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Abstract

Fast and accurate distillation design requires a model that significantly

reduces the problem size while accurately approximating a full order distillation

column model. Variable number of trays and variable feed tray location make

optimization possible.

This collocation model builds on the concepts of past collocation models

for design of complex real-world separation systems. Two variable

transformations make this method unique. Polynomials cannot accurately fit

trajectories which flatten out. In columns, flat sections occur in the middle of large

column sections, or where concentrations go to zero or one. With an exponential

transformation of the tray number which maps zero to an infinite number of trays

onto the range zero to one, two collocation trays can accurately simulate a large

column section. With a hyperbolic tangent transformation of the mole fractions,

the model can simulate columns which reach high purities. Furthermore, this

model uses multiple collocation elements for a column section, which is more

accurate than a single high order collocation section.

This work has been partially supported by the Engineering Design Research Center, a
NSF Engineering Research Center.



Introduction

Several researchers have explored and developed collocation for

distillation column modeling. In this paper, we present a collocation model which

expands on prior models, addressing the problems specific to steady-state,

continuous columns. We describe the formulation of the model in detail and

compare it to prior models, using rigorous column simulations as a benchmark.

Motivation

The desire for a method to perform minimum reflux calculations for highly

nonideal systems was the original motivation for this collocation method. For a

specific separation, the required reflux ratio decreases as the number of trays in

the column increases. As one increases the number of trays in a column section to

a very large number, a region of constant composition occurs, referred to as a

pinch. At a pinch point, the vapor and liquid passing each other are in

equilibrium. They are also in material balance with the compositions entering and

leaving at the end of that column section.

Consider a separation of a ternary mixture A, B, and C, where we want to

separate A from B and C (see Figure 1). Given the products and a specified reflux

ratio, Levy et al. [1985] solved this type of problem by starting from the ends of

the column and calculating the trajectories inward. When the concentration

changes in each section fall below some minimum value, they stop calculating

and assume this is the pinch point. If the trajectories intersect, then they have a

feasible column profile. If one trajectory just pinches on the other, they have a

minimum reflux profile.

For a larger number of species, one cannot completely specify a product for

a column. Typically one can ask that component splits satisfy inequalities — e.g.,

we want at least 99.9% of A and 99% of B and no more than 1% of C and less than

0.01% of D to exit in the distillate. Solving such a problem requires one to discover
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Figure 1. Minimum reflux trajectories and column configurations

which of these constraints are active. We saw that one can still use a pinch

strategically located, but we also discovered that one needs a tray by tray column



section model in a form which can compute the number of trays it contains.

Conventional column models require one to specify the trays as an integer input.

This thinking led us to consider using a collocation model for the parts of

the column where Levy et al. [1985] used a tray by tray computation. For such a

column section, the number of trays is a continuous variable which the model can

compute.

Returning to the three component example, Levy et al. [1985] showed that,

as they decreased the concentration of C in the distillate, the minimum reflux

decreased. Therefore, for a specific separation between the key components, A

and B, the minimum reflux occurs when they allow no C in the distillate. In this

case the top section has a saddle pinch point along the A-B edge where the

concentration of C goes to zero. Levy et al. [1985] noticed that, as their

computations approached this saddle pinch, it, the feed composition, and the feed

pinch became colinear. Requiring colinearity of these points gave them a method

to determine minimum reflux without the needed tray by tray computation. For a

constant relative volatility, constant molar overflow system, they proved this

method becomes exactly Underwood's method. They proposed using this

colinearity even for nonideal systems. In a similar manner and for

multicomponent nonideal systems, Koehler et al. [1991] used a minimum angle

criterion between the three points, and Julka and Doherty[1990] revised the

colinearity condition to one of having a set of pinch points and the feed

composition lie inside a minimum volume in composition space. All these

methods assume sharp splits as they are based on computing a saddle pinch

point. These geometric techniques do not guarantee a feasible column for

nonideal systems, and they do not work for nonsharp splits.

To guarantee the intersection of the column sections for sharp splits, one

must prove the existence of a tray by tray calculation linking a saddle pinch point

and the feed tray composition, a calculation that passes through an infinite



number of trays. This requirement led us to examine extending the collocation

model to handle an infinite number of trays. We looked at different

transformations to map tray number going from zero to infinity onto a variable z

that goes from zero to one. With such a model, we concluded we should be able to

compute minimum reflux for any column by computing pinch points and

properly located column sections that can have a finite or an infinite number of

trays. For case I shown in Figure 1, a finite collocation section simulates the

unknown number of trays. For case II, the infinite tray section between the saddle

pinch point and the feed tray is modeled by an infinite collocation section.

We began developing a collocation method capable of simulating infinite

column sections and discovered several other advantages and uses for

collocation. Distillation design requires an adaptable column model, with the

ability to compute the number of trays in each distillation section, a computation

that discovers how many trays one needs and where to place the feed. One can

simulate complex column configurations. Optimal design of distillation

sequences requires small robust models for each distillation column. Collocation

both reduces the size of a column model and provides a continuous variable for

the number of trays. Furthermore, the variable transformation required for

modeling an infinite tray section improved the accuracy whenever such

separation problem requires a relatively large number of trays.

Background of Collocation

Cho and Joseph [1983] developed a reduced-order method for modeling

staged separation processes. They used orthogonal collocation to obtain accurate

solutions of significantly reduced-order. Their model had a single collocation

section for each section of the column. They tested by modeling a simple absorber

system, and binary and three component distillation, and used the Antoine

equation for the equilibrium relationship. In later papers Srivastava and Joseph

[1984,1987a] developed methods for handling multiple feeds and side draws.



They also developed a complex method for handling steep and flat composition

profiles by fitting the composition profiles with different polynomials for each

component. They developed a complicated approach using two sets of collocation

points, global and local, to fit both the key components and non key components

[Srivastava and Joseph, 1987b]. They tested these later ideas using constant

relative volatility systems.

Stewart, Levien, and Morari [1984] developed a collocation method that

stresses selecting gridpoints based on the stagewise nature of distillation. Their

method became stage-by-stage at full order, and had errors at least an order of

magnitude smaller than Cho and Joseph's default choice of collocation points.

They tested for binary and six-component distillation columns with constant

relative volatility and for a ternary system using UNIQUAC for equilibrium.

Swartz and Stewart [1986] applied the method to design, iteratively passing from

the model to an SQP optimization algorithm. Swartz and Stewart [1987] also

developed a finite-element method for handling multiphase distillation problems.

Recently, Seferlis and Hrymak [1994] adapted the model of Stewart et al.

[1984] by using collocation elements to track irregularities in column profiles for

existing columns. They investigated optimal placing of the collocation elements,

based on comparison with the actual column. They obtained higher accuracy with

multiple collocation sections of lower order than with a single collocation section

of higher order.

Table 1 lists the characteristics of each of these collocation methods as well

as the characteristics of the model presented in this paper.

Description of Model

Collocation is generally thought of as a method for numerically solving

differential equations. The use of collocation for simulation of a distillation

column is an extension of this technique. Given a differential equation,



Table 1. Comparison of Collocation Methods

Choand
Joseph 1983

Srivastava and
Joseph 1987

Stewart et al
1984

Swartz and
Stewart 1986

Swartz and
Stewart 1987

Seferlis and
Hrymak 1994

This work

Elements/
Section

Single

Single(global),
Multiple(local)

Single

Single

Multiple
(breakpoints at
phase changes)

Multiple

Multiple

Placement
of points

Continuous
orthogonal
(Jacobi)

Continuous
orthogonal
(Jacobi)

Discrete
orthogonal
(Hahn)

Discrete
orthogonal
(Hahn)

Discrete
orthogonal
(Hahn)

Discrete
orthogonal
(Hahn)

Continuous
(orthogonal
for 2 or 3
points)

Thermo-
dynamics

tested

Antoine

Constant
relative
volatility

UNIQUAC

Ideal

Nonideal
three phase

Regression
of data

UNIFAC/
Pitzer

Variable
transformations

none

none

none

none

none

none

Transform
tray number
and mole
fractions

(1)

we want to find y as a function of x. We can approximate y as a polynomial in x,

y: = y<>+ a\x + a (2)
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Figure 2. Collocation of a differential equation

We can then approximate y, dy/dx, and/as functions of x. At any point in x, we can

define an error for this approximation,

error(x) = f(x,y) - \ a l ... +nanx
n~1 (3)

At n collocation points, x..xn, we say that the error =0 and get n equations to solve

for n coefficients to the polynomial. See Figure 2.

