NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Formal Basis for Design Process Planning and

M anagement
Margarida F. Jacome and Stephen W. Director

EDRC 18-52-95

A Forma Basis for Design Process Planning
and Management*

MargaridaF. Jacome ~ Stephen W. Director
Electrical and Computer Engineering Dept Electrical and Computer Engineering Dept
University of Texas at Austin Carnegie Méllon University
Austin, TX 78712 Pittsburgh, PA 15213
ABSTRACT

In thispaper we present aformalism that allowsfor a complete and gen-
eral characterization of design disciplines andfor a unified representa-
tion of arbitrarily complex design processes taking place in the context of
these disciplines. Thisformalism has been used as the basisfor the devel-
opment of several prototype CAD meta-tools that offer effective design

process planning and management services.

1 Introduction

We have reached the point wher e we need to move beyond the development of CAD toolsthat only aid designersin
solving specific synthesis, analysis, andfor optimization design problems but also aid designers in planning and
managing the increasingly complex design process itsdf. In order to achieve this goal we need to be able to for-
mally characterize and represent the fundamental intentions, strategies, and mechanisms employed during the
design process. In other words, we need to be able to formalize the content or the semantics of design rather than
simply allowing this information to remain hidden in the syntactical idiosyncrasies of the design " form." Observe
that through the realization of such a syntactically transparent and semantically rich design formalism, it becomes
possible to articulate the essential concepts of design and mode both the design artifacts and the process of design
across multiple design disciplines, in a coherent and precise way. In fact wewill show that a design formalism with
the above characteristics is immediately useful in guiding the development of general purpose, highly effective
design process planning and managements meta-tools. Because such meta-tools are capable of capturing the funda-
mental strategies for controlling complexity embed in traditional design methodologies, and by intelligently mak-
ing use of such grategies throughout the design process, they allow for the realization of a new generation of
powerful CAD environments.

* Thiswork is supported in part by the Engineering Design Research Center, Carnegie Melon University, under contract no. EEC- 8943164.

Page 2

In this paper we present a formalism of design that allows for a complete, and general, characterization of design
disciplines and for a unified representation of design processes that take place in the context of these disciplines® 1]
This formalism has been used as the basis for the development of several prototype design process planning and
management meta-tools (Minerva [2] and Clio [3]). Theremainder of this paper is organized as follows. First we
discuss the main issuesinvolved in properly planning and managihg complex design processes. Then, in Sections 3
to 7, we introduce a formal Characterization of design proc&sées. In Section 8 we present an exampleto illustrate
the application of this formalization in characterizing the har dwar e/softwar e codesign discipline. In Section 9 we
briefly discuss the Minerva Design Process Planning and Management meta-tool, which directly implements the

formalism of design described in this paper. Some conclusions are given in Section 10.

2 The Design Process Planning and M anagement Problem

Thedesign process basically entails a search in a" solution space'® for an object that meets a desired " initial specifi-
cation/' During the course of design, in part due to physical realities, the initial specification may in fact evolve.
Since the effort for generating a possible solution to a design problem and evaluating it can be extremely large,
sear ching the entire solution space for the best design is impractical. Therefore, designers employ heuristic-based
methods to reduce complexity and improve the efficiency of the search for a solution to the design problem. Some
of such methods decompose the original, often complex, design problem into a set of less complex sub-problems.

Problem decomposition may be recursively performed until the resulting sub-praoblems are of such complexity that

they can be directly solved using the available CAD tools.* It isimportant to notethat design decisions made dur-
ing the solution of one sub-problem may impact decisions that need to be made while solving other sub-prob-
lems™]. As a consequenceinformation must be shared among sub-problems and consistency checks must be made
during their solution. Choosing which methods and strategiesto use for problem decomposition, and then properly
applying them for the solution of a design problem, while guaranteeing that consistency is preserved, congitutes

the essence of what we call design processplanning and management.

The development of meta-toolsto aid the designer with design process planning and management requires an ade-
quate representation of the design process that goes beyond the concept of " design flows™ [6][7], In particular, such
arepresentation should unify, at an adequate level of abstraction, all of the different levels and stages of a design
process. This unified representation allows for a uniform representation of problem dependencies, and facilitates
the free inter change of relevant design information and design decisions between all members of a design team that

may be concurrently working on the design problem.

1. Such tools may be fully automated or interactive.

Page 3

Since the heuristics employed by designers may not always work, the design process may sometimes reach an
impasse or dead-end. In such situations, designers may need to backtrack and revisit a previous design state in
order to reconsider previous design decisions. A unified design process representation makes it possible to imple-
ment not only local but also global backtracking mechanisms, i.e., backtracking mechanisms that impact different
phases and/or stages of the same design. As will be shown, in order to provide such aunified design process repre-
sentation with the necessary semantic content, we also need to have the capability to explicitly characterize the
design discipline in which the design process takes place.

3 The Design Space

We begin the forma characterization of the design process by introducing some basic definitions. We will refer to
the domain of interest during the design process as the design discipline. Design disciplines may be very broad, i.e.
the disciplines of analog VLS circuits and digital VLSI circuits, or very narrow, i.e. the discipline of operational
amplifiers. As will be shown below, design disciplines are defined in terms of classes of design objects, consistency
constraints, design objectives, and operators. Classes of design objects are characterized by specifications and may
be organized in adiscipline hierarchy. Such adiscipline hierarchy captures the different abstraction levels that may
be used for describing the object under design (e.g., register-transfer level, and logic level, for digital VLSI cir-
cuits). We will also show that at any given moment, a design process may be described in terms of acurrent design
state and adesign history, i.e., the sequence of design states that led to the current design state.

Hiedesign space (i.e., theproblem space in which the design takes place) is defined in terms of a knowledge com-
ponent and a data component. The knowledge component of the design space comprises the discipline hierarchy,
and also the design objectives, the consistency constraints, and the operators that can be defined for the particular
design discipline, and constitutes the formal basis for the explicit characterization of the design discipline. The data
component of the design space comprises the current design state and the design history, and constitutes the formal

basis for creating the unified design process representation.

4 Characterizing Design Objects

A design object is an abstraction of a physical device or process and is characterized in terms of a set of inputs, a
set of outputs, and a set of properties that describe its structure, i.e., the way it is realized, and/or its behavior,
i.e., the way it should function. (ALUs and RAMs are examples of classes of design objects for the design disci-
pline of digital VLSl circuits.) We view design as the process of deriving a complete specification, i.e., a set of
properties that uniquely characterizes a particular design object, starting with an initial specification, i.e., a sub-set

of the properties associated with the complete specification.

Page 4

Property definitions designate relevant sructural or behavioral design object features. A class of design objectsis
a set of design objects that can be characterized by means of the same set of property definitions, or specification
definition. (The specification definition for a class of design objects is, thus, the set of property definitions which
are necessary for characterizing each design object in the particular class.) A property instance, or simply a prop-
erty, describes the feature designated by the property definition. A specification is as a set of properties character-
izing a particular design object in the particular class. As an example, consider the class of design objects known as
adders. A property definition for this class is «ufcfer>Jias word-length___equal _to_<va/>. An example of a
property derived from this last property definition, and used in characterizing the design object "MY_ADDER", is
MY_ADDER Jias__word-length__equal _to_ 16 bit.

SSt(reg?tgg?l on Behr%\viotr_al = Ut
in. pecificatl Specification 1
. n i QU t
[vdd { . ?

: In_[: Out VOH]L ’
. t
T —— VOL - Out % Uiy
Vss VIL Iy

Figure 1 A classof design objects

4.1 Specifications and Specification Definitions

Asillugtrated in Figure 1, the specification definition of a class of design objects can be partitioned into two general
categories. behavioral specifications and structural specifications. (Observe that the property definitions contained
in these specifications will be further partitioned throughout the abstraction levels defined for the design discipline,
aswill be explained in Section 4.2.)

Behavioral specifications contain all behavior related properties for a given class of design abjects, i.e., all proper-
ties that define how the design object should "behave' or function. Structural specifications, on the other hand,
contain all gructurerelated properties for a given class of design aobjects, i.e. properties that define how the design
object will be actually 'realized'. Each of these specifications may be further partitioned into three sub-categories:

requirements, restrictions, and descriptions.

4.1.1 Requirements

Behavioral and dructural requirements are properties that define the " givens' of the design problem, in other

wor ds, these aretheproperties that the object under design must meet when the design processis complete. Behav-

Pages

ioral requirements are frequently the initial specification for a given system, either when the intended behavior for
the system has "ideal characteristics'® or when the complete behavioral description of such a system is too com-
plex to be directly managed, at least during the initial stages of the design process. For instance, the behavioral
requirements for alow pass filter are grouped into the lowpass frequency response specification, and include toler-
ances for the stop band of the filter and for the maximum deviation between the ideal and real filter amplitudes.
Slew rate is an example of a requirement for operational amplifiers. Examples of structural requirements, on the

other hand, are area and dissi pated power.

4.1.2 Restrictions

Behavioral and structural restrictions are properties that are employed by the designer to prune the design space in
drder to reduce design complexity. Designers typically derive restrictions during the conceptual design phase of
the design process. For instance, when the intended behavior for the design object has "ideal" characteristics,
behavioral restrictions may be used for characterizing a convenient type of approximate behavioral description.
Structural restrictions, on the other hand, allow the designer to constrain the structure to specific topologies or to
particular fabrication technologies. For example, a designer may wish to constrain the structure of a given digital

circuit to CMOS fabrication technology or to a specific layout style, such as gate array.

4.1.3 Descriptions

Behavioral and structural descriptions are properties that, respectively, fully define the behavior and the structure
of a given design object Specificaly, behavioral descriptions indicate, via mathematical equations or behavioral

description languages, how a design object reacts, or should react, to specific sets of stimuli applied to its inputs.
Behavioral descriptions (relating the outputs of the design object to its inputs) can be specified using simply, and
directly, the fundamental connectives and/or constructs of these mathematical formalisms and/or behavioral
description languages or, aternatively, a behavioral description can be specified in terms of a set of assumed behav-
ioral sub-descriptions. A behavioral sub-description is said to be "assumed" in a particular behavioral description,
if such a sub-description is not explicitly represented in the behavioral description (in terms of the fundamental
connectives and/or constructs of the mathematical formalisms and/or behavioral description languages that charac-
terize the particular abstraction level). Each of the assumed behaviora sub-descriptions can, thus, be seen as a

"non-primitive behavioral building block," for the particular abstraction level.

A behaviora description incorporates a functional decomposition in the sense that it expresses the (complex)
behavior of an entire design object in terms of less complex (primitive or non-primitive) "behavioral building

2. "lded" in the sense that it has characterigtics that are known to he physically or technologically impossible to achieve or implement, but
can be approximated by areal design object

Page 6

blocks." A behaviord description is said to incorporate a fundamental functional decompostion if it contains
only "primitive behaviora building blocks’, otherwise, is said to incorporate a non-fundamental functional
decomposition. Non-fundamentd functional decompositions are used for controlling the complexity involved with
deriving the behaviord description of a complex design object

Let usillustrate the concept of a non-fundamenta functiona decomposition for the VLS analog circuits discipline.
Assume that uy, yv, and G" are, respectively, the input, the output, and the impulse-response matrix of a given
object, M, under design, and represented at the circuit level of abstraction. Assuming that an external descriptionis

t
being used, the behavior of M isgivenby yy (1) = N Gw (1, X) uy (x) dx. Observethat at this point we could

—

decide to fully express Gy in terms of the primitive constructs on an externa description, which would make the
behavior of object M correspond to a "fundamenta behavioral decomposition.” Alternatively, we could express
GuasGy (t,x) = G (t,x) + G, (t, xX) , inwhich casethe behavioral description of object M would contain a

non-fundamenta functionad decomposition, where Gl are G2 arethe "non-primitive behaviord building blocks' of
the description.

A structural description is aninterconnection of anumber of structural building blocks. Such building blocks can
be either primitive building blocks, or non-primitive building blocks. A primitive building block cannot be
expressed in terms of other, smpler, building blocks defined at the same abstraction level. Before the design pro-
cess can commence, structurd primitive building blocks must be available for each abstraction level of the specific
design discipline. Furthermore, a behaviord description, must exist for each of the structura primitive building
blocks. Such behaviord descriptions are called models. An atomic physica device or process (and thus the primi-
tive building block that represents it) may have different models depending on the operational ranges in which it
will be used and/or the required accuracy with which we want to reproduce thereal physical process.

Asinthe previous case, astructura description can aso be seen as astructural decomposition. A structura descrip-
tion is sad to incorporate a fundamenta structural decomposition if it only uses structura primitive building
blocks. Otherwisg, if the structural description uses at least one structural non-primitive building block, itissaidto
incorporate a a non-fundamental structural decomposition. Non-fundamenta structura decomposition is used
for controlling the complexity involved with deriving the structure of a complex design object For instance, the
gructura description of an OPAMP, at the circuit level of abstraction, may be defined in terms of transstors and
capacitors, which are among the primitive building blocks of the circuit level of abstraction for the VLS digital
desgn discipline. This structure would, thus, congtitute afundamenta structural decomposition. On the other hand,
the structure of the OPAMP could dternatively be represented, at the same abstraction level, using non-primitive .

Page 7

building blocks, such as current sour ces, differential amplifier stages, and voltage gain amplifiers, which congtitutes

a non-fundamental structural decomposition.

It isimportant to note that the descriptions generated during the design process mus be consistent with the corre-
gponding regrictions and requirements, whenever they exist. In other words, thereis a certain level of dependency
among properties that may causeinconsistences. We will return to this subject in Section 5.

4.2 The Discipline Hierarchy

Typically, for each given discipling, it is possible to identify a number of different classes of design objects. For
instance, for the discipline of VLSl Digital Circuits, we may design ALUs, Multipliers, and Adders. What creates
the notion of a discipline, though, is the fact that different classes of design objects typically share important prop-
erties. For example, adesign discipline may usethe same levels of abstraction to represent several different classes
of design objects, which implies the adoption of the same behavioral and/or gructural " primitive building blocks'
for describing all its classes of design objects. Furthermore, different classes of complex design objects may share
important gructural and/or behavioral " non-primitive building blocks'. This suggests that it is important to prop-
erly organizethe entire set of classes of design objects that constitute a given discipline. In this section we describe

such an organization, called the discipline hierarchy.

We can formally define the discipline hierarchy, denoted by A, as a two dimensional structure of ordered sets of
design domain facets, or smply facets, denoted by 5 i = 1, 2,..., each of which is a set of property definitions
associated with specific classes of design abjects. The general sructure of a design hierarchy isillustrated in Figure
2, wherethe vertical dimension isreferred to as the abstraction dimension, and the horizontal dimension isreferred

to asthe specialization dimension.

The abstraction dimension organizes the design hierarchy into abstraction layers, denoted by ~*, where "i"
1

identifies the particular abgtraction layer. More specifically, the abgraction dimension partitions the specification

definition of each individual class of design objects. Specifically this partition causes the creation of a specification
definition for each abstraction level ’\iA, i= 1,2,.... Thereaulting sub-specifications congtitute the facets of the class
of design objects. The design abstraction layer that corresponds to the least abstract level of A iscalled the ground

abstraction level, or smply the ground level, and isrepresented by Aq. (Notethat the least abgract layer hasthe

most detail associated with it). In Figure 2, the direction in which the level of abgtraction increasesisindicated.

Page 8

Specialization

Ab.OO on

8G1

A

AG

Figure 2 The Discipline Hierarchy A

Theprinciple behind the use of abgtraction isto reduce the complexity of finding a design object (in a given class of
design objects) that satisfies a given specification. [8] This is accomplished by allowing the designer to begin by
considering only those properties contained in the most abstract specification. When thisinitial specification is met
by the object under design, the designer moves down in the abstraction hierarchy, and considers the next, lower
level, specification. This process is repeated until the ground abstraction level is reached. Examples of levels of

abdraction for the discipline of VLSl digital circuits design areregiger-transfer level, logic level, and circuit level.

The specialization dimension (horizontal dimension) of the discipline hierarchy serves a dual purpose. Fird, it
discriminates between the different classes of design objects which 'may coexist for the design discipline, and sec-
ond it also allows expression of commonalties among different classes of design objects defined for the particular
design discipline. In other words, it allows representation of the concept of specialization (or conversely, generali-
zation) by allowing different classes of design objectsto share property definitions. Thedirection in which thelevel
of specialization increases is indicated in Figure 2. An example of a design discipline hierarchy is given in Section

8. Other examples can befound in [2].

5 Consistency Constraints

Values of propertiesthat belong to the same, or different, absraction levels, and to the same, or different, classes of
design objects, may be congrained by arbitrarily complex relations. Examples of relations among properties that
may be defined, for ingtance, for a CMOS inverter, at thetrandstor level of abstraction are (assuming Vss = 0):

Page 9

VIL=(BVpp+3VTP+5V10)/8; and
VIH=(5Vpp +5VTP+3 V10oVY8;

where Vjy and Vj_ denote the high and low logic thresholds, respectively; V pp denotes the drain voltage source;
and Vjp and V1o denote the threshold voltages for theinverter's p-channe and n-channd MOSFETS, respectively.

Consistency constraints, which represent dependencies among properties, ar(;defined in terms of an independent
specification declaration, a dependent specification declaration, and a relation involving the properties contained
in both specification declarations. (Observe that properties can only be declared or referenced, as opposed to
defined, in the consistency congraint definition.) For instance, for the consistency congraints shown above, the set
of independent properties could be {Vdd, V-n* Vo}, whilethe set of dependent properties could be {Vi_}, for the
first case, and {V,4}, for the second case. Observe that, given a particular reation, defining which properties
belong to which group may be design methodology dependent. Note also that a property can be a member of an
arbitrary number of consistency congtraints and may belisted as a member of the independent sub-specification for
some of these consistency condraints, and as a member of the dependent sub-specification for the remaining con-

dstency condraints.

An active consistency constraint, is defined by a reference to a consistency congraint, and by an independent

specification and a dependent specification.® (As mentioned above, the set of actual properties contained in both
specifications can belong to one or more design objects, and can pertain to the same or to different abgraction lev-
els.) For each active consistency condraint, a predicate can be derived, denoted by " VERIFY (active consistency
constraint)® whose valueis "trug' if the independent and dependent specifications verify the relation defined in the

consistency condraint and " falsg' otherwise.

Observe that dueto the fact that property values are often non-independent, including requirements among them,

one of the key aspects of design is to determine appropriate trade-off between non-independent requirement values.
[9]

6 Organization of Design Objectsin a Design Process

A design process generates a hierar chy” of design objects. This hierarchy, called the design process hierarchy, and

denoted by D”, has two dimensions. The vertical dimension of the hierarchy is the same as the hierarchy of abstrac-

tion levels defined in the discipline hierarchy and is also called the abstraction dimension.

3. In other words, abgract consistency congtraints are "templates’ while active consistency congtraints are instances of such templates.

4. Not to be confused with the discipline hierarchy, A, defined earlier. A is a knowledge-level sructure while the design process hierarchy is
adata-level gructure.

Page 10

Decomposition

LOGIC LEVEL

. Target design object A C1 A Conditional design object
&
b a s " =~
g { COND ©
3 t
©
1

> 3
" . Vvdd Ld
e YR Y, | cOND o
b — e | T
of 1
e—r—i [
l .
I
:\ L I
- ;
Y e
VSS adeap VSS Vss 4=+ Vss

Figure 3 Illugrating the design process hierarchy

Functional and gructural decompositions, together, define the horizontal dimension of the design process hierar-
chy, called the decomposition dimension. Observethat gructural and functional decompositions arethe only pos-
sible mechanisms for creating new design objects and adding them to the design process hierarchy. When new
design objects are incorporated into a design process hierarchy, at a given abstraction layer, a set of active consis-
tency condraints, representing therelations among these elements areingantiated in the design process. Such con-
draints relate the sub-specification of the original design object, or parent design object, to the sub-specifications of

the component design objects, also called descendant design objects.

Figure 3 shows a snapshot of a design process hierarchy created while implementing the behavioral description

given by d = COND(a, NOR(b, ¢)).° The structural primitive building blocks for thelogic level are shown within a
qquare. Observethat the gructural description for the target design object constitutes a non-fundamental sructural
decomposition, since it contains the non-primitive gructural building block " COND" . In this particular example,
COND itself becomes a new design object that has also to be designed. The gructural primitive building blocks at
the circuit level of abstraction are represented within a circle. Asit can be seen in Figure 3, the sructural descrip-
tion for thetarget design object, at thetrangstor level, congtitutes also a non-fundamental structural decomposition,

since the structural building block " COND", at the transistor level, is also a non-primitive building block.® Note

5. For simplicity we represent the design process hierarchy in terms of the structure description property, yet the conceptsillustrated for this
particular property aredirectly applicable to all types of properties.

Page 11

also the active consistency constraints, denoted C\ through cg, relating properties from the same and from different

abstraction levels.

7 Characterizing Design Activity in a Design Process

7.1 Design Objectives

As stated previously, the goal of adesign process is to produce a ground level specification for a design object that
satisfies al behavioral and structural requirements and restrictions at each level of abstraction traversed during the
design process. Active consistency constraints represent the set of arbitrarily complex relations that must be veri-
fied among the properties that compose the specification of a given object being designed. The complexity of such
constraints makes it virtually impossible in most real world design cases to derive a complete ground-level specifi-
cation for the design object in just one problem solving step. Hence, the design process consists of an arbitrarily

complex, partially ordered, sequence of generation design steps interleaved with test design steps.

A generation design step typicaly involVes the selection of a particular sub-specification (among those that have
been instantiated in the design process hierarchy), the selection of a subset of the associated active consistency con-
straints, and either: (1) the generation of values for those properties that still do not have values specified, whiletry-
ing to satisfy the consistency constraints, called a synthesis design step; or (2) the modification of values for
properties that already have avalue assigned, while trying to satisfy the consistency constraint, called an optimiza-
tion design step. In order to overcome the high complexity of some constraint relations, generation design steps
typically take place either by only considering a subset of the relevant active consistency constraints while deriving
values for properties and/or by frequently considering only a 'ssmplified' version of such consistency constraints.
Henceit is possible to introduce inconsistent property values, i.e. property values that violate some of the relevant

active consistency constraints.

Test steps are intended to detect such inconsistencies. Accordingly, test steps typically consist of selecting a partic-
ular sub-specification in which dl properties have been assigned values, and verifying the active consistency con-
straints associated with this particular sub-specification (i.e., calculating the value of the predicate VERIFY for
each of the active consistency constraints). If aconstraint is not satisfied, either an optimization or a backtracking
step is taken. As ageneral rule, backtracking occurs when at least one value associated with an independent prop-
erty referred by the active consistency constraint being violated has to be undone. Otherwise, optimizationis being

undertaken.

6. This does not necessarily need to occur. In fact, the use of a different synthesis operator could have lead to a different outcome for the
same design process.

Page 12

Each design step accomplishes a specific design objective, More specifically, each design objective defines a cate-
gory of design problems whose solution is achieved by means of a design step. Accordingly, design objectives
define design goals to pursue in design processes and also define the control knowledge associated with achieving
these design goals. Examples of design goals are synthesis, optimization, and test In addition, design objectives
may also have an associated set of property definitions, aimed at characterize the specifics of the particular problem
solving methods that may be used to accomplish the design objective and/or conveying any additional information
that may be needed for the problem solving process. Examples of objective related properties are stimuli for test
objectives and stopping criteria for optimization objectives. Observe that consistency congraints can also be
defined for objectiverdated properties. Actually, such consistency congraints can fredly intermix objectivereated
properties with design object related properties.

In summary, then, a design objective is defined by a design goal, by a body of control knowledge defining how the
particular goal ought to be achieved in an arbitrary design process, and by a set of objectiveredated property defini-
tions. An design objectiveinstance, on the other hand, is defined by areferenceto the particular design objective

being ingantiated in the design process, a gatus (indicating if the goal associated to the objective instance can gart

being pursued o, if it started already being pursued, indicating the stage of its achievement), ‘a referenceto the set
of sub-objective instances generated by the current objective instance, if any, and a set of objective related proper-

ties.

Design operators are design functions, implemented by means of algorithms and/or procedures, that perform syn-
thesis, optimization, and test design steps. In order to accomplish specific design objectives, design operators are
applied to particular sub-specificationsin a given design process in order to derive, modify, or extract property val-
ues, preserving the relations associated with the set of associated active consistency congraints. Note that the defi-
nition of design objectives is necessary, in addition to the definition of consistency congraints, sincein a design

process the exact same set of consistency congtraints may beinvolved in synthesis, optimization, and/or test

7.2 Dedgn State and Design Problems

Thedesign state, or the current state of a design process, is defined by: (1) thedesign process hierarchy; (2) the set
of all design objectives ingantiated in the design process; (3) the set of all active consistency congtraints relating
the properties contained in the design process hierarchy and/or associated with in the set of obj ectiveinstances; and
(4) the set of all predicates of type " VERIFY" that can be defined for the set of active consistency constraints.

Given a current design state, each design objective instance in this design state defines a design problem, as
described below. In simple terms, each active objective in the design stat€'s set of active objectives defines a sub- -

7. Possible objective status are: “not-ready;" "ready,” " being-directly-achieved,” " being-indirectly-achieved,” and " achieved."

Page 13

set on thethree remaining components of the design sate, i.e., properties, consistency congraints, and verify pred-
icates. Design problems can thus be seen as design sub-gtates, containing all of the property instances relevant for

achieving the problem's active objective, and all of the consistency congtraints associated with these properties.

The design gate can thus be seen as a hierarchy of design problems. The set of all problems that can be derived
from a design state thus has cardinality equal to the cardinality of set of active objectives in the design state. Any
new problem (or design objective) added to the design state will, in principle, remain in the design state, until the
end of thedesign process, eventually reaching " achieved" status. Backtracking is the only way of removing a prob-
lem from thedesign date.

A design step isthus a design state transition from the current design state into a new design state. Since adesign
step is always the result of the achievement of a design objective, the transtion function can be implemented by
any operator that may be suitable for accomplishing any one of the active design aobjectives in the design process,

among these whose statusiis currently " ready.”

Observe that we might be led to think that thereis some redundancy in separately specifying objectives, operators
and consistency congtraints. Indeed, this would be the case if design knowledge was complete and ideal, and if we
always had available a set of operators, i.e., CAD toals, that properly implemented all conceivable congraint satis-
faction value trandformations and/or propagations directly derived from such consistency congraints. In an "ideal
context", given a set of congtraints, the CAD tool ableto properly address the specific congraint problem would be
uniquely determined. Unfortunately thisis not generally the case, and frequently CAD tools implement only sim-
plified versions of such congraint relations, yet ill produce acceptable results. Furthermore, we may have differ-
ent CAD tools that implement different methods for addressing the same class of problems. So, the notion of
having a limited set of available operators, that may or may not contain one adequate for solving the specific design
problem at hand, congtitutes quite an important characteristic of design processes, since it may strongly influence

thear course of action.

7.3 Design Objectives and Control

We will now define more carefully the control knowledge that should be provided in the definition of a design
objective. In general an active objective is directly achievable if there exists an available operator that is able to
directly solveits corresponding design praoblem in the design state. If such an operator is not available, the active

objectiveis indirectly achievable.

When an objective can only be indirectly achieved, the control knowledge should specify how the design problem
associated with the particular active objective should be decomposed into smaller, less complex, subproblems, in
order to resolve theimpasse generated by the non-availability of a suitable, direct, design operator. In other words,

the contral knowledge should specify how to generate subsets for the three components of the original design prob-

Page 14

lem (i.e., property instances, active consistency congtraints, and verify predicates), and how to arrange these sub-
setsin terms of new design problems residing in the design state. Moreover, for each new sub-problem resulting
from the subsets defined by the control knowledge, a new design objective should be created and subsequently
incor porated into the design Sate.

If we look at the definition of the various components of a design problem, though, we conclude that in creating
sub-sets of property instances (based on the set of property instances associated with the original design problem),
all of the remaining sub-praoblem components become uniquely defined. Thus, only a criteria from which the spec-
ification of such subsets can be made needs to be specified in the objective's body of control knowledge. Possible
criteriainclude: (1) create subsets by different classes of design objects; (2) create subsets by different abgtraction
level; (3) create subsets by different general categories of specifications (behavioral versus structural); (4) create
subsets by different subcategories of sub-specifications (description, requirement, restriction); and (5) create sub-
sets by property.

For a given current design state, the next set of problems that may be concurrently solved, in paralld, or indepen-
dently, isthe subset of thase problems. (1) whose associated active consistency congraints have digoint dependent

specifications; and (2) whose independent sub-specifications, defined for the active consistency congtraints, are

composed by properties which already have a value.®

Finally, the history of a design process contains the ordered sequence of all design states visited so far in the
design process, together with the operators used to modify such design states. For the complete definition of the

design formalism see [9].

8 Example

We now illustrate the adequacy and completeness of the design formalism introduced above, by applying it to the
design discipline of hardware/software (h/s) codesign. While space preclude an exhaustive discussion of such a
complex design discipline, we will illustrate how some of the more complex steps of h/s codesign and high-level

synthesis methodologies can be easily and coherently described by this formalism.

The h/s codesign discipline is concerned with the design of systems that consist of both hardware and software
components. A fundamental issue in h/s codesign is to decide which parts of a particular behavioral description are
best realized by hardware and which by software. The initial specification of a h/s codesign problem typically
includes a set of independent, interacting, sequential processes described in an hardwar e description language, such

asVHDL, or Verilog, or in a programming language, such as C. Theinitial specification may also include a set of

8. All such problems will have their associated active objective with status = "ready*.

Page 15

reguirements, such as cost and speed. Although formal strategies for h/s codesign have not been completely devel-
oped, different techniques for behavioral partitioning and style selection (hardware vs. software) have been dem-
ondrated. In this example we adopt the techniques and methodology described in [10].

Thefirst sep in this methodology is task derivation, in which each of the algorithms provided in theinitial speci-
fication is partitioned into a number of tasks, i.e., smaller chunks of behavior. While undertaking partitioning, the
codesigner is trying to identify (in each algorithm) those chunks of behavior that are best suited for hardware
implementation and those chunks of behavior that are best suited for software implementation. After task deriva-
tion is concluded, style selection isundertaken. Style selection involveslooking at the " pool" of resulting tasks and
selecting in final terms which tasks will be implemented in hardware and which tasks will beimplemented in soft-
ware, and properly regrouping such tasks into a final number of "hardware processes’ and " software processes' .
These hardware and softwar e processes then have to be mapped into a particular har dwar e/softwar e system ar chi-
tecture. (These architectures typically consists of some application specific hardware on the system bus of éither a
general purpose or an embedded computer system running an appropriate operating system.) This step is called
ar chitecture mapping. After the mapping to an architecture is performed, the performance of the system can be

globally evaluated, in order to asses the actual adequacy of the current partition and style selection. Thisis donein

the methodology being described using a Verilog-C® cosmulator. [10] If the current solution meets the require-
ments, the C softwareis then compiled using cross compilation techniques, and the Verilog is also compiled, using
high level synthesistools such as SAM. [11]

Let us now consider the formal characterization of the discipline, and in particular, of this h/s codesign methodol-

ogy. Figure 4 showsthe algorithmic and register-transfer abstraction levels of a possible discipline hierarchy for h/

scodesign.’® (Recall that each of the " rectangles', or facets, shown in thefigureis basically a container of property
definitions, as defined in Section 4.2.) Deriving this hierarchy is the very first step that should be undertaken in
characterizing a given design discipline an the corresponding methodology of interest Observe that an adequate
discipline hierarchy is crucial to being ableto deal, in an integrated and homogeneous fashion, with design objects

asdiver se as hardwar e components and softwar e pr ocesses.

In Figure 4, the root facets at the algorithmic abstraction level and at theregister trander level (RTL), are desig-
nated smply "algorithmic level object’ and "regiger-trandfer level objecf\ respectively. These are indeed very
general facets, in the sense that their properties must be meaningful in characterizing any design object represented

at the particular abstraction level.** Srructural and behavioral descriptions are thus typically included in these

9. Verilog is the hardware description language adopted in [10].

10. Additional classes of design objects, and specializations of the current ones, could certainly be added to this discipline hierarchy. Unfor-
tunatdy, space limitations preclude us from being exhaustive. In this example we thus concentrate on illustrating the fundamental abstrac-
tions defined in the formalism, rather than in being exhaustive in characterizing the particular discipline at hand.

11. Observe that these properties will be inherited by all remaining classes of objects defined at this abgraction levels.

Page 16

generic facets, since defining how to describe the structure and the behavior of an object is actualy the very
essence of what an abstraction level is. (Recall that these property definitions merely specify the languages and/or
mathematical formalisms that would later be used in describing the actual structure and behavior of the object

under design, at the particular abstraction level.) Moreover, very fundamental requirements, such as "cost,” "area,”

"power," and/or "speed,” may be also associated with these general (root) facets.

Algorithmic
Specidization System
5 Algorithmic .
g Legel Object Algorithm
<
Primitive
Algorithmic Leve
RTL
System — ALU
Processing
Unit Adder
— 1 Multiplier
RTL Storage .
Object Unit Register
Routing .
Unit Multiplexer
Control
Unit Bus

Register Transfer Leve

Figure 4 Partial representation of the discipline hierarchy for H/S Codesign

Page 17

Thefirg level of specialization for the algorithmic abstraction level, contains threefacets. "task", "algorithm", and
"algorithmic system.” Thus, ageneric " algorithmic level object" can be: (1) a"tak," or chunk of behavior; (2) an
"algorithm," or process;*? and (3) an " algorithmic system", which is a collection of algorithms, or communicating
processes. We may wonder at this point why "algorithm" is not defined as a specialization of " algorithmic system,”
sincethe former may beintuitively perceived a" smpler case” of the later. To understand thisit isimportant to clar-
ify the difference between two important relations among classes of abjects: the iga relation, that leads to special-
ization, and the/?arr_0O/relation, that leadsto discrimination, i.e. creation of sibling object classes. The " agorithm™
(i.e., sequential process) facet is being classified as a sibling of the " algorithmic system" facet (i.e., set of commu-
nicating, sequential processes) because some important characteristics of an " algorithmic system” (e.g., communi-
cation and synchronism protocols) are smply not present in a single sequential process, or " algorithm." Observe

that in a specialization chain, by definition, features can only be added to the more specialized classes.™ Therefore,
an "algorithm" is not a specialization of an " algorithmic system™, or conversdly, an " algorithmic system™ isnot a
generalization of an "algorithm."” Let us know look at the specialization chain defined by the classes "tak" and
"atomic task," also shown in Figure 4. In this case, the second facet isindeed a special case of thefirst, because all
features associated with "task" are shared (and relevant) to " atomic task." **

Let us now discusstheregiser trander level (RTL) of abstraction. The derivation and organization of facets at this
abdraction level follows the exact same general principles discussed before. So, as shown in Figure 4, we also
definean "RTL system" facet and several other facets, such as" processing unit", and " sorage unit," that may actu-
ally be a part of such a systems (i.e., an RTL system, in the general case, is not, smply, a " processing unif \ or a
"gorage unit"). ALU and Adder facets, on the other hand, have an iga réation with processing unit, i.e., they share
all of the specifics of a " processng unit", and are therefore classified in the discipline hierarchy (see Figure 4) as

specializations of this last facet.

Observe, finally, that these facets (and their possible specializations) define the only meaningful object classes at
each abgraction level. This means that the property definitions contained in these facets mug allow designers to

fully characterize any design object represented at the particular abstraction level.

L et us now turn to the characterization of objectives. In simpleterms, objectives char acterize the sub-problemsthat
have to be solved while addressing a general design problem in the context of the methodology of interest and

define how each of such sub-problems should be sequenced during the problem solving process. To capturethe h/s

12. In deriving the discipline hierarchy, we should be only as general as it is necessary for adequately capturing the fundamental concepts
embedded in the discipline methodology. Since in our methodology of interest the concept of an algorithm and the concept of a process are
equivalent, the discipline hierarchy should reflect that fact.

13. Thisisthereason "algorithmic sygem**, and " agorithm** can be both specializations of 'algorithmic level object*'

14. " Atomic" tasks congtitute the primitive behavioral building blocks at this abstraction level. A set of such atomic tasks could thus be
included at this abgtraction level, as specializations of the generic " atomic task" facet Or, instead, directly as specializations of the "tadc**
facet.

Page 18

codesign methodology we need to define an objective that represents the central design problem being addressed
by the methodology, as well as at least one (sub)objectivefor each of the design steps defined by the methodology.

Thus we can define one objectiveto be " codesign." Since " codesign” isa very complex objectivethat it isunlikely
to bedirectly achievable (i.e., achievablein just one problem solving step, by direct application of an operator), we
mug specify how it can be decomposed. Specifically, in the control knowledge body of " codesign,” we will indi-
catethat it can be decomposed into the sub-objectives: "task derivation”, " style selection™ , " ar chitecture mapping",
"cogmulate', and "design." We mug also specify a valid sequencing for these sub-objectives, indicating what

action should be taken both upon success as well as failure of each of the sub-objectives.

R |
Algorithmic System
: Behavioral :
/ Description =
/
5 1p1] |P2| | P3| g | 1| | Ps| # Style Selection Cosimulate)ame 82
: /
",.\.,,,, Py gyl k Derivation
Architecture
Mapping
Algorithm Task Algorithm Task Algorithm Task
Vabutal/ Derivation rovy Derivation poroe Derivation
I/ mml Tt
N R o ¢ il
/1 14 /4
1 ER IR ARV
/ / 4 / / ’
’ ¢ ’
AL/ | [/
/ ’ 4
- "ll‘ rowd
) 1

Task Task Task
nlintin

Figure 5 Representing the design state for a codesign process

Recall that upon problem decomposition, each resulting sub-objective focus attention on a particular sub-set of the
specifications defined for the target design object (or objects) associated with the problem defined by the parent
objective. To better illustrate how these concepts map into actual objective definitions, consider Figure 5 which
shows a high-level, problem-based representation of an advanced stage of the codesign process. In this symbolic

representation of the design state, rectangles represent design objects and bubbles represent design objectives. (In

Page 19

this amplified view we have omitted the individual properties that are targeted by each individual (sub)objective,
and the network of consistency congraints that relate these properties. Furthermore, only the behavioral descrip-

tions are explicitly shown in the boxes, even if other propertiesreside within these facets.)

To seehow the design might have progressed to result in the state shown in Figure5, recall that designis aproblem
solving process aimed at solving one main design problem. As discussed earlier, a design problem is defined in
terms of a set of properties (that can be associated to one or more design objects) and by an objective, that defines
the specific design goal to be achieved in the context of such properties. Wethus sart by identifying the main prob-
lem that lead to the design process being shown in Figure5. Sincetheinitial specification given for the object under
design included a behavioral description given at the algorithmic level, and consisting of a set of independent,
interacting, sequential processes, the main object under design was identified (according to our discipline hierar-
chy) as a member of the class " algorithmic system." Since the goal was to design such an object through the h/s

codesign methodology, the objective codesign was associated with this algorithmic system object, thus defining the

main design problem to be solved through the design process.™ As mentioned before, theinitial specification of the
design object may also include a set of global requirements, such as cost and speed. Values for these requirements
may also be given at the time the main problem is defined. (See Section 8 for a brief discussion on how can the def-
inition of the main design problem to be addressed in a design process be effectively implemented in a meta-tool

such asMinerva,)

As soon asthe design process commences, an impasseisreached by the objective " codesign,” sincethereisno tool
(operator) that can directly solve the codesign praoblem. According to the control knowledge associated with the
objective " codesign,” the objectiveisdecomposed into " task activation”, " style selection”, " ar chitecture mapping,”
"codmulate” and "desgn,” (see Figure5). " Codesign” then activates thefirst of these sub-objectives, i.e., "tak

derivation."

'Task derivation" focuses on the behavioral description of the " algorithmic system object." The goal of task deriva-
tion is to decompose algorithms into chunks of behavior, or tasks. Since the current behavioral description for the
target object consists of a set of algorithms, " task derivation” prepares for achieving its goal by performing an "ini-
tial" design object behavioral decomposition. In short, it instantiates (in the design process hierarchy) a new design
object for each of the algorithms (or processes) contained in the original behavioral description, and then decom-
posesitself into one "task derivation" sub-objective for each of these new design sub-objects, as shown in Figure5.
All "task derivation" sub-abjectives will then be simultaneoudy activated (by the parent "task derivation" objec-

tive), creating an opportunity for concurrent design. As shown in Figure 5, the resulting descendent design sub-

15. Theset of active consistency constraint (and also the set of related 'Verify* predicates) associated with the main problem directly derives
from these two components, i.e., does not need to be explicitly " stated.”

Page 20

objects will still be represented at algorithmic level, but will now be of the class " algorithm" since their behavior
encompasses only a single algorithm.

Each of the task derivation sub-problems should now be directly, and independently (maybe even concurrently)
solved. Each time atask derivation sub-objectivereports completion to the parent task derivation sub-objective, the
process of decomposing one of the original "algorithms' into a set of tasks has been completed. (Figure 5 shows
that each such "task" object could also beinstantiated in the design process hierarchy, but thereis no apparent need
for such an ingantiation in the codesign methodology being described, and therefore it is not actually performed.)
When all "task derivation" sub-objectives report successful achievement to the parent "task derivation” objective,
the parent objective collects the behavioral descriptions from all of the objects related to the sub-objectives and
stores them in the behavioral description associated with the main " algorithmic system” object, so that the overall
consistency of the design state isrestored. The "task derivation” reports success to the " codesign™ objective, upon
which the " style selection" objectiveis activated. (Recall that in the control knowledge component of the definition
of " codesign,” if should be specified what action to undertake in case of success and in case of failure of each of the
sub-objectives).

" Style selection™ focuses on the now reformulated behavioral description of the " algorithmic syssem™ . The general
goal of this objective is to determine which tasks will be implemented in hardware and which tasks will be imple-
mented in software, and properly group these tasks into processes. Since the h/s codesign methodology requires
that all tasks be considered at the sametime, no problem decomposition is performed at thistime, meaning that the
problem isto be solved directly, possibly using an interactive CAD tool asoperator. Thusthereisno need to spec-
ify objective decomposition in the control knowledge of the " style selection™ objective. The outcome of this design
step is a new behavioral description for the "algorithmic system™ object. In Figure 5 this is symbolically repre-
sented by PI, P2, and P3, the three original processes, being "trandormed” into two distinct processes, Ph and Ps.
Observethat requirements, such as” cog” and " speed” may play an important rulein determining an adeguate solu-
tion for the " style selection” problem and therefore these properties will be made available to the " style selection”
operator (i.e., the CAD tool that will be used in addressing the problem). When the " style selection” objective
reports completion to the " codesign” abjective, the sub-objective " architecture mapping" is activated.

Architecture mapping is responsible for defining the particular hardware/software system architecture that will be
adopted in realizing the algorithmic system. It focuses on generating the algorithm level sructural description for
the " algorithmic system." According to our methodology, such an architecture will typically consist of some appli-
cation specific hardware on the system bus of either a general purpose or an embedded computer system running an
appropriate operating system. (These various architectural alternatives can be pre-compiled and presented to the
designer, for selection. In such a case, the pre-compiled options constitutes the set of possible alter native values for
aproperty of type restriction, as discussed in Section 4.1.2. These options could completely or just partially deter-
mine the "value' for the actual sructural description property for thetarget " algorithmic system." A discussion on

Page 21

this and other kinds of " drategic* decisions concer ning the details of the discipline's characterization is beyond the
scope of this paper, though.) Again, requirements, such as" cos" and " speed,” may play an important rulein deter-
mining an adequate ar chitectural solution for the particular " algorithmic system.”

After "architectural mapping" is concluded, " codesign” activates the " cosmulate’ sub-objective, which goal id to
asses the performance of the solution-under development, i.e., to evaluate the correctness and adequacy of the cur-
rent partition, style selection, and architecture. Observe that thisisthe very first "tes" problem encountered in this
methodology. The operator used by " cosmulate’ isa Verilog-C coamulator. [10] If the performanceis considered

satisfactory by the designer, " coamulate" reports success, and thefinal objective, " design,” is activated.

Similarly to what happened with the "task derivation" objective, " desgn" darts by performing a sructural design
object decomposition of the " algorithmic system” object, by ingantiating (in the design process hierarchy) a new
design abject for each of the architectural components that have to be designed. Then " design" trandersto each of
such sub-objects the particular behavior they should implement Finally, "design” decomposes itself into one
"desgn" sub-objective for each of these sub-abjects, and activates all of such "design" sub-objectives smulta-
neoudy, thus creating a new opportunity for concurrent design. (For simplicity reasons, these " design" sub-objec-
tive and their related design sub-abjects are not shown in Figure5. Instead, one of such componentsisindividually

shown in Figure 6.)

main " codesign” objective
instance (see Figure 5)

“_‘"design" objective instance for the

har dware component complete enbedded system (see Figure 5)

e ———
””""”‘

/

= Algorithm ’ \
A / " design” sub-objective
/ 4 - instances for the
"'l’l"l'l’a’. @ hardware component

/

/
,””/’l”"

/ Processing Unit §

/
A
(4
’
/

L3 %

A A A AT A e

Figure 6 A transformational synthesis step, from algorithmic to register-transfer level

Page 22

The C softwareisthen compiled (i.e., " desgned") using operator simplementing cr oss compilation techniques. The
process of designing the har dware components can be significantly more complex, though, sincea number of trans-
formational synthesis steps (e.g., from algorithmic to regiser-transter level, and from regiser-transfer level to log-
ical level) may berequired. Moreover, these steps must be interleaved with verification steps, as discussed below.

Figure 6 shows in some detail how can transformational design be recursively modeled, mainly by adequately
defining the objective "design." So, the objective " design" associated with each one of the hardware components
hasfirst to be decomposed into a " synthesize' and a " verify" sub-objectives, and " synthesize" should befirs acti-
vated. (This decomposition is shown in Figure 6, for one of the hardware components.) The goal of a general " syn-
thesize" sub-abjective is to generate a more detailed description of the object under design. Specifically, in our
examplethe " synthesize" objective shown in Figure 6 will focus on the Verilog behavioral description for the par-
ticular component, and will try to generate a register-transfer level description consistent with it, using operators
implementing behavioral synthesis techniques. When such arepresentation is created, " synthesize" creates a new
facet for the object under design, representing the abgtraction level at which the abject is now being described, and
gdores the new description in it. After that, the objective " synthesize" reports completion to the parent " desgn”
objective, and thislast activates the " verify" sub-objective. The goal of the " verify" sub-abjectiveisto check if the
RTL solution just generated meets the set of requirements sated for the particular component If the cost and per-
formance of the solution are considered satisfactory, " verify" reports success to the parent " design” objective. The
objective "design” then checks if the current representation of the design object is at the ground level of abgrac-
tion. If yes, "desgn" reports completion to its own parent " design” objective. Otherwise, " design" ingantiates a
new "desgn" sub-objective and associates it with the new, more detailed representation of the design object, as
shown in Figure 6. (Observe that such a design aobject representation is now stored in a different facet of the same
design object.) Thetransformational design process then proceeds, recursively, exactly as defined for thisfirst step,
until the ground level isreached, unless otherwise is decided by the designers. (For a detailed discussion on how to

represent alternative or non-default control decisions in a design objective definition see [9].)

Tothispoint in our example we have been addressng the active problem solving aspects of the h/s codesign meth-
odology. Since h/s codesign tends to be highly iterative in nature, let us know briefly address how to model the
agpects of the h/scodesign methodology that deal with iteration, i.e., those related with deciding on effective back-
tracking strategies given specific failures during the h/s codesign process. It isimportant to note that choosing the
mogt adequate backtracking strategy in each case is crucial for a controlled and coherent exploration of the solu-
tions gpace, asuring that a satisfycing solution, if existent, will be found in efficient time. Or, conversdly, that if a

solution does not exist for a particular problem, the stuation will be identified in reasonabletime.

In order toillugrate the discussion, assumethat during the verification step of oneof the " algorithmic" objects, say
the one represented in Figure 6, it became clear that the RTL solution just generated for the particular component

does not have the potential to meet a specific sub-set of the object's requirements. Three fundamental backtracking

Page 23

drategies can be considered at this point: (1) re-synthesize the specific component, by trying to impose adequate
regrictions on the behavioral synthesis process; (2) modify the behavior for the particular component being
designed, by partially re-doing style selection; or (3) modify the set of tasks, by partially re-doing partitioning.
Observe that partially re-doing paftitioning allows the designer to generate significantly different solutions, while
re-synthesizing just the specific hardware component only allows the designer to move very locally in this space.
Yet re-synthesizing is much less costly than partially re-doing style selection, which in itsturn is much less costly
than re-doing partitioning. Clearly, a more costly backtracking step should only be tried if the immediately less
costly one proves to be incapable of generating a potentially satisfycing solution. As will be explained beow,
active consistency congraints, by explicitly capturing relations among properties, play adecisiverolein determin-
ing adegquate and effective backtracking points given a particular failure.

Active consistency condraints stating relations among local requirements should be the onesto befirst considered,
in order to access the adequacy of the cheapest backtracking strategy, i.e., Srategy (1). In order to better illugtrate
these ