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In this paper, the operational planning problem for utility sys-
tems is formulated as a mixed-integer linear program (MILP). For
multiperiod operation with varying demands for utilities, the op-
timal choice of units for each period is determined. The objective
function accounts for both the operating costs for each period and
changeover costs for startup/shutdown of units between periods of
operation. A two-stage approach is proposed that requires the solu-
tion of MILP subproblems coupled with a shortest path algorithm,
resulting in orders of magnitude reduction in computation time as
compared to a direct MILP solution using branch and bound enu-
meration. The computational requirements of the algorithm are
linear with respect to the number of periods and global solution of
the MILP is guaranteed. Solution of a test problem shows savings
of the order of 3% in total annual cost of operation with the main
advantage being the simplicity of the proposed plan (few start-ups
and shutdowns). The solution method is also extended to the case
for ramp function change in demands.

1 Introduction

A common operational feature of utility systems in the industry is varying
utility demands. This may be due to changing feed / product specifications
in the operation of continuous plants or changes in operations in a processing
schedule for batch plants. Utility systems are therefore designed to handle
a range of demands because of the uncertain nature of utility demands. A
common example is a cogeneration unit satisfying power and steam demands
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which could vary over a given time horizon. For a given demand, a cogeae?-
ation unit could satisfy the demand through many different choices of units
because of the design capability to handle demand uncertainty. The schedul-
ing of equipment in a utility plant to meet varying demands is an established
operational problem (Hobbs [4]). The optimal choice of units would appear to
be the lowest operating cost configuration that meets the demands for that
period.

However, when demands change in different periods of operation and the op-
timal choice of units changes, one will normally incur a changeover cost for
startup and shutdown of units. The changeover costs link the optimization
problem between successive time periods. Thus, the choice of same units for
all periods or choosing units based on optimal operating costs for individual
time periods ignoring startup and shutdown costs could lead to suboptimal
solutions. Solution of the multiperiod operational planning problem is there-
fore essential to determine the choice of operating units and their operating
conditions over the planning horizon.

Utility systems design and synthesis under uncertainty have been studied by
Papoulias and Grossmann [8]. Foster [3] reported implementation of a utility
planning problem in the industry. In his study, the scheduling of units for op-
eration was accomplished along with manipulation of continuous variables to
optimize operating costs for each period of operation. The operational plan-
ning of cogeneration systems has been presented by Ito et al. [5] in which the
authors have determined the optimal choice of units for a 24 hour planning
horizon. Nath and Holliday [7] reported successful implementation of opti-
mization of industrial utility systems using a MILP formulation to decide the
choice of units for given values of demands. Kalitventzeff [6] also presented
a MINLP problem for management planning of utility networks for chemical
plants. However, all the above studies are either based on optimization for a
single period of operation or do not include the potential cost of changeover
between periods of operation. A review of utility resource planning by Hobbs
[4] presents the current problems facing the industry for various planning hori-
zons. As indicated in the article, operations planning over a 1 week horizon is
very common under the conditions of varying load forecasts requiring optimal
choice of operating units to meet the loads.

In this work, a MILP model is presented for operational planning of a utility
system for multiperiod operation. The cost of changeover between periods is
accounted for along with operation costs in the model. It is assumed that the
utility system can meet all values of demands by optimal choice of operating
units and conditions and/or by external purchase of utilities. The choice of
operating units (on/off status) or alternative operating modes (e.g. extractive
vs condensation turbine) are made using binary 0-1 variables. Given P time
periods with varying demands, the aim is to determine the optimal operational



planning schedule that meets the demands at lowest total cost.

For a large utility system, the MILP model solution time can be very large even
for a single period of operation. For multiperiod operation planning models,
the number of discrete variables increase with number of periods. The cou-
pling equations between periods involve only binary variables for representing
startup and shutdown costs of units between consecutive periods. Due to this
linking between periods, the solution time can increase exponentially with the
number of periods, making the problem computationally intractable. Given
the numerous available configurations for each period, an exhaustive search
of all possible operation plans for P periods would be computationally ineffi-
cient and impossible. It is therefore of significance to develop a computational
strategy for efficient solution of the operational planning model.

The paper is presented as follows. We define the problem in section 2, followed
by the model formulation in section 3. The problem structure that will be ex-
ploited is described in section 4. In section 5, a decomposition algorithm that
relies on use of MILP subproblems and a shortest path algorithm is presented
for the operational planning problem. Section 6 describes a modification of the
algorithm that only requires partial generation of solutions to reduce compu-
tational requirements. Further improvements to the algorithm are proposed
in section 7 followed by a description of modifications to the algorithm for
extension to the case of ramp function demands in section 8. Finally, example
problems are presented in section 9 to illustrate the solution techniques.

2 Problem definition

Given are a fixed flowsheet configuration of a utility system and process con-
ditions for all utility levels, namely, electricity/power demands, steam, wa-
ter/refrigerant. Also specified are utility conditions of BFW, natural gas etc.
required for the operation of the utility plant. A multiperiod scenario is con-
sidered, where the utility demands are changing over a given time horizon.
The utility demands are constant or may vary linearly within each time pe-
riod t = 1 . . . P. Also, given are the operating costs and startup/shutdown
costs for each equipment. The length of time period may be different for dif-
ferent periods. The operational planning problem is to determine the choice of
operation of units for each period that minimizes cost, and that is subject to
meeting the utility demands for each period over the entire planning horizon.

The following points need to be taken into account in our problem definition.

(i) Each unit has a minimum and maximum capacity of operation. However,
the utility system and its options for external purchases of utilities is



assumed to be feasible for all demands in the time horizon (that is, there
exists at least one operation mode that can meet any given demand).
This can easily be accomplished by considering purchase of electricity
and steam from an external source.

(ii) There are startup and shutdown costs for units. Thus, if any unit is shut
down for a certain period, there is a shutdown cost, and when restarted
in another period, it incurs a startup cost. For example, startup of a
boiler involves inspection, cleaning, hydrostatic testing, calibration of in-
struments, steam line cleaning, valve testing etc. It is also necessary to
start up with a dow gradient of temperature with respect with time to
avoid thermal fatigue requiring initial operations at low capacity. These
contribute towards the cost of startup operation for the equipment [11].