Collocation of a distillation column uses the same concepts. A set of

equations defines a distillation column tray, where x would be the tray location in

the column and y would be mole fractions. Polynomials defined by tray location

approximate the mole fractions and, at each collocation point, the set of equations

for a distillation column must be satisfied.

There are many equations in a distillation column model, even a reduced

order model. Rather than just list the basic equations, we are going to provide a

detailed degrees of freedom analysis to demonstrate the reason for using a certain

set of equations.

We begin the degrees of freedom analysis with a stream model. Gibbs

phase rule gives the number of degrees of freedom for a system in equilibrium.



F = 2 + nc-np (4)

F is the number of degrees of freedom for a given number of components, nc, and

a given number of phases, np. For a single phase, F is nc + 1. For a stream we also

need a flowrate which adds one more variable, giving nc + 2 degrees of freedom.

The set of variables could be the molar flowrates, temperature, and pressure.

Once we know nc + 2 of these variables and assume the phase, we can compute all

other molar properties. We shall assume a stream introduces a net of nc + 2 new

variables and shall assume all other properties are available.

A standard distillation tray has two input streams and two output streams,

as shown in Figure 3. The four streams introduce a net of 4(nc + 2) new variables,

which is the first entry on Table 2. By keeping track of the number of variables

and equations introduced by each new element of the model, we can determine

the degrees of freedom, and how many variables must be fixed to obtain a system

with the same number of equations and free variables. We can write the following

equations for a single tray.

Component Material Balances:

L(out)x{(out) - L(in)Xi(in) = V(in)yt<in) - V(out)y{(out) (5)

Equilibrium:

y. (out) = — *. {out) , TL(out) = Ty(out), PL(out) = Py(out) (6)

Heat balance:

L(in)h(in) - L(out)h(out) = V(in)H(in) - V(out)H(out) (7)

L, V, x, y, h, H are liquid flowrate, vapor flowrate, liquid mole fraction, vapor mole

fraction, liquid molar enthalpy, and vapor molar enthalpy, respectively, a; is the

relative volatility of species i, and a is the mole fraction average relative volatility.

The liquid and vapor molar enthalpies and the relative volatilities are functions of

8



composition and temperature. We write equations 5 and 6 for each component

M

Figure 3. Diagram of tray

and equation 7 once. As shown in Table 2, the component material balances

therefore introduce nc equations. There are nc + 2 equilibrium equations. The

equilibrium equation also introduces one new variable, a. The heat balance,

which could be replaced by a constant molar overflow assumption, introduces

one equation. Therefore, the degrees of freedom for an isolated tray are 2(nc+2)+2.

Specifying two input streams, the pressure and a of the tray would be sufficient to

solve the tray model.

Table 2. Degrees of Freedom for an Isolated Tray

4 streams

CMB

Equilibrium

HB

totals

DOF for isolated tray

New Variables

4(nc+2)

1

4(nc+2)+1

2(nc+2) + 2

New Equations

nc

nc + 2

1

2nc+3

Figure 4 shows a diagram of a single collocation section. A collocation

section has a liquid input and vapor output at the top and a vapor input and

liquid output at the bottom. The example shown has two collocation trays which

are not connected. In this example, we number from the top of the collocation



section downward. Liquid and vapor streams passing each other have the same
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Figure 4. Diagram of collocation section, I and II are material and energy

balance envelopes for a tray.

index. We use a general position index, w, which will be either the tray number or

a transformation of the tray number which we shall describe later. The index

denotes the distance from the top of the collocation section. We index each tray k

by wy, the position of the bottom of the tray. We index the liquid entering and the

vapor leaving the top of the tray by wtopk, which in tray location is w^-1, but with

a transformation on the tray location is more complicated. Equations 5,6, and 7

become the following

L(wk)x{(wk) - L(wtopk)xi(wtopk) = V(wk)y{(wk) - V(wtopk)y{(wtopk) (8)

10



a ly. (zvtopk) = — x{ (wk) , TL(wk) = Ty(wtopk), Pi(wk) = Py(wtopk) (9)

L(wk)h(wk) - L(wtopk)h(wtopk) = V(wk)H(wk) - V(wtopk)H(wtopk) (10)

Starting with an isolated tray, Table 3 aids the degrees of freedom analysis

for a collocation tray. Collocation of the liquid mole fractions requires the liquid

input and output compositions for the tray to be on the polynomial

approximations of the liquid mole fraction. Collocating the liquid and vapor mole

fractions for nc-l components creates 4(nc-l) equations. The number of variables

introduced (the polynomial coefficients) will depend on the order of the

polynomial, which we shall decide later.

Using a Lagrange polynomial, the following equations:

x.(w) = 1£wk(w)xi(wk) i = l . . . i i c - l (11)

lfc = 0

rt + 1

y.(zv) = ^ Wfc(u;)yf.(wfc) i = l . . . » c - l (12)
* = o

are the polynomial approximations of order n for the liquid and vapor mole

fractions at position w. We use a Lagrange form because the coefficients of the

polynomials, Xj(wk) and }/j(wk) are also the liquid and vapor mole fraction at

position wk, the location of the kth collocation point. The ifc** term of a Lagrange

polynomial, Wk, is defined by the following equation:

"JL? TV - IV.
Wk(w) = TT 2- (13)

j = o * ;
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Table 3. Degrees of Freedom for a Single Tray

tray model

collocate x, y, for nc -1

collocate h for liquid and vapor

CMB around end

HB around end

Fix Pressures

Fix a at 1

totals

Net equations

New Variables

2(nc+2) +2

?

?

2nc+6 + ?

??

New Equations

4(nc-1)

4

1

3

1

5nc+5

3nc-1

Collocating the enthalpies of the liquid and vapor entering and leaving

introduces 4 equations. Again, the number of polynomial coefficients introduced

as new variables will depend on the order of the polynomial. The following

equations define the enthalpy polynomials.

h(w) = (14)

H(w) = (15)

Since a single tray is isolated, we can add some overall balance equations between

the tray and the end of the collocation section:

12



Component Mass Balances:

L(wk)Xi(wk) - ^ ^ j j ^ w ^ J =
(16)

Heat balance:

L(wk)h(wk) -Llwn

(17)

The component mass balance adds nc equations, and the heat balance adds 1

equation. Since we are assuming a constant pressure column, we need to fix the

pressures of both input streams and one output stream, adding 3 equations.

Finally, we specify that a for the tray is fixed at 1.0. This leaves a total of 3nc-l

excess equations for each collocation tray. The question marks indicate that we

have not yet accounted for the polynomial coefficients.

Table 4 aids the degrees of freedom analysis for the entire section. The

section has ns trays, introducing ns(3nc -1) net new equations. It also has two

input and two output streams, creating 4(MC+2) variables. Specifying the two

input streams creates 2(nc+2) equations. We can write the following balances over

the entire section:

Component Mass Balances:

(18)
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Table 4. Degrees of Freedom for Section

ns trays

4 streams

2 stream specs

CMB

HB

Fix Pressures

collocate x, y for nc -1

collocate h for liquid and vapor

totals

Net equations

New Variables

4(nc+2)

?

?

4nc+8 + ?

New Equations

ns(3nc-1)

2(nc+2)

nc

1

2

4(nc-1)

4

7nc+7+ns(3nc-1)

(ns+1)(3nc-1)

Heat balance:

(19)

The component mass balance creates nc equations, and the heat balance creates 1

equation. Fixing the pressures of the two output streams introduces 2 equations.

Collocating the liquid and vapor mole fractions introduces 4(nc-l) equations.

Again, the number of variables introduced depends on the order of the

polynomials. Collocating the enthalpies creates 4 equations. The net equations for

a collocation section is (ns+l)(3nc-l).

With nc-\ liquid and vapor polynomials, and 1 polynomial for the liquid

and vapor enthalpies, there are a total of 2nc polynomials, so the number of

variables introduced by the polynomials will be 2nc(n+l), where n is the order of

the polynomial. In principle we want to choose n so the number of equations and

14



variables are equal for the section model:

2nc(n + 1) = (ns + 1) (3nc - 1) (20)

For three components and two stages, n is 3, while for four components and two

stages n is 3.25. In most cases, n is not an integer, so something is not right.

Previous papers select n = ns. This leaves (n$ + l)(nc - 1) excess equations. We

expect the number of trays and the order of the polynomials to be linked, but we

must remove the excess equations.

Cho and Joseph[1983] showed that when they assumed constant molar

overflow the component material balances between the trays and the end of the

collocation section given by equation 16 were held even when not enforced. We

have found that the error in the component mass balances is negligible even for

heat balanced columns. Rather than enforce the component mass balances

between each tray and the end of the collocation section, we can enforce only the

overall mass balance for each tray:

L(wk) - Uwns^) = V(wk) - ViWns+i) (21)

This removes (nc -1) equations per tray. Furthermore, if we enforce the

component mass balance over the entire section given by equation 18, we do not

need to calculate both output streams from the polynomials. Therefore, we can

ignore the polynomial equations for the compositions for one output stream,

removing the remaining nc-l equations for the entire collocation section. This

removes the (ns + l)(nc -1) extra equations, giving us zero degrees of freedom if

we set n = ns. Therefore, for a two tray collocation section, we get a second degree

polynomial with three coefficients for each fitted component.

Another option is to add slacks to the ignored equations in the first

example. If the slacks are too large, one can add more trays. When the component

material balances between the individual trays and the top of the collocation

section are ignored, the components can be out of balance on individual trays

15



even though they will be in mass balance over the entire section. Our tests have

shown that even with nonideal systems with constant molar overflow, the

component mass balances are satisfied. Also the polynomial equations for the one

output stream that we ignored in the first case is satisfied. When we use heat

balances rather than constant molar overflow, the component mass balances have

very small errors, and the polynomial equations have slightly more significant

errors. However, even when the trajectories of the collocation section are

inaccurate, the residuals of these equations are not good indicators of the error.

A third alternative is to minimize the residuals of all the equations and

solve for a best set of ns+l coefficients for each polynomial:

min (||||)
(22)

However, the arguments just given show that the additional equations did not

have significant error terms. Therefore, the optimization would probably only

yield a minor improvement on the first option.

We have used the first option in this work. The order of the polynomial

will be the same as the number of stages used as collocation points.

Point Placement

The most difficult decision in collocation is the placement of the collocation

points. Carnahan et al [69] showed that, for integration of differential equations,

collocation points placed at the zeros of an orthogonal polynomial were best.

However, this is not necessarily true for collocation of a distillation column. Cho

and Joseph [1983] placed their points at the zeros of Jacobi polynomials defined

by,

16
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Introduction

Several researchers have explored and developed collocation for

distillation column modeling. In this paper, we present a collocation model which

expands on prior models, addressing the problems specific to steady-state,

continuous columns. We describe the formulation of the model in detail and

compare it to prior models, using rigorous column simulations as a benchmark.

Motivation

The desire for a method to perform minimum reflux calculations for highly

nonideal systems was the original motivation for this collocation method. For a

specific separation, the required reflux ratio decreases as the number of trays in

the column increases. As one increases the number of trays in a column section to

a very large number, a region of constant composition occurs, referred to as a

pinch. At a pinch point, the vapor and liquid passing each other are in

equilibrium. They are also in material balance with the compositions entering and

leaving at the end of that column section.

Consider a separation of a ternary mixture A, B, and C, where we want to

separate A from B and C (see Figure 1). Given the products and a specified reflux

ratio, Levy et al. [1985] solved this type of problem by starting from the ends of

the column and calculating the trajectories inward. When the concentration

changes in each section fall below some minimum value, they stop calculating

and assume this is the pinch point. If the trajectories intersect, then they have a

feasible column profile. If one trajectory just pinches on the other, they have a

minimum reflux profile.

For a larger number of species, one cannot completely specify a product for

a column. Typically one can ask that component splits satisfy inequalities — e.g.,

we want at least 99.9% of A and 99% of B and no more than 1% of C and less than

0.01% of D to exit in the distillate. Solving such a problem requires one to discover
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Figure 1. Minimum reflux trajectories and column configurations

which of these constraints are active. We saw that one can still use a pinch

strategically located, but we also discovered that one needs a tray by tray column



section model in a form which can compute the number of trays it contains.

Conventional column models require one to specify the trays as an integer input.

This thinking led us to consider using a collocation model for the parts of

the column where Levy et al. [1985] used a tray by tray computation. For such a

column section, the number of trays is a continuous variable which the model can

compute.

Returning to the three component example, Levy et al. [1985] showed that,

as they decreased the concentration of C in the distillate, the minimum reflux

decreased. Therefore, for a specific separation between the key components, A

and B, the minimum reflux occurs when they allow no C in the distillate. In this

case the top section has a saddle pinch point along the A-B edge where the

concentration of C goes to zero. Levy et al. [1985] noticed that, as their

computations approached this saddle pinch, it, the feed composition, and the feed

pinch became colinear. Requiring colinearity of these points gave them a method

to determine minimum reflux without the needed tray by tray computation. For a

constant relative volatility, constant molar overflow system, they proved this

method becomes exactly Underwood's method. They proposed using this

colinearity even for nonideal systems. In a similar manner and for

multicomponent nonideal systems, Koehler et al. [1991] used a minimum angle

criterion between the three points, and Julka and Doherty[1990] revised the

colinearity condition to one of having a set of pinch points and the feed

composition lie inside a minimum volume in composition space. All these

methods assume sharp splits as they are based on computing a saddle pinch

point. These geometric techniques do not guarantee a feasible column for

nonideal systems, and they do not work for nonsharp splits.

To guarantee the intersection of the column sections for sharp splits, one

must prove the existence of a tray by tray calculation linking a saddle pinch point

and the feed tray composition, a calculation that passes through an infinite



number of trays. This requirement led us to examine extending the collocation

model to handle an infinite number of trays. We looked at different

transformations to map tray number going from zero to infinity onto a variable z

that goes from zero to one. With such a model, we concluded we should be able to

compute minimum reflux for any column by computing pinch points and

properly located column sections that can have a finite or an infinite number of

trays. For case I shown in Figure 1, a finite collocation section simulates the

unknown number of trays. For case II, the infinite tray section between the saddle

pinch point and the feed tray is modeled by an infinite collocation section.

We began developing a collocation method capable of simulating infinite

column sections and discovered several other advantages and uses for

collocation. Distillation design requires an adaptable column model, with the

ability to compute the number of trays in each distillation section, a computation

that discovers how many trays one needs and where to place the feed. One can

simulate complex column configurations. Optimal design of distillation

sequences requires small robust models for each distillation column. Collocation

both reduces the size of a column model and provides a continuous variable for

the number of trays. Furthermore, the variable transformation required for

modeling an infinite tray section improved the accuracy whenever such

separation problem requires a relatively large number of trays.

Background of Collocation

Cho and Joseph [1983] developed a reduced-order method for modeling

staged separation processes. They used orthogonal collocation to obtain accurate

solutions of significantly reduced-order. Their model had a single collocation

section for each section of the column. They tested by modeling a simple absorber

system, and binary and three component distillation, and used the Antoine

equation for the equilibrium relationship. In later papers Srivastava and Joseph

[1984,1987a] developed methods for handling multiple feeds and side draws.



They also developed a complex method for handling steep and flat composition

profiles by fitting the composition profiles with different polynomials for each

component. They developed a complicated approach using two sets of collocation

points, global and local, to fit both the key components and non key components

[Srivastava and Joseph, 1987b]. They tested these later ideas using constant

relative volatility systems.

Stewart, Levien, and Morari [1984] developed a collocation method that

stresses selecting gridpoints based on the stagewise nature of distillation. Their

method became stage-by-stage at full order, and had errors at least an order of

magnitude smaller than Cho and Joseph's default choice of collocation points.

They tested for binary and six-component distillation columns with constant

relative volatility and for a ternary system using UNIQUAC for equilibrium.

Swartz and Stewart [1986] applied the method to design, iteratively passing from

the model to an SQP optimization algorithm. Swartz and Stewart [1987] also

developed a finite-element method for handling multiphase distillation problems.

Recently, Seferlis and Hrymak [1994] adapted the model of Stewart et al.

[1984] by using collocation elements to track irregularities in column profiles for

existing columns. They investigated optimal placing of the collocation elements,

based on comparison with the actual column. They obtained higher accuracy with

multiple collocation sections of lower order than with a single collocation section

of higher order.

