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Abstract

This paper presents a new, real-world scheduling problem concerning the New Produci Development
process of an agricultural chemical or pharmaceutical company. A Research and Development (R&D)
department must schedule the lasks needed 10 bring a new product to market, in the face of uncertainty
about the costs and durations of the tasks, and in the income resulting from introducing the new produci.
There is a risk that a produci will fail a mandatory task, such as an environmental or safety test, and never
reach the market. The objective of the schedule is to maximize the expected Net Present Value of the
research.

. A model of this problem initially has a nonlinear, nonconcave objective. The objective is convexifled
and linearized by appropriate transformations, giving a Mixed Integer Linear Program (MILP). The model
uses a continuous time representation and discrete distributions for the stochastic parameters. Different
representations of the disjunctive scheduling constraints are discussed. A small numerical example is pre-
sented, followed by some conclusions.
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Introduction

The agricultural chemical and pharmaceutical industries typically use a screening process to test new
products. A large number of candidate products are subjected to a group of tasks lesting safety, efficacy,
and environmental impact. In the agricultural chemical industry, these tasks might include toxicology stud-
ies, soil dissipation studies, plant metabolism studies, and field studies, to name just a few.

Only a small percentage of the potential products pass all the tasks. Because many of these tasks arc reg-
ulatory requirements, as soon as a poieniial product fails a lask, all work on ihai produci is terminated. The
investment in previous tasks has then been wasted. The tasks should be scheduled with the goal of maxi-
mizing the Net Present Value (NPV) of the new products, including the cost of research.

R&D project selection and planning has been extensively studied. Baker (1974), Souder and Mandak-
ovic (1986), and Schmidt and Frceland (1992) all provide reviews. The literature of project scheduling is
primarily concerned with minimizing the completion lime of a schedule, sometimes subject to resource
constraints. Techniques such as the Critical Path Method (CPM) and Program Evaluation and Review
Technique (PERT) are often used. Scheduling to maximize NPV has been considered in other contexts by
Grinold (1972), Doersch and Patterson (1977), and Elmaghraby and Herroelen (1990). For an overview of
stochastic scheduling, see Pinedo (1995). It appears, however, that the problem of finding an optimal, non-
sequential schedule for testing of new products has not been previously addressed in the literature.
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Problem Statement

Several potential products must each undergo a scries of tasks, with given durations, costs, and proba-
bilities of successfully passing. Whenever the tasks are completed for a product, a certain income is re-
ceived, depending on the length of the testing period. The problem is to find a schedule of tasks that
maximizes the expected value of the NPV, including both the cost of the testing and the income earned.

The schedule maximizing the total NPV of all products is the same as the schedule maximizing the NPV
of each individual new product scheduled separately (unless there are non-renewable resource constraints).
The model, therefore, will only consider the project of scheduling a single potential new product. The model
should be solved for each potential new product in the R&D portfolio, to obtain an overall schedule.

Some tasks in a project may have technological precedence constraints, meaning that they rely on the
results of another task which much be scheduled first. As long as these precedence constraints are respected,
there is a great deal of flexibility in the schedule.

Intuitively, it would be best to schedule a task / with a low probability of success p{ first, so that if it fails,
it does so with a minimum amount of investment. Similarly, tasks with a high cost ct should be scheduled
later, so they are only performed after more risky tasks have succeeded. The schedule where tasks are per-
formed sequentially has the lowest expected value of cost. In fact, in the absence of any precedence con-
straints, it can be shown (Mitten, 1960, and Boothroyd, 1960) that the lowest cost sequence is to schedule
tasks in order of increasing c. / (1 - p^). The analytical results do not, however, seem to generalize beyond
this simple case.

A schedule where some tasks are done in parallel can be completed sooner, which will lead to greater
sales of the new product. The fundamental trade-off in this scheduling problem is between the greater in-
come from a shorter, parallel schedule and the lower expected value of cost from a longer sequential sched-
ule.

This model is different from most scheduling problems, for it does not provide an explicit schedule
with specific start times. Instead, the final product of the model is a set of precedence constraints to add to
the technological precedence constraints. This concept of a schedule as a set of precedence constraints was
recently used in Fernandez et al. (1995). The additional precedence constraints will lower the expected
cost of tasks more than they will decrease the expected income by delaying the product introduction.

Some sort of policy is necessary to actually execute a project with these precedence constraints, since
the task durations will be stochastic. This paper assumes an early start policy. That is, a task is started as
soon as all its precedence constraints have been completed.

Motivating Example

Consider the problem of scheduling tasks wiih a probability px of task i succeeding. If any one task
fails, then the entire project is terminated, and subsequently scheduled tasks are not performed. The
expected value of task / is the cost of the task c,, limes the product of the pj of all tasks j which have fin-
ished before task i begins, or <:["[/?, •

i

Figure 1 gives a table of the c,- and p, associated with Tour tasks, and two different schedules. The sched-
ule on the left has the highest expected value of cost. All four tasks start immediately, so the expected value
is just the total cost of the tasks, or $688,700. The sequence on the right has the lowest possible expected
value of the cost. Task 1 is always performed, and if it does succeed then task 2 will be performed. The
expected value of cost of task 2 is (O.8O7)($1O5,5OO)=$85.138.50, since task 2 will only be performed
80.7% of the time. Similar calculations apply to tasks 3 and 4. The expected value of this schedule is
$458,381. The next section will present a model which more realistically considers both the expected in-
come and the expected cost.



FIGURE 1. Comparison of the expected values of two schedules

1
2
3
4

0.807 S75,5OO
0.775 S105,500
0.889 5222,700
0.900 S285,000

S75.500 +
(0.807)(S 105,500) +
(0.807)(0.775)(S222,700) +
(0.807)(0.775)(0.889)(S285,000):
$458,381

Problem Formulation

The model presented here uses a continuous time representation and a piecewise linear function for
income, which decreases with project completion time. Each precedence constraint in the final solution has
two effects. It will lower the expected value of cost for some tasks, but will also potentially lengthen the
project, and lower the income for some scenarios. The solution of the model provides the optimal trade-off
between these two effects.

The costs of the tasks, the durations of the tasks, and the income resulting from introducing a new prod-
uct are not known at the time the schedule is made. Arbitrary discrete distributions are used to model these
uncertainties. Distributions for the parameters can be estimated from historical data, if available, or else sub-
jective probability distributions may be used. A scenario is a set containing one value for each uncertain
parameter, pulled from the discrete distributions. The index k represents one of the Nk possible scenarios,
where each scenario k occurs with probability Pk (so ^Pk = 1).

k

Let the indices i9j9 and / represent tasks in scenario k. Let cik be the cost of task / in scenario k, pik be the
probability of success of task / in scenario k, and dlk be the duration of task / in scenario k. Let r be the dis-
count factor, using continuously compounded interest. Let y,y be a binary variable which is 1 if there is a
precedence constraint that task / must finish before task./ can begin, and 0 otherwise. Leu* be a nonnegative,
continuous variable representing the overall project completion time in scenario k. Let sik be a nonnegative,
continuous variable representing the starting time of task / in scenario k. The upper bound on sik is given by
(EQ1) and(EQ2).

( )< * . .<£ / . . V i , * (EQi)

(EQ2)
j * t

The income derived from introducing a new product is based on the overall completion time of the
project, tk. Clearly tk must be greater than the completion time of each task i in state k:

Sik+ ^ik ~ *k ^l#f * ( E Q 3)

In this model, income is assumed to be a decreasing piecewise linear function of th with the piecewise
linear segments defined on the index m at times bm.

bm" *k + ukm ~ ® V * ' m ( E Q 4 )

The Ufa are nonnegative, continuous variables denoting the excess time of tk over bm. This formulation
is a 2-stage stochastic program with recourse. The first stage has the y^ variables which determine the pre-
cedence constraints of the schedule. Then, in the second stage the u^ account lor the decrease in income.
The parameter A// is the maximum income from introducing the new product. The parameter/^ gives the
decrease in income due to tk exceeding time bm in scenario k.



The objective of maximizing the expected value of the NPV is equivalent to minimizing the expected
cost plus the negative of the expected income. This could be modeled in a nonlinear, nonconcave form as:

where q.Jk =

min - M, + " Yfkmu
km < E Q 5>

m

1 if y..=0 v
Jl . Let q... =' e and substitute into (EQ 5), neglecting the constant -Mt:

mm
m

(EQ6)

The objective is now equivalent to minimizing the expected cost and decrease in income. Introduce new
variables wik and use the fact that v... = In (p..) y.. to obtain a nonlinear, concave form:

• lJK }*> Jl

mm *km
m

(EQ7)

(EQ8)

wik
The nonlinearity of (EQ 7) can be eliminated, since the nonlinear term e involves a single variable.

Using the technique of separable programming, the exponential is approximated by n-\ piecewise linear
segments between the grid points aikn. The standard lambda formulation is used in (EQ 9) through (EQ 12),
which is given in many textbooks such as Nemhauser and Wolsey (1988). The resulting approximation is
very close when 9 or 10 grid points aikn arc used.

mm (EQ9)

= - r Sik (EQ 10)

X.. >()
ikn

(EQ11)

(EQ 12)

For a pair of tasks (ij) with / < j9 there arc three possibilities. Either task / starts after task j is complete
in all scenarios, task) starts after task / is complete in all scenarios, or the relationship between i and) is
undetermined and varies between scenarios. These three possibilities are given in the disjunction of (EQ 13).