(iii) There is a fixed charge and a variable operating cost for units in addition
to changeover costs. The fixed charge is associated with costs that are
incurred for the replacement of equipment and that result from wear and
tear of equipement during operation.

3 Model Formulation

We assume linear performance equations for simplicity. Nonlinear models can
be treated in a similar manner but at higher computational expense. Also,
see Papoulias and Grossmann [9] for converting nonlinear equations to linear
equations by discretization.

The following sets, variables and parameters are defined.

(i) Indices

n = Unit number.
t = Time period.
p = Utility level for power.
r = Utility level for steam

e.g. High pressure (HP), Medium pressure (MP), Low pressure steam(LP)
b = Utility level for water/refrigerant.
g = Operation mode for unit (e.g. extraction to MP vs LP for steam turbines).

(ii) Sets

U = {n | n = 1 . . . N} is the set of units.
T = {t 11 = 1 . . . P} is the set of time periods.
Jn = {m | Unit n has an input fiowrate from unit m }
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^ {m | Unit n has an output flowrate to unit m }
gt {Variables associated with unit n in operation mode g in period t }
c= {g | Unit n operates in mode g }

(iii) Continuous Variables

Fmnt =Flow rate from unit m to unit n in period t.
Wnpt =Power production of level p in unit n in period t
WPpt=Power purchase of level p in period t.
Qnri =Steam production of level r in unit n in period t.

=Water/Refrig. production of level 6 in unit n in period t

The utilities are positive when produced and negative when consumed in the
unit.

(iv) Binary Variables

yngi = 1 if unit n operates in mode g in period t.
= 0 otherwise.

yrint^ 1 if unit n operates in period t.
= 0 otherwise.

zm = 1 if unit n incurs startup cost in period t.
= 0 otherwise.

zsnt = 1 if unit n incurs shutdown cost in period t.
= 0 otherwise.

(v) Parameters

anm =Variable cost coefficient for flow from unit n to unit m .
onp =Variable cost coefficient for unit n producing power level p .
anr =Variable cost coefficient for unit n producing steam level r .

Variable cost coefficient for unit n producing water/refrig. level 6
Fixed cost for flow from unit n to unit m .
Fixed cost for unit n producing power level p .
Fixed cost for unit n producing steam level r .
Fixed cost for unit n producing water/refrig. level 6 .
Fixed startup cost for unit n.
Fixed shutdown cost for unit n.
Variable cost coefficient for purchase of power level p.
Total demand of power level p in period t.
Total demand of steam level r in period t.
Total demand of water/refrig. level b in period t.

hmn =Enthalpy of steam from unit m to unit n in period t.
rjn = Efficiency of unit n.

bnm
Kp =
bnr =

cpp



We now define the following equations representing the mass and energy bal-
ances and operational status, of equipment for the utility system.

(i) Mass bfllftmffi for unit n

— Y^ r = Q v ^ - i P n = 1 TV • (1\

(ii) Energy balance in each unit n

Fnmt/lnm = E ^nrt + E ^npt + E ^W (2)
r V b

Vt = l . . . P , n = l . . . J V

(iii) Logical constraints for operational status of unit in period t

Note that depending on the unit n and its operational mode g in period t,
there are associated variables defined in set Sngt. Thus

pVngt < Fnmt < ^FVngt , Fnmt € Sngt Vm, Tl, p, t (3)

^ ^ n p t ^ H ^ t , WnpteS^tVp,!!,^* (4)

< Qnrt < ^Vngt , Qnrt 6 5n p ( Vr, Tl, Q, t (5)

< Vnbt < VvVngt , Vnbt G 5n^t V6, Tl, 5, t (6)

where n^),^^ are valid lower and upper bounds respectively.

(iv)Operational status of unit in period t

Unit is 4on' if it is operational in any one mode g.

Vngt<yrtnt Vn,g,t (7)

(v)Single Operational mode for unit n in period t

Unit is operational in only one mode g.

(8)
g€En



(vi)Satisfaction of utility demands in period t

+ E Wnpt> DWpt Vp, t (9)
n

Vr,< (10)

Vb,t (11)

(vii)Startup variables for unit n in period t

For each unit n, if it is 'on' in period t and 'off' in period t - 1, then Zm, the
startup variable, is equal to one.

Znt > yrtnt - ynn,t-i Vn, t (12)

where yn^o = 0

(viii)Shutdown variables for unit n in period t

For each unit n, if it is 'off' in period t + 1 and 'on' in period i, then zsnt, the
shutdown variable, is equal to one.

zsni > yrtnt - ynnMl V?i. t (13)

where yrinf+i = 0

It may be noted from (12) and (13) that variables znt and zsni take only
binary values even if they are treated as continuous variables, hence the binary
constraint on them may be relaxed.

(ix)Objective function

The objective is to minimize the total cost of operation over all time periods.
The fixed and variable cost of operation of each unit for each period and
changeover costs between periods are included in the objective function.

minC =
t n m



b

CSnZSni)]

(14)

The MILP model (PI) then consists of minimizing (14) subject to the con-
straints in (1) - (13). The following points are relevant to model (PI):

(i) Operating costs for each period should weighted by the length of time
periods.

(ii) The efficiency of the unit is assumed to be constant over the operating
range.

(iii) The condition of constant demand may be relaxed to include ramp func-
tion variation of demands. Within a period, the demand is allowed to vary
linearly for fraction of time at. For a ramp function change in demands,
we obtain a parametric MILP. It is assumed that a single configuration
will be used for that period in order to prevent many changeovers within
that period. The model formulation for that case is explained in section
8.

4 Problem Structure

in order to gain better insight into the mathematical structure of the mul-
tiperiod problem in the previous section, consider the following variables for
defining a compact representation.

Xt = {Fnmiy WnpU WPpU QnrU Vnbi} V n, m,p, r, b
Yt = {ynntiVngt} V fl, Q

C\ = {amn,anp,anr,aflb,cpp} Vn,m,p,r,6
C2 = {bmn, bnp, 6nr , bnb} V n,m,p,r,6

) Vn

The MILP problem (PI) given by equations (1) to (14) may then be repre-
sented in the following general form.
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P2 : min C =

subject to

(15)

AXt<bt

Zt > RVt - Siy t_! - S2Vt+1

V t = l . . . P
Yt € {0,1}

(16)

(17)
(18)

where A,G,F,R,S1,S2 are conformable matrices.