Table 1 lists the characteristics of each of these collocation methods as well

as the characteristics of the model presented in this paper.

Description of Model

Collocation is generally thought of as a method for numerically solving

differential equations. The use of collocation for simulation of a distillation

column is an extension of this technique. Given a differential equation,



Table 1. Comparison of Collocation Methods

Choand
Joseph 1983

Srivastava and
Joseph 1987

Stewart et al
1984

Swartz and
Stewart 1986

Swartz and
Stewart 1987

Seferlis and
Hrymak 1994

This work

Elements/
Section

Single

Single(global),
Multiple(local)

Single

Single

Multiple
(breakpoints at
phase changes)

Multiple

Multiple

Placement
of points

Continuous
orthogonal
(Jacobi)

Continuous
orthogonal
(Jacobi)

Discrete
orthogonal
(Hahn)

Discrete
orthogonal
(Hahn)

Discrete
orthogonal
(Hahn)

Discrete
orthogonal
(Hahn)

Continuous
(orthogonal
for 2 or 3
points)

Thermo-
dynamics

tested

Antoine

Constant
relative
volatility

UNIQUAC

Ideal

Nonideal
three phase

Regression
of data

UNIFAC/
Pitzer

Variable
transformations

none

none

none

none

none

none

Transform
tray number
and mole
fractions

(1)

we want to find y as a function of x. We can approximate y as a polynomial in x,

y: = y<>+ a\x + a (2)



X 0
x n

Figure 2. Collocation of a differential equation

We can then approximate y, dy/dx, and/as functions of x. At any point in x, we can

define an error for this approximation,

error(x) = f(x,y) - \ a l ... +nanx
n~1 (3)

At n collocation points, x..xn, we say that the error =0 and get n equations to solve

for n coefficients to the polynomial. See Figure 2.

Collocation of a distillation column uses the same concepts. A set of

equations defines a distillation column tray, where x would be the tray location in

the column and y would be mole fractions. Polynomials defined by tray location

approximate the mole fractions and, at each collocation point, the set of equations

for a distillation column must be satisfied.

There are many equations in a distillation column model, even a reduced

order model. Rather than just list the basic equations, we are going to provide a

detailed degrees of freedom analysis to demonstrate the reason for using a certain

set of equations.

We begin the degrees of freedom analysis with a stream model. Gibbs

phase rule gives the number of degrees of freedom for a system in equilibrium.



F = 2 + nc-np (4)

F is the number of degrees of freedom for a given number of components, nc, and

a given number of phases, np. For a single phase, F is nc + 1. For a stream we also

need a flowrate which adds one more variable, giving nc + 2 degrees of freedom.

The set of variables could be the molar flowrates, temperature, and pressure.

Once we know nc + 2 of these variables and assume the phase, we can compute all

other molar properties. We shall assume a stream introduces a net of nc + 2 new

variables and shall assume all other properties are available.

A standard distillation tray has two input streams and two output streams,

as shown in Figure 3. The four streams introduce a net of 4(nc + 2) new variables,

which is the first entry on Table 2. By keeping track of the number of variables

and equations introduced by each new element of the model, we can determine

the degrees of freedom, and how many variables must be fixed to obtain a system

with the same number of equations and free variables. We can write the following

equations for a single tray.

Component Material Balances:

L(out)x{(out) - L(in)Xi(in) = V(in)yt<in) - V(out)y{(out) (5)

Equilibrium:

y. (out) = — *. {out) , TL(out) = Ty(out), PL(out) = Py(out) (6)

Heat balance:

L(in)h(in) - L(out)h(out) = V(in)H(in) - V(out)H(out) (7)

L, V, x, y, h, H are liquid flowrate, vapor flowrate, liquid mole fraction, vapor mole

fraction, liquid molar enthalpy, and vapor molar enthalpy, respectively, a; is the

relative volatility of species i, and a is the mole fraction average relative volatility.

The liquid and vapor molar enthalpies and the relative volatilities are functions of

8



composition and temperature. We write equations 5 and 6 for each component

M

Figure 3. Diagram of tray

and equation 7 once. As shown in Table 2, the component material balances

therefore introduce nc equations. There are nc + 2 equilibrium equations. The

equilibrium equation also introduces one new variable, a. The heat balance,

which could be replaced by a constant molar overflow assumption, introduces

one equation. Therefore, the degrees of freedom for an isolated tray are 2(nc+2)+2.

Specifying two input streams, the pressure and a of the tray would be sufficient to

solve the tray model.

Table 2. Degrees of Freedom for an Isolated Tray

4 streams

CMB

Equilibrium

HB

totals

DOF for isolated tray

New Variables

4(nc+2)

1

4(nc+2)+1

2(nc+2) + 2

New Equations

nc

nc + 2

1

2nc+3

Figure 4 shows a diagram of a single collocation section. A collocation

section has a liquid input and vapor output at the top and a vapor input and

liquid output at the bottom. The example shown has two collocation trays which

are not connected. In this example, we number from the top of the collocation



section downward. Liquid and vapor streams passing each other have the same

wQ,x(w0),y(w0)

y(zvtopk)

wk,x(wk),y(w.

/_

1 /

I I
1 i

A |

t \

t \

T
Figure 4. Diagram of collocation section, I and II are material and energy

balance envelopes for a tray.

index. We use a general position index, w, which will be either the tray number or

a transformation of the tray number which we shall describe later. The index

denotes the distance from the top of the collocation section. We index each tray k

by wy, the position of the bottom of the tray. We index the liquid entering and the

vapor leaving the top of the tray by wtopk, which in tray location is w^-1, but with

a transformation on the tray location is more complicated. Equations 5,6, and 7

become the following

L(wk)x{(wk) - L(wtopk)xi(wtopk) = V(wk)y{(wk) - V(wtopk)y{(wtopk) (8)
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a ly. (zvtopk) = — x{ (wk) , TL(wk) = Ty(wtopk), Pi(wk) = Py(wtopk) (9)

L(wk)h(wk) - L(wtopk)h(wtopk) = V(wk)H(wk) - V(wtopk)H(wtopk) (10)

Starting with an isolated tray, Table 3 aids the degrees of freedom analysis

for a collocation tray. Collocation of the liquid mole fractions requires the liquid

input and output compositions for the tray to be on the polynomial

approximations of the liquid mole fraction. Collocating the liquid and vapor mole

fractions for nc-l components creates 4(nc-l) equations. The number of variables

introduced (the polynomial coefficients) will depend on the order of the

polynomial, which we shall decide later.

Using a Lagrange polynomial, the following equations:

x.(w) = 1£wk(w)xi(wk) i = l . . . i i c - l (11)

lfc = 0

rt + 1

y.(zv) = ^ Wfc(u;)yf.(wfc) i = l . . . » c - l (12)
* = o

are the polynomial approximations of order n for the liquid and vapor mole

fractions at position w. We use a Lagrange form because the coefficients of the

polynomials, Xj(wk) and }/j(wk) are also the liquid and vapor mole fraction at

position wk, the location of the kth collocation point. The ifc** term of a Lagrange

polynomial, Wk, is defined by the following equation:

"JL? TV - IV.
Wk(w) = TT 2- (13)

j = o * ;

11



Table 3. Degrees of Freedom for a Single Tray

tray model

collocate x, y, for nc -1

collocate h for liquid and vapor

CMB around end

HB around end

Fix Pressures

Fix a at 1

totals

Net equations

New Variables

2(nc+2) +2

?

?

2nc+6 + ?

??

New Equations

4(nc-1)

4

1

3

1

5nc+5

3nc-1

Collocating the enthalpies of the liquid and vapor entering and leaving

introduces 4 equations. Again, the number of polynomial coefficients introduced

as new variables will depend on the order of the polynomial. The following

equations define the enthalpy polynomials.

h(w) = (14)

H(w) = (15)

Since a single tray is isolated, we can add some overall balance equations between

the tray and the end of the collocation section:

12



Component Mass Balances:

L(wk)Xi(wk) - ^ ^ j j ^ w ^ J =
(16)

Heat balance:

L(wk)h(wk) -Llwn

(17)

The component mass balance adds nc equations, and the heat balance adds 1

equation. Since we are assuming a constant pressure column, we need to fix the

pressures of both input streams and one output stream, adding 3 equations.

