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MODEL DESCRIPTION AND TESTING

Robert S. Huss and Arthur W. Westerberg

Abgtract
Fast and accurate distillation design requires a model that significantly
reduces the problem size while accurately approximating a full order distillation
column model. Variable number of trays and variable feed tray location make
optimization possible.

This collocation model builds on the concepts of past collocation models
for design of complex real-world separation systems. Two variable
transformations make this method unique. Polynomials cannot accurately fit
trg ectories which flatten out. In columns, flat sections occur in the middle of large
columln sections, or where concentrations go to zero or one. With an exponential
transformation of the tray number which maps zero to an infinite number of trays
onto the range zero to one, two collocation trays can accurately simulate a large
column section. With a hyperbolic tangent transformation of the mole fractions,
the model can simulate columns which reach high purities. Furthermore, this
model uses multiple collocation elements for a column section, which is more
accurate than a single high order collocation section.

Thiswork has been partidly supported by the Engineering Design Research Center, a
NSF Engineering Research Center.




I ntroduction

Several researchers have explored and developed collocation for
digtillation column modeling. I n this paper, we present a collocation model which
expandson prior models, addressing the problems specific to steady-tate,
continuous columns. We describe the formulation of the model in detail and
compareit to prior models, using rigor ous column simulations as a benchmark.

M otivation

Thedesrefor a method to perform minimum reflux calculationsfor highly
nonideal systemswasthe original motivation for this collocation method. For a
specific separation, the required reflux ratio decr eases as the number of traysin
the column increases. Asoneincreasesthe number of traysin a column section to
avery large number, aregion of constant composition occurs, referred to asa
pinch. At a pinch point, the vapor and liquid passing each other arein
equilibrium. They arealso in material balancewith the compositionsentering and

leaving at the end of that column section.

Consder a separation of aternary mixture A, B, and C, where we want to
separate A from B and C (see Figure 1). Given the products and a specified reflux
ratio, Levy et al. [1985] solved thistype of problem by starting from the ends of
the column and calculating the trgjectories inward. When the concentration
changes in each section fall below some minimum value, they stop calculating
and assume thisisthe pinch point. If the trajectoriesinter sect, then they have a
feasble column prafile. If onetragectory just pinches on the other, they have a

minimum reflux profile.

For alarger number of species, one cannot completely specify a product for
a column. Typically one can ask that component splits satisfy inequalities— e.g.,
wewant at least 99.9% of A and 99% of B and no morethan 1% of C and lessthan
0.01% of D to exit in thedistillate. Solving such a problem requiresoneto discover
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Figure 1. Minimum reflux trajectories and column configurations

which of these constraints are active. We saw that one can still use apinch
strategically located, but we also discovered that one needs atray by tray column




section model in a form which can compute the number of traysit contains.

Conventional column models require oneto specify thetraysas an integer input.

Thisthinking led usto consider using a collocation model for the parts of
thecolumn where Levy et a. [1985] used a tray by tray computation. For such a
column section, the number of traysis a continuous variable which the model can

compute.

Returning to the three component example, Levy et al. [1985] showed that,
asthey decreased the concentration of C in the distillate, the minimum reflux
decreased. Therefore, for a specific separation between the key components, A
and B, the minimum reflux occurswhen they allow no C in thedigtillate. In this
case the top section has a saddle pinch point along the A-B edgewherethe
concentration of C goesto zero. Levy et al. [1985] noticed that, asther
computations approached this saddle pinch, it, the feed composition, and thefeed
pinch became colinear. Requiring colinearity of these points gave them a method
to determine minimum reflux without the needed tray by tray computafion. For a
congtant relative volatility, constant molar overflow system, they proved this
method becomes exactly Underwood's method. They proposed using this
colinearity even for nonideal systems. In a smilar manner and for
multicomponent nonideal systems, Koehler et al. [1991] used a minimum angle
criterion between the three points, and Julka and Doherty[1990] revised the
colinearity condition to one of having a set of pinch points and the feed
composition lie insde a minimum volume in composition space. All these
methods assume sharp splitsasthey are based on computing a saddle pinch
point. These geometric techniques do not guar antee a feasible column for

nonideal systems, and they do not work for nonsharp splits.

To guarantee the inter section of the column sectionsfor sharp splits, one
must prove the existence of a tray by tray calculation linking a saddle pinch point
and the feed tray composition, a calculation that passes through an infinite




number of trays. Thisrequirement led us to examine extending the collocation
model to handle an infinite number of trays. We looked at different

transfor mations to map tray number going from zero to infinity onto a variable z
that goes from zero to one. With such a model, we concluded we should be ableto
compute minimum reflux for any column by computing pinch points and
properly located column sections that can have a finite or an infinite number of
trays. For casel shown in Figure 1, afinite collocation section simulatesthe
unknown number of trays. For casell, theinfinitetray section between theSaddIe
pinch point and the feed tray ismodeled by an infinite collocation section.

We began developing a collocation method capable of simulating infinite
column sections and discovered several other advantages and uses for
collocation. Digtillation design requires an adaptable column model, with the
ability to compute the number of traysin each distillation section, a computation
that discovershow many trays one needs and whereto place the feed. Onecan
simulate complex column configurations. Optimal design of distillation
sequences requires small robust models for each distillation column. Collocation
both reduces the size of a column model and provides a continuous variable for
the number of trays. Furthermore, the variable transformation required for
modeling an infinite tray section improved the accuracy whenever such
Separation problem requires a relatively large number of trays.

Background of Collocation

Cho and Joseph [1983] developed a reduced-order method for modeling
staged separation processes. They used orthogonal collocation to obtain accurate
solutions of sgnificantly reduced-order. Ther model had a single collocation
section for each section of the column. They tested by modeling a smple absor ber
system, and binary and three component distillation, and used the Antoine
equation for theequilibrium relationship. In later papers Srivastava and-Joseph
[1984,1987a] developed methods for handling multiple feeds and side draws.




They also developed a complex method for handling steep and flat composition
profiles by fitting the composition profiles with different polynomials for each
component. They developed a complicated approach using two sets of collocation
points, global and local, to fit both the key components and non key components
[Srivagtava and Joseph, 1987b]. They tested these later ideas using constant
relative volatility systems.

Stewart, Levien, and Morari [1984] developéd a collocation method that
stresses selecting gridpoints based on the stagewise nature of distillation. Their
method became stage-by-stage at full order, and had errorsat least an order of
magnitude smaller than Cho and Joseph's default choice of collocation points.
They tested for binary and six-component distillation columns with constant
relative volatility and for a ternary system using UNIQUAC for equilibrium.
Swartz and Stewart [1986] applied the method to design, iteratively passing from
the model to an SQP optimization algorithm. Swartz and Stewart [1987] also
developed a finite-dlement method for handling multiphase distillation problems.

Recently, Seferlisand Hrymak [1994] adapted the model of Stewart et al.
[1984] by using collocation elementsto track irregularitiesin column profiles for
existing columns. They investigated optimal placing of the collocation elements,
based on comparison with the actual column. They obtained higher accuracy with
multiple collocation sections of lower order than with a single collocation section
of higher order.

Table 1 lists the characterigtics of each of these collocation methods as well
asthe characterigtics of the model presented in this paper.

Description of Model

Collocation is generally thought of as a method for numerically solving
differential equations. The use of collocation for smulation of a distillation
column isan extension of this technique. Given a differential equation,




Table 1. Comparison of Collocation M ethods

Elements/ Placement (E:]mzs Variable
Section of points tested transformations

Choand Single Continuous Antoine

Joseph 1983 orthogonal
(Jacobi)

Srivastavaand ]| Single(global), | Continuous Constant none

Joseph 1987 Multiple(local) | orthogonal relative
(Jacobi) volatility

Stewart et a Single Discrete UNIQUAC | none

1984 orthogonal
(Hahn)

Swartz and Single Discrete | deal none

Stewart 1986 orthogonal
(Hahn)

Swartz and Multiple Discrete Nonideal none

Stewart 1987 || (breakpoints a | orthogonal three phase

phase changes) | (Hahn)

Seferlis and Multiple Discrete Regression none

Hrymak 1994 orthogonal of data
(Hahn)

This work Multiple Continuous UNIFAC/ Transform
(orthogonal Pitzer tray number
for2or 3 and mole
points) fractions
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we want to find y as a function of x. We can approximatey as a polynomial in x,

n 2 n
Y = y<>+ a\X+a2x +...+anx

2




" J\L/ =2

y

Xo XI xz """"" X n

Figure 2. Collocation of a differential equation

We can then approximatey, dy/dx, and/as functions of x. At any point inx, we can
define an error for this approximation,

!
erorx) = f(xy) -Qa|+2a2xl+_,_ +nanxn*1 ) (3)

At n collocation points, X..x,, we say that the error =0 and get n equationsto solve
for n coefficients to the polynomial. See Figure 2.

Collocation of a distillation column uses the same concepts. A set of
equations defines a distillation column tray, where x would be the tray location in
the column and y would be mole fractions. Polynomials defined by tray location
approximate the mole fractions and, at each collocation point, the set of equations
for a distillation column must be satisfied.

There are many equations in adistillation column model, even a reduced
order model. Rather than just list the basic equations, we are going to provide a
detailed degrees of freedom analysis to demonstrate the reason for using a certain
set of equations.

We begin the degrees of freedom analysis with a stream model. Gibbs
phase rule gives the number of degrees of freedom for a system in equilibrium.




F=2+ncn, 4
F isthe number of degrees of freedom for a given number of components, n., and
a given number of phases, n,. For asinglephase, Fisn; + 1. For a stream we also
need a flowrate which adds one more variable, giving n. + 2 degr ees of freedom.
The set of variables could be the molar flowrates, temperature, and pressure.
Onceweknow n. + 2 of these variables and assumethe phase, we can compute all
other molar properties. We shall assume a stream introduces a net of n. + 2 new
variables and shall assume all other properties are available.

A sandard digtillation tray hastwo input streamsand two output streams,
asshown in Figure 3. Thefour streamsintroduce a net of 4(n; + 2) new variables,
which isthefirg entry on Table 2. By keeping track of the number of variables
and equations introduced by each new element of the model, we can determine
the degr ees of freedom, and how many variables must be fixed to obtain a system
with the same number of equationsand freevariables. We can write thefollowing
equationsfor asingletray.

Component Material Balances.

L (out)x (out) - L(in)Xi(in) = V(in)y:<in) - V(out)y,(out) ©)
Equilibrium:
y,(out) = %* ;fout) , Ti(out) = Ty(out), P (out) = Py(out) 6)
Heat balance:
L(in)h(in) - L(out)h(out) = V(in)H(in) - V(out)H (out) )

L, V,xy, h,H areliquid flowrate, vapor flowrate, liquid molefraction, vapor mole
fraction, liquid molar enthalpy, and vapor molar enthalpy, respectively, a; isthe

relative volatility of speciesi, and aisthe mole fraction aver agerédative volatility.
Theliquid and vapor molar enthalpiesand therdativevolatilities arefunctions of




composition and temperature. We write equations 5 and 6 for each component
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Figure 3. Diagram of tray

and equation 7 once. As shown in Table 2, the component material balances
therefore introduce n. equations. There are n. + 2 equilibrium equations. The
equilibrium equation also introduces one new variable, a. The heat balance,
which could be replaced by a constant molar overflow assumption, introduces
one equation. Therefore, the degrees of freedom for an isolated tray are 2(n.+2)+2.
Specifying two input streams, the pressure and a of the tray would be sufficient to
solve the tray model.

Table 2. Degrees of Freedom for an Isolated Tray

New Variables | New Equations
4 streams 4(n¢+2)
CMB N
Equilibrium 1 Ne + 2
HB 1
totals 4(ns+2)+1 2n.+3
DOF for isolated tray 2(nc+2) + 2

Figure 4 shows a diagram of a single collocation section. A collocation
section has a liquid input and vapor output at the top and a vapor input and
liquid output at the bottom. The example shown has two collocation trays which
are not connected. In this example, we number from the top of the collocation




section downward. Liquid and vapor streams paséi ng each other have the same
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Figure 4. Diagram of collocation section, | and |l are material and energy
balance envelopes for atray.

index. We use a general position index, w, which will be either the tray number or
a transformation of the tray number which we shall describe later. The index
denotes the distance from the top of the collocation section. We index each tray k
by wy, the position of the bottom of the tray. We index the liquid entering and the
vapor leaving the top of the tray by wtopy, which in tray location isw”-1, but with
a transformation on the tray location is more complicated. Equations 5,6, and 7
become the following

L(Wi)x((Wi) - L(wtop)xi(wtope) = V(Wi)ye(Wi) - V(wtopy)y(wtopy) (8)

10




Yy (@top) = Tx((w) . Tu(w) = Ty(wop), Pitw) = Py(wtop) (9

L(woh(Ww) - L(wtoph(wtop) = V(wigH (W) - V(wtop)H (Wtopy) (10)
Starting with an isolated tray, Table 3 aids the degr ees of freedom analysis
for a collocation tray. Collocation of the liquid mole fractions requires the liquid
input and output compositions for the tray to be on the polynomial
approximations of the liquid mole fraction. Collocating the liquid and vapor mole
fractions for n.-I components creates 4(n.-1) equations. The number of variables
introduced (the polynomial coefficients) will depend on the order of the

polynomial, which we shall decide later.
Using a Lagrange polynomial, the following equations:

n+1
X,(W) = LEwi (W) X (W) i=l...iic-lI (12)

fc=0

rt+1

yizv) = 7~ Wi(u;))ys.(wie) i = |...»c-I (12
*=Q

are the polynomial approximations of order n for theliquid and vapor mole
fractions at position w. We use a L agrange form because the coefficients of the
polynomials, Xj(w) and }/j(wg) are also the liquid and vapor mole fraction at
position w;, the location of the k™ collocation point. Theif?* term of a Lagrange

polynomial, W, is defined by the following equation:

"L?TV-IV.
Wiw) = TT 2 (13)

j=o

11




Table 3. Degrees of Freedom for a Single Tray

New Variables | New Equations

———————  ———

tray model 2(ne+2) +2
collocate x, y, for n; -1 ? 4(nc-1)
collocate h for liquid and vapor ? 4
CMB around end Ng
HB around end - 1
Fix Pressures 3
Fix aat 1 1
totals 2nc+6 + ? 5n.+5
Net equations ?7? 3nc-1

Collocating the enthalpies of the liquid and vapor entering and leaving
introduces 4 equations. Again, the number of polynomial coefficients introduced
as new variables will depend on the order of the polynomial. The following
equations define the enthal py polynomials.

n+1

h(w) = 3 Wi(w)h(wy) (14)
k=0
n+1

Hw) = Y Wi (w)H (w,) (15
k=0

Since asingle tray isisolated, we can add some overall balance equations between
the tray and the end of the collocation section:

12




Component M ass Balances.

L(Widxi(wi) - A A whJ =

(16)
V(wp )y, (w,) - V(wns...l)yi(wn;-l)
Heat balance:
LW LW Jh(10,, 41 ) =
(17)

Viwg) H(w) - V(wn;l)H(wnsﬂ)

The component mass balance adds n. equations, and the heat balance adds 1
equation. Since we are assuming a constant pressure column, we need to fix the
pressures of both input sreams and one output stream, adding 3 equations.
Finally, we specify that afor thetray isfixed at 1.0. Thisleaves a total of 3n-|
excess equations for each collocation tray. The question marks indicate that we
have not yet accounted for the polynomial coefficients.

Table 4 aids the degrees of freedom analysis for the entire section. The
section has ng trays, introducing ng(3n. -1) net new equations. It also hastwo
input and two output streams, creating 4(Mc+2) variables. Specifying the two
input streams cr eates 2(n.+2) equations. We can writethefollowing balances over
the entire section:

Component Mass Balances.

L(0)x,;(0) - L(wns + Iin(wn-n-IJ =

8

V(0)y,(0) - V[w,,su)y,{w ,,s,,l)

(18)

13




Table 4. Degrees of Freedom for Section

‘ New Variables I New Equations
ns trays Ns(3n¢-1)
4 streams 4(n.+2)
2 stream specs 2(ns+2)
CMB ne
HB 1
Fix Pressures 2
collocate x, y for n¢ -1 ? 4(n¢-1)
collocate h for liquid and vapor ? 4
totals 4n +8 + ? nc+7+ng(3nc-1)
Net equations (ns+1)(3nc-1)
Heat balance:

L (0) h (0) -L(wnsﬂ)h(wnsﬂj =

.V(O)H(0) - V(w,,s...l)H(wn;I)

The component mass balance creates n, equations, and the heat balance creates 1

(19

eguation. Fixing the pressures of the two output streams introduces 2 equations.
Collocating the liquid and vapor mole fractions introduces 4(n.-I) equations.
Again, the number of variables introduced depends on the order of the
polynomials. Collocating the enthal pies creates 4 equations. The net equations for
acollocation section is (ng+)(3n¢-1).

With ne-\ liquid and vapor polynomials, and 1 polynomial for the liquid
and vapor enthalpies, there are a total of 2n. polynomials, so the number of
variables introduced by the polynomials will be 2n¢(n+1), where n is the order of
the pollynomial. In principle we want to choose n so the number of equations and

14




variables areequal for the section modd:

2n(n+1) =(ns+ 1) (3n.- 1) (20)
For three components and two stages, n is 3, whilefor four components and two
stages n is3.25. In most cases, n isnot an integer, so something isnot right.
Previous papersselect n = ng. Thisleaves (ng + )(nc - 1) excessequations. We
expect the number of trays and the order of the polynomialsto be linked, but we
must remove the excess equations.

Cho and Joseph[1983] showed that when they assumed constant molar
overflow the component material balances between the trays and the end of the
collocation section given by equation 16 wer e held even when not enforced. We
have found that the error in the component mass balances is negligible even for
heat balanced columns. Rather than enfor ce the component mass balances
between each tray and the end of the collocation section, we can enforce only the

overall mass balance for each tray:

L(wWk) - Uwpd*) = V(W) - ViWnst) (21)
Thisremoves (n. -1) equations per tray. Furthermore, if we enfor ce the
component mass balance over the entire section given by equation 18, we do not
need to calculate both output streams from the polynomials. Therefore, we can
ignor e the polynomial equations for the compositions for one output stream,
removing the remaining n.- equations for the entire collocation section. This
removesthe (ns + 1)(n. -1) extra equations, giving us zer o degr ees of freedom if
weset n = ng. Therefore, for atwo tray collocation section, we get a second degree
polynomial with three coefficients for each fitted component.

Another option isto add dacksto theignored equationsin thefirs
example. If thedacksaretoo large, one can add moretrays. When the component
material balances between theindividual traysand the top of the collocation

section are ignor ed, the components can be out of balance on individual trays

15




even though they will be in mass balance over the entire section. Our tests have
shown that even with nonideal systems with constant molar overflow, the
component mass balances are satisfied. Also the polynomial equationsfor the one
output stream that we ignored in the fird caseis satisfied. When we use heat
balances rather than constant molar overflow, the component mass balances have
very small errors, and the polynomial equations have slightly mor e significant
errors. However, even when the trajectories of the collocation section are

inaccur ate, the residuals of these equations are not good indicators of theerror.

A third alternative is to minimize the residuals of all the equations and
solve for a best set of ngtl coefficients for each polynomial:

min ([#])

eqnj = Ej

(22)

However, the argumentsjust given show that the additional equations did not
have sgnificant error terms. Therefore, the optimization would probably only

yield a minor improvement on thefirst option.

We have used thefirst option in thiswork. The order of the polynomial
will be the same as the number of stages used as collocation points.

Point Placement

Themost difficult decision in collocation is the placement of the collocation
points. Carnahan et al [69] showed that, for integration of differential equations,
collocation points placed at the zeros of an orthogonal polynomial were best.
However, thisisnot necessarily truefor collocation of a distillation column. Cho
and Joseph [1983] placed their points at the zer os of Jacobi polynomials defined

by,

16
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I ntroduction

Several researchers have explored and developed collocation for
digtillation column modeling. I n this paper, we present a collocation model which
expandson prior models, addressing the problems specific to steady-tate,
continuous columns. We describe the formulation of the model in detail and
compareit to prior models, using rigor ous column simulations as a benchmark.

M otivation

Thedesrefor a method to perform minimum reflux calculationsfor highly
nonideal systemswasthe original motivation for this collocation method. For a
specific separation, the required reflux ratio decr eases as the number of traysin
the column increases. Asoneincreasesthe number of traysin a column section to
avery large number, aregion of constant composition occurs, referred to asa
pinch. At a pinch point, the vapor and liquid passing each other arein
equilibrium. They arealso in material balancewith the compositionsentering and

leaving at the end of that column section.

Consder a separation of aternary mixture A, B, and C, where we want to
separate A from B and C (see Figure 1). Given the products and a specified reflux
ratio, Levy et al. [1985] solved thistype of problem by starting from the ends of
the column and calculating the trgjectories inward. When the concentration
changes in each section fall below some minimum value, they stop calculating
and assume thisisthe pinch point. If the trajectoriesinter sect, then they have a
feasble column prafile. If onetragectory just pinches on the other, they have a

minimum reflux profile.

For alarger number of species, one cannot completely specify a product for
a column. Typically one can ask that component splits satisfy inequalities— e.g.,
wewant at least 99.9% of A and 99% of B and no morethan 1% of C and lessthan
0.01% of D to exit in thedistillate. Solving such a problem requiresoneto discover
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Figure 1. Minimum reflux trajectories and column configurations

which of these constraints are active. We saw that one can still use apinch
strategically located, but we also discovered that one needs atray by tray column




section model in a form which can compute the number of traysit contains.

Conventional column models require oneto specify thetraysas an integer input.

Thisthinking led usto consider using a collocation model for the parts of
thecolumn where Levy et a. [1985] used a tray by tray computation. For such a
column section, the number of traysis a continuous variable which the model can

compute.

Returning to the three component example, Levy et al. [1985] showed that,
asthey decreased the concentration of C in the distillate, the minimum reflux
decreased. Therefore, for a specific separation between the key components, A
and B, the minimum reflux occurswhen they allow no C in thedigtillate. In this
case the top section has a saddle pinch point along the A-B edgewherethe
concentration of C goesto zero. Levy et al. [1985] noticed that, asther
computations approached this saddle pinch, it, the feed composition, and thefeed
pinch became colinear. Requiring colinearity of these points gave them a method
to determine minimum reflux without the needed tray by tray computafion. For a
congtant relative volatility, constant molar overflow system, they proved this
method becomes exactly Underwood's method. They proposed using this
colinearity even for nonideal systems. In a smilar manner and for
multicomponent nonideal systems, Koehler et al. [1991] used a minimum angle
criterion between the three points, and Julka and Doherty[1990] revised the
colinearity condition to one of having a set of pinch points and the feed
composition lie insde a minimum volume in composition space. All these
methods assume sharp splitsasthey are based on computing a saddle pinch
point. These geometric techniques do not guar antee a feasible column for

nonideal systems, and they do not work for nonsharp splits.

To guarantee the inter section of the column sectionsfor sharp splits, one
must prove the existence of a tray by tray calculation linking a saddle pinch point
and the feed tray composition, a calculation that passes through an infinite




number of trays. Thisrequirement led us to examine extending the collocation
model to handle an infinite number of trays. We looked at different

transfor mations to map tray number going from zero to infinity onto a variable z
that goes from zero to one. With such a model, we concluded we should be ableto
compute minimum reflux for any column by computing pinch points and
properly located column sections that can have a finite or an infinite number of
trays. For casel shown in Figure 1, afinite collocation section simulatesthe
unknown number of trays. For casell, theinfinitetray section between theSaddIe
pinch point and the feed tray ismodeled by an infinite collocation section.

We began developing a collocation method capable of simulating infinite
column sections and discovered several other advantages and uses for
collocation. Digtillation design requires an adaptable column model, with the
ability to compute the number of traysin each distillation section, a computation
that discovershow many trays one needs and whereto place the feed. Onecan
simulate complex column configurations. Optimal design of distillation
sequences requires small robust models for each distillation column. Collocation
both reduces the size of a column model and provides a continuous variable for
the number of trays. Furthermore, the variable transformation required for
modeling an infinite tray section improved the accuracy whenever such
Separation problem requires a relatively large number of trays.

Background of Collocation

Cho and Joseph [1983] developed a reduced-order method for modeling
staged separation processes. They used orthogonal collocation to obtain accurate
solutions of sgnificantly reduced-order. Ther model had a single collocation
section for each section of the column. They tested by modeling a smple absor ber
system, and binary and three component distillation, and used the Antoine
equation for theequilibrium relationship. In later papers Srivastava and-Joseph
[1984,1987a] developed methods for handling multiple feeds and side draws.




They also developed a complex method for handling steep and flat composition
profiles by fitting the composition profiles with different polynomials for each
component. They developed a complicated approach using two sets of collocation
points, global and local, to fit both the key components and non key components
[Srivagtava and Joseph, 1987b]. They tested these later ideas using constant
relative volatility systems.