It should be noted that in the absence of changeover costs, equation (18)
can be eliminated and the problem can be easily decoupled and solved for
each period t separately. However, in a realistic problem changeover costs are
important, and therefore equation (18) that couples the periods of operation
must be included, resulting in a large MILP. The coupling constraints are
only in the binary variables Yt and Zt (which takes only binary values). The
structure of the MILP (P2) for a problem in T periods is shown in Figure 1.

Period 2

x y

PwkxJT
x y

Jo

I I
^Unking

I constraints

continuot triabtos

Y. Binary

Fig. 1. Problem structure for multiperiod case

Clearly, the size of this problem scales linearly with the number of periods. The
computation time would scale exponentially due to an increase in the number
of binary variables. Even for a small MILP with 20 units, the solution time
for a 12 period problem with 240 binary variables (20 variables per period)
could be too large. This motivates the need to exploit the structure of the
problem to develop an efficient algorithm. In the following section, a two stage
algorithm is proposed for which the solution time increases linearly with the
number of time periods. The main idea behind the approach is to remove the
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linking constraints (18) and solve for each period independently. The effect of
the linking constraints on the objective function value is accounted for in the
second stage in which the global optimal solution of the problem is determined.

5 Decomposition algorithm for operational planning problem

The proposed decomposition algorithm for the problem exploits the fact that
the solution of problem (P2) without constraints (18) is also a feasible solution
to problem (P2). The following properties are straightforward and are stated
below.

Property 1

The solution of the relaxed MILP formulation (MP) is a feasible solution for
the problem (P2) where (MP) is formulated as

min C = Y\C\TXt + C2TYt)
XuYt ~ l J

subject to (MP)

dt V t =
{0,1}

Note that (MP) is a relaxation of (P2) because it excludes the constraints (18).
The solution of (MP) is such that any choice of Yt gives a feasible choice of
variables Zt for (P2). The objective value of (P2) and (MP) may be different
and the solution of (MP) would be a lower bound to the (P2) since C$ > 0.
Note also that the problem (MP) is separable into P subproblems of smaller
dimension and may be solved independently to obtain a feasible solution to
(P2). Clearly, the solution of (MP) yields the minimum operating cost con-
figuration for each period t. By including integer cuts to exclude previously
obtained configurations (see Duran and Grossmann [2]), it will be possible to
obtain the operating costs for all feasible configurations for each period t. Let
4>k

t represent the operating cost for the &th configuration in period t. Let the
configuration be denoted by Yt

k and associated continuous variables by X*.

Property 2

Assume all feasible configurations for meeting the demands for a given period
t can be enumerated (by choice of Yt). Let there be Bt configurations in period

10



t. We may then construct a graph containing J2t &t nodes with operating costs
for given configuration as the cost at that node. Create a source s before period
1 and sink o after period P. Join the nodes in any period t with directed arcs
to adjacent nodes in period t + 1 . Each node has a corresponding configuration
obtained from solution of (MP). The startup/shutdown costs are known from
the solution Yt

k. Let the transition costs from jth node in period t to kth node
in period t + 1 be ip(k. Let the cost of the directed arcs be the transition costs
(fpt

k. The shortest path between the source and sink is the optimal operational
plan for the problem (P2).

Proof: The graph obtained by the above construction is bipartite with respect
to adjacent periods of operations as shown in Figure 2. Each node in the
graph represents a feasible solution with the cost of the node representing the
operating cost for that configuration. The directed arcs represent all possible
transitions from period t to t + 1. Thus, all paths from s t o o enumerate
the total cost of operation accounting for all possible configurations in each
period. The shortest path therefore represents the choice with the least cost
of operation through P periods. QED

opmating cost

" ^ 10

immto* tokitiont t

traml ion cost

Fig. 2. Directed Graph for shortest path algorithm

It may be noted that if there are TV units, then there are potentially 2N pos-
sible configurations in each period. The complexity of enumerating all con-
figurations for all P periods is O(2NP). The shortest path algorithm has a
complexity of the number of arcs in the graph. Thus, for this algorithm, the
complexity of determining the shortest path is O(22(N+1)P). The complexity
of the algorithm is therefore linear in the number of periods as compared to
the solution without decomposition which is exponential in the number of
periods P. It is evident that enumerating all possible configurations for each
period to determine the nodes of the underlying graph could be expensive if
the plant has a very large number of units. However, it may be possible to
avoid exhaustive enumeration by partially enumerating the nodes as explained
in the next section.
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6 Modified shortest path algorithm with partial enumeration

It is clear that enumerating or generating all configurations for each period as
stated in Period 2 could be computationally very expensive. Furthermore, an
exhaustive enumeration does not use any additional information of transition
costs between periods. Use of transition cost knowledge would help in avoiding
enumeration of a significant number of nodes thus reducing the required com-
putation time and reducing the size of the graph. The following observations
aid in our development of the modified algorithm.

(i) The operating costs are usually much larger than transition costs between
periods,

(ii) The difference in operating costs between any two configurations in the
same period is usually large and would be of the order of magnitude of
the transition costs between periods.

It should be noted that the above points are not assumptions, but are obser-
vations that only aid in the partial generation of nodes which in turn leads
to a reduced network for determining the shortest path. The proposed algo-
rithm does not require the above points to be true to ensure optimality of the
solution. It simply takes advantage of these facts to reduce the computation.

In order to explain the idea of partial enumeration, consider the following
simple example as applied for enumerating the configurations for a certain
period T (see Figure 3).

Assume that there are upto 20 possible configurations that can be generated
for a given period for meeting the demands. Assume that these configurations
are systematically generated by successively solving an MILP to which integer
cuts are added to exclude previous solutions. This ensures that the cost of the
generated configurations increases monotonically. The procedure for partial
enumeration would first determine the configuration with lowest operating
cost(OT), which is node 1 with cost of $110,000. The maximum transition
cost(TT) from any feasible configuration in period T-1 to T and from period
r to T - 1 is then determined. In this case, node 1 has maximum TT of $16,000.
The next best configuration is then determined, which is node 2 with OT of
$115,000. Clearly, this node cannot be eliminated because it is possible to
have a zero transition cost for node 2 in which case node 2 is better than node
1. The maximum TT for node 2 is then detennined at $4,000. The next best
configuration is node 3 with OT of $125,000. Clearly, node 3 can be eliminated
because even with a zero TT, the cost would be larger than the cost associated
with node 2 (which has a sum of OT and max TT of $119,000). Any other
configuration that will be obtained will have a higher OT, therefore all nodes
after node 2 may be eliminated. Thus, the partial enumeration technique would
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OT-Operating Cost, TT-transibon cost

periods

T-1 — T — —

OT-110,000

20 feasible solutions

OT-115,000

OT.125,000

Node 2

Node 3

Node 4

Fig. 3. Illustration for partial enumeration

enumerate only 3 nodes instead of all 20 feasible configurations, resulting in a
reduced set of 2 configurations. This idea is formally presented as Property 4
later in this section.
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The steps of the algorithm and its associated properties are as follows.

1) For each period t - 1 . . . P, solve the MILP in (MP) with the subproblems
(MPt) which are much smaller in size than problem (P2).

For t.» 1 . . . P, solve

subject to (MPt)

<bt

€{0,1}

Thus {MPt) determines the configuration Yt° that has the least operating cost
</>t for that period t (neglecting all transition costs).

Property 3

The sum £t <f>t obtained from solving the subproblems (MPt, t = 1...P) is a
lower bound to the solution of problem (P2).

Clearly, the solution obtained from {MPt) is equivalent to the lowest operating
costs for each period with an addition of zero transition cost. Any optimal so-
lution of (P2) would have at least the same operating cost as the one obtained
from (MPt) and an additional transition cost.

Thus, if the solution obtained from (MPt) yields a zero transition cost (cal-
culated from knowledge of Y? ) , then the solution is optimal.

Otherwise, go to step 2.

2) Let t be the count for periods of operation. Initialize t = 1.

3) Let k be the count of iterations for period t. Initialize k = 1.

4) To determine the maximum transition cost to and from a given time period
t, solve the following subproblems (P3) and (P4) defined below. Note that (P3)
and (P4) are solved for fixed value of Yt" which is obtained from the previous
iteration on k. For example, when k =• 1, then Yf is obtained from step 1. For
k = 2, the iteration for k = 1 provides the data for Y%.
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max ffc* = [C3TZt.1]
Xt-i,Yt~i,Zt-i

subject to (P3)

r t _ ! € { o , i }

By solution of (P3), an upper bound on the transition cost from any feasible
configuration in period t - 1 to the (k - l)th configuration in period t is
obtained.

Similarly,

npgxft+i # + * = [C3TZ<+1]

subject to (P4)

By solution of (P4), an upper bound on the transition cost from the (k —
l)th configuration in period t to any feasible configuration in period t + 1 is
obtained.

It may be noted that

(i) Y?~l is known from the previous iteration on *. When k = 1, Yt
k~l = yt°.

(ii) When t = 1, then Yt-\ corresponds to the initial operational status of
equipment. When t = P, then Vi+i corresponds to the terminal opera-
tional status of equipment.

5) Solve subproblem (P5) which results from adding to (MP) bounding con-
straints to determine the next feasible configuration for that period.

15



subject to (P5)

AXt<bt

GXt + FYt<dt
ClTXt + C2TYt < [ClTXt-* + C2TYt

k'i] + ifc* + Vfr' (19)
Vj = l . . .*

- E yn.u<|A^|-l Vj« l . . . f t (20)

where

Mj = { Unit n | yum = 1 for configuration in iteration j }

Qj = { Unit n | ynnt = 0 for configuration in iteration j }

Vie {0,1}

It may be noted that

(i) t/£r* and ^£^' are obtained from the solution of (P3) and (P4) respec-
tively.

(ii) For any period t, constraint (19) excludes any feasible solution that has
an operating cost greater than the sum of operating cost for any feasible
solution j (j < k) and the maximum possible changeover costs between
period t — 1 to period t and the maximum possible changeover costs
between period t to period t + 1. Note that constraint (19) is added
cumulatively for every configuration j < k. This is because for every
configuration j there is an associated operating cost <fPt and transition
cost V>t- and W+ •

(iii) For any period t, the integer cut in (20) which is also accumulted with
each iteration, excludes any configuration obtained in any previous iter-
ation of j.

(iv) Solution of (P5) yields a reduced set of feasible configurations for each
period t.

If (P5) is feasible, let the solution obtained from (P5) be X$ and Yf.
Set k = k + 1. Go to step 4.

If (P5) is infeasible, there is no need to generate more configurations for period
t. Set t = t + 1. If t = P + 1, Go to step 6.
Else , Go to step 3.

6) Construct the following network containing £ t £ t nodes (see Figure 2 ).
For any period, the operating cost of the jth node is $. The directed arcs
from any jfth node (j < Bt) in period t to any kth node ( k < £ t+i) in period
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t + 1 is assigned the actual transition cost (f?t
k. Determine the shortest path

from the source to the sink- Let the nodes on the shortest path in any period t
be denoted by t* and the corresponding solutions by XI and Y{. The length of
the path is the value of the objective function of (P2) and the optimal solution
is XI and Yt\

Solve Problem \PX to get

lowest operating cott

configurations Y° (k-0) for

each period

t * 1...P.

inhMzet « 1

cinitialize k « 1

Solve Problem P3 and P4
to obtain maximum
transition costs for
configuration k-1 in
period t

Solve Problem P5 to
obtain another feasible
configuration k in period t

if t -P, construct network with
node and arc costs as operating
and transition costs.
Determine shortest path from s
to o. STOP.

if t<P, t«W1

i

Fig. 4. Flowchart for shortest path algorithm

The partial generation of nodes for the network for the shortest path algo-
rithm relies on the following property associated with constraint (20) in (P5).
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Property 4

Any feasible configuration for a time period t with an operation cost <f>t that
satisfies the following equation

ClTXt + C2TYt > [C1TX}~' + C2TYi
k-i) + ^ + $;* (21)

V j = 1 . . . ik

may be excluded from the graph as it cannot be in the optimal solution of (P2).

