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Abstract.

In this paper we propose a method for the integrated scheduling and design for a
gpecial class of multipurpose batch processes. The type of plants considered are the ones
where not all the products use the same processing stages, and manufacturing of the
products can be characterized through production routes. A novel representation for
cyclic schedulesis proposed that has the effect of aggregating the number of batches for
each product. It is shown that the no-wait characteristics of subtrains can be exploited
with areduction scheme that has the effect of greatly decreasing the dimensionality of the
problem. This reduction scheme can be complemented with a tight formulation of the
underlying digunctions in the MILP to reduce the computational expense. The proposed
MILP mode for scheduling is extended to design problems in which the potential
existence of intermediate storage in the production pathsis also considered. In addition to
the rigorous scheduling of the process, the sizes of the equipment congtituting the various
production stages are determined. By using exact linearization schemes it is shown that
the problem can be reformulated as an MILP model and solved rigoroudy to global
optimality. Application of the proposed model is illustrated with several example
problems.




I ntroduction

Batch processes consist of a collection of processing equipment where batches of
the various products are produced by executing a set of processing tasks or operations
like reaction, mixing or distillation. Every processing equipment can perform particular
operations. Thus, it is possible to recognize production paths consisting of processing
equipment which indicate potential routes a batch might follow. A batch of a particular
product might follow alternative paths through the process. Processing equipment that
can perform the same oper ations can be grouped in a production stage.

The major classification of batch processes is based on the consderation of the
production paths required for the products. If all the products follow the same production
path then significant smplifications of the preliminary design problem can be achieved,
allowing the creation of a separate class of plants called the multiproduct batch plants
(Figure 1). The plants which do not belong to this category are generally classified as
multipurpose batch plants. Since the multipurpose classis a superset of the multiproduct
class, all the design methods proposed for multipurpose plants are applicable to the
multiproduct case. In conjunction to this, the design methods for multipur pose plants are
sgnificantly more difficult compared to the methods for multiproduct plants. In thiswork
we introduce a special classification for the multipur pose batch plants. More specifically
we divide the multipurpose plants in sequential plants and nonsequential plants (Figure
1). In a sequential plant it is possible to recognize a specific direction in the plant floor
that is followed by the production paths of all the products. Nonsequential plants are all
the remaining cases. Clearly, every multiproduct plant is a sequential multipur pose plant,
but the converse is not true. Also, according to Reklaitis (1990), multiproduct plants are
used when the products exhibit a chemical smilarity to each other. As the similarities
decrease, the plant becomes a multipurpose batch plant. Among these, sequential
multipur pose plants are common in industry and hence of practical importance.

A second major classification of batch processes is due to the transfer policies
between the production equipment. At one extreme lie the no-wait plants where no
intermediate storage is consdered and all intermediates have to be immediately processed
by the downstream equipment. At the other extreme lies the case where unlimited
intermediate storage is available between every processing equipment that do not belong
to the same production stage. In between lies a spectrum of alternative policies (see Ku
and Karimi, 1990). A general class under this classification are the plants with mixed
intermediate storage (MIS) policy where the process consists of no-wait subtrains
separated by an appropriate number of intermediate storage vessels.




Literature review

Because of its relative smplicity, the preiminary design of multiproduct plants
has been in focus by many researchers. Rippin (1993) reviews most of the work in this
area in recent years. In this review the need for a comprehensive algorithm that will
automatically consider and select from all structural possibilities considered
simultaneously is recognized. Voudouris and Grossmann (1993) developed a
comprehensve MILP modd for multiproduct batch plants that considers all the gructural
possibilities, and even further, considers final product inventories within a periodic
scheduling approach.

For multipur pose plants the mixed integer approaches for design and scheduling
can be categorized in thrce broad arcas. The main difference between these approaches is
the way with which the scheduling subproblem is dealt with. The first approach is based
on a smplified campaign planning scheme as for instance with the work by Vasdenak et
al (1987). In this approach a central issueisthe production campaign formation. Namely,
during a production campaign which consists of batches of the same product, two
products are allowed to be produced in the same campaign only if their production paths
do not share any processing equipment. Fagir and Karimi (1990) generalized this
approach by allowing more than one path for the production of a particular product The
model they developed was a nonconvex MINLP which was later reformulated as an
MILP by Voudouris and Grossmann (1992). Papageorgaki and Reklaitis (1990) also
developed a nonconvex MINLP mode which incorporated many additional aspects like
flexible task-to-equipment allocation, but still was based on a campaign planning mode.
A variant of this campaign approach is proposed by Shah and Pantelides (1992) where
the assumption of smultaneoudly utilizing production paths with noncommon equipment
for the formation of production campaigns is applied to production stages instead of
production paths. The main problem with these approachesis that the scheduling problem
is solved based on a smplifying assumption, thus allowing underutilization of time, the
generation of relatively large idle times for the processing equipment, and significant
over design of the plant when the design subproblem is integrated.

The second approach tries to tackle the problem of time under utilization. For this
reason it is recognized that a rigorous scheduling of production paths has firs to be
performed and to serve as a lower level subproblem to the capacity allocation problem.
The work by Wellons and Reklaitis (1991) is representative of this approach.
Unfortunately the resulting models are highly intractable mainly because of the
nonlinearities that arc involved. Furthermore, an arbitrary selection of the total number of
batches that are consdered may lead to suboptimai solutions.




The third approach is based on solving the scheduling problem by discnetizing the
time domain in uniform time intervals (Kondili et al, 1993). The major advantage hereis
the capability of considering complex task networks and handling resour ce constraints.
The major problem with this approach is the large size of the MILP model and the
problem of mapping the discretization points with the actual points in time when the
events take place. Even though it might seem that the problem can be alleviated by
assuming nonuniform time intervals, the identification of these discr etization pointsin the
context of the preiminary design is still an unresolved problem. For these reasons
approaches based on nonuniform and uniform discretizations are, thus far, considered
only for the short term scheduling subproblem and not as a scheduling subproblem inside
alarger prdiminary design framework.

In this work we address the problem of integrating scheduling in the design of
sequential multipurpose plants. As shown in Figure 1 these are plants where all batches
follow the same sequence throughout the stages although some of these might be skipped.
In the scheduling subproblem an exact modd is developed for the sequential batch plant
under MIS policy. Starting from the generic machine scheduling formulation, the
gructure implicit in sequential multipurpose plantsis exploited and areduction schemeis
proposed which significantly decreases the dimensionality of the problem. To addressthe
integration of the scheduling subproblem with the design problem, an aggregation
scheme is proposed which allows to solve the problem in the space of products, rather
than in the space of individual batches. This aggregation scheme is based on a periodic
scheduling approach. In this way it is possible to optimize the Production Cycle time,
during which the optimal scheduleis repeated, and in the design problem, to incor porate
costs for final product inventories. The scheduling subproblem is considered for two
different cases. In the first case all potential production paths are given and fixed,
whereas in the second case the selection of the actual production pathsis an optimization
variable. The difference between these two cases when the design problem is considered,
isthefollowing. In thefirs case all the equipment in the plant are utilized and the actual
decisionsareonly in terms of Sizing the equipment and the scheduling. In the second case
the equipment that will actually be used are selected from a set of potential units to
synthesize the optimal plant configuration.

Problem definitions.

The general design approach followed in this paper is described in a previous
paper (Voudouris and Grossmann, 1993). One of the most important steps in this
approach is to identify the space of alternatives (see Figure 2). This space of alternatives




can be redefined if the optimal solution involves undesirable operational conditions. The
verification step can be performed using a discrete event simulator. In this section we
identify the issues that will define our space of alternatives. We should note that some of
the set notation used in this work is not gandard mathematical notation, but it has a one
to one correspondence with the one in the GAM S modeling language (Brooke et al,
1988).

Congder that a set of products P=(p} is given with deterministic demand
specifications Qp that have to be satisfied during a design horizon 3Z The production of
those products involves the processing of a set of tasks I={i} in a set of processing
equipment K={k}. Letj be an aliasfor the index of tasks L Every product p is associated
with a number of processing tasks i. This association is expressed with the set of dyads
A={ (p, i) : task i is associated with the production of product p }. Every processing
equipment can perform only aresricted number of tasks. Thisis expressed with the set of
dyads B=( (k, i) : task i can be performed on equipment k). Because of the above
definitions, it is possible to identify a set of production paths H=(h} in the plant floor
(see Figure 3). Every production path is associated with a number of processing
equipment which isindicated with the set M={ (h, k) : equipment k belongsto path h }.
In Figure 3 the set M isdefined as, M = { (1,1), (1,4), (2,1), (2,5), (3,2), (3, 4), ...}.
Furthermore, every path h will be dedicated to the production of a particular product p
which isindicated by theset C={ (h, p): V (k,)eB, (p,i) € AA (h,k) € M }. Againin
Figure 3, set C isdefined as, C = { (L,A), (2,A), (3,A), (4,A), (5A), (6,A), (7,B), (8,B)}.
The specific production recipes for every product are expressed with a particular
precedence among the operations. This precedence can be expressed with the set G=( (i,
DeVp, (p,i)eAA(p])eAA( hastobeexecuted immediately after i)} or with the
setoftriadsD:{(h,k,k'):V(i,j) e G,(k,i)€ B,(k\j)€ B,(h,k)G M, (hic)<= M).
For the example shown in Figure 3 we get D={(1,1,4), (2,1,5), (3,2,4), (4,2,5), (5,3,4),
(6,3,4), (7,4,6), (8,5,6)}. Scheduling of the operations consists, in thiswork, identifying a
sequence of operations in the equipment while ensuring that potential clashes will not
occur. The potential pairs of clashes are expressed with the set E={(h, h\ k): (h,k) e M
and (h\ k) e M} which for our example is defined as E={(1,2,1), (2,1,1) (3,4,2), (4,3,2),
(1,34, (31,4, (1,4,4), (41,4, (1,7,4)... }.

The sequential multipurpose plant is a restricted version of the multiple directions
plant. More specifically, when the processing equipment are specified to belong to a
sequence, then the set D includes eements which have the property that for every path h,
k* has a higher sequence number than k. This can easily be verified for the instance of
Figure 3. Graphically this means that it is possible to identify a sequence of the




processing equipment such that all production paths flow in a single direction. This
property can also be shown with a Gantt chart asin Figure 4. We have to emphasize that
thisis a simplified version of multipurpose batch plants but is a more general class than
the multiproduct plants. In Figure 4 it can be seen that in the possible sequence given, the
operation of product A is after the operation of product B in equipment 1. Thereverseis
true however for equipment 3. It is therefore not correct to consider a zero processing
time of batch C at equipment 2 and treat the plant as multiproduct because this
assumption.allows only the same sequencein every equipment

Some other interesting characteristics of sequential multipurpose plants is that
they can be used as a representation of sequential plants with parallel equipment.
Condgder for example the plant shown in Figure 3 which involves 3 paralld equipment at
dage 1 and 2 paralld equipment in stage 2. By defining the corresponding production
pathsit is easy to show that the processis a sequential multipurpose batch plant As was
mentioned before, the execution of the operations in a production path is performed in a
no-wait fashion. This means that a subsequent operation hasto be started as soon asthe
previous operation in a path is finished. Intermediate storage can be treated by the proper
definition of the production paths. The existence of an intermediate storage vessel at
some point in a production path (e.g. between equipment 2 and 3 in Figure |.b) can be
consdered by decomposing the pathsin two independent no-wait subpaths (or subtrains)
asisshown in Figure5.

We address the scheduling problem in two phases. Firg, it isrequired that a given
number of batches for every product np, has to be produced in the minimum amount of
time. As a major second step we present aggregated models for cyclic scheduling in

"which the number of batches appear as parameters that can be relaxed as variables in
design problems. Furthermore, we address the scheduling subproblem for two cases: a)
the production paths in the processing network are given and fixed; b) the production
paths have to be selected. This hierarchy of models is proposed because there is a trade-
off between computational efficiency and generality of the models.

The second part of the paper deals with the optimal design of a process by
simultaneoudly considering the production schedule. In this phase the inputs are the
demand specifications for every product during a design horizon. A selection of the sizes
and layout of the equipment has to be made is such a manner that the profitability of the
process expressed by the Net Present Value (NPV) is maximized. Major assumptions for
developing the models include processing times that are independent from batch size, and
semicontinuous units arc not considered. The batch plant is assumed to consist of no-wait
subtrains which are separated by intermediate storage vessels. The location of the




intermediate storage vessels is given, and sizing for these vessels is not considered.
During a production cycle a production path is utilized only once to produce the optimal
number of batches. Synthesis decisions regarding task to equipment allocation are not
considered in this work, although they could have been treated by proper definition of the
production paths. However, note that the vessel sizes are considered in standard val ues.
This alows the application of the linearization transformations proposed in our previous
work ( Voudouris and Grossmann , 1992,1993; Grossmann et a 1992). Next we present
the mathematical programming models proposed for the above problems.

Scheduling of sequential multipurpose plantsunder MIS

Suppose a processing network is given by means of the sets defined above. In
genera, a production path can be utilized several times to produce identical batches. In
this section, however, we assume for smplicity that every batch follows every inidividua
path only once. In this section, the MIS policy is assumed to be a combination of the no-
wait and the unlimited intermediate strorage policy (UlS), whereas in the later sections it
is assumed to be a combination of the no-intermediate storage (NIS) and UIS policies.
Consider that thk represents the starting time of the proper operation of path h performed
on equipment k and dhk is the processing time of the same operation. We define the
following binary variable,

if path his before path h' in machine k

i
Q otherwise

ot
yhhK= ]

The generic machine scheduling model can be treated with the following well known
formulation (e.g. see Balas, 1985a).

minMs (P.I
st ' M s~ thk+dhk V(h,k)eM
th N0 V (h,k) e M
thk- ~ ~dhk V(h,k,k") eD

'k - thk - { dhi - ') Yo'k 2 L'k V(h,h\k) e E*




'thk+thk +(dhk.Lh-hk/\yhhk/\dh-k V*huh'uk) EE+

Yank € fO 1 V(h,h\k) ¢ g+

where Ms = Makespan of the schedule, E=E uE"' with (h, h\k) € E" if and only if
(h\ h,k) € E'. A very smpleway to calculate E* is to consider only those indices h and
h" which satisfy the condition ordinality(h) < ordinality(h"). Note that Lhhk = Lhk - Uhk
where Lhk is the lower bound on the starting time of the operation of path h" performed
on machine k and Uhk is the upper bound on the starting time of the operation of path h
performed on machinek.

Although a general formulation like the one in (P.l) is relatively simple, it is
notorioudy difficult to solve (see also Raman and Grossmann, 1992). Significant
Improvements can be obtained, however, by exploiting the sructure of a particular
problem. In our case we gart by exploiting the fact that our network consists of no-wait
subtrains. In other words, the third constraint in (P.l) is defined as an equality.
Furthermore, we exploit the fact that the plant is sequential which means that we can
identify an equipment which we can characterize as being first in the sequence. Defining
the starting times th for every path in the first equipment, the starting times thk ® each
machinek arc given by, |

k-1
thk=T+ £ dK V(h,k)€ M 0
k'=l

Note that the sum is defined over all the equipment. In case an equipment does not belong
to path h then dhk is zero. Note that equation (1) is equivalent to the third congraint in
(P.I) when it isan equality, and thusthis congraint isreplaced by (1).

Thefixed paths case

Consder that all production paths in a process have been identified and all of
them will be used in the schedule. The existence of intermediate storage vessels as well as
paralld equipment in a production stage is treated by the path decomposition method
illugtrated in Figure 5. By assuming no-wait trander, i.e. the third congraint in (P.l) isan
equality, we can subgtitute the garting times thk in (P-1) with the definition in (1). Thus,
we get the following model,




min Ms (P.2)
_lid
SL. MSEL, + 2, dnk ¥ h
k=1
EhZO Vh
.. K k-1
et +W(L-yw)2( Y due- S dnwe) V(hh' k) € E*
¥=1 Knl
o k k-1
th -ty +W yhhic ->( X dhv- S dMO V(h,h\k) € Et
K=l =1
Yanx € 10,1} V(hh\k) e E*

Note that the calculation of boundsfor the digunctionsis not required here due to the no-
wait transfer assumption. Also, note that it is possible to consider the existence of
intermediate storage vessels by a proper definition of the paths. The production paths
have to be classified into two classes. First there are the paths that are producing
intermediate products called the intermediate paths. Then there are the paths that produce
final products called market paths. The set FT = {h} isa subset of H and has asentriesall
the market pathsin the process. For every path producing an intermediate, there is exactly
one path (aither market of intermediate path) that is consdered to be the downstream path
after the intermediate storage vessel. The correspondence between upstream and
downstream paths is indicated with the set of dyads F = { (h, h"): path h is the upstream
path for the downstream path h'}. Note that for every market path there can be one or
more intermediate paths related to it. One of these is the immediate predecessor of the
market path. The following constraint ensures that the downstream path sarts operating
after the upstream path has produced a batch,

IK)
T X di*' <ti< V(h,h') eF (a)
kf=|

Although models (P.2) and (P.I) are mathematically equivalent under the no-wait
transfer assumption, model (P.2) has significantly smaller number of continuous
variables, the same number of binary variables and a relatively smaller number of




congraints. It is thus a formulation of model (P.1) in a reduced continuous space. Since
the lower bounds in mode (P.lI) are implicitly considered in model (P.2), the LP
relaxation of model (P.2) is the same as model (P.l) when equality of the third constraint
Is enforced. This means that model (P.2) requires less computational effort to solve a
particular instance of the same problem. The main problem, however, that model (P.I)
exhibits, is also present in modd (P.2). More specifically, it has been proved (Balas,
1985a) that the digunctive constraints defined over the set E, do not have any
constraining power when the corresponding binary variable is relaxed. In order to
alleviate this problem many resear chers have dedicated significant effortsto devise srong
cutting planesfor particular cases of model (P.1). Since modd (P.2) isa particular case of
mode (P.l) which is obtained by applying well defined mathematical steps, it ispossible
to modify some of the most efficient of these cutting planes and to apply them in mode
(P.2). Some efficient cutting planes have been proposed by Balas (1985b). From our
experience the most effective cutting planes have been initially proposed by Dyer and
Wolsey (1990) for the one machine scheduling problem with release times and due dates,
and later modified for modd (P.l) by Applegate and Cook (1991). The form of these
cutting planes for modd (P.2) is given in Appendix |. By also exploiting the no-wait
character of model (P.2), we propose in the next section areduction scheme which leads
to an equivalent mode (P.3) that has a significantly lower dimensionality in the binary
Space.

Reduction scheme

The dimensionality of the binary space in model (P.2) is equivalent to the
cardinality of set E+, since the binary variable yhh* is defined over that set. A ‘geometric
interpretation of the principles where the reduction scheme is based, are given in the
Gantt chart of Figure 6. In the firg case of thisfigure, yABi= 1 and yAB2= 1 arc implied
when yAB3 = 1 and thusthey arc redundant In the second case however the instance yAC3
= 1 isnot redundant when yAci = 1 because, as shown in the third case, it is possible to
get a'reversal’ whereyaci = 1 and yac3= 0 (or ycA3= 1). Based on theseideas we devise
the following reduction scheme which significantly reduces the cardinality of the domain
of the sequencing binary variables without compromising the optimality of the model.

Let us first define the variables DihTc, Vhh' and Skhh'k with the following
equations,

k- k .
Diifc = X 41Y - £ dk« V (h,h' k) e E* )
k'=l k'=l
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Vig= min  [DhhcOl Vh,h 3)
k: (h,h\k) € E*
Skkppx =D * - VIr V (h,h\k) e B+ )

The dacks Skihic represent the forced idle time imposed on machine k when path
h isfollowed by h' in a no-wait multipurpose plant A geometricd interpretation can be
seen in the Gantt chart of Figure 7. In this figure only two pairs of paths are given and the

corresponding dacks are shownin Tablell.
We further define Plhh* and ChhHikk' w™* *e following equations,

Pl = dng + dnx + Slknny V(h,h\k) €E+ (5)

Chyye = max[0, Skhh* - Fhhid V (h,h\k) e E+ and (h,h,k) e E" (6)
or
Chwikk ~ © (3™ poditive number) if Skhhic = Pl

V (h,h\k) e E* and (h, h;K) e E" (7)
Findly, the sets Q and R are defined as follows,

K]

[ LY
Q:} (h,h\k) : (h,h\k) e Eand 2, Chthidk >07 8)
K=l

R= f (h,\k): (h,h, k) € E" axd (Skhhic=0v SKkH'tk=0

\ v(h,h\k)€Qv(h\h,k)€Q) ©)

Note that al triads belonging to set R belong to set E+, but they have to aso satisfy one of
the four conditions in (9). Thus depending on these conditions, the cardinality of set R is
smaler or a most equd to the cardinality of the set E+ . Next we prove the following

proposition.

Propostion 1. Problem (P.2) is equivaent to a reduced problem (RP.2), in which the

digunctions are defined only over the set R rather than set E+,
Proof. See Appendix n.
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Due to therestrictive nature of the conditionsimposed when set R is defined, the number
of binary variables and digunctive congraints is significantly reduced The effectiveness
of thisreduction scheme and of the cutting planesisillustrated in the next example.

Example 1

Consider the case where 4 products will be produced in a multipurpose batch
plant For product A three batches will be produced, for product B also three and for
products C and D two batches for each. In Hgure 8 the production paths are shown for
the batches of each product. The objective is to find the schedule that minimizes the
makespan. Although this problem with 4 products and 10 batches, seemsto berelatively
small, the computational effort required to solve this ingance is surprisingly large. The
optimal schedule is shown in the Gantt chart of Figure 9. The optimal makespan is 52
hours.

In order to study the impact of the reduction scheme and the cutting planes, 4
particular models have been tested All the models were generated with GAMS 2.25
(Brooke et al, 1988) and the MILP solver was OSL (OSL, 1991). The computer platform
was an |BM/R6000/Power 530 workgtation. Note that a custom fit options file was used
to optimally set the optimization parameterson OSL. More details on the settings of these
parameters are given in the section of computational considerations. In the first version
model (P.2) was used with no cutting planes and no reduction scheme. The model
involved 182 constraints and 97 variables of which 86 were binary. After more than 2
CPU hoursand 144,063 nodes enumerated in the branch and bound tree, the solution had
sill a relaxation gap of 47%. This solution was 53 hours which is not the optimal
solution. In the second version the same model was used but now only the reduction
scheme was applied. The mode involved 120 constraints and 66 variables of which 55
were binary. Again in this case the mode failed toreport the optimal solution in 2 CPU
hours. Ingtead a solution of 53 was the best reported Therelaxation gap was 20.9% and
137,532 nodes wer e enumerated In the third case only the cutting planes were used The
optimal solution of 52 hours was found after 42 CPU minutes and 51,232 nodes. The LP
relaxation of this model was 52 hours so the relaxation gap was 0% and the tree was
enumerated to identify an integer solution with the same makespan as the relaxation. It
should be noted that in the firg two versions the relaxation had a solution of 18 and thus
the relaxation gap was 65%. Finally, in the fourth case both the cutting planes and the
reduction scheme were used. This mode involved 130 constraints and 66 variables of
which 55 were binary. The optimal solution was now obtained in 601 CPU seconds and
after 16,092 nodes. Note that the reduction scheme reduces the number of binary
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variables from 86 to 55. For the final verson we also solved the model with GAM S
2.25/Sciconic 2.11 and the solution was obtained in 293 CPU seconds and 13,177 nodes
were enumerated. Sciconic (SCICONIC, 1991) however did not always perform better
thatOSL.

To also clarify the difference between the multiproduct and sequential
multipur pose plants the same example was solved as if it were a multiproduct plant with
Zero processing time on the stages that are skipped. The optimal solution in this case was
71 hours which is 40% higher than the optimal makespan! This schedule is shown in
Figure 10. The model used for the rigorous scheduling was the one proposed by Birewar
and Grossmann (1989).

From the computational results that are reported here it is apparent that the
combination of the cutting planes and the reduction scheme improves significantly the
computational performance of model (P.2). These methods however are not sufficient to
address theintractability of the model. For this reason we propose in the next section an
aggregation scheme in which the objective is the minimization of the cycle time.

Aggregated model

In this section we further exploit a significant characterigtic of multipur pose plants
to reduce the computational demands and thus make possible the solution of larger
problem instances before the computational " exponential wall*' is reached. One of the
main problems in the reduced model (RP.2) isthe fact that when the number of paths (or
total number of batches) is large, the number of digunctive constraints is increased
quadratically to the number of batches. The main idea in the aggregated model is to
employ a periodic scheduling approach in which a smaller nested scheduling subpraoblem
is solved optimally. It is assumed that this eementary scheduling subproblem (production
whesdl) is formed with single product campaigns and that the actual schedule is obtained
by repeating the dementary schedule a number of times. This number of repetitions has
to be determined optimally. This approach has successfully been implemented in the case
of multiproduct batch plants (see Voudouris and Grossmann, 1993). The key decisionsin
the dementary schedule is the optimal sequence of the products, the number of batches
produced and the length of the dementary schedule. For the overall schedule it will be
decided how many times the elementary schedule will be repeated. As an example,
consder the scheduling problem given in Figure 11. A total of 12 batches will be
produced where 3 batches are of product A, 6 of B and 3 of C One possible realization of
the periodic scheduling approach is to repeat three times an elementary schedule which
introduces the production of 1 batch each of A and C and 2 batches of B. A restriction of




13

the above approach would seem to be that the total number of batches will be a multiple
of the number of repetitions. This regriction is, however, not so important because the
total number of batches considered in the schedule will be the next higher multiple of the
number of repetitions compared to the total number of batches required. In other words,
we assume the schedules to be periodic even if thisis not always optimal. Also, we will
allow for possible overproduction of batches to introduce more freedom in the selection
of a periodic schedule.

Timing of the lementary schedule is based on the recognition of the bottleneck
stage. The notion of a bottleneck stage is well understood in the case wher e batches of the |
same product are considered. In this case the stage with the largest processing time is
considered to be the bottleneck stage. The processing time of the bottleneck stage
represents the period of repetition. This period is widely known as the cycle time of that
product. When a larger number of products with various production paths are involved,
the timing pattern in every stage becomesrelatively complicated. It is possible, however,
to recognize a bottleneck stage whose operation defines the period of repetition for the
whole dementary schedule. This period of repetition will be denoted in this paper asthe
production cycle time.

Given that at least np, batches have to be produced, consider nbh batches that arc
produced in path h for product p ((h, p) € C) in each cycle. In any particular equipment
k the garting time of the corresponding operation of path h is defined as thk and the finish
time is defined as f\+. As shown in Appendix |11, the finish time fhk is given by the
following equation,

fk =tk + dne + (Nbp. 1) T V(h,k)e M (10)

where Tlh is the cycle time of path h and is equal to the processing time of the operation
in the path with the largest duration,

Tlh= max {dhk} V h (11)
k: (h, k) € M

Since an explicit expression of the finishing time of single product campaign within an
elementary schedule is given with eguation (10), the digunctions in model (P.2) can be
written to arbitrate clashes among campaigns. The modified digunctive congtraintsarc,
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k _ k4

m+(nbp-1) Tl, + £ dhk's th-+ X dhY+Wd-yto) V(h,h',k)eR (12
kK'=1 kK'=1

) k kil

tw+ (o - 1) The + £ dy< th+ £ dhk'+WyA V(h,h\k)eR (13)
k'=l k'=l

Note that the disjunctions are again defined over the set R. This is because the reduction
schemeis still valid with the aggregated disunctive constraints.

Proposition 2 : The production cycle (or cycle time of the elementary schedule) can be
defined rigorously by the following equation,

X 1
P= ma  [tht(nbh-1) Tl + £ d* - (fc+ £ <W)] (14)
(h,h\K)eR kK'=i k'=i

Proof: See appendix in.

In terms of inequalities in a cycle time minimization problem (14) is given by,
_ k _ k-1
P>ty+(nbh-0 Tly + £ d*- (th'+ X ‘hv) V (h,h\k)eR (15)
kf:| k#:|

As mentioned in the multiproduct case (Voudouris and Grossmann, 1993), when a
periodic scheduling approach is considered, and particularly for cases of small number of
elementary schedule repetitions, it is imperative to devise constraints that ensure the
integrality of the ratio,

|£=Nr (15a)

where Tc = Total time required.

Nr = Number of elementary schedule repetitions.

P = Production cycle time.
Consider the following binary variable defined over the set SV = {sv} whose entries
represent the number of repetitions of the elementary schedule,
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| 1 if svrepetitions of the dementary schedule arc considered

F 0 otherwise f

Then the following congtraints ensure the integrality of theratio Tc/P.

Isvl

X ry =1 (16)
sv=1 .

IsA

X  apsy=P (17)
sv=l
aps<Urey Vsv (18)
Isvl

X ord(sv)apsv=Tc (19)

sv=l

The total number of batches produced by the market paths has to be greater or

equal to the required number of batches for each product. This is expressed by the
congraint,

Nr X nbh”npp Vp (20)
h: (h,p)€C,he H

where the inequality sign has been specified to allow an overproduction of batches for a
periodic schedule as discussed previoudy. When grict equality is enforced, the optimal
solution will be equal or wor se to the optimal solution obtained when only the inequality
is congdered as will be illustrated in example 2. The nonlinear congtraint in (20) can be

linearized using a case 2 linearization scheme (Grossmann et al, 1992). The equivalent
linear set of condraintsis,

RY

X X °"%(sv) arnbhss ~ npp Vp (21)
h: (h,p)eC,heH sv=1

X anbhss » U rg, V sv (22)
h
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Y, ambyg, = nbh V h (23)

The following constraints have to be satisfied in order to ensure proper operation
of theintermediate storagevessels,

KJ

th+ X dhkrtht V(h,h) eF (24)
k'=] .

nbhZhh*nbh. V(h,h") eF (25)

Congtraint (25) ensures the proper time coordination between the upstream and
downstream paths. Zht is a fixed rational number whose value is indicated by the ratio of
the cycle times of the upstream and downstream subtrains. This ratio is such that the
productivities of the two subtrains are equal (see Karimi and Reklaitis, 1985; Modi and
Karimi, 1989). When fixing the value of ZHH care should be given to the fact that even

though the ratio of the cycle times is unrestricted, the ratio of the number of batches is a
ratio of integral numbers.

The finad MELP mode is given by,
min Tc (P.3)

st (12), (13), (15), (16)-(19), (21) - (25)

thE0 V h

P=0

apsy=0 sv=1..JSV|
ambfev"O Vh, sv=1..[SV]|
nbh = integer V h

¥k . sv€ {0,1}
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Example 2

In example 2 we resolve the problem described in example 1 but thistime we use
the periodic scheduling model (P.3) which involves 301 congtraints and 322 variables out
of which 12 arc discrete. The optimal schedule obtained from model (P.3) is shown in the
Gantt chart of Figure 12. The dementary schedule involves one batch of every product.
Since modd (P.3) was used, the obj ective was to minimize the cycle time of the schedule
and not the makespan as was the case before. The cycle time of the elementary schedule
(Production Cycle) is 16 hours and it hasto berepeated three times. The total cycletime
required is 48 hours and the makespan is 58 hours. In comparison, model (P.2) yieldsan
optimum makespan of 52 hours. Note also that 3 batches of each product will be
produced. Hence equations (21) will not all be active since thereis an overproduction of
one batch of C and one of D. Figure 13 shows the optimal schedule with only one
repetition of an eementary schedule involving 3 batches of A, 3 of B, 2 of C and 2 of D.
In other words we enfor ce strict equality on equation (21). In this case the optimal value
for the total cycle time is 61 hours. Thus the schedule of Figure 12, even though it
involves more batches than required, is more efficient compared to theone in Figure 13.
Moded (P.3) was solved in 24 CPU seconds using GAMS 2.25/0SL on an
IBM/R6000/Power 530. A total of 305 nodes were enumerated in the branch and bound
tree. Note that Special Ordered Sets (see Voudouris and Grossmann, 1992) are not
consdered as discrete variables although they are present. The set of repetitions SV had
10 entries gtarting from repetition 1 (see tree partitioning scheme on the computational
congderations section).

The path selection problem

Many times in a multipurpose plant it is possible to identify more than one
production path that a batch of a particular product can follow. The demand for a
particular number of batches can then be satisfied from batches produced in every
individual path. These paths may produce batches of the same or different size and of the
same or different number. As an example, if in an otherwise single-equipment-per-stage
subtrain, only one stage has two equipment operating in paralle, then it is possible to
identify two production routes dedicated for the product produced in the subtrain. The
ability to consder different batch sizes per route allows the consideration of equipment of
unequal sizes in a stage operating in paralle. This can have a significant effect in the
throughput of the process. Furthermore, the fact that the time relation of the paths is not
redricted, allows to consder both in-phase and out-of-phase cases resulting in additional
throughput
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The models developed thus far in this paper have consdered that all identifiable
paths for the production of batches of a particular product will actually be used. It is
conceivable, however, that in some cases the forced utilization of a production path is
unnecessary. Therefore, an important extension of the basc model must consider the
nonexistence of a path.

In mathematical terms the nonexistence of a path can be considered in various
ways. The main idea of these methodsis to make the digunctive constraints (12) and (13)
redundant for the cases where one path in thisdigunction is nonexistent Furthermore, the
number of batches produced in such a path hasto be forced to zero.

Condder the following binary variables,

- | i ifpath h exists!
yjh_110 otherwise \

Note that two paths h and h' belonging to two different products, may otherwise be
exactly the same in terms of direction inside the plant Since some of the processing
parameters associated with these two paths like processing times, may be different, a
digtinction of these paths has to be made.

One possible way to consider the nonexistence of a path is the following,

- - kil
ty+ (nbh - 1) T+ i d ~ V+ X dhv +W (3- yhhic - y3h - y3hO (26)
k'=l k'=I
V (h,h\k) e R
i X o kd
th+ (nbh - D Tlh-x X k'™ tr X $rk' + W (2 +yhhk - y3,-y3,0 (27)
- - k'=l k*=|
V (h,h\k) ¢ R
nbh< U y3, V h (28)

Note that there is no need to include any logical constraints to enforce consistency
between the binary variables. Thisis because the only way that both congraints (26) and
(27) are non redundant isfor the variables y3h and y3h' to be one. In this case, depending
on the value of the binary variable yhhk> only one of these constraints will be
nonredundant

Ancther alternative to model the aboveis by introducing the following binary variables,
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i -11 ifP"hh*beforepath h'in machinek
Kt ) otherwise

which isdefined over the set R, and

_/ 1 ifpath h'is before path h in machine k
-] o otherwise

¥2unx

which is again defined over the set R. Note that because of the difference in defining the
variables, when both of them are not zer o the following condition must hold,

ylhh*+y2hh* = | V(h,h\k) &R

Therefore, the following congraints can replace congraints (12) and (13),

k-1
2 4*+W(l.yluft) V(h,h\k)€R (29)
=i

k
tp+(nbh-1) Tl + X %hk” t,'+
k'=i k

k k-1
et (aby-D Tl + Z A 5B X doV+W(I-y2me)  V(h,h' k)eR (30
=1 Kmi

The logical consistency between the binary variables ylhhk, y*hh'k and y3h is enforced
with the following congraints (in aggregated form),

> (yihhic +y2hMa) ~ y3, Vh (31)
(W) (hAK) €E°
Y lwk + Y2 ) S Y3k Vh' (32)

(hJ0:(hJi\k) eE*
Ylhax + y2hhic A y3, +y3—I V (h,h\k) e R (33)

The sets of congraints (29)-(33) and (26)-(27) are equivalent to each other in the binary
space which means that they are equivalent as far as representation of the problem is
concerned. They exhibit, however, significant differences related to computational
performance. The advantage of congraint set (26)-(27) is that a smaller number of binary
variables and congraintsisrequired. The main disadvantage, however, is that the upper
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bound in the digunctive congraints is 3 times larger compared to the upper bound in
constraints (29)-(33), This means that the constraining power of these constraints is
significantly reduced when the binary variable is relaxed. This might lead to a larger
enumeration of the branch and bound tree (Nemhauser and Wolsey, 1988). The above
effect however, ismostly significant when congtraints (26)-(27) are adominant part of the
MILP model. In our casethisis not the case and the intractability of (26)-(27) isreduced.
From our experience the above argument has been justified and congtraints (26)-(27) have
been chosen. By replacing the digunctive congtraints (12) - (13) in model (P.3) with
congraints (26M 27) and by adding congraint (28), the following model is obtained,

minTc (P.4)

st (15),(16)-(19), (21).(28)

th£0 Vh

P20

ap,, 20 sv=1../SV]|
arnbp,v" O Vh, sv=I....|SV|
nbh = integer V h

This model addresses the problem of path selection and scheduling of the selected paths
in a sequential multipurpose plant, and its application isillustrated later in this paper.

The design problem

In this section we will expand the scheduling models to design by considering the
selection of sizes of the various equipment Furthermore, when the underlying scheduling
subproblem isthe path selection case, this also involves the selection of units.

The number of batches of each path that will be produced during the total design
horizon is the product of the number of batches produced during a production cycle
multiplied by the number of repetitions. Thus,
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Nr nby, = 3% Vh (34)
Bn
where g" =demand for product p satisfied by path h (Notethat (h, p) € C).

Bh = Batch size of path h. :
Since every vessel must be able to accommodate the batches of the paths that are utilizing
that vessel,

Vi 2 S Bh V(h,k)eM (35)

In this problem the total number of batches for each product npp is not given. Instead the
total demands Q, that have to be satisfied during the design horizon are the input data.
For thisreason congraint (20) hasto bereplaced with the following constraint,

Nr Y, h2Qp ¥p (36)
te(h,p)€C,heH’

Because of the periodic scheduling that is assumed, it is possible to incorporate the
inventory and operating costs in the design model. The objective in this case is to
maximize the profitability of the process as expressed by the Net Present Value. Thisis
defined with the following equation,

NPV = -Pc + (R - Oc) (1-tx) (prcoef)+(Pc/Ny) tx (prcoef) (37)

whererx is the tax rate, Ny the expected life of the plant in years, R is the total revenue
from selling the products which is calculated only for the required amount of products
and not for the overproduction. Prcoef is the present value coefficient with which future
profits are projected to the present. This coefficient is given by,

f={(1+in)”>‘ -1 }
in (1+in)NY

(38)

wherein representstheinterest rate.
Theplant cost Pc can be calculated by the following equation,

Po=Y, oy Vit (39)
k
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which is the capital investment required for the equipment
The cyclic operating costs Oc are calculated by the expression,

0c=§(up%—” P) + mintNr (40)
where the first summation is the inventory cost and the second term is the setup cost paid
every time the optimal schedule is repeated. Nr is the total number of repetitions of
cycles, mint is the cost in $ per repetition and Mp is the inventory cost per unit mass of
inventory of product p per unit time. Note that the calculation of the inventory cost is
different to the one proposed for the case of multiproduct plants ( Voudouris and
Grossmann, 1993). This operating policy is indicated in Figure 14. The main reason
behind this assumption is the fact that in multipurpose plants it is relatively difficult to
identify production times for each of the products. Even further, the consideration of
production times generates nonlinear terms that cannot be linearized.

The consideration of intermediate storage can be performed in a similar fashion as
in the pure scheduling and operation subproblem. The main difference, however, is that
constraint (25) has to be replaced by the following constraint,

By

= V(h,h')eF (253)

P

As mentioned before it is possible to consider two distinct cases. In the first case
only the simultaneous capacity allocation and scheduling of an existing process with
selected production paths, is considered. The nonlinear model for this caseis,

max NPV (R5)
s.t. (12M13), (15), (15a), (24), (25a), (34)-(37), (39)-(40)

Non negativity and integrality constraints

The second case addresses the potential existence of paths and units in addition to the
itemsin (P.5). This gives rise to a model that partially addresses the issue of flowsheet
synthesis. Again the nonlinear model is,

max NPV (P.6)
st (15), (15a), (24), (25a), (26)-(28), (34)-(37), (39)-(40)

Non negativity and integrality constraints
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Linearization of nonlinear design models.

By considering the availability of equipment in gandard sizes, it is possible to
linearize models (P.5) and (P.6) from nonconvex MINL Psto MttP's and therefore define
a model for which the global optimum can be rigorously obtained with the LP based
branch and bound method. Fir<t the following binary variableis defined,

_|I'1 ifequipmentk hassizesl|
*~jo otherwise

Xk
Note that the sizes of the equipment are indicated by the set Sk = (s}. Thefirg entry in
that set corresponds to zero size or nonselection of that equipment. We therefore define
the modified set Sk = Sk\ {1} which indicates only nonzero sizes. The sets Sk and " are
associated with the discrete sizes V&={ Vki, VK2, .., Vks }. Thus the size of a vessel is
given by,

V=, "ksXks (41)
2 X =1 (42)
s,

for the case of selected paths. For the path selection cases the sum in (42) is over set S
instead of set Sk for equation (42).
By combining congraints (34) and (35) we get,

Nrnbhz§£$—l:‘—*‘— V(h,k)eM (43)

In order to consider the availability of intermediate storage the following condition must
hold,
gh=qn V (h,h)€F (43b)

Because of the multiple choice character of congraint (42), congraint (41) can be written
as,

A1 =% Xis

-z w
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By replacing thisinto (43) we get,

Neaby 2y, 3dng,  v(hk)em (45)
Sk

In the left hand side of this constraint the bilinear term has already been linearized by
replacing (20) with (21)-(23). Theright hand side has also the bilinear terms gh x*. By
applying a case 2 linearization scheme we get,

'?;\ﬂ'l ord(sv) arnbfov 2 § ‘—Sh'l(\'?ﬂhﬁ V(hkeM (46)
SV« :
2h anbhsy M U rg Vsv (47)
2) arnbhs/ = nbh Vh (48)
5

s S U xys VK.s (49)

h:(hjc) G M ,he H
Y arqus =an V (h,k)eM (50)
Sk

Similarly, constraint (36) can be linearized and replaced with the following constraints,

X X ods) age=Qp  Vp (51)
¥ h:(h,p) €C,he H*

X aghsv* Qpr s Vp,sv (52
h: (hpp)eC
X 0hsy =gh VheH (53)

In order to consider the proper operation of intermediate storage (43b) has to be
combined with the following constraint,

by, = T8 o V(h,h')eF (25b)
Tin
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It can easily be proved that (25b) and (43b) are equivalent to (25a) by considering that g
= Bh nbh. Because of the consderation of gandard sizes the nonconvex equation (39) can
bewritten as,

Pc= Y, csty Xks (54)
K S

where the parameter cgks = ak v‘jL£ is the cost of every equipment k. Finally equation
(19) hasto berewritten in terms of the design horizon which is a parameter instead of the
total production timerequired which isavariable,

ISV
£ ord(sv) ap™ =H (19a)

sv=1
For the case of fixed paths the design and scheduling mode is,
max NPV P.7)
s.L (12)-(13), (15), (16)-(18), (19a), (24), (25b), (40), (42), (46)-(53), (54)
Non negativity and integrality constraints
For the path selection problem the synthesis, design and scheduling modd is,
max NPV (P.8)
s.t.  (15), (16)-(18), (19a), (24), (25b), (26)-(28), (40), (42), (46)-(53), (54)
Non negativity and integrality congtraints.

Computational considerations

As mentioned earlier in the paper, the digunctive constraints involved in
scheduling problems are notorious for the computational difficulties they add toa MHP
model. For this reason a number of cutting planes have been proposed in the literature
which alleviate this problem. This is achieved by improving the relaxation gap between
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the L P subproblems that are solved in the branch and bound tree and the integer solutions
of the problem. Mor e details about these cutting planes are given in Appendix .

Significant differences in the computational performance of the models can be
achieved by modifying the default options the OSL solver isusing (OSL, 1992). These
options have to be properly adjusted for every particular model in order to get the
maximum benefit. In our case it was found that the best solutions wer e achieved by using
the following options. Firs the LP problems solved at the nodes of the branch and bound
tree are solved by both dual and primal smplex methods depending on the relative
number of rows and constraints of the LP. In the default version OSL uses only the
primal simplex method. Scaling of the problem is also performed. We allow OSL to
generate 200 cutting planes. OSL generates these cutting planes automatically based on
methods for general integer linear models. The branch and bound algorithm is modified
in such a way that the utilization of supernodes are allowed. By utilizing supernodes,
OSL analyzes many nodes of the branch and bound tree at once. Thisanalysisis based on
applying logical tests on the 0-1 dructure of the problem using implication lists and
probing. The preprocessor also performs tests to eiminate continuous variables from the
LP relaxation and finally the branch and bound tree is kept in core and not in the disk
enhancing the processing speed by reducing the amount of time for input/output
operations.

The main enhancement in computational performance was obtained by utilizing a
tree decomposition scheme similar to the one proposed in one of our previous papers
(Voudouris and Grossmann, 1993). The basic characterigtic of this decomposition scheme
Is that the logic inherent in a Mixed Integer Optimization model can be exploited to
generate a partial enumeration of the vector of discrete variables that is expressed through
a partial Digunctive Normal Form (DNF). Thus the solution domain is partitioned in a
number of subsproblems each one of which can be exploited by a smaller instance of the
original MILP. For example, in the path selection scheduling problem one potential
partitioning scheme is to consider selections of equipment that constitute a feasible
flowsheet and to assume existence of the paths that utilize the selected equipment. For
every selection, the binary variables for path existence can be fixed accordingly, and the
MILP partition will search only theremaining solution space. One such scheme has been
employed to enhance the computational performance of the MILPsin our work in design
of multipurpose plants with multiple production routes (Voudouris and Grossmann,
1992). In thiswork the tree partitioning scheme is mainly based on the proper definition
of the set SV which indicates the number of repetitions of the elementary schedule. By
doing so, in addition to the reduced binary space that has to be searched, it is possible to
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define upper and lower bound in the production cycle for every partition. Furthermore, it
ispossibleto identify good values for the parameter W in the digunctive congraints (26)-
(27). Finally efficient upper and lower bounds in the number of batches produced in
every path, can be derived for every partition. More specifically, the lower bound in the
production cycle is defined by the following equation,

P = eV S

where cp is a parameter which depends on the partition and indicates the starting number
of repetitions considered; |SV| is the cardinality of the set of repetitions. The upper
bound in the production cycle isdefined as,

=
P cp+l (56>

A reasonable overestimation for the parameter W is to consider this variable equal to the
upper bound in the production cycle. The lower bound in the number of batches is given

by the equation,
= £ (57)

wher eas the upper bound on the number of batchesis,
< - = Tl 58,

Finally, there are cases in which the instance that is consdered generates models
that are particularly large and hard to solve. In these casesit is always possible to solve
the models with an e-optimality tolerance instead of the obtaining the globally optimal
solution. One of the big advantages of the branch and bound based algorithms is that in
every ingance it is possible to determine the relaxation gap of the current best integer
solution (provided there is a feasible design). This means that if the designer feels
comfortable with the current relaxation gap, he/she can terminate the solution procedure
and retrieve the currently best integer solution. One characteristic of the branch and
bound algorithms is that the globally optimal solution is obtained relatively fast, but in
order for the solver to prove optimality by closing the relaxation gap to zero requires
dgnificantly more time. This means that in many practical cases working with an e-
optimality criterion isajustified alternative.




Numerical Results

Example 3

Here weillugtrate the fact that problem (P.3) has the very important characteristic
of handling instances with large number of batches belonging to few products. In this
example a total of 200 batches of product A, 10 batches of product B, 100 batches of
product C and 300 batches of product D must be produced. Therest of the data are the
same asin examples 1 and 2. Themodel used involved 301 constraints, 322 variables of
which 12 werediscrete. A total of 141 CPU seconds wererequired to solve the problem
to optimality and 2294 tree nodes were enumerated. Again GAMS 2.25/0SL were used
to generate and to solve the model on the same computer. The partition used had a lower
bound of fifty and a upper bound of 100 on the number of repetition. When the partition
with bounds on the number of repetitionsof 0 and 50 was used, the solution did not have
the overproduction of batches that isreported by the optimal solution, but the optimal
time was significantly worse. The optimal schedule and the optimal values of the
variables are shown in the Gantt chart of Figure 15. Note that since 200 batches of A are
produced, 200 of B, 100 of C and 300 of D, this means that B is overproduced by 50
batches.

Example 4

The data are the same as in example 3. This time, however, it is assumed that
unlimited intermediate storage is available between stages 3 and 4 for all the products.
The modd involved 515 congtraints and 531 variables of which 17 were discrete. The
optimal scheduleis shown in Figure 16. The timerequired to produce the batchesis now
3,600 hours. Thus, when intermediate storage is not utilized, the timerequired to produce
the specified amount of batchesisalmost 20% higher. In Figure 16 only onerepetition of
the dementary schedule is shown. The previous and next repetitions will conform with
this repetition in such a way that the idle times for the equipment shown in the schedule
will be significantly reduced. The time coordination of the subtrainsis ensured in thelong
run. This means for example that the amount of material required for the second batch of
product B in the downstream is provided by the first batch of the upstream plus some
reminder from the previous repetition. The amount of material of the various products
that is kept in the intermediate storage is relatively high in this case. It is however
possible to add a congraint in modd (P.3) that will for example, congtrain the difference
between the finish time of the upstream and the gart time of the downstream.
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GAM S2.25/Sciconic2.11 were used to generate and to solve the model on the same
computer and a total of 35 CPU minutes wererequired. The optimal partition had a lower
bound of 20 and an upper bound of 30 repetitions.

Exampleb

In this problem the path selection scheduling subproblem is illustrated. We
consider an existing process that is indicated in Figure 17. The process involves 7
processing equipment Equipment 2 and 3 areidentical and congtitute processing stage 2.
The sameisvalid for equipment 5 and 6 which congtitute processing stage 4. A total of 3
products will be produced More specifically for product A, 32 batcheswill be produced;
for product B, 21 batches, and for product C, 43 batches. There are two alternative
production paths for the batches of product A. These are paths 1 and 2. For product B
there are again two alternative production paths 3 and 4, whereas for product C the only
production path that the batches can follow, is path 5. The processing times required for
every task in every path are indicated in Figure 18. By using model (P.4) we decide
which of these production paths do we have to use and how to schedule them in order to
produce the specified amount of batches in the least amount of time. Note the since the
alternative paths are exactly identical as far as processing times are concerned, we
perform a small modification in the objective function in (P.4). Thismodification consists
of adding the sum of the binary variables y3h which denote the path existence, multiplied
by a small weight. This weight is sufficiently small so that the optimal solution is not
affected. The above modification is necessary in order to identify the solutions which
reguire the least number of equipment but still do not jeopardize optimality. In this
particular example the weight we used was 0.1. The modd consists of 141 constraints,
106 variables of which 24 were discrete. The optimal partition had a lower bound of 10
and an upper bound of 20 repetitions The optimal schedule is shown in Figure 19. It
should be noted that the only path that was not selected is path 3. A total of 16 CPU
seconds wererequired and a total of 573 nodes were enumerated. The matrix generator,
solver and computer used arethe same asin the previous example.

Example6

Here weillugrate the application of the MILP mode for design and scheduling of
sequential multipurpose batch plants. In order to illustrate the difference of per spective
between this woric with a more typical campaign planning approachesin the literature, we
will consider as objective function the minimization of the capital investment instead of
the maximization of the NPV since the capital investment is the objective most campaign
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approaches utilize. We consider the same process as in example 5 which is shown in
Figure 17. The difference now is that we need to decide which equipment will be used
and in what size. The processing time data for every path are shown in Figure 18. The
size factors, cost data and demand specifications are shown in Table Il. A tree
partitioning scheme has been used. In this scheme the number of repetitions has been
considered in groups of 10 repetitions starting from 0 and ending in 200. For every
individual group 4 other partitions have been solved. These partitions have been
generated by recognizing that all possible combinations of path and equipment existence
are the following. First, only one equipment is used in stages 2 and 4 which means that
only paths 2,4, and 5 exist (Or another equivalent alternative that only paths 1,3, and 5
exist). Second, two equipment areused in stage 2 and only 1 in stage 4, which meansthat
only paths 1,2,4, and 5 exist Third, two equipment exist in stage4 and only 1 in stage 1,
which means that only paths 2, 3,4 and 5 exist Finally, 2 equipment exist in both stages
2 and 4, which means that all paths exist. Note that this scheme allows explicit
exploitation of gructural logic and eliminates degeneracy. A total of 80 MILP
subproblems with their corresponding tighter relaxations due to equations (55) - (58)
have been solved for theinstance. These problems were solved in paralld by utilizing the
multitasking capabilities of the IBM/R6000 workstation. The optimum solution was a
design of $247;680. The optimal schedule is shown in Figure 20. This design has been
obtained in a large number of partitions. Out of these, the partitions with smaller
production cycles have a more efficient utilization of time. The optimal design requires
for equipment 1, 3, 4, 6 to be of 6,000 liters, equipment 2 and 5 to be not selected, and
equipment 7 to be of 10,000 liters.

The same problem was solved with the campaign approach used by Voudouris
and Grossmann (1992) for designing multipurpose batch plants with multiple production
routes. The optimal design in this caserequired the same equipment to be selected but
now equipment 6 and 7 had to be of 10,000 liters. The cost of the processin thiscaseis
$280,000 or about 14% higher. This difference is explained by the fact that in this case
the campaign mode will dedicate long campaigns to every product and therefore will
generate large idle times to the equipment that are not uaiized at each campaign. It is
interesting to note that when the optimal schedule of example 5 was considered (by
properly congtraining the problem), the optimal design was $278,171 which even though
iswor se than the best solution, is still better than the solution reported with the campaign
approach.

The partition which generated the optimal solution had 274 constraints and 229
variables of which 19 were discrete. The same partition required 195 CPU secondsin the
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same computer as above to enumerate 3376 nodes. GAM S2.25 was utilized for matrix
generation and OSL was the solver. Although the solution of the model is
computationally demanding (80 paralld problems of about 4 minutes each), we believe
that using a proper partition schemein a distributed computing environment (Kudva and
Pekny, 1993) allows the solution of problems whose dimensionality isrestricted only by
the number of available processesin the computer network.

Example7

Note that in example 6 the objective was the minimization of capital investment
which isutilized by the campaign approach mentioned in theliterature. It has been shown
in example 6 that the integration of rigorous scheduling and design offers significant
savingsin investment A dgnificant advantage, however, of the formulations proposed in
thiswork is the fact that the operating costs are also incor porated in the design procedure.
In this example the profitability of the process as expressed by the Net Present Value will
beillustrated.

The data in this example are the same as the ones in example 6. In addition, it is
assumed that the market prices of the three products are 0.7 $/kg for A, 0.4 $/kg for B and
0.5 $/kg for C. The cost of keeping the final product in inventory is assumed to be the
same for all products and equal to 0.1 $ton/hr. The taxation rate is 45%, the interest rate
is 10%, the expected life of the plant is 10 years.

The solution reported by the campaign approach used by Voudouris and
Grossmann (1992) requires, as mentioned in the previous example, $280,000 in capital
investment. The production plan requires that the three products be produced in 3
campaigns. The firg campaign has a length of 2908 hrs and only product A will be
produced in it. The second campaign has a length of 1100 hrs and only product B will be
produced during the whole campaign. Finally the third campaign has a length of 1472 hrs
and only product C will be produced in it. For the calculation of the operating cost zero
changeover cost is assumed and the inventory costs are calculated as shown in equation
(40) but with the time component corrected to (P-Tj) instead of P. The reason for this
correction isthe fact that the campaign approach considers a production cycle to be equal
to the design horizon. For this case, however, the inventory policy shown in Figure 14
tends to give sgnificant overestimations of the inventory costs since the depletion due to
product selling is not considered. The use of the term (P-T*) instead of P addresses
exactly this depletion. More details on the inventory policy that best describes cases of
large production cyclesis given in Voudouris and Grossmann (1993). By considering all
the above, the operating costs are 228,802 $/yr, and the NPV is$ 1,203,967.
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The optimal design that has been obtained by usng modd (P.8) is utilizing the
schedule that is illustrated in Figure 20 and involves equipment 1,3,4 and 6 with asize
of 6,000 liters and equipment 7 with a size of 10,000 liters. The capital investment for
this design is $247,680 and the NPV is $1,992,901 which means an increase in.
profitability of 65.5 % compared to the previous case! Note that the operating costs in
this case have been calculated with equation (40) and correspond to $ 2,275 per year.

Again the partition scheme of the previous example has been used. The partition
which generated the optimal solution had 277 congraints and 235 variables of which 19
were discrete. The optima number of repetitions of the elementary schedule was 146.
The optimal partition required 164 CPU seconds in the same computer asin the previous
examples in order to enumerate 2836 nodes. GAMS2.25 was utilized for matrix
generation and OSL was the solver.

Conclusions and significance

In this work we have addressed the scheduling and design of sequential
multipurpose batch plants. Even though this class is more restrictive than the genera
nonsequential multipurpose baich plants, it is still significantly more genera than the
multiproduct case. Furthermore, the mathematical structure of this problem can be
exploited to significantly reduce the computational difficulty. More specificaly, a
reduction scheme was proposed that yields a significant decrease of the binary
dimensionality of the models. In addition, an aggregation scheme based on a periodic
scheduling was derived that alows the consideration of problems of practical size. The
scheduling models were successfully incorporated with the design and synthesis
problems making possible a globa gpproach to the preliminary design of batch processes.

By considering the availability of equipment in standard sizes, it was possible to
derive MDLP models which can be solved to global optimality. A number of solution
techniques were suggested to improve computational performance and permit in this
manner, the consideration of larger practica problems. Findly, an example was presented
to show that a sgnificantly lower capital investment can be obtained compared to
methods that assume production campaigns.
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Nomenclature.

[ndices.

>0 O

w

SV

Index of individual operations (tasks).

Index of processing equipment.

Index of products.

Index of processing paths.

Index of discrete sizes for processing equipment {1,2, _, nsk}.

Index of number of production cycles.

Variables! Parameters.

Bh
dhh*k
cp

- dhk
fhk

Ms
nbh

npp
Nr

Oc

Pc

On
Qp

Batch sizefor path h.

Cleanup time required in equipment k when path h' follows path h.
Parameter indicating smaller number of repetitions considered in
each tree partition.

Processing time of the operation of path h on equipment k.
finishing time of the last batch of path h on equipment k.

Time horizon in which the demand has to be satisfied.

Makespan of a schedule.

Number of batches produced in path h during a production cycle,
Number of batches of product p during the horizon.

Number of production cycles during the horizon.

Operating costs

Length of production cycle.

Capital investment

Amount of production by path h during one production cycle.
Market demand for product p.

Size factor of equipment k for the proper operation of path h.




Slkyx Idletime (dack) imposed in equipment k when path h' follows path h.

thk
th

Tc
Tl
Vi
Vis

Z

Sart time of the first batch of path h on equipment k.

Sart time for the firs operation of path h.

Total timerequired to satisfy demands on number of batches.
Cycle time for path h.

Volume of equipment K.

Standard volume of size s for equipment k.

rational number that ensurestime coordination of neighbouring subtrains.

Itsvalueis arational number close or equal to theratio of the cycle times.

Greek Letters.

>k
Ac

Cost coefficient for equipment k

Cost exponent for equipment k.
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Appendix |. Cutting planes for mode (P.2).

Dyer and Wolsey (1990) proposed a number of strong valid inequalities for the
problem of minimizing the weighted sum of completion times for the one-machine
scheduling problem with rel ease times and due dates. Applegate and Cook (1991) modified
thetightest of these inequditiesfor the generd machine scheduling problem and considered
it ascutting planesin modd (P. 1)- The equationsthey proposed are,

X Ankthe”® €k6h+ X <inkdn.k Vk (Al
h: (h, k) € M (h, h): (h, h\ k) e E*

X du(Ms-th)2Fedp+ X Yhk+ X dhkank VK (A2
h: (hjo)EM h: (hjo)eM (hji'): (hji\k)eE*

where B, is the minimum of the earliest possible start time of the operation of path h on
machine k, and F is the minimum of the earliest possible completion time of the operation
of path h on machine k. The earliest possible start time of the operation of path h on
meachine k is calculated by adding the processing times of the operations of the same path
on al the preceding machines. The earliest possible completion time of the operation of
path h on machinek is caculated by adding the processing times of the operations of the
same path on ail the remaining machines, dy is the sum of the processing times of the
operations of all paths h that utilize machine k. By utilizing equation (1) the above
inequalities can bewritten as,

k
Y, %kOh+ £ dw)2Eydn+ py dpx dix
h:(h.k)eM * (h.hY): (h. h\K) e E'
VK (A3
Y dw(Ms-(fh+ £ dhk))2Fdh+ £ <R X k'
h:(h,k)eM k<=1 h: (h,k)€EM (hh): (hh' k)eE*

Vk (A4




A smilar modification can be applied to the two-job cutting planes proposed by Balas
(1985). For mode (P.2) thetriangular cutting planesare written as,

Yk + YRVK - Yihk A 1V (hh' k), (h\h" k), (hh'\k) € E* (A.5)

which in logical terms means that when the operation of path h is before the operation of
path h' on machine k, and the operation of path h' is before the operation of path h" then
the operation of path h" mus have place after the operation of path h on the same machine.

All of the above mentioned cutting planes assist is reducing the relaxation gap of
mode (P.2). From our experience, however, it seemsthat the strong inequalities (A.3) and
(A.5) are dominant to the rest of the cutting planes. Therefore, in the final version of the
mode we included only congraints (A.3) and (A.5) because the incorporation of the rest
only addsto the number of congraints.




Appendix |I. Reduction scheme.

Proposition 1. Problem (P.2) is equivalent to areduced problem (RP.2), in which the
digunctions are defined only over the set R rather than set E+.

Proof: We know that problem (P.2) is equivalent to problem (P.1) plus equation (1).
Therefore, it suffices to prove that the reduced problem (RP.2) is equivalent to (P.1) plus
(1). Consider a triad (h,h’k*)e EAR. We will prove that any disjunctive constraint
defined by this triad is redundant Assume initially that yhhk* = 1 ( exactly the same
procedure applies when yhhk* = 0 ) . This means that the fourth congtraint in (P.1) is
redundant and that the third congraint takesthe form,

'’ - i’ 2 dhi” (CB.I)
or by introducing a non negative dack a,

thV = thk* +dn- +a (B.1)
Since (hh'Je*) € R it follows from the conditionsin (9) that,

Shiwx' >0 (B.Z)

From the definition of SI*A it is clear that for every pair h and h' thereis at least one triad
(h,h\k) such that,

SIMA-0 (B.3)

Consider first the instance in which the disunction imposed by (h,h' k) is arbitrated by
¥uy" | - Thismeans that the only nonredundant congtraint imposed by thistriad is,

thk-thk ~dpy (CB.2)
or by introducing a non negative dack p,

tHk=thk +dhk + P (B.4)




By subtracting equation (B.4) from (B.l) we get
thY - tpk = thk" - thk + dhk” - dn +(a-p) (B.5)

From the definition of the dacksit is easy to verify that the following is a valid system of
equations,

k' =thik" + Gni’ + Slknpx®

'k =tk + dnk
By subtracting these equations we get,

th' k' - t»y = thi* - thk + dhk" -dpk+ Slkhh'k- (B.6)
From (B.6) and (B.5) we get that,

- B =Shyy
which from (B.2) yields a > p. Thisin turn implies that congraint (CB.l) is redundant
with respect to (CB.2).

We consider next the instance in which the digunction imposed by (h,h\k) is
defined by yhik= 0. This means that the only nonredundant constraint imposed by this
triadis,

thk - t,*kE dhk (CB.3)
or by introducing a non negative dack y,

thk =thk+ 4k +7 (B.7)
adding (B.7) to (B.l) we get thefollowing equality,

thk'- th'k= thk* to* duk* + dh'k+Y +<* (B.8)

Adding and subtracting dhk on theright hand side gets,




th'k™ t,'k= thk* thk+ d.k* + dh'k+dhk- dhk+Y + <* (B.9)
Comparing equation (B.9) and (B.6) yields,
Skhhv =dhk +dk +a+y (B.10)
Since (hhJX*) £ Rt follows from the conditionsin (9) that,
SkhhV < Phh' < dpy + dhk Vk:(h,h\ k) €E"
From the above result and (B.10) it follows that,
a+Y <0

which is impossible for non negativeaand Y .

Therefore when yhifc® = 1 the instance in which yhh* = 0 is infeasible. The only
feasible instance is when yhhk = 1 in which case the triad (h, h\ k*) defines only
redundant disjunctive constraints.

Using exactly the same procedure we can find that ynhk* = 0 also defines only
redundant constraints. So the triad (h,h\ k*) can beignoredin (P.2).

In conclusion, the reduced model (RP.2) is equivalent to model (P.2) because all
the additional constraints in (P.2) are redundant As a final point it should be noted that
since R£E ", the number of disunctions in model (RP.2) is smaller than the one.in
model (P.2). Actually because of the quite restrictive nature of the conditions imposed
when set R was defined, the number of digunctions is significantly reduced. For example
in the problem defined in the first example the number was reduced from 172 to only
110.




Appendix Ill. Timing of the elementary schedule.

Proposition 2 : The production cycle (or cycle time of the elementary schedule) can be
defined rigoroudy by the following equation,

k k-l

P= max [te+(nbp- 1) Ty + £ %hk" (V+ X %hk)]
(h,h\k)eE =l =

Proof: It is obvious from Figure A.l that for every sequential repetition r and r' in the
production of a batch through path h, the following constraint holds,

dk + SIKA = dhgi) + SIKAD  V (hK)eM, (hjic-)eM (cl)

The finish time frk of the operation of path h on machine k is expressed by the following
equation,

fhk= thic (i + Slkaz)+ Aok + Stkosk) + ... Kk + Stknb.t)  V (hk) e M (C.2)

For every path h there is a stage k where the processing time thk is the maximum for all
operations of the path h. This stage is considered as the bottleneck stage and its processing
time is referred to as Cycle time for path h and is noted as Tlh. Because the optimization
direction is to minimize P and thus to minimize the slacks 9,/* (in case they were
variables), it follows from (C.1) that the slack for the bottleneck stage is zero. In Figure
(A.l) for example the third stage is the bottleneck stage for the 3 batches of product A and
the cycle time for product A is 4 hours. Thus the following constraint holds,

T, =tk + Skfk  V (hk) e M, (r, r") are sequential batches produced through path h
(C.3)

In equation (C.2) the above term exists nbh -1 times for each path h, where nbh is the
number of batches produced through path h. For the example in Figure (A.l) the termin
equation (C.3) for product A exists two times in equation (C.2). For this reason equation
(C.2) can berestated as

fk= o+ (nbh - 2) Tl V (hic) e M (C.4)




By using equation (1) the above can berestated as,

k
fhk= t + X hk’+ (nbh - 1) Tin V (hjc) € M (C.5)
k'=i

The elementary schedule consists of time intervals during which the various processing
equipment are utilized. These time intervals have constant relationship to each other. For
this reason the optimal production cycleis defined as the time intervals with the maximum
duration. Thiscan be stated as,

P= max {f*-thk) (C.6)
(h,h\k)EE

By considering equation (1) and (C.5), the above can be written as,

k k
P= max { t«+ X 9h'k+ < - )Tlh- (th+ € d*) } (C.7)




Tablel. Sacksfor example on Figure7.




Size Factors (liters/kg) Demands (KRAr)
Eg. 1 Ea2 FEg3 Ea4 Ea.5 E9.6 Eq.7 Thousands |
Pathl 135 50 4.0 A 350
Pah2 135 50 4.0
Path 3 10 55 3.8 B 400
Path 4 20 55 38
Path5 ]4.6 3.7 6.3 C 480

Discrete Sizes S=f_3000,6000, 10000) liters

Design Horizon = 5480 hours

Tablell. Data for example 6
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Figure 15. Optimal schedule for example 3




gl

Sg2

Stg3

Sttnp

365

lSOhit | WIn

PrdC| PrdDE Tune

QOtan
PrdA[]

syl

Sig2
Stg3

Storage

Sigé
Sig$

|120hn |150hn | 200fan | Bshu

MA[] PrdBiEd Prdcl PrDE Tue

Production Cydle = 144 his, Number of repetitions=25, Optimal time=3600 his

Figure 16. Optimal schedule for example 4.




Product A- Paths 1-2, Product B - Paths 3-4, Product C - Path 5

Rgurc 17. Layout of the existing process for example 4.
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