Z»
s.L u +

U = Ui + U2
v a vj + V2

v2 = u2

Yl + Y2 * 1
u,ui,U2,v,vi,v2^0, yi,y2=0,l

The problem is solved as a relaxed LP in 1 simplex iteration with GAMS/OSL (Brooke, et al., 1992) yielding the solution
point u=l, v=l.

A straightforward approach is one in which (9) is solved with the following "big-M" formulation:
min Z a yj + y2
s.t. 2

( y i )
- 5 ( l - y 2 ) < v - u - 1 ^ 5 ( l - y 2 )

v< l + 5( l -y 2 )
yi+Y2 = l

u,v^0, yi,y2=0,l
The solution to (11) is not attained as a relaxed LP, presumably because of the presence of the big-M constraints. The LP
relaxation yields the value y 1=0.6, y2=0.4, u=2, v=0.

Systems of Nonlinear Disjunctive Equations
In this section we will outline the extension of the proposed method for the solution of systems of linear disjunctive equations
to the case of nonlinear disjunctive equations using a Newton iteration scheme.

Consider the following system of disjunctive nonlinear equations:
g(x) = 0

<0j V k € K

Linearization of the above system at any point x; is given by:

(13)



Following a similar treatment as in the linear case, the convex hull representation of disjunctive system of equations in (13) is
given by:

g(x') + Vg(x ' ) T (x-x ' ) = 0

lf
(14)

I y i k = l VkeK
ieD

In order to determine a new guess from the convex hull formulation of the linearized disjunctive system of equations,
an MUP problem similar to (5) will be formulated where an objective function is defined such that the summation of all binary
variables y^ is to be maximized. An important difference, however; with the linear case is that linearizations of the nonlinear
equations may lead to infeasibilities even if there is a solution in a given region. For this reason we introduce slack variables
in the spirit of the work by Bullard and Biegler (1991) and redefine and augmented penalty function. Hence, the MILP
subproblems have the form:

min Z J J
! ks.t! kg(x')+Vg(x')T(x-x'):

Vr ik(x0Tx ik

J
- Vrik(xOTx/]yik +s

=l VkeK

i,k

x € X , pp!pN,qp,qN.s£O, yfc =0,1
The weights wp,wq,ws are assumed to be selected so as to be sufficiently large (e.g., 1000 times the lagrange multipliers as in
Viswanathan and Grossmann, 1990).

The Newton solution algorithm consists then of the following steps:
L Set /=1, select tolerance e (e.g. &S10"4), set step reduction factor a (e.g. a=0.25), select initial point x', and set initial error

2. Linearize the system of equations at the point xl as in (13).
3. Formulate and solve the MILP problem in (IS) to determine new values x/+y of the continuous variables.
4. Determine the error of the function values y + i as follows:

V=abs(g(x/))+abs(hik(x
/;

where r _
r = 0 otherwise

a) I f ^ f t , stop.
b) If V+t>tf, set x /+/=x /+a(x /+/-x /). Set /=/+/, go to step 2.
c) If <^/+7<<t)/, set xM=xl, set /=/+7, go to step 2.

Illustrative Example 2:
Consider the following system of nonlinear disjunctive equations that is shown in Fig.2:

u + v = 2

uS0.5
(16)
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Fig.2. System of Nonlinear Disjunctive Equations in Example 2.

Applying the proposed procedure with a tolerance of t=\0A the problem is solved in 13 iterations starting from the initial point
(0,0).



Examples
In this section we present larger examples to illustrate the application of the proposed methods.

Example 3: Linear Process Simulation Problem

F, F

Fig.3. Flowsheet of the Linear Process Simulation Problem.
In this problem, there are 6 processing units with multiple input/output streams as shown in Fig.3. Each unit has

three operating regions with different equations depending on their primary product flowrate as shown in Table 1. Fixing Fi to
47.5, the disjunctive model consists of 13 variables, 2 global linear equations and 6 disjunctions each consisting of 3 terms
with one or more equations. The MILP corresponding to (5) consists of 18 0-1 variables, 66 continuous variables and 89
equations. The problem was solved in 38 iterations with G AMS/OSL and only S nodes are visited were examined in the branch
and bound search requiring a total CPU time of 0.43 seconds on an IBM RS6000/530. The same problem is solved in 158
iterations and 38 nodes in 1.32 seconds with the "big-M" formulation.

Table 1. Material balance equations for units in Example 2.

Unit Main Prod Interval LB UB Mass Balance Coefficients

1

2

3

4

5

6

Fr

Fg

F4

Fis

Fl4

F5

1
2
3
1
2
3
1
2
3
1
2
3
1
2
3
1
2
3

0
50
80
0

50
100

0
50
no

0
50
90
0

40
80
0

20
45

50
80
150
50
100
150
50
no
180
50
90
140
40
80

130
20
45
75

F6: 1.10
1.15
1.20

F2:0.50
0-47
045

Fg: 1.70
1.80
1.87

F3: 1.18
1.15
1.10

Fu:0.37
035
030

F14:1.15
1.10
1.02

F10:0.05
0.10
0.20

F7: 0.80
0.75
0.70

F9: 0.67
0.70
0.75

F12:0.23
0.25
030

F13:1.20
125
130

Example 4: Nonlinear Systems of Equations
The following system of disjunctive nonlinear equations were considered in this example:

+ x2 = 14

(17)

Using as a starting point x=(l,1,1,1) and a tolerance of e=10*4, the algorithm converged to the solution
x=(12.2343,1.7657,l.l 177,0.0572) in 4 iterations requiring 1.1 seconds with GAMS/OSL on an IBM RS6000/530.

Example 5: Pipe Network
Consider the pipe network described in Bullard and Biegler (1992), consisting of 22 nodes, 38 pipes and 5 check valves as
shown in Fig. 4. The pipe network can be modeled by the following system of disjunctive equations:



Hy

j

Hij<5
KQJ-Hy

Qij^O
where 5 is a small tolerance

Vnodei

Varcs i, j without valve

Varcs i, j with valve

Varcs i, j with valve

2 3 - 7 _

(18)

Fig.4. Pipeline example with five check valves.

Applying the proposed method with a tolerance of e=10*4
t convergence is achieved in 10 iterations requiring 3.8 CPU seconds

with GAMS/OSL on an IBM RS6000/530 workstation. The progress of iterations is summarized in Table 2.
Table 2. Summary of iterations for pipe network example.

Iteration

Error
Initial

34.96303

1

8.47843

2

2.10858

3
0.53012

4

0.13250

5
0.03312

6

0.00828

7

0.00207

8

0.00051

9

0.00012

10

0.00003

Conclusions
This paper has addressed the solution of algebraic disjunctive equauons. For the linear case, it has been shown that the problem
can be solved as an MILP problem that is often solvable as an LP. The extension to the nonlinear case has also been
considered although no theoretical guarantee of convergence was given. The effectiveness of the proposed methods has been
illustrated with several example problems.
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