Proof: The shortest path from any node in period t — 1 to a node in period
t + 1 passes through some node in period t and has an upper bound of

?-j + C2TYi
k"i) + tfJ+tifc* ).

Hence any node that satisfies

C\TX% + C2TYt > [ClTXt-* + C2TYt
k'j] + $-* + ti? (22)

will not be on the shortest path from 5 to o which is a requirement for optimal
solution of (P2). The strict equality is excluded by the integer cut (20). QED.

Thus, constraint (19) in problem (P5) helps to obtain a reduced set of feasible
configurations and avoids enumeration of all feasible configurations for each
period.

7 Improvements to the algorithm

(i) At the level of solving for the optimal configuration for any period, use
of special ordered sets as in (8) and hard logic constraints that describe
the relation of the units in the flowsheet may be exploited.

(ii) Due to the order of solving problems (P3), (P4) and (P5) from t = 1 . . . P,
it is possible to solve problem (P3) for t > 2 by using the reduced
set of feasible solutions in the previous period. This will aid in obtain-
ing a lower value of \pt- which provides tighter constraints in equation
(19) for problem (P5). This is possible because the reduced set of fea-
sible solutions is known a priori for period t — 1 when iterating for pe-
riod t. Thus, (P3) may be solved with the additional requirement that
Yt-i 6 {Vi-iii = 1 . . . £ t_i} where £ t_i is the number of configurations
generated for period t — 1.

(iii) A lower bound on the transition costs may be calculated after step 5 from
knowledge of Yt

k. Let T£ be the minimum transition cost from Arth node

18



in period t from any node in period t — 1 and to any node in period t +1.
Then any node that does not satisfy constraint (23) will not be on the
shortest path and may be eliminated.

CITX* + C2TYt
k + 7? < [C\TXi + C2TYf] + W- + W+ (23)

V j « l . . . J b , * = ! . . . £ ,

8 Extension to ramp function demand profile

The solution algorithm for the constant demand case may be easily extended
to the case of linear variation in demands. Note that certain demands may
be increasing while other demands may be decreasing simultaneously in any
time period. We therefore have a scalar parametric, non-monotonic MILP of
the form shown below.

min C = ^2[ClTXt + C2TYt + C3TZt]

subject to

A.Xt •< bi + ^ t
GA't + FYt < dt

V t = l...P
Vie {0,1}

where p( is a vector of variations in bt (demands), and 8 is a scalar such that
0 < 6 < l.(see Figure 5).

1
I

-Ok >

Fig. 5. Ramp function variation for period

Consider a multiperiod case, where the demand in each period varies linearly
with time for a fraction at of the length of the period t. In order to determine
the operating cost for that period, the integral of cost as a function of time is
required for the length of the time period. Two possibilities arise.
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(i) Within the same period, it is possible to meet the demands for 0 < 0 < 1
using a single configuration (choice of Yt). The steps of the algorithm re-
main the same, but the problems (Af Pt), (P3), (P4) and (P5) are replaced
by (RPt)> (RP3), (RP4) and (RP5), respectively, as shown below.

pin .* = l/2atT[ClT(X} + X?) + 2C2TYt] + (1 - *tT)[ClTX* + C2TYt)
X^ fX^ ,xt

subject to (RPt)

where X} corresponds to the solution at 0 = 0
and Xt

2 corresponds to the solution at 8=1
and T is the length of each period.

The objective function determines the operating cost by integrating
over the entire length of the period for varying cost due to change in the
demands.

Similarly we have,

max VfL"1 = [C2>TZt.A

subject to (RP3)

and

subject to (RP4)
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Zt+1>KYk
t'

1-S2YM

and

min & = l/2atT[ClT{Xl + X2) + 2C2ryt] + (1 - otT)[ClTXt
2 + C2TYt]

subject to (RP5)

/ < bt

AX?<bt

GX}+FYt<dt
GX? + FYt < dt

4>t < <ti

n€A/, j

i ; G {o , i}

(ii) If the solution of (RPt) is infeasible for some t, there is no single config-
uration that satisfies demand for that period for 0 < 6 < 1. In that case,
the period should be split up into sections such that for each section., a
single configuration is feasible. The primary motivation for this choice
is to minimize the transitions within the period of operation. Thus, the
largest value of 6 that accepts a single configuration can be determined
from solution of the following problem (RP\t).

subject to

AX} < bt

+ FYt < dt

GX? + FYt < dt

^ € { 0 , 1 }

Thus, if {RPt) is infeasible,, {RPlt) is solved and period t is divided to
create two periods of length 6T and (1 — 6)T and the solution procedure
is continued from period t.

It should be noted that a limitation of the approach presented in this section
is that {RPt) may not yield the solution for lowest operating cost for that
period as there could be a choice with lower operating cost for which the
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configuration changes at a breakpoint for some value of 0 between 0 and 1. In
this paper we do not consider further the possibility of partitioning the time
period to identify such breakpoints.

9 Example problems

9.1 Constant demand case

Consider the cogeneration utility plant shown in Figure 6. The utility plant
consists of two boilers and two turbines for meeting the demands of HP, MP
and LP steam and power demands in two levels. There is also an option
to purchase HP steam and power in order to meet the demands. Letdown
steam from higher levels is available and turbines have two modes of operation
depending on the level of exhaust steam. Each turbine may supply power to
any of the two levels with the constraint that only one turbine supplies power
to the same level.

Power 1 demand

Fig. 6. Example - utility system configuration

The cost data for the units are presented in Table 1. Utility conditions in the
plant are presented in Table 2.
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TBblel
Cost data for Example

Cost Coefficients for units with associated flow variables

C= Fixed cost+ Variable cost * F

Unit Flow Variable Fixed($/yr) Variable (t hr/ton per yr)

HP boiler (unit 1)

MP boiler (unit 2)

Purchased steam

HP steam

MP steam

90,000

40,000

9100

8375

9700

Cost Coefficients for units with associated power generated

C= Fixed cost + variable cost * W

Unit Fixed ($ per yr) Variable ($ /kW per yr)

HP turbine (unit 3)

MP turbine (unit 4)

Purchased Power

•For unit 4, additional cost of cooling water in condensation mode is

$760 / yr per ton/hr of steam condensed.