Stewart, Levien, and Morari [1984] developéd a collocation method that
stresses selecting gridpoints based on the stagewise nature of distillation. Their
method became stage-by-stage at full order, and had errorsat least an order of
magnitude smaller than Cho and Joseph's default choice of collocation points.
They tested for binary and six-component distillation columns with constant
relative volatility and for a ternary system using UNIQUAC for equilibrium.
Swartz and Stewart [1986] applied the method to design, iteratively passing from
the model to an SQP optimization algorithm. Swartz and Stewart [1987] also
developed a finite-dlement method for handling multiphase distillation problems.

Recently, Seferlisand Hrymak [1994] adapted the model of Stewart et al.
[1984] by using collocation elementsto track irregularitiesin column profiles for
existing columns. They investigated optimal placing of the collocation elements,
based on comparison with the actual column. They obtained higher accuracy with
multiple collocation sections of lower order than with a single collocation section
of higher order.

Table 1 lists the characterigtics of each of these collocation methods as well
asthe characterigtics of the model presented in this paper.

Description of Model

Collocation is generally thought of as a method for numerically solving
differential equations. The use of collocation for smulation of a distillation
column isan extension of this technique. Given a differential equation,




Table 1. Comparison of Collocation M ethods

Elements/ Placement (E:]mzs Variable
Section of points tested transformations

Choand Single Continuous Antoine

Joseph 1983 orthogonal
(Jacobi)

Srivastavaand ]| Single(global), | Continuous Constant none

Joseph 1987 Multiple(local) | orthogonal relative
(Jacobi) volatility

Stewart et a Single Discrete UNIQUAC | none

1984 orthogonal
(Hahn)

Swartz and Single Discrete | deal none

Stewart 1986 orthogonal
(Hahn)

Swartz and Multiple Discrete Nonideal none

Stewart 1987 || (breakpoints a | orthogonal three phase

phase changes) | (Hahn)

Seferlis and Multiple Discrete Regression none

Hrymak 1994 orthogonal of data
(Hahn)

This work Multiple Continuous UNIFAC/ Transform
(orthogonal Pitzer tray number
for2or 3 and mole
points) fractions

dx

4y _ f(xy) . y0=y,

)

we want to find y as a function of x. We can approximatey as a polynomial in x,

n 2 n
Y = y<>+ a\X+a2x +...+anx
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Figure 2. Collocation of a differential equation

We can then approximatey, dy/dx, and/as functions of x. At any point inx, we can
define an error for this approximation,

!
erorx) = f(xy) -Qa|+2a2xl+_,_ +nanxn*1 ) (3)

At n collocation points, X..x,, we say that the error =0 and get n equationsto solve
for n coefficients to the polynomial. See Figure 2.

Collocation of a distillation column uses the same concepts. A set of
equations defines a distillation column tray, where x would be the tray location in
the column and y would be mole fractions. Polynomials defined by tray location
approximate the mole fractions and, at each collocation point, the set of equations
for a distillation column must be satisfied.

There are many equations in adistillation column model, even a reduced
order model. Rather than just list the basic equations, we are going to provide a
detailed degrees of freedom analysis to demonstrate the reason for using a certain
set of equations.

We begin the degrees of freedom analysis with a stream model. Gibbs
phase rule gives the number of degrees of freedom for a system in equilibrium.




F=2+ncn, 4
F isthe number of degrees of freedom for a given number of components, n., and
a given number of phases, n,. For asinglephase, Fisn; + 1. For a stream we also
need a flowrate which adds one more variable, giving n. + 2 degr ees of freedom.
The set of variables could be the molar flowrates, temperature, and pressure.
Onceweknow n. + 2 of these variables and assumethe phase, we can compute all
other molar properties. We shall assume a stream introduces a net of n. + 2 new
variables and shall assume all other properties are available.

A sandard digtillation tray hastwo input streamsand two output streams,
asshown in Figure 3. Thefour streamsintroduce a net of 4(n; + 2) new variables,
which isthefirg entry on Table 2. By keeping track of the number of variables
and equations introduced by each new element of the model, we can determine
the degr ees of freedom, and how many variables must be fixed to obtain a system
with the same number of equationsand freevariables. We can write thefollowing
equationsfor asingletray.

Component Material Balances.

L (out)x (out) - L(in)Xi(in) = V(in)y:<in) - V(out)y,(out) ©)
Equilibrium:
y,(out) = %* ;fout) , Ti(out) = Ty(out), P (out) = Py(out) 6)
Heat balance:
L(in)h(in) - L(out)h(out) = V(in)H(in) - V(out)H (out) )

L, V,xy, h,H areliquid flowrate, vapor flowrate, liquid molefraction, vapor mole
fraction, liquid molar enthalpy, and vapor molar enthalpy, respectively, a; isthe

relative volatility of speciesi, and aisthe mole fraction aver agerédative volatility.
Theliquid and vapor molar enthalpiesand therdativevolatilities arefunctions of




composition and temperature. We write equations 5 and 6 for each component

M
by

Figure 3. Diagram of tray

and equation 7 once. As shown in Table 2, the component material balances
therefore introduce n. equations. There are n. + 2 equilibrium equations. The
equilibrium equation also introduces one new variable, a. The heat balance,
which could be replaced by a constant molar overflow assumption, introduces
one equation. Therefore, the degrees of freedom for an isolated tray are 2(n.+2)+2.
Specifying two input streams, the pressure and a of the tray would be sufficient to
solve the tray model.

Table 2. Degrees of Freedom for an Isolated Tray

New Variables | New Equations
4 streams 4(n¢+2)
CMB N
Equilibrium 1 Ne + 2
HB 1
totals 4(ns+2)+1 2n.+3
DOF for isolated tray 2(nc+2) + 2

Figure 4 shows a diagram of a single collocation section. A collocation
section has a liquid input and vapor output at the top and a vapor input and
liquid output at the bottom. The example shown has two collocation trays which
are not connected. In this example, we number from the top of the collocation




section downward. Liquid and vapor streams paséi ng each other have the same
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Figure 4. Diagram of collocation section, | and |l are material and energy
balance envelopes for atray.

index. We use a general position index, w, which will be either the tray number or
a transformation of the tray number which we shall describe later. The index
denotes the distance from the top of the collocation section. We index each tray k
by wy, the position of the bottom of the tray. We index the liquid entering and the
vapor leaving the top of the tray by wtopy, which in tray location isw”-1, but with
a transformation on the tray location is more complicated. Equations 5,6, and 7
become the following

L(Wi)x((Wi) - L(wtop)xi(wtope) = V(Wi)ye(Wi) - V(wtopy)y(wtopy) (8)
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Yy (@top) = Tx((w) . Tu(w) = Ty(wop), Pitw) = Py(wtop) (9

L(woh(Ww) - L(wtoph(wtop) = V(wigH (W) - V(wtop)H (Wtopy) (10)
Starting with an isolated tray, Table 3 aids the degr ees of freedom analysis
for a collocation tray. Collocation of the liquid mole fractions requires the liquid
input and output compositions for the tray to be on the polynomial
approximations of the liquid mole fraction. Collocating the liquid and vapor mole
fractions for n.-I components creates 4(n.-1) equations. The number of variables
introduced (the polynomial coefficients) will depend on the order of the

polynomial, which we shall decide later.
Using a Lagrange polynomial, the following equations:

n+1
X,(W) = LEwi (W) X (W) i=l...iic-lI (12)

fc=0

rt+1

yizv) = 7~ Wi(u;))ys.(wie) i = |...»c-I (12
*=Q

are the polynomial approximations of order n for theliquid and vapor mole
fractions at position w. We use a L agrange form because the coefficients of the
polynomials, Xj(w) and }/j(wg) are also the liquid and vapor mole fraction at
position w;, the location of the k™ collocation point. Theif?* term of a Lagrange

polynomial, W, is defined by the following equation:

"L?TV-IV.
Wiw) = TT 2 (13)

j=o

11




Table 3. Degrees of Freedom for a Single Tray

New Variables | New Equations

———————  ———

tray model 2(ne+2) +2
collocate x, y, for n; -1 ? 4(nc-1)
collocate h for liquid and vapor ? 4
CMB around end Ng
HB around end - 1
Fix Pressures 3
Fix aat 1 1
totals 2nc+6 + ? 5n.+5
Net equations ?7? 3nc-1

Collocating the enthalpies of the liquid and vapor entering and leaving
introduces 4 equations. Again, the number of polynomial coefficients introduced
as new variables will depend on the order of the polynomial. The following
equations define the enthal py polynomials.

n+1

h(w) = 3 Wi(w)h(wy) (14)
k=0
n+1

Hw) = Y Wi (w)H (w,) (15
k=0

Since asingle tray isisolated, we can add some overall balance equations between
the tray and the end of the collocation section:

12




Component M ass Balances.