Finally, we specify that a for the tray is fixed at 1.0. This leaves a total of 3nc-l

excess equations for each collocation tray. The question marks indicate that we

have not yet accounted for the polynomial coefficients.

Table 4 aids the degrees of freedom analysis for the entire section. The

section has ns trays, introducing ns(3nc -1) net new equations. It also has two

input and two output streams, creating 4(MC+2) variables. Specifying the two

input streams creates 2(nc+2) equations. We can write the following balances over

the entire section:

Component Mass Balances:

(18)
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Table 4. Degrees of Freedom for Section

ns trays

4 streams

2 stream specs

CMB

HB

Fix Pressures

collocate x, y for nc -1

collocate h for liquid and vapor

totals

Net equations

New Variables

4(nc+2)

?

?

4nc+8 + ?

New Equations

ns(3nc-1)

2(nc+2)

nc

1

2

4(nc-1)

4

7nc+7+ns(3nc-1)

(ns+1)(3nc-1)

Heat balance:

(19)

The component mass balance creates nc equations, and the heat balance creates 1

equation. Fixing the pressures of the two output streams introduces 2 equations.

Collocating the liquid and vapor mole fractions introduces 4(nc-l) equations.

Again, the number of variables introduced depends on the order of the

polynomials. Collocating the enthalpies creates 4 equations. The net equations for

a collocation section is (ns+l)(3nc-l).

With nc-\ liquid and vapor polynomials, and 1 polynomial for the liquid

and vapor enthalpies, there are a total of 2nc polynomials, so the number of

variables introduced by the polynomials will be 2nc(n+l), where n is the order of

the polynomial. In principle we want to choose n so the number of equations and

14



variables are equal for the section model:

2nc(n + 1) = (ns + 1) (3nc - 1) (20)

For three components and two stages, n is 3, while for four components and two

stages n is 3.25. In most cases, n is not an integer, so something is not right.

Previous papers select n = ns. This leaves (n$ + l)(nc - 1) excess equations. We

expect the number of trays and the order of the polynomials to be linked, but we

must remove the excess equations.

Cho and Joseph[1983] showed that when they assumed constant molar

overflow the component material balances between the trays and the end of the

collocation section given by equation 16 were held even when not enforced. We

have found that the error in the component mass balances is negligible even for

heat balanced columns. Rather than enforce the component mass balances

between each tray and the end of the collocation section, we can enforce only the

overall mass balance for each tray:

L(wk) - Uwns^) = V(wk) - ViWns+i) (21)

This removes (nc -1) equations per tray. Furthermore, if we enforce the

component mass balance over the entire section given by equation 18, we do not

need to calculate both output streams from the polynomials. Therefore, we can

ignore the polynomial equations for the compositions for one output stream,

removing the remaining nc-l equations for the entire collocation section. This

removes the (ns + l)(nc -1) extra equations, giving us zero degrees of freedom if

we set n = ns. Therefore, for a two tray collocation section, we get a second degree

polynomial with three coefficients for each fitted component.

Another option is to add slacks to the ignored equations in the first

example. If the slacks are too large, one can add more trays. When the component

material balances between the individual trays and the top of the collocation

section are ignored, the components can be out of balance on individual trays

15



even though they will be in mass balance over the entire section. Our tests have

shown that even with nonideal systems with constant molar overflow, the

component mass balances are satisfied. Also the polynomial equations for the one

output stream that we ignored in the first case is satisfied. When we use heat

balances rather than constant molar overflow, the component mass balances have

very small errors, and the polynomial equations have slightly more significant

errors. However, even when the trajectories of the collocation section are

inaccurate, the residuals of these equations are not good indicators of the error.

A third alternative is to minimize the residuals of all the equations and

solve for a best set of ns+l coefficients for each polynomial:

min (||||)
(22)

However, the arguments just given show that the additional equations did not

have significant error terms. Therefore, the optimization would probably only

yield a minor improvement on the first option.

We have used the first option in this work. The order of the polynomial

will be the same as the number of stages used as collocation points.

Point Placement

The most difficult decision in collocation is the placement of the collocation

points. Carnahan et al [69] showed that, for integration of differential equations,

collocation points placed at the zeros of an orthogonal polynomial were best.

However, this is not necessarily true for collocation of a distillation column. Cho

and Joseph [1983] placed their points at the zeros of Jacobi polynomials defined

by,

16



- 0 (23)

j = 0, 1, ...n- 1

where a and p are parameters. Their default choice of the parameters for the

Jacobi polynomial (a = 1, P = 1) resulted in evenly spaced points. They could have

moved the points toward either end of the collocation section by adjusting the

parameters and still have been using an orthogonal polynomial. Stewart et al.

[1984] showed that placing the collocation points at the zeros of the Hahn

polynomial created smaller errors than placing the points by the Jacobi

polynomial, using the default values for a and p. They argued that the Hahn

polynomial was a better choice because it maintained the stagewise nature of the

column and did not require manipulating parameters for best placement of the

collocation points. For full order, the collocation points would be placed exactly at

the tray locations.

However, the benefit of the Hahn polynomial appears to be due largely to

the fact that it spreads out the collocation points more than the default Jacobi

selection. As one spreads the collocation points out from being evenly spaced to

being all at the ends of the collocation section, the error will go through a

minimum. The Hahn placement is closer to this minimum than the default Jacobi,

but it is not the optimum. The following experiment demonstrates this. Three

different collocation models were used to approximate a three component,

constant relative volatility, constant molar overflow column with 15 trays above

and below the feed. Figure 5 shows the column trajectories for the three different

reflux ratios, generated by a tray-by-tray model. Two collocation sections were

used to model the column, one above and one below the feed. We did several

simulations with each collocation model with different spreads of the collocation

points. For any number of collocation trays, the following equation defined the

midpoint of the trays.
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= U>0 +fmid(Wns+l ' ™0> (24)

where/m# is 0.5 to have wmid at the actual center of the collocation section. For the

two tray model, the placement of the two collocation trays is defined by,

wl = wmid + fint<wmid ' w0>

™2 = ™mid -fint^ns+l ' wmid>

where fjnt is 03333 for evenly spaced points.

(25)

(26)

For the three tray model, zv2 is at wmid, and we define Wi and w3 as we

defined w1 and w2 for a two tray model. For the three tray model, an^nj of 0.5

gives evenly spaced points.

For the four tray model, we define Wj and zv4 as we defined Wi and Wi for a

two tray model. We place the interior points, Wi and w$, one third of the distance

£

3UT
stage number

Figure 5. Column trajectories for components cl, c2, and c3 for a range of reflux
ratios, r.
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from wmid to w1 and w4 respectively. For the four tray model, an fint of 0.6 gives

evenly spaced points. For the two and three tray models, the Hahn placement is at

a spread factor of 0.53748 and 0.71864.

For the four tray model, the Hahn placement of the outer points

corresponds to a spread factor of 0.79244, but our placement of the inner points

does not correspond to the Hahn placement. Figure 6 shows the average error in

the mole fractions of the distillate over varying spread factors for each model at

the three reflux ratios. Each plot is on a different scale, shown by the labels on the

x axis, and the maximum error on the y axis. The Hahn placement points are

shown with a larger data point. The standard Jacobi placement is evenly spaced

points, which is atfint of 0.333,0.5, and 0.6 for the two, three, and four tray

collocations respectively. So, for each case, the Hahn placement has a smaller

error than the default Jacobi placement, but not the minimum error possible. This

figure also shows that the optimal spread of the collocation points is different for

different reflux ratios.

For a low reflux ratio, the trajectories are very flat, and the minimum error

occurs with a very wide spread of the collocation points, to get the nonlinear

polynomial as flat as possible over the collocation section. As the reflux increases,

the trajectories become less flat and then even linear with a fairly large slope. For

these cases, there is an optimal spread of the collocation points. In the next

section, we will show how variable transformations are more significant than

point placement for increasing accuracy.

Variable Transformations

We use two variable transformations in this model to alleviate the problem

of flattened trajectories. When the mole fraction of a component is not changing

over part of a tray section, we call that a flattened trajectory. Flattened trajectories
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2 trays 3 trays 4trays

0.5 0.7 0.4 0.6 0.8
Spread factor

06 ()9

Figure 6. Effect of point placement on error

cannot be fit well with polynomials, so we perform variable transformations to

alter the shape.