45,000

25,000

25

21

300

Fixed Startup/shutdown costs for units ($)

Unit

1 3000

2 3000

3 1500

4 1500
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Utility conditions for Example problem

Utility conditions in plant

HP steam

MP steam

LP steam

Extracted Steam

Enthalpy

kWhr/ton

945

874

762

720

Pressure

Mpa

4.83

2.07

0.34

.013

Temperature

K

758

523

412

326

The tradeoffs for the cost of operation for choice of different units is evident
from the cost data. For a given value of power to be generated, the HP turbine
is costlier than the MP turbine. However, the amount of steam required by
the HP turbine is lower when it is operated in mode 2 when a large value of
steam is extracted at LP steam level. This is because of a larger difference in
enthalpy between HP steam and LP steam. The cost of producing HP steam is
higher than producing MP steam although a lesser amount could be required
by the HP turbine. Also, the choice of producing HP steam versus purchase
pays off only for a load greater than 150 tons/hr. There is also an option
to purchase power at higher cost when the demand cannot be met by the
turbines. Clearly, when the demand of power is high and LP steam demand is
low, then the HP turbine is a better choice. Conversely, for low power demand,
when the LP steam demand can also be met by extraction from MP turbine,
then the MP turbine is a better choice. The MP turbine may also be operated
in condensation mode which required lesser amount of LP steam but there
is an additional cost of cooling water load on the condenser in that mode.
Thus, as demand varies for each of the utilities, correspondingly, the choice of
operating units could be different based on lowest operating costs.

9.1.1 Example 1

In order to explain the steps of the algorithm, consider a small example com-
prising of 4 periods of operation. Assume that the option for purchasing power
is not available in this example.

Given are the data for the operation of the utility plant for a short term 8
week horizon consisting of 4 periods of operation of equal lengths (Table 3).
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Table 3
Data for Example 1

Power Demands for each period (kW)

Power Demands 1 2 3 4

1 6000 3000 5500 3200

2 3000 2100 3025 2400

Steam Demand for three levels for each period (ton/hr)

Level

High Pressure steam

Medium Pressure steam

Low Pressure steam

1

49

45

60

2

45

20

65

3

55

40

50

4

50

45

70

The steps of the algorithm are as follows. The algorithm first determines the
configuration with lowest operating costs for each period in Step 1. In this
case, there are 12 feasible configurations in each period. The values for the
operating costs for each period is provided in Table 4 with corresponding
maximum values of maximum transition costs at that node.

It is evident from the solution presented in Table 4, that for the first period
only 9 configurations need to be enumerated. This is because for the ninth
best configuration, the operating cost is greater the sum of the operating cost
and maximum transition cost of node 2. For the second period, however, all
the nodes are enumerated in this case. For the third period, all nodes after
the ninth node need not be enumerated. Thus, only a partial enumeration of
nodes is required, resulting in savings in computation time.

After completing the step of enumerating the subset all feasible configurations
that may lie on the shortest path, a directed graph is drawn similar to the one
shown in Figure 2. The cost at the nodes are the operating costs and the arc
costs are the transition costs that can be determined from the configuration
at each node. The shortest path in this example corresponds to a path the
includes the second best configuration in each period of operation. The total
cost of operation is $413,000 . If however, the best configuration in each period
were chosen (corresponding to lowest operating cost), then the total cost is
$436,200. Thus, there is a savings of $23,200, which is about 5% of total costs.
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Table 4
Solution for Example 1

Costs ($) for feasible configurations for each period

Operating Costs

(Maximum Transition Costs )

Configuration

1

10

11

12

1 2 3 4

109850 85350 107700 106200

(13500) (18000) (18000) (15000)

110000 85810 107750 106475

(10500) (18000) (18000) (13500)

111750 86800 109600 106850

(13500) (18000) (18000) (10500)

115450 86970 114075 106675

(10500) (15000) (12000) (13500)

115950 87000 114600 106800

(13500) (12000) (12000) (10500)

117825 88700 116500 108100

(13500) (18000) (12000) (13500)

118750 89100 117400 108750

(13500) (18000) (15000) (13500)

119600 89325 118300 109250

(16500) (12000) (15000) (16000)

121475 90130 120190 109525

(18000) (15000) (15000) (16500)

91200 130825 110630

(12000) (18000) (13500)

92010 111125

(15000) (16500)

97580 111400

(18000) (16500)

*Operating Cost of node 9 in period 1 = 121,475,greater than

Operating Cost + Maximum Transition cost of node 2= 120,500
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Table 5
Data for Example 2

Power Demand for each period (kW)

Demand 1 2 3 4 5 6 7 8 9 10 11 12

1 5700 6000 7000 5500 3000 3000 3200 5000 5000 2000 3000 2200

2 3000 3000 3000 3025 2100 3000 2400 4000 5000 2000 3000 2000

Steam Demand for three levels for each period (ton/hr)

Level

HP steam

MP steam

LP steam

1

50

40

50

2

49

45

60

3

43

35

70

4

55

40

50

5

45

20

65

6

50

30

70

7

50

45

70

8

80

70

80

9

80

70

90

10

20

30

100

11

65

50

73

12

20

45

100

The optimal choice of unit in this example is operating unit 3 (HP turbine)
and purchase of steam for all 4 periods. This solution is the same as obtained
by solving problem (PI) as a single MILP without decomposition.

9.1.2 Example 2

We now consider the same utility plant for a longer time horizon comprising of
more number of periods as compared to example 1. Given are the data for the
operation of the utility plant for a one-year horizon consisting of 12 periods
of operation of equal lengths (Table 5). The option of purchasing power is
available in included resulting in a larger number of feasible configurations as
compared to Example 1.

The problem (PI) was first solved using a MILP in the full-space of 12 periods.
Special constraints (such as hard logic constraints, Raman and Grossmann
[10]) were used to reduce the number of possible combinations for branching.
For example, one hard logic constraint is that MP turbine is 'on1 only if MP
boiler is 'on'. Also, if there is a startup cost for a unit in a period t, then there
cannot be a startup cost for period t + 1 represented as
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6
Computational results for Example 2

Solution type Problem size Solution time Subproblems solved

Equations Variables CPU seconds

Binary Cont. (IBM-RS6000)

MILP 1053 204 721 >6000 single problem for 12

periods

Proposed 103 17 53 320 369 subproblems

algorithm

(24)

Similar constraints may be formulated for shutdown costs.

The solution time for the full-space MILP (using OSL solver on GAMS [1])
was in excess of 6000 Cpu seconds on IBM-RS6000/530 (see Table 6). The
solver exceeded the iteration limit and had not arrived at the solution because
it had not fathomed all the open nodes in the branch and bound algorithm.
However, it stopped at the best integer solution of $1,794,850.

The solution time using the proposed algorithm was 320 Cpu seconds. The
solution obtained corresponds to the same optimal solution obtained from
the full-space MILP solution. Table 6 gives the data on solution times and
the number of subproblems solved in the proposed method. The size of the
subproblems is significantly smaller as each subproblem is solved in the space
of variables for only one period of operation.

Since the option of purchasing power was included, there are potentially 54 fea-
sible configurations for each period of operation. However, based on the partial
enumeration technique, only a small subset of configurations are enumerated
(Table 7). More specifically, a maximum of 22% of feasible configurations were
enumerated in any period.

The solution obtained for the example problem given in Table 8 illustrates
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Solution for Example 2 problem

Number of configurations (subset of all feasible choices)

selected for shortest path algorithm

Periods

Configurations

1

6

2

9

3

9

4

9

5

12

6

12

7

12

8

9

9

9

10

12

11

12

12

12

the need to account for the transition costs to determine the optimal plan-
ning strategy. Two cases may be considered for comparison of total cost of
operation, as shown in Table 8. Case 1 represents the choice of units based on
minimization of operating costs in individual periods (i.e. choose configuration
of rank choice 1 for each period which has smallest operating cost). Case 2
is based on choice of equipment that minimizes the total cost that includes
the transition costs between periods. It is evident from the results that the
optimal configuration in each period need not be the configuration with the
lowest operating cost.

When the transition costs are significant as is the case in industrial problems
like this example, the choice of operation with a simpler operation profile
could result in a lower total cost of operation over the planning horizon. As an
example, Table 8 shows the selected configuration for period 2 is the second
best in terms of operating costs. This avoids the cost of startup and shutdown
of HP turbine after period 1. The ultimate operational plan results in only a
startup of 4 units as compared to a choice of 16 startups when periods are
optimized independently. For this example, the overall cost of operation is
lower by $53,500 which is about 3% of the total cost of operation.

From the solution times obtained, it is also clear that the algorithm results in
a significant reduction in computation time. This is a result of the complexity
of the algorithm scaling linearly with the number of periods in this example
as compared to the exponential increase for the full-space method.

It is also worth noting that the solution under special constraints such as
requiring same choice of units for all periods (if required) can be easily ac-
counted for in Step 6 during execution of the shortest path algorithm. For this
example, enforcing such a constraint resulted in a solution of $1,800,850. The
solution indicated using unit 1 and unit 3 for all periods.
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Results for Example 2

Period Optimal choice for independent periods Optimal choice including transition costs

based on operating costs

Case 1 Case 2

Operating Transition Unit'on' Operating Transition Unit'on' Rank

costs (S) costs (S) costs (S) costs ($) choice

1

2

3

4

5

6

7

8

9

10

11

12

TOTAL

Cost ($)

141200

146500

146600

143625

113550

132225

140725

199400

208825

114950

159660

126025

3000

3000

3000

3000

9000

6000

6000

9000

0

9000

9000

9000

Casel

1,848,285

3, HP

1,3

3,HP

1,3

2,4,HP

3,HP

2,4,HP

1,3

1,3

2,43P

1,3

2,4,HP

141200

146700

146600

143700

114400

132225

141650

199400

208825

114950

160900

126025

H P = > Purchase HP steam

Operating + transition

3000

0

0

0

0

0

3000

0

0

9000

0

0

cost

Case 2

1,794,850

3,HP

3,HP

3,HP

3,HP

3,HP

3,HP

1,3

1,3

1,3

2,4,HP

2,4,HP

2,4,HP

1

2

1

2

2

1

2

1

1

1

3

1

Difference

53,435

9.2 Ramp function demand

9.2.1 Example 8

The same example problem was also solved for the case when the demand
changes linearly within a period of operation. Each demand may be allowed
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Iable9
Data for Example

-

Power demand

1

2

3 with

1

6510

3425

ramp

2

5925

2940

change in demands

Power demands for each

3 4 5

7150 5260 2675

3010 3025 1965

Steam Demand for three

6

3045

3145

levels!

period

7

3225

2290

for each

8

5250

4245

period

9

4960

5110

10

1575

1550

11

3200

3200

12

2055

1825

Level

HP steam

MP steam

LP steam

1

57

46

57

2

48

45

60

3

42

34

71

4

57

41

47

5

43

17

68

6

51

32

70

7

50

47

71

8

84

73

81

9

79

70

91

10

12

24

101

11

73

52

69

12

12

44

104

to vary independently of each other. In this example, the demand was varied
in the initial 25% duration of each period, and was kept at a constant value
for the remaining length of that period (Figure 7).

The demand data is presented in Table 9.

The solution obtained using the proposed strategy yields a solution of $1,474,100
as compared to a value of $1,501,700 if transition costs are not taken into ac-
count. For this example, a single configuration is feasible within each period
of operation in spite of the changing demands in that period. The results for
this case are shown in Table 10. The solution obtained also shows a simple op-
eration plan which consists of only a single startup of the HP boiler in period
7.

9.3 Expansion planning

9.3.1 Example 4

In this example, the determination of the optimal choice of units for each
period of operation is illustrated for the choice of making decisions for capacity
expansion.