L(Widxi(wi) - A A whJ =

(16)
V(wp )y, (w,) - V(wns...l)yi(wn;-l)
Heat balance:
LW LW Jh(10,, 41 ) =
(17)

Viwg) H(w) - V(wn;l)H(wnsﬂ)

The component mass balance adds n. equations, and the heat balance adds 1
equation. Since we are assuming a constant pressure column, we need to fix the
pressures of both input sreams and one output stream, adding 3 equations.
Finally, we specify that afor thetray isfixed at 1.0. Thisleaves a total of 3n-|
excess equations for each collocation tray. The question marks indicate that we
have not yet accounted for the polynomial coefficients.

Table 4 aids the degrees of freedom analysis for the entire section. The
section has ng trays, introducing ng(3n. -1) net new equations. It also hastwo
input and two output streams, creating 4(Mc+2) variables. Specifying the two
input streams cr eates 2(n.+2) equations. We can writethefollowing balances over
the entire section:

Component Mass Balances.

L(0)x,;(0) - L(wns + Iin(wn-n-IJ =

8

V(0)y,(0) - V[w,,su)y,{w ,,s,,l)

(18)

13




Table 4. Degrees of Freedom for Section

‘ New Variables I New Equations
ns trays Ns(3n¢-1)
4 streams 4(n.+2)
2 stream specs 2(ns+2)
CMB ne
HB 1
Fix Pressures 2
collocate x, y for n¢ -1 ? 4(n¢-1)
collocate h for liquid and vapor ? 4
totals 4n +8 + ? nc+7+ng(3nc-1)
Net equations (ns+1)(3nc-1)
Heat balance:

L (0) h (0) -L(wnsﬂ)h(wnsﬂj =

.V(O)H(0) - V(w,,s...l)H(wn;I)

The component mass balance creates n, equations, and the heat balance creates 1

(19

eguation. Fixing the pressures of the two output streams introduces 2 equations.
Collocating the liquid and vapor mole fractions introduces 4(n.-I) equations.
Again, the number of variables introduced depends on the order of the
polynomials. Collocating the enthal pies creates 4 equations. The net equations for
acollocation section is (ng+)(3n¢-1).

With ne-\ liquid and vapor polynomials, and 1 polynomial for the liquid
and vapor enthalpies, there are a total of 2n. polynomials, so the number of
variables introduced by the polynomials will be 2n¢(n+1), where n is the order of
the pollynomial. In principle we want to choose n so the number of equations and

14




variables areequal for the section modd:

2n(n+1) =(ns+ 1) (3n.- 1) (20)
For three components and two stages, n is 3, whilefor four components and two
stages n is3.25. In most cases, n isnot an integer, so something isnot right.
Previous papersselect n = ng. Thisleaves (ng + )(nc - 1) excessequations. We
expect the number of trays and the order of the polynomialsto be linked, but we
must remove the excess equations.

Cho and Joseph[1983] showed that when they assumed constant molar
overflow the component material balances between the trays and the end of the
collocation section given by equation 16 wer e held even when not enforced. We
have found that the error in the component mass balances is negligible even for
heat balanced columns. Rather than enfor ce the component mass balances
between each tray and the end of the collocation section, we can enforce only the

overall mass balance for each tray:

L(wWk) - Uwpd*) = V(W) - ViWnst) (21)
Thisremoves (n. -1) equations per tray. Furthermore, if we enfor ce the
component mass balance over the entire section given by equation 18, we do not
need to calculate both output streams from the polynomials. Therefore, we can
ignor e the polynomial equations for the compositions for one output stream,
removing the remaining n.- equations for the entire collocation section. This
removesthe (ns + 1)(n. -1) extra equations, giving us zer o degr ees of freedom if
weset n = ng. Therefore, for atwo tray collocation section, we get a second degree
polynomial with three coefficients for each fitted component.

Another option isto add dacksto theignored equationsin thefirs
example. If thedacksaretoo large, one can add moretrays. When the component
material balances between theindividual traysand the top of the collocation

section are ignor ed, the components can be out of balance on individual trays

15




even though they will be in mass balance over the entire section. Our tests have
shown that even with nonideal systems with constant molar overflow, the
component mass balances are satisfied. Also the polynomial equationsfor the one
output stream that we ignored in the fird caseis satisfied. When we use heat
balances rather than constant molar overflow, the component mass balances have
very small errors, and the polynomial equations have slightly mor e significant
errors. However, even when the trajectories of the collocation section are

inaccur ate, the residuals of these equations are not good indicators of theerror.

A third alternative is to minimize the residuals of all the equations and
solve for a best set of ngtl coefficients for each polynomial:

min ([#])

eqnj = Ej

(22)

However, the argumentsjust given show that the additional equations did not
have sgnificant error terms. Therefore, the optimization would probably only

yield a minor improvement on thefirst option.

We have used thefirst option in thiswork. The order of the polynomial
will be the same as the number of stages used as collocation points.

Point Placement

Themost difficult decision in collocation is the placement of the collocation
points. Carnahan et al [69] showed that, for integration of differential equations,
collocation points placed at the zeros of an orthogonal polynomial were best.
However, thisisnot necessarily truefor collocation of a distillation column. Cho
and Joseph [1983] placed their points at the zer os of Jacobi polynomials defined

by,

16




J'(l)zﬁ(l ~22"P *P (ndz . o (23)

n
i =01, .n-1

whereaand p are parameters. Ther default choice of the parametersfor the
Jacobi polynomial (a= 1, P = 1) resulted in evenly spaced points. They could have
moved the points toward either end of the collocation section by adjusting the
parameters and still have been using an orthogonal polynomial. Stewart et al.
[1984] showed that placing the collocation points at the zer os of the Hahn
polynomial created smaller errorsthan placing the points by the Jacobi
polynomial, using the default valuesfor a and p. They argued that the Hahn
polynomial was a better choice because it maintained the stagewise nature of the
column and did not require manipulating parameters for best placement of the
collocation points. For full order, the collocation pointswould be placed exactly at
thetray locations.

However, the benefit of the Hahn polynomial appearsto be duelargely to
the fact that it spreads out the collocation points more than the default Jacobi
selection. As one spreads the collocation points out from being evenly spaced to
being all at the ends of the collocation section, the error will go through a
minimum. The Hahn placement is closer to thisminimum than the default Jacobi,
but it isnot the optimum. The following experiment demonstrates this. Three
different collocation models wer e used to approximate a three component,
congtant reative volatility, constant molar overflow column with 15 trays above
and below the feed. Figure 5 shows the column trajectories for the three different
reflux ratios, generated by a tray-by-tray model. Two collocation sections were
used to mbdel the column, one above and onebelow thefeed. Wedid several
simulations with each collocation model with different spreads of the collocation
points. For any number of collocation trays, the following equation defined the
midpoint of the trays.

17




Wyeid = U>0 +fmid(Wns+ ' ™0> (24)
where/#is 0.5 to have w4 at the actual center of the collocation section. For the
two tray model, the placement of the two collocation trays is defined by,

" = Ymid + fint<"mid ' “0> (25)
(26)

™2 = ™Mmid fint*nstl ' “mid>

wherefj, is 03333 for evenly spaced points.

For the three tray model, v, is at Wy,q, and we define Wi and w; as we
defined wy and w, for atwo tray model. For the three tray model, an”,j of 0.5

gives evenly spaced points.

For the four tray model, we defineWj and zv, aswe defined Wi and Wi for a
two tray model. We place the interior points, Wi and w$, onethird of the distance

m D tion

stage number

Figure 5. Column trajectories for componentscl, c2, and c3 for arange of reflux
ratios,r.
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from wi,ig to wy and wy respectively. For the four tray model, anfi, of 0.6 gives
evenly spaced points. For thetwo and threetray models, the Hahn placement is at
a spread factor of 0.53748 and 0.71864.

For the four tray model, the Hahn placement of the outer points
correspondsto a spread factor of 0.79244, but our placement of the inner points
does not correspond to the Hahn placement. Figure 6 showsthe averageerror in
the mole fractions of the digtillate over varying spread factors for each model at
thethreereflux ratios. Each plot ison a different scale, shown by the labels on the
x axis, and the maximum eror on they axis. The Hahn placement pointsare
shown with a larger data point. The standard Jacobi placement is evenly spaced
points, which is atf;,; of 0.333,0.5, and 0.6 for the two, three, and four tray
collocations respectively. So, for each case, the Hahn placement hasa smaller
error than the default Jacobi placemént, but not the minimum error possible. This
figure also shows that the optimal spread of the collocation points is different for
different reflux ratios.