V v —, v (i,j

The disjunction can be used directly in a Disjunctive Programming (DP) approach to solving the prob-
lem, or it can be converted to integer programming constraints. The "Big M" constraint of (EQ 14) is the



simplest way to model the disjunction, in terms of the fewest number of variables and constraints. It does
suffer, however, from a weak Linear Programming (LP) relaxation.

Balas (1985) showed that a tighter LP relaxation can be obtained when the variables are disaggregated.
1 2 3

The superscripted variables si -k, s- k, and s .•>k correspond to the three terms in the disjunction. After dis-
aggregation, (EQ 14) is replaced by (EQ 15) through (EQ 22):

(X t/<v f/fv t/lt '

^ = Sjik*Sjik*Sjik VUJ*k)\(i<J) (EQ16)

cy) (EQ17)

Cy) (EQ18)

V ( l f y f * ) | ( l < 7 ) (EQ19)

(EQ20)

s"ijk^Uik(\-yiryy} VUJ,k)\V<j) (EQ21)

5.., < U >. (1 - y . - y . . ) V(l ,y, ifc) | (l<j) (EQ22)

As discussed in Raman and Grossmann (1994), a disjunction is w-MIP representable if and only if it has
a convex hull representation without disaggregated variables, and all solutions satisfying the disjunction im-
ply integer^. If a disjunction is not w-MIP representable, then it is a weaker representation when modeled
as an MILP. Unfortunately, (EQ 13) is not w-MIP reprcsentable.

As previously mentioned, there may be technological precedence coastraints in the problem. These con-
straints actually make the model easier to solve. If task i must precede task), simply fix y^ = 1 and >y<= 0.

The final schedule of precedence constraints must be acyclic. The constraints of (EQ 23) prevent cycles
of length 2 from forming, while equations (EQ 24) and (EQ 25) prevent cycles of length 3. These equations arc
not necessary, but they are valid integer cuts which greatly strengthen the LP relaxation of the model.

(EQ 23)

| ' < J < / (EQ24)

- 2 V ( / ^ 0\i<j<l < E Q 2 5 >

Example Continued

Continue with the same four tasks from the previous example. The value of the M/ parameter does not
affect the optimal solution, so it will be set to 0. The problem is then reduced to minimizing the expected
value of costs and the decrease in income. The income is decreasing in two piecewise segments with 6j=0,
/plCMXX), &2= 1 2 ' /2= 1 5 ' 0 0 0 -T h e t a s k durations arc stochastic: dt = {12,13,14} with probability {0.2,0.6,
0.2}, d2= {4,5,6,9,10,11} with probability {0.3,0.4,0.1,0.075,0.1,0.025}, d3={4,5,7} with probability
{0.3,0.5,0.2}, and rf4={6, 8, 10} with probability {0.25,0.5, 0.25}. If all possible combinations of the du-
rations are considered, then there are Nk = (3)(6)(3)(3) = 162 scenarios. A discount rate r=0.0075 was used,
which would correspond to 9% annually, if the durations arc in months.



Figure 2 shows the optimal schedule, and a histogram giving the distribution of the objective. The ex-
pected value of the objective was $731,650. For comparison, the parallel schedule of Figure 1 had an ex-
pected value of $806,400, while the sequential sequence of Figure 1 was $873,720. The "Big M"
formulation took 1410 CPU seconds on an HP712/80 workstation, after examining 67 nodes. The convex
hull form took 3214 CPU seconds and 28 nodes. In practice, the convex hull form has a better relaxation.
However, that benefit is usually outweighed by the additional variables and constraints used in the disag-
gregation.

FIGURE 2. Optimal Schedule and Distribution of total schedule cost for Example
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Conclusions

This paper introduces an interesting, industrially relevant scheduling problem. The model presented
can optimally schedule tasks in the New Product Development process. There is still, however, much room
for future research. The model exhibits weak lower bounds, which causes the CPU limes to grow rapidly
as the number of tasks increases. Scheduling more than 10 tasks becomes computationally prohibitive.
Preliminary work using cutting planes based on minimal cover inequalities to strengthen the lower bounds
has been promising (Schmidt and Grossmann, 1995). The major challenge of this problem, then, is to han-
dle the large number of tasks in a real R&D department. There may typically be over 100 tasks for each
product. Also, the number of scenarios, Af̂ » will be huge for industrial problems.
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