Consider the same utility plant with the following capacity limitations (Table
11).
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Fig. 7. Example 3 - ramp function change in demands

Assume that a retrofit change in process plant results in an increase in the
power demands that cannot be met by the existing utility system. In par-
ticular, the new demands are presented in Table 12 for a 4 month planning
horizon of 16 periods with a length of 1 week for each period. Batch plants
with product campaigns of upto 4 months would be an example where such
demand patterns would be common.

The options that were considered to meet the new demands are as follows

(i) Purchase and commissioning of a HP turbine (identical to the existing
HP turbine with same equipment specifications and costs ).

(ii) Purchase of power from external sources.

The new proposed retrofit configuration for the plant is as shown in Figure 8.
If the optimal operation plan includes the choice of utilizing the second HP
turbine, then the proposed retrofit configuration will be selected.

*
It must be noted that the configuration of lowest operating cost for individual
periods (for even number periods when the power demand cannot be met
by existing units) involves operating both HP turbines in parallel. This is
because of the higher cost of electricty purchase. However, if the HP turbine
is purchased, then for periods when power demands are lower (odd number
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Table 10
Results for Example 3 for ramp change in

Number of configurations (subset of all

Periods 1

Configurations 2

2

6

3

9

demands

feasible choices)

4 5

9 9

Periods

selected

6 7

12 12

for shortest

8 9

12 9

path algorithm

10 11 12

9 12 10

Case 1

(operating

costs only)

Case 2

(transition

costs )

1 2 3 4 5 6 7 8 9 10 11 12

1,3 1,3 3,HP 1,3 2f4,HP 3,HP 1,3 1,3 1,3 3,HP 1,3 1,3

3,HP 3,HP 3,HP 3,HP 3,HP 3,HP 1,3 1,3 1,3 1,3 1,3 1,3

Purchase HP steam

Table 11
Additional plant data for Example 4

Maximum capacity of HP boiler 100 tons/h

Maximum capacity of MP boiler 50 tons/h

Maximum capacity of HP turbine 13,000 kW

Maximum capacity of MP turbine 8,000 kW

HP steam purchase cost S3.2 /ton

Investment cost of HP turbine $45,000 /yr

periods), the configuration of lowest operating cost requires only choice of one
HP turbine. This could result in a transition cost in alternate periods for one
of the HP turbines.

The problem (Pi) was first attempted by solving a full-space MILP (containing
336 binary variables). The OSL solver failed to obtain the optimal solution
after 6000 CPU seconds. The best integer solution obtained was of the order
of $5 million. However, using the proposed method, the optimal solution has a
total operating cost of $1,601,600 for the 4 month period. The optimal solution
was obtained in 1150 CPU seconds. A major reason for the savings was that
the MILP for individual periods consists of only 21 discrete variables.

It is interesting to note that the optimal operation plan determines that it is
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Table 12
Demand Data for Example 4

Power

1

2

1

8

4

•

2

16

6

3

8

4

4

16

6

Steam

Power

5

8

4

Demand

Demand

6

16

6

for

7

8

4

three

for each
8

16

6

i period

9

8

4

levels for each

(MW)

10 11

16 8

6 4

12

16

6

period (ton/hr)

13

8

4

14

16

6

15

8

4

16

16

6

Steam 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

HP 20 20 30 25 25 30 30 25 20 30 25 20 30 20 25 25

MP 105 105 95 105 105 105 100 115 105 105 95 105 100 105 105 100

LP 60 60 50 40 65 50 65 55 70 45 70 65 75 70 80 75

Cost of electricity purchase for each period S/kW-yr

Level 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Cost 285 285 285 275 275 275 270 270 270 270 260 260 260 260 260 260

cheaper to purchase electricity and not use the new HP turbine. This implies
that it is a better choice to not invest in the purchase of a new turbine. In
addition, despite the fact that for odd number periods, the cheapest choice is
to use HP boiler and HP turbine (with operating cost of $77,800 for period
1), the optimal plan chooses the 5th best configuration with an operating cost
of $80,300. Thus, it chooses to operate units 1,2, 3 and 4 in period 1 instead
of units 1 and 3. This is justified by the fact that for even number periods
when the demand for power is higher, it is better to choose units 1,2,3,4
and purchase electricity to avoid any changeover costs between periods. The
optimal operational plan is to use all units 1,2,3,4 and purchase power during
all periods.

The number of configurations enumerated in each period is also significantly
smaller than the total number of feasible configurations. The maximum num-
ber of configurations enumerated was 16 as compared to a possible 34 config-
urations for each period.

Prom this example, it is evident that the choice of purchasing a turbine that
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Fig. 8. Example 4 - capacity expansion planning

meets the power demands at a lower cost in individual periods, need not be
optimal when the power demands vary and when transition costs are signif-
icant. In this example, the choice of purchasing the turbine with changeover
between periods would result in an increase in total cost of $42,000. Thus,
if capacity expansion were to be undertaken, then solving independently for
each time period, it would have resulted in a total cost of $1,643,300 as com-
pared to the $1,601,600 for the case when operational planning for capacity
expansion includes transition costs. It is interesting to note that the optimal
plan also suggests purchase of electricity in all odd number periods even when
power demands can be met by existing units.

10 Conclusions

A multiperiod MILP model for utility system operation planning was pre-
sented accounting for operation and transition costs between periods. A new
two-stage decomposition algorithm has been proposed for solving large MILP
problems. The basic idea relies on constructing a shortest path network by
solving subproblems involving only one time period. The algorithm may be
applied to problems containing linking constraints associated with binary vari-
ables of the form in equation (12). The results have showed that the proposed
algorithm can achieve an order of magnitude reduction in computation time
in determining the optimal solution of the MILP. The computational time
requirement of the proposed algorithm is linear in the number of periods as
compared to a exponential increase in computation time for the simultaneous
solution of the overall model (P2). Solution of example problems produces
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upto 5% reduction in total cost of operation when compared to independent
solution for each time period. What is more significant , however, is that
much simpler operation plans that minimize startup/shutdown of equipment
between periods are obtained. The method has also been extended to account
for ramp function change in demands and for capacity expansion planning
problems. Finally, an example problem was presented to illustrate the fact
that the proposed model can be used for performing design retrofit studies.
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