The first is a transformation of the tray number. To simulate a large number

of trays, or an infinite number of trays, we want an index that goes to a finite

value as the tray number goes to infinity. Even for finite columns with a large

number of trays, the trajectories flatten out as the number of trays increases. Some

possible transformations are:

z = 1 -
(-as)

z =
a

(27)

(28)

In both these equations, s is stage number, z is the transform variable, and a is a

parameter. In both cases, z=0 when s=0, and z tends to 1 as s tends to infinity. To

discover the better form of the transformation, we first investigated fitting results
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from the Kremser approximation:

1-AS A-AS

(29)

A U

Figure 7 shows that the variable transformation given by equation 27 did the best

at straightening out the trajectory. In the Appendix, we show that, with the

exponential variable transformation, the Kremser approximation can be exactly

straightened out for the correct choice of a. Figure 8 shows how the choice of a

affects the shape of the trajectories. At the proper selection of a, the data can be

fitwith a linear function. Therefore, we use the variable transformation in

equation 27.

1.0

0.9

0.8

0.7

z = s/smax
z = s/s+1.5
z = 1 - exp(-0.59s)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7. Comparison of variable transformations on s
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0.4 0.6
z = 1 - exp(-as)

Figure 8. Effect of choice of a

Figure 9 shows column trajectories for a three component, constant relative

volatility, constant molar overflow column with fifty trays above and below the

feed, for three different reflux ratios, generated by a tray-by-tray model. Over the

range of reflux ratios, r, we tested the collocation model, comparing the

composition of the distillate product to the tray-by-tray calculation. The

collocation model used had two collocation sections per column section, with two

trays in each collocation section. We compared the s based and z based

collocations over a range of point placements, using the point placements

described in the last section. Figure 10 shows the average errors of both cases over

the same range of point spreads for different reflux ratios. The z based collocation

had lower average errors for every reflux ratio. For all but the lowest reflux ratio,

the best solution was achieved with the z based collocation.

The second variable transformation is one on the mole fractions. When

distilling to high purity, mole fractions go to one or zero, again flattening out the
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trajectory. We need to transform the asymptotic approach to zero and one into a

decreasing and increasing function that can be fitted by the polynomial used in

the collocation. We use the following transformation:

2* . - l = (31)

As the mole fraction goes to one or zero, the transformation variable, x{, goes to

negative infinity and plus infinity. Figure 11 shows the effect of this

transformation. For exponential approach to one and zero, the transformation

straightens the trajectory out, so the slope never goes to zero.

Without this transformation, modeling sharp splits is very difficult. As the

mole fractions of some of the components approach zero or one, the polynomial

will create a curved trajectory, "bouncing" off the boundary. It becomes

impossible to model a column with a component going to a mole fraction of 10"6

0.00

stage number

Figure 9. Column trajectories for a large column over a range of reflux ratios
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0.025

0.0

z based

0.7 0.9 o.4
spread factor

0.6 0.8

Figure 10. Error curves for s and z based collocation

<x

"stage"

Figure 11. Effect of transformation on mole fraction, x
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or smaller. However, the above transformation will give the polynomial room to

move and will allow an asymptotic approach to the boundary. Figure 12 shows

the four possible models of a 63 tray column which is removing all of the heavy

component from the distillate. Figure 13 is a blowup of the trajectories for the

heavy component near the top of the column. The two simulations without the

transformation on mole fraction are curved and "bounce" up. The two solutions

using the transformation smoothly approach the top of the column.

Figure 14 shows the combined benefits of the two variable transformation,

showing two collocation models of a 103 tray column with high purities. Both

models used the transformation on mole fraction, since this problem will not

converge without it. For one, the polynomial is based on stage number and, for

the other, the polynomial is based on the transformed stage number. The s based

solution has high curvature in the bottom half of the column. This also

demonstrates why it is beneficial in an s based collocation for the

10.0 20.0 30.0 40.0 50.0 60.0

Figure 12. Effect of x transformation in a column simulation
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Figure 13. Blowup of lower left corner

Figure 14. Effect of s transformation on a column with many trays
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collocation points to be spread towards the ends of the collocation section to keep

the curvature to a minimum.

Formulation of Collocation Column Model

Our standard formulation of the collocation column model is shown by

Figure 15. Each column section is divided into two collocation sections with two

trays each. Sererflis and Hrymak[1994a] used multiple collocation sections so they

could use more collocation points in specific areas of the column where the

temperature and composition profiles changed rapidly. We observe that the areas

of activity are at the ends of column sections. By breaking each column section

into two parts, and using the transformation on stage number, we de-emphasize

the center of the column section by numbering the top collocation section

downward and the bottom collocation section upward. With this transformation,

the points at the beginning of a collocation section are stressed, and those at the

end are less important. Therefore, for large columns with relatively low reflux

ratios, the collocation points will be located where the compositions are changing,

and the area of no activity will join the two collocation sections, but no collocation

points need to be located there.

This standard formulation is sufficient for modeling large columns with

reasonable accuracy and is small enough to model small columns without

overkill. The model has four collocation sections with two trays each, a feed tray,

a condenser, and a reboiler. This is eleven tray calculations. Since the collocation

trays are not connected the way they would be for a tray-by-tray model, and since

there are polynomial equations, there are more equations than there would be for

an eleven tray column model. For a three component system, the collocation

model has 1811 equations and variables, including all thermodynamic equations.

A tray-by-tray model with 19 trays has 1856 equations and variables. For a four

component system, the collocation model has 2215 equations and variables

compared to 2205 for a tray-by-tray model with 18 trays. For a set number of trays
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Figure 15. Column configuration

below 18, a tray-by-tray model might be more efficient, or a nonstandard

collocation model can be used with fewer collocation sections.

We space the collocation points in each section using two parameters as

described in the previous section.The parameter fmid sets where the center of the

collocation points is relative to the actual center of the collocation section, a n d ^

sets how spread out the points will be. For two and three tray collocation sections,
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this formulation can emulate Jacobi or Hahn placement, and is easy to use.

Testing the Collocation Model

We have performed several tests of the collocation model using nonideal

thermodynamics. In each of the following examples, the standard collocation

model was used, with four collocation sections of two trays each. We used

UNIFAC liquid mixture and Pitzer vapor mixture models for the

thermodynamics and equilibrium, and assumed constant molar overflow. We

would like to note that performing tests like these is a nontrivial task. The process

of obtaining a full thermodynamic model is complex, but once a tray-by-tray

collocation model has been successfully refined and converged, it is relatively

easy to perform many sequential incremental changes to obtain a wealth of data.

The two examples below where we performed a series of calculations to

determine the binary separations over a range of operations required 50 solutions

of the tray-by-tray and collocation models. Most of the work was done in getting

that first useful solution. Then the models could be resolved repeatedly as the

distillate to feed ratio was increased incrementally. The collocation has many

parameters that can be adjusted, but it is much more robust than a tray-by-tray

model. The process of solving these models will be discussed further in a two

follow-up papers.

The first example is the separation of a 50/50 mixture of methanol and

water. The column has 46 trays, and a reflux of 1.0. The purity of each product is

99.6%. Figure 16 shows a comparision between the tray-by-tray solution and the

collocation model. The curves are the tray-by-tray, and the points are the

collocation. The figure shows an excellent fit. Including all the thermodynamic

calculations, the tray-by-tray and collocation models had 3255 and 1407 equations

respectively. The error in the distillate composition is 0.02 percent.

Using the acetone, chloroform, benzene system, we performed many tests

of the collocation model. The feed was a 36/24/40 mixture of acetone,
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chloroform, and benzene. A 33 tray column with a reflux ratio of 4.0 was used. We

performed a search over the range of distillate to feed ratios to find the maximum

binary separations, as done by Wahnschafft [1992]. Figure 17 shows the

comparison of the binary separation range plots with those for a tray-by-tray

calculation. The chloroform benzene binary separation factor is not meaningful

before a D:F of 0.3, since practically nothing of either component is coming out of

the distillate at low D:F. For the acetone-benzene binary separation factor curve

the average error was 1%, and for the acetone-chloroform separation factor curve

the average error was 3%. The collocation shows very good agreement with tray-

by-tray calculations. The error in the acetone concentration in the distillate was

less than 2% over the range of D:F ratios, with an average error of 1%. Figure 18

shows comparisons of three different column simulations on a ternary diagram.

Including all the thermodynamic calculations, the tray-by-tray and collocation

models had 3144 and 1811 equations respectively.

Collocation sections

co

2

o
2

Methanol,
tray by tray

Collocation^
Points

Tray number

Figure 16. Comparison of collocation to rigorous model for methanol-water
column
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Finally, we performed a set of tests on an equimolar mixture of acetone,

ethanol, propanol, isobutanol, and normal butanol, using a 23 tray column with a

reflux ratio of 0.8. Figure 19 shows the comparison of the binary separation range

plots for the components which are adjacent in the order of relative volatility. The

other binary separation ranges compare equally well but would clutter the figure.

Conclusions

In this paper, we have demonstrated that this new collocation method can

accurately reduce the order of column models. The two variable transformations

greatly expand the capabilities of standard collocation methods. We have found

that the degrees of freedom selection is important, and demonstrated what

equations can be ignored. The choice of point placement is non-trivial, and no

particular polynomial will give optimal point placement. Variable

transformations more significantly reduce errors than proper point placement.

In two companion papers, we will discuss how collocation provides the

32



missing link for simulation of minimum reflux conditions. We will also discuss a

design algorithm for designing arbitrary columns using the collocation model.
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Nomenclature

A Simplification variable for Kremser approximation (L/KV)

a
a

a

P
fint

Jmid

h

H

K

L

n

*c

np

"s

P

Pn
s

T

V

Wk

wk

U>mid

wtopk

Xi

z

Mole fraction average relative volatility

Parameter for exponential transformation of stage location

Parameter of Jacobi polynomial

Relative volatility of species i

Parameter of Jacobi polynomial

Factor for selection of spread of collocation points

Factor for selection of the midpoint of collocation points

Liquid molar enthalpy

Vapor molar enthalpy

Equilibrium constant used in Kremser approximation

Liquid molar flowrate

Order of polynomial

Number of components

Number of phases

Number of collocation points

Pressure

Jacobi polynomial of order n

Stage location

Temperature

Vapor molar flowrate

kth term of Lagrange polynomial

Position of bottom of tray k

Midpoint for placement of collocation points

Position of top of tray k

Liquid mole fraction of component i

Transformed mole fraction

Vapor mole fraction of component i

Transformed stage location
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Appendix

Rewriting the Kremser approximation to gather terms with s produces the

following equation.

Vs I-A I-A l '

Rewriting the variable transformation

z = l-e(-"s) (33)

for s in terms of z,

s = ln[ ( l - z ) ~ a J (34)
and placing it into the Kremser approximation produces the following equation.

y(z))=^J^»W»)

If we define A = exp(B), then we can take the following steps

J = (exp (B))
In (exp(B))

*exp[B[ln[(l-z) *

= expy ln[ (1-z)

= (1-z) (36)

Now equation 35 becomes the following.
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Therefore, when -aB = 1, the equation is linear in z.
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= U>0 +fmid(Wns+l ' ™0> (24)

where/m# is 0.5 to have wmid at the actual center of the collocation section. For the

two tray model, the placement of the two collocation trays is defined by,

wl = wmid + fint<wmid ' w0>

™2 = ™mid -fint^ns+l ' wmid>

where fjnt is 03333 for evenly spaced points.

(25)

(26)

For the three tray model, zv2 is at wmid, and we define Wi and w3 as we

defined w1 and w2 for a two tray model. For the three tray model, an^nj of 0.5

gives evenly spaced points.

For the four tray model, we define Wj and zv4 as we defined Wi and Wi for a

two tray model. We place the interior points, Wi and w$, one third of the distance

£

3UT
stage number

Figure 5. Column trajectories for components cl, c2, and c3 for a range of reflux
ratios, r.
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from wmid to w1 and w4 respectively. For the four tray model, an fint of 0.6 gives

evenly spaced points. For the two and three tray models, the Hahn placement is at

a spread factor of 0.53748 and 0.71864.

For the four tray model, the Hahn placement of the outer points

corresponds to a spread factor of 0.79244, but our placement of the inner points

does not correspond to the Hahn placement. Figure 6 shows the average error in

the mole fractions of the distillate over varying spread factors for each model at

the three reflux ratios. Each plot is on a different scale, shown by the labels on the

x axis, and the maximum error on the y axis. The Hahn placement points are

shown with a larger data point. The standard Jacobi placement is evenly spaced

points, which is atfint of 0.333,0.5, and 0.6 for the two, three, and four tray

collocations respectively. So, for each case, the Hahn placement has a smaller

error than the default Jacobi placement, but not the minimum error possible. This

figure also shows that the optimal spread of the collocation points is different for

different reflux ratios.

For a low reflux ratio, the trajectories are very flat, and the minimum error

occurs with a very wide spread of the collocation points, to get the nonlinear

polynomial as flat as possible over the collocation section. As the reflux increases,

the trajectories become less flat and then even linear with a fairly large slope. For

these cases, there is an optimal spread of the collocation points. In the next

section, we will show how variable transformations are more significant than

point placement for increasing accuracy.

Variable Transformations

We use two variable transformations in this model to alleviate the problem

of flattened trajectories. When the mole fraction of a component is not changing

over part of a tray section, we call that a flattened trajectory. Flattened trajectories
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Figure 6. Effect of point placement on error

cannot be fit well with polynomials, so we perform variable transformations to

alter the shape.

The first is a transformation of the tray number. To simulate a large number

of trays, or an infinite number of trays, we want an index that goes to a finite

value as the tray number goes to infinity. Even for finite columns with a large

number of trays, the trajectories flatten out as the number of trays increases. Some

possible transformations are:

z = 1 -
(-as)

z =
a

(27)

(28)

In both these equations, s is stage number, z is the transform variable, and a is a

parameter. In both cases, z=0 when s=0, and z tends to 1 as s tends to infinity. To

discover the better form of the transformation, we first investigated fitting results
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from the Kremser approximation:

1-AS A-AS

(29)

A U

Figure 7 shows that the variable transformation given by equation 27 did the best

at straightening out the trajectory. In the Appendix, we show that, with the

exponential variable transformation, the Kremser approximation can be exactly

straightened out for the correct choice of a. Figure 8 shows how the choice of a

affects the shape of the trajectories. At the proper selection of a, the data can be

fitwith a linear function. Therefore, we use the variable transformation in

equation 27.

1.0

0.9

0.8

0.7

z = s/smax
z = s/s+1.5
z = 1 - exp(-0.59s)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 7. Comparison of variable transformations on s
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0.4 0.6
z = 1 - exp(-as)

Figure 8. Effect of choice of a

Figure 9 shows column trajectories for a three component, constant relative

volatility, constant molar overflow column with fifty trays above and below the

feed, for three different reflux ratios, generated by a tray-by-tray model. Over the

range of reflux ratios, r, we tested the collocation model, comparing the

composition of the distillate product to the tray-by-tray calculation. The

collocation model used had two collocation sections per column section, with two

trays in each collocation section. We compared the s based and z based

collocations over a range of point placements, using the point placements

described in the last section. Figure 10 shows the average errors of both cases over

the same range of point spreads for different reflux ratios. The z based collocation

had lower average errors for every reflux ratio. For all but the lowest reflux ratio,

the best solution was achieved with the z based collocation.

The second variable transformation is one on the mole fractions. When

distilling to high purity, mole fractions go to one or zero, again flattening out the
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trajectory. We need to transform the asymptotic approach to zero and one into a

decreasing and increasing function that can be fitted by the polynomial used in

the collocation. We use the following transformation:

2* . - l = (31)

As the mole fraction goes to one or zero, the transformation variable, x{, goes to

negative infinity and plus infinity. Figure 11 shows the effect of this

transformation. For exponential approach to one and zero, the transformation

straightens the trajectory out, so the slope never goes to zero.

Without this transformation, modeling sharp splits is very difficult. As the

mole fractions of some of the components approach zero or one, the polynomial

will create a curved trajectory, "bouncing" off the boundary. It becomes

impossible to model a column with a component going to a mole fraction of 10"6

0.00

stage number

Figure 9. Column trajectories for a large column over a range of reflux ratios
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Figure 11. Effect of transformation on mole fraction, x
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or smaller. However, the above transformation will give the polynomial room to

move and will allow an asymptotic approach to the boundary. Figure 12 shows

the four possible models of a 63 tray column which is removing all of the heavy

component from the distillate. Figure 13 is a blowup of the trajectories for the

heavy component near the top of the column. The two simulations without the

transformation on mole fraction are curved and "bounce" up. The two solutions

using the transformation smoothly approach the top of the column.

Figure 14 shows the combined benefits of the two variable transformation,

showing two collocation models of a 103 tray column with high purities. Both

models used the transformation on mole fraction, since this problem will not

converge without it. For one, the polynomial is based on stage number and, for

the other, the polynomial is based on the transformed stage number. The s based

solution has high curvature in the bottom half of the column. This also

demonstrates why it is beneficial in an s based collocation for the

10.0 20.0 30.0 40.0 50.0 60.0

Figure 12. Effect of x transformation in a column simulation
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collocation points to be spread towards the ends of the collocation section to keep

the curvature to a minimum.

Formulation of Collocation Column Model

Our standard formulation of the collocation column model is shown by

Figure 15. Each column section is divided into two collocation sections with two

trays each. Sererflis and Hrymak[1994a] used multiple collocation sections so they

could use more collocation points in specific areas of the column where the

temperature and composition profiles changed rapidly. We observe that the areas

of activity are at the ends of column sections. By breaking each column section

into two parts, and using the transformation on stage number, we de-emphasize

the center of the column section by numbering the top collocation section

downward and the bottom collocation section upward. With this transformation,

the points at the beginning of a collocation section are stressed, and those at the

end are less important. Therefore, for large columns with relatively low reflux

ratios, the collocation points will be located where the compositions are changing,

and the area of no activity will join the two collocation sections, but no collocation

points need to be located there.

This standard formulation is sufficient for modeling large columns with

reasonable accuracy and is small enough to model small columns without

overkill. The model has four collocation sections with two trays each, a feed tray,

a condenser, and a reboiler. This is eleven tray calculations. Since the collocation

trays are not connected the way they would be for a tray-by-tray model, and since

there are polynomial equations, there are more equations than there would be for

an eleven tray column model. For a three component system, the collocation

model has 1811 equations and variables, including all thermodynamic equations.

A tray-by-tray model with 19 trays has 1856 equations and variables. For a four

component system, the collocation model has 2215 equations and variables

compared to 2205 for a tray-by-tray model with 18 trays. For a set number of trays
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below 18, a tray-by-tray model might be more efficient, or a nonstandard

collocation model can be used with fewer collocation sections.

We space the collocation points in each section using two parameters as

described in the previous section.The parameter fmid sets where the center of the

collocation points is relative to the actual center of the collocation section, a n d ^

sets how spread out the points will be. For two and three tray collocation sections,

28



this formulation can emulate Jacobi or Hahn placement, and is easy to use.

Testing the Collocation Model

We have performed several tests of the collocation model using nonideal

thermodynamics. In each of the following examples, the standard collocation

model was used, with four collocation sections of two trays each. We used

UNIFAC liquid mixture and Pitzer vapor mixture models for the

thermodynamics and equilibrium, and assumed constant molar overflow. We

would like to note that performing tests like these is a nontrivial task. The process

of obtaining a full thermodynamic model is complex, but once a tray-by-tray

collocation model has been successfully refined and converged, it is relatively

easy to perform many sequential incremental changes to obtain a wealth of data.

The two examples below where we performed a series of calculations to

determine the binary separations over a range of operations required 50 solutions

of the tray-by-tray and collocation models. Most of the work was done in getting

that first useful solution. Then the models could be resolved repeatedly as the

distillate to feed ratio was increased incrementally. The collocation has many

parameters that can be adjusted, but it is much more robust than a tray-by-tray

model. The process of solving these models will be discussed further in a two

follow-up papers.

The first example is the separation of a 50/50 mixture of methanol and

water. The column has 46 trays, and a reflux of 1.0. The purity of each product is

99.6%. Figure 16 shows a comparision between the tray-by-tray solution and the

collocation model. The curves are the tray-by-tray, and the points are the

collocation. The figure shows an excellent fit. Including all the thermodynamic

calculations, the tray-by-tray and collocation models had 3255 and 1407 equations

respectively. The error in the distillate composition is 0.02 percent.

Using the acetone, chloroform, benzene system, we performed many tests

of the collocation model. The feed was a 36/24/40 mixture of acetone,
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chloroform, and benzene. A 33 tray column with a reflux ratio of 4.0 was used. We

performed a search over the range of distillate to feed ratios to find the maximum

binary separations, as done by Wahnschafft [1992]. Figure 17 shows the

comparison of the binary separation range plots with those for a tray-by-tray

calculation. The chloroform benzene binary separation factor is not meaningful

before a D:F of 0.3, since practically nothing of either component is coming out of

the distillate at low D:F. For the acetone-benzene binary separation factor curve

the average error was 1%, and for the acetone-chloroform separation factor curve

the average error was 3%. The collocation shows very good agreement with tray-

by-tray calculations. The error in the acetone concentration in the distillate was

less than 2% over the range of D:F ratios, with an average error of 1%. Figure 18

shows comparisons of three different column simulations on a ternary diagram.

Including all the thermodynamic calculations, the tray-by-tray and collocation

models had 3144 and 1811 equations respectively.

Collocation sections
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Figure 16. Comparison of collocation to rigorous model for methanol-water
column

30



0»
GO

o

s

2

1.0

0.8

0.6

0.4

0.2

0.0,0.0 OH 03 ITT
D:F

U.4 U.5

Figure 17. Comparison of collocation to rigorous model of separation range
over D:F ratio for acetone-benzene-chloroform system

Benzene
tbt
collocation

D:F = 0.9

D:F = 0.3

D:F = 0.6
t

Distillation
Boundary

Acetone Chloroform

Figure 18. Comparison of collocation to rigorous model for acetone-benzene-
chloroform column, for three different D:F ratios
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Finally, we performed a set of tests on an equimolar mixture of acetone,

ethanol, propanol, isobutanol, and normal butanol, using a 23 tray column with a

reflux ratio of 0.8. Figure 19 shows the comparison of the binary separation range

plots for the components which are adjacent in the order of relative volatility. The

other binary separation ranges compare equally well but would clutter the figure.

Conclusions

In this paper, we have demonstrated that this new collocation method can

accurately reduce the order of column models. The two variable transformations

greatly expand the capabilities of standard collocation methods. We have found

that the degrees of freedom selection is important, and demonstrated what

equations can be ignored. The choice of point placement is non-trivial, and no

particular polynomial will give optimal point placement. Variable

transformations more significantly reduce errors than proper point placement.

In two companion papers, we will discuss how collocation provides the
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missing link for simulation of minimum reflux conditions. We will also discuss a

design algorithm for designing arbitrary columns using the collocation model.
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Nomenclature

A Simplification variable for Kremser approximation (L/KV)

a
a

a

P
fint

Jmid

h

H

K

L

n

*c

np

"s

P

Pn
s

T

V

Wk

wk

U>mid

wtopk

Xi

z

Mole fraction average relative volatility

Parameter for exponential transformation of stage location

Parameter of Jacobi polynomial

Relative volatility of species i

Parameter of Jacobi polynomial

Factor for selection of spread of collocation points

Factor for selection of the midpoint of collocation points

Liquid molar enthalpy

Vapor molar enthalpy

Equilibrium constant used in Kremser approximation

Liquid molar flowrate

Order of polynomial

Number of components

Number of phases

Number of collocation points

Pressure

Jacobi polynomial of order n

Stage location

Temperature

Vapor molar flowrate

kth term of Lagrange polynomial

Position of bottom of tray k

Midpoint for placement of collocation points

Position of top of tray k

Liquid mole fraction of component i

Transformed mole fraction

Vapor mole fraction of component i

Transformed stage location
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Appendix

Rewriting the Kremser approximation to gather terms with s produces the

following equation.

Vs I-A I-A l '

Rewriting the variable transformation

z = l-e(-"s) (33)

for s in terms of z,

s = ln[ ( l - z ) ~ a J (34)
and placing it into the Kremser approximation produces the following equation.

y(z))=^J^»W»)

If we define A = exp(B), then we can take the following steps

J = (exp (B))
In (exp(B))

*exp[B[ln[(l-z) *

= expy ln[ (1-z)

= (1-z) (36)

Now equation 35 becomes the following.
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Therefore, when -aB = 1, the equation is linear in z.
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