For alow reflux ratio, thetrgectoriesare very flat, and the minimum error
occurswith a very wide spread of the collocation points, to get the nonlinear
polynomial asflat as possible over the collocation section. Asthereflux increases,
the trgjectoriesbecome lessflat and then even linear with a fairly large slope. For
these cases, thereis an optimal spread of the collocation points. In the next
section, we will show how variable transfor mations are mor e significant than
point placement for increasing accur acy.

Variable Transfor mations

Weusetwo variable transformationsin thismodel to alleviate the problem
of flattened trajectories. When the mole fraction of a component is not changing
over part of a tray section, we call that a flattened trajectory. Flattened trajectories
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Figure 6. Effect of point placement on error

cannot be fit well with polynomials, so we perform variable transformations to

alter the shape.

Thefirst isatransformation of the tray number. To simulate alarge number
of trays, or an infinite number of trays, we want an index that goes to a finite
value as the tray number goes to infinity. Even for finite columns with a large
number of trays, the trgjectories flatten out as the number of trays increases. Some

possible transformations are:
(-as) 27)

§
_ 28
Z= 5%, (28)

In both these equations, s is stage number, z isthe transform variable, and aisa
parameter. In both cases, z=0 when s=0, and z tendsto 1 asstendsto infinity. To
discover the better form of the transformation, we first investigated fitting results

20




from the Kremser approximation:

_1-A°S A-A°
Ys=1-aVr1"1-4"%

(29)

4
Figure 7 shows that the variable transformation given by equation 27 did the best
at straightening out the trgectory. In the Appendix, we show that, with the
exponential variable transformation, the Kremser approximation can be exactly
straightened out for the correct choice of a. Figure 8 shows how the choice of a
affects the shape of the trgjectories. At the proper selection of a, the data can be
fitwith a linear function. Therefore, we use the variable transformation in
equation 27.

1_0 | "~ N T v T - T T

o—o 7 = gImax
oe—a 7 = gst+15
v—=vz=1-exp(-0.599)

09

Figure 7. Comparison of variable transformations on s
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Figure 8. Effect of choice of a

Figure 9 shows column trgjectories for a three component, constant relative
volatility, constant molar overflow column with fifty trays above and below the
feed, for three different reflux ratios, generated by a tray-by-tray model. Over the
range of reflux ratios, r, we tested the collocation model, comparing the
composition of the distillate product to the tray-by-tray calculation. The
collocation model used had two collocation sections per column section, with two
trays in each collocation section. We compared the s based and z based
collocations over a range of point placements, using the point placements
described in the last section. Figure 10 showsthe average errors of both cases over
the same range of point spreads for different reflux ratios. The z based collocation
had lower average errors for every reflux ratio. For all but the lowest reflux ratio,
the best solution was achieved with the z based collocation.

The second variable transformation is one on the mole fractions. When
distilling to high purity, mole fractions go to one or zero, again flattening out the

22




trgjectory. We need to transform the asymptotic approach to zero and oneinto a
decreasing and increasing function that can be fitted by the polynomial used in

the collocation. We use the following transfor mation:

2*.-1 = tanh (%;) (31)
Asthe mole fraction goes to one or zero, the transfor mation variable, %;, goesto
negative infinity and plus infinity. Figure 11 showstheeffect of this
transformation. For exponential approach to one and zer o, the transformation
sraightensthetrajectory out, so the slope never goesto zero.

Without this transformation, modeling sharp splitsisvery difficult. Asthe
mole fractions of some of the components approach zero or one, the polynomial
will create a curved trgjectory, " bouncing” off theboundary. It becomes
impossible to mode a column with a component going to a mole fraction of 10"°

0.75

mole fraction

500
stage number

Figure9. Column trajectories for alarge column over arange of reflux ratios
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or smaller. However, the above transformation will give the polynomial room to
move and will allow an asymptotic approach to the boundary. Figure 12 shows
the four possible models of a 63 tray column which isremoving all of the heavy
component from the distillate. Figure 13 is a blowup of the trajectories for the
heavy component near the top of the column. The two simulations without the
transformation on mole fraction are curved and "bounce" up. The two solutions
using the transformation smoothly approach the top of the column.

Figure 14 shows the combined benefits of the two variable transformation,
showing two collocation models of a 103 tray column with high purities. Both
models used the transformation on mole fraction, since this problem will not
converge without it. For one, the polynomial is based on stage number and, for
the other, the polynomial is based on the transformed stage number. The s based
solution has high curvature in the bottom half of the column. This also

demonstrates why it is beneficial in an s based collocation for the

0.5

mole fraction

0. _ - — :
0% 10.0 20.0 30.0 40.0 50.0 60.0

Figure 12. Effect of x transformation in acolumn simulation
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collocation pointsto be spread towar ds the ends of the collocation section to keep

the curvatureto a minimum.

Formulation of Collocation Column M odel

Our standard formulation of the collocation column model is shown by
Figure 15. Each column section isdivided into two collocation sections with two
trayseach. Sererflisand Hrymak[1994a] used multiple collocation sections so they
could use more collocation points in specific areas of the column where the
temperatufe and composition profiles changed rapidly. We observe that the areas
of activity are at the ends of column sections. By breaking each column section
into two parts, and using the transformation on stage number, we de-emphasize
the center of the column section by numbering the top collocation section
downward and the bottom collocation section upward. With this transfor mation,
the points at the beginning of a collocation section are stressed, and those at the
end are less important. Therefore, for large columnswith relatively low reflux

ratios, the collocation pointswill belocated wher e the compositions are changing,
and the area of no activity will join the two collocation sections, but no collocation
points need to be located there.

This standard formulation is sufficient for modeling large columns with
reasonable accuracy and is small enough to model small columns without
overkill. The model has four collocation sectionswith two trays each, a feed tray,
acondenser, and arebailer. Thisiseleven tray calculations. Since the collocation
traysarenot connected the way they would be for a tray-by-tray model, and since
there are polynomial equations, there are mor e equations than there would be for
an eleven tray column model. For a three component system, the collocation
model has 1811 equations and variables, including all thermodynamic equations.
A tray-by-tray mode with 19 trays has 1856 equations and variables. For a four
component system, the collocation model has 2215 equations and variables
compared to 2205 for a tray-by-tray model with 18 trays. For a set number of trays
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Figure 15. Column configuration

below 18, a tray-by-tray model might be more efficient, or a nonstandard
collocation model can be used with fewer collocation sections.

We space the collocation points in each section using two parameters as
described in the previous section.The parameterf,4 sets where the center of the
collocation points is relative to the actual center of the collocation section, and”
sets how spread out the pointswill be. For two and three tray collocation sections,
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this formulation can emulate Jacobi or Hahn placement, and iseasy to use.

Testing the Collocation M odel

We have performed several tests of the collocation model using nonideal
thermodynamics. In each of the following examples, the standard collocation
model was used, with four collocation sections of two trays each. We used
UNIFAC liquid mixture and Pitzer vapor mixture modelsfor the
thermodynamics and equilibrium, and assumed constant molar overflow. We
would liketo note that performing testsliketheseisa nontrivial task. The process
of obtaining a full thermodynamic model is complex, but once a tray-by-tray
collocation model has been successfully refined and converged, it is relatively
easy to perform many sequential incremental changesto obtain a wealth of data.
The two examples below where we performed a series of calculations to
determine thebinary separationsover a range of operations required 50 solutions
of the tray-by-tray and collocation models. Most of the work was done in getting
that firs useful solution. Then the models could be resolved repeatedly as the
digtillate to feed ratio was increased incrementally. The collocation has many
parametersthat can be adjusted, but it is much morerobust than a tray-by-tray
model. The process of solving these models will be discussed further in atwo
follow-up papers.

The firg example is the separation of a 50/50 mixture of methanol and
water. The column has 46 trays, and a reflux of 1.0. The purity of each product is
99.6%. Figure 16 shows a comparision between thetray-by-tray solution and the
collocation model. The curves are thetray-by-tray, and the points are the
collocation. The figure shows an excellent fit. Including all the thermodynamic
calculations, the tray-by-tray and collocation modelshad 3255 and 1407 equations
respectively. Theerror in the distillate composition is 0.02 per cent.

Using the acetone, chloroform, benzene system, we performed many tests
of the collocation model. The feed was a 36/24/40 mixtur e of acetone,
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chloroform, and benzene. A 33 tray columnwith areflux ratio of 4.0 was used. We
performed a search over the range of distillate to feed ratios to find the maximum
binary separations, as done by Wahnschafft [1992]. Figure 17 shows the
comparison of the binary separation range plots with those for a tray-by-tray
calculation. The chloroform benzene binary separation factor is not meaningful
before a D:F of 0.3, since practically nothing of either component is coming out of
the distillate at low D:F. For the acetone-benzene binary separation factor curve
the average error was 1%, and for the acetone-chloroform separation factor curve
the average error was 3%. The collocation shows very good agreement with tray-
by-tray calculations. The error in the acetone concentration in the distillate was
less than 2% over the range of D:F ratios, with an average error of 1%. Figure 18
shows comparisons of three different column simulations on a ternary diagram.
Including al the thermodynamic calculations, the tray-by-tray and collocation
models had 3144 and 1811 equations respectively.

Collocation sections

—

1.0
r |
08 | M ethanol," _
tray by tray

5 ' -
o 0.6 F Collocation” -
2 X Points ]
&
0 04 | B
2 [ Water

6.2 - tray by tray~ §

0.01; 780 0

Tray numbé

Figure 16. Comparison of collocation to rigorous model for methanol-water
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Figure 19. Comparison of collocation to rigorous model of separation range
over D:F ratio for acetone-ethanol-propanol-isobutanol-butanol system

Finaly, we performed a set of tests on an equimolar mixture of acetone,
ethanol, propanoal, isobutanol, and normal butanol, using a 23 tray column with a
reflux ratio of 0.8. Figure 19 shows the comparison of the binary separation range
plots for the components which are adjacent in the order of relative volatility. The
other binary separation ranges compare equally well but would clutter the figure.

Conclusions

In this paper, we have demonstrated that this new collocation method can
accurately reduce the order of column models. The two variable transformations
greatly expand the capabilities of standard collocation methods. We have found
that the degrees of freedom selection is important, and demonstrated what
eguations can be ignored. The choice of point placement is non-trivial, and no
particular polynomial will give optimal point placement. Variable
transformations more significantly reduce errors than proper point placement.

In two companion papers, we will discuss how collocation provides the
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missing link for smulation of minimum reflux conditions. We will also discuss a
design algorithm for designing arbitrary columns using the collocation model.
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Nomenclature

U>mid

Simplification variable for Kremser approximation (L/KV)
Mole fraction average relative volatility

Parameter for exponential transformation of stage location
Parameter of Jacobi polynomial

Relative volatility of speciesi

Parameter of Jacobi polynomial

Factor for selection of spread of collocation points
Factor for selection of the midpoint of collocation points
Liquid molar enthal py

Vapor molar enthalpy

Equilibrium constant used in Kremser approximation
Liquid molar flowrate

Order of polynomial

Number of components

Number of phases

Number of collocation points

Pressure

Jacobi polynomial of order n

Stage location

Temperature

Vapor molar flowrate

kth term of Lagrange polynomial

Position of bottom of tray k

Midpoint for placement of collocation points

Position of top of tray k

Liquid mole fraction of component i

Transformed mole fraction

Vapor mole fraction of component i

Transformed stage location
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Appendix

Rewriting the Kremsar approximation to gather termswith s producesthe
following equation.

F ~

-1

Vo =R A4 32,
Rewriting the variable transfor mation

z = 1-¢-"? (33)
for sintermsof z,

s =In[ (I-z)~2J (%)

and placing it into the Kremser approximation produces the following equation.

y@)=" I W) @

If we define A = exp(B), then we can takethefollowing steps
X o (1-2)7)

7= (exp (B)) -

 exp Inf (exp(B)) In| (1-2) JII
*exp[B[In[(-2) *])))

= expy In[ (1-2) %))

—aB
= (1-2) (36)

Now equation 35 becomes the following.
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y1-A4%y y1-9

y(2) = 2—2-2 2™ @

Therefore, when -aB = 1, theequation islinear in z.
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Wyeid = U>0 +fmid(Wns+ ' ™0> (24)
where/#is 0.5 to have w4 at the actual center of the collocation section. For the
two tray model, the placement of the two collocation trays is defined by,

" = Ymid + fint<"mid ' “0> (25)
(26)

™2 = ™Mmid fint*nstl ' “mid>

wherefj, is 03333 for evenly spaced points.

For the three tray model, v, is at Wy,q, and we define Wi and w; as we
defined wy and w, for atwo tray model. For the three tray model, an”,j of 0.5

gives evenly spaced points.

For the four tray model, we defineWj and zv, aswe defined Wi and Wi for a
two tray model. We place the interior points, Wi and w$, onethird of the distance

m D tion

stage number

Figure 5. Column trajectories for componentscl, c2, and c3 for arange of reflux
ratios,r.
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from wi,ig to wy and wy respectively. For the four tray model, anfi, of 0.6 gives
evenly spaced points. For thetwo and threetray models, the Hahn placement is at
a spread factor of 0.53748 and 0.71864.

For the four tray model, the Hahn placement of the outer points
correspondsto a spread factor of 0.79244, but our placement of the inner points
does not correspond to the Hahn placement. Figure 6 showsthe averageerror in
the mole fractions of the digtillate over varying spread factors for each model at
thethreereflux ratios. Each plot ison a different scale, shown by the labels on the
x axis, and the maximum eror on they axis. The Hahn placement pointsare
shown with a larger data point. The standard Jacobi placement is evenly spaced
points, which is atf;,; of 0.333,0.5, and 0.6 for the two, three, and four tray
collocations respectively. So, for each case, the Hahn placement hasa smaller
error than the default Jacobi placemént, but not the minimum error possible. This
figure also shows that the optimal spread of the collocation points is different for
different reflux ratios.

For alow reflux ratio, thetrgectoriesare very flat, and the minimum error
occurswith a very wide spread of the collocation points, to get the nonlinear
polynomial asflat as possible over the collocation section. Asthereflux increases,
the trgjectoriesbecome lessflat and then even linear with a fairly large slope. For
these cases, thereis an optimal spread of the collocation points. In the next
section, we will show how variable transfor mations are mor e significant than
point placement for increasing accur acy.

Variable Transfor mations

Weusetwo variable transformationsin thismodel to alleviate the problem
of flattened trajectories. When the mole fraction of a component is not changing
over part of a tray section, we call that a flattened trajectory. Flattened trajectories
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cannot be fit well with polynomials, so we perform variable transformations to

alter the shape.

Thefirst isatransformation of the tray number. To simulate alarge number
of trays, or an infinite number of trays, we want an index that goes to a finite
value as the tray number goes to infinity. Even for finite columns with a large
number of trays, the trgjectories flatten out as the number of trays increases. Some

possible transformations are:
(-as) 27)

§
_ 28
Z= 5%, (28)

In both these equations, s is stage number, z isthe transform variable, and aisa
parameter. In both cases, z=0 when s=0, and z tendsto 1 asstendsto infinity. To
discover the better form of the transformation, we first investigated fitting results
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from the Kremser approximation:

_1-A°S A-A°
Ys=1-aVr1"1-4"%

(29)

4
Figure 7 shows that the variable transformation given by equation 27 did the best
at straightening out the trgectory. In the Appendix, we show that, with the
exponential variable transformation, the Kremser approximation can be exactly
straightened out for the correct choice of a. Figure 8 shows how the choice of a
affects the shape of the trgjectories. At the proper selection of a, the data can be
fitwith a linear function. Therefore, we use the variable transformation in
equation 27.

1_0 | "~ N T v T - T T

o—o 7 = gImax
oe—a 7 = gst+15
v—=vz=1-exp(-0.599)

09

Figure 7. Comparison of variable transformations on s
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Figure 9 shows column trgjectories for a three component, constant relative
volatility, constant molar overflow column with fifty trays above and below the
feed, for three different reflux ratios, generated by a tray-by-tray model. Over the
range of reflux ratios, r, we tested the collocation model, comparing the
composition of the distillate product to the tray-by-tray calculation. The
collocation model used had two collocation sections per column section, with two
trays in each collocation section. We compared the s based and z based
collocations over a range of point placements, using the point placements
described in the last section. Figure 10 showsthe average errors of both cases over
the same range of point spreads for different reflux ratios. The z based collocation
had lower average errors for every reflux ratio. For all but the lowest reflux ratio,
the best solution was achieved with the z based collocation.

The second variable transformation is one on the mole fractions. When
distilling to high purity, mole fractions go to one or zero, again flattening out the
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trgjectory. We need to transform the asymptotic approach to zero and oneinto a
decreasing and increasing function that can be fitted by the polynomial used in

the collocation. We use the following transfor mation:

2*.-1 = tanh (%;) (31)
Asthe mole fraction goes to one or zero, the transfor mation variable, %;, goesto
negative infinity and plus infinity. Figure 11 showstheeffect of this
transformation. For exponential approach to one and zer o, the transformation
sraightensthetrajectory out, so the slope never goesto zero.

Without this transformation, modeling sharp splitsisvery difficult. Asthe
mole fractions of some of the components approach zero or one, the polynomial
will create a curved trgjectory, " bouncing” off theboundary. It becomes
impossible to mode a column with a component going to a mole fraction of 10"°

0.75

mole fraction

500
stage number

Figure9. Column trajectories for alarge column over arange of reflux ratios
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or smaller. However, the above transformation will give the polynomial room to
move and will allow an asymptotic approach to the boundary. Figure 12 shows
the four possible models of a 63 tray column which isremoving all of the heavy
component from the distillate. Figure 13 is a blowup of the trajectories for the
heavy component near the top of the column. The two simulations without the
transformation on mole fraction are curved and "bounce" up. The two solutions
using the transformation smoothly approach the top of the column.

Figure 14 shows the combined benefits of the two variable transformation,
showing two collocation models of a 103 tray column with high purities. Both
models used the transformation on mole fraction, since this problem will not
converge without it. For one, the polynomial is based on stage number and, for
the other, the polynomial is based on the transformed stage number. The s based
solution has high curvature in the bottom half of the column. This also

demonstrates why it is beneficial in an s based collocation for the

0.5

mole fraction

0. _ - — :
0% 10.0 20.0 30.0 40.0 50.0 60.0

Figure 12. Effect of x transformation in acolumn simulation
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collocation pointsto be spread towar ds the ends of the collocation section to keep

the curvatureto a minimum.

Formulation of Collocation Column M odel

Our standard formulation of the collocation column model is shown by
Figure 15. Each column section isdivided into two collocation sections with two
trayseach. Sererflisand Hrymak[1994a] used multiple collocation sections so they
could use more collocation points in specific areas of the column where the
temperatufe and composition profiles changed rapidly. We observe that the areas
of activity are at the ends of column sections. By breaking each column section
into two parts, and using the transformation on stage number, we de-emphasize
the center of the column section by numbering the top collocation section
downward and the bottom collocation section upward. With this transfor mation,
the points at the beginning of a collocation section are stressed, and those at the
end are less important. Therefore, for large columnswith relatively low reflux

ratios, the collocation pointswill belocated wher e the compositions are changing,
and the area of no activity will join the two collocation sections, but no collocation
points need to be located there.

This standard formulation is sufficient for modeling large columns with
reasonable accuracy and is small enough to model small columns without
overkill. The model has four collocation sectionswith two trays each, a feed tray,
acondenser, and arebailer. Thisiseleven tray calculations. Since the collocation
traysarenot connected the way they would be for a tray-by-tray model, and since
there are polynomial equations, there are mor e equations than there would be for
an eleven tray column model. For a three component system, the collocation
model has 1811 equations and variables, including all thermodynamic equations.
A tray-by-tray mode with 19 trays has 1856 equations and variables. For a four
component system, the collocation model has 2215 equations and variables
compared to 2205 for a tray-by-tray model with 18 trays. For a set number of trays
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below 18, a tray-by-tray model might be more efficient, or a nonstandard
collocation model can be used with fewer collocation sections.

We space the collocation points in each section using two parameters as
described in the previous section.The parameterf,4 sets where the center of the
collocation points is relative to the actual center of the collocation section, and”
sets how spread out the pointswill be. For two and three tray collocation sections,
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this formulation can emulate Jacobi or Hahn placement, and iseasy to use.

Testing the Collocation M odel

We have performed several tests of the collocation model using nonideal
thermodynamics. In each of the following examples, the standard collocation
model was used, with four collocation sections of two trays each. We used
UNIFAC liquid mixture and Pitzer vapor mixture modelsfor the
thermodynamics and equilibrium, and assumed constant molar overflow. We
would liketo note that performing testsliketheseisa nontrivial task. The process
of obtaining a full thermodynamic model is complex, but once a tray-by-tray
collocation model has been successfully refined and converged, it is relatively
easy to perform many sequential incremental changesto obtain a wealth of data.
The two examples below where we performed a series of calculations to
determine thebinary separationsover a range of operations required 50 solutions
of the tray-by-tray and collocation models. Most of the work was done in getting
that firs useful solution. Then the models could be resolved repeatedly as the
digtillate to feed ratio was increased incrementally. The collocation has many
parametersthat can be adjusted, but it is much morerobust than a tray-by-tray
model. The process of solving these models will be discussed further in atwo
follow-up papers.

The firg example is the separation of a 50/50 mixture of methanol and
water. The column has 46 trays, and a reflux of 1.0. The purity of each product is
99.6%. Figure 16 shows a comparision between thetray-by-tray solution and the
collocation model. The curves are thetray-by-tray, and the points are the
collocation. The figure shows an excellent fit. Including all the thermodynamic
calculations, the tray-by-tray and collocation modelshad 3255 and 1407 equations
respectively. Theerror in the distillate composition is 0.02 per cent.

Using the acetone, chloroform, benzene system, we performed many tests
of the collocation model. The feed was a 36/24/40 mixtur e of acetone,
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chloroform, and benzene. A 33 tray columnwith areflux ratio of 4.0 was used. We
performed a search over the range of distillate to feed ratios to find the maximum
binary separations, as done by Wahnschafft [1992]. Figure 17 shows the
comparison of the binary separation range plots with those for a tray-by-tray
calculation. The chloroform benzene binary separation factor is not meaningful
before a D:F of 0.3, since practically nothing of either component is coming out of
the distillate at low D:F. For the acetone-benzene binary separation factor curve
the average error was 1%, and for the acetone-chloroform separation factor curve
the average error was 3%. The collocation shows very good agreement with tray-
by-tray calculations. The error in the acetone concentration in the distillate was
less than 2% over the range of D:F ratios, with an average error of 1%. Figure 18
shows comparisons of three different column simulations on a ternary diagram.
Including al the thermodynamic calculations, the tray-by-tray and collocation
models had 3144 and 1811 equations respectively.
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Finaly, we performed a set of tests on an equimolar mixture of acetone,
ethanol, propanoal, isobutanol, and normal butanol, using a 23 tray column with a
reflux ratio of 0.8. Figure 19 shows the comparison of the binary separation range
plots for the components which are adjacent in the order of relative volatility. The
other binary separation ranges compare equally well but would clutter the figure.

Conclusions

In this paper, we have demonstrated that this new collocation method can
accurately reduce the order of column models. The two variable transformations
greatly expand the capabilities of standard collocation methods. We have found
that the degrees of freedom selection is important, and demonstrated what
eguations can be ignored. The choice of point placement is non-trivial, and no
particular polynomial will give optimal point placement. Variable
transformations more significantly reduce errors than proper point placement.

In two companion papers, we will discuss how collocation provides the
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missing link for smulation of minimum reflux conditions. We will also discuss a
design algorithm for designing arbitrary columns using the collocation model.
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Nomenclature

U>mid

Simplification variable for Kremser approximation (L/KV)
Mole fraction average relative volatility

Parameter for exponential transformation of stage location
Parameter of Jacobi polynomial

Relative volatility of speciesi

Parameter of Jacobi polynomial

Factor for selection of spread of collocation points
Factor for selection of the midpoint of collocation points
Liquid molar enthal py

Vapor molar enthalpy

Equilibrium constant used in Kremser approximation
Liquid molar flowrate

Order of polynomial

Number of components

Number of phases

Number of collocation points

Pressure

Jacobi polynomial of order n

Stage location

Temperature

Vapor molar flowrate

kth term of Lagrange polynomial

Position of bottom of tray k

Midpoint for placement of collocation points

Position of top of tray k

Liquid mole fraction of component i

Transformed mole fraction

Vapor mole fraction of component i

Transformed stage location
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Appendix

Rewriting the Kremsar approximation to gather termswith s producesthe
following equation.

F ~

-1

Vo =R A4 32,
Rewriting the variable transfor mation

z = 1-¢-"? (33)
for sintermsof z,

s =In[ (I-z)~2J (%)

and placing it into the Kremser approximation produces the following equation.

y@)=" I W) @

If we define A = exp(B), then we can takethefollowing steps
X o (1-2)7)

7= (exp (B)) -

 exp Inf (exp(B)) In| (1-2) JII
*exp[B[In[(-2) *])))

= expy In[ (1-2) %))

—aB
= (1-2) (36)

Now equation 35 becomes the following.
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y1-A4%y y1-9

y(2) = 2—2-2 2™ @

Therefore, when -aB = 1, theequation islinear in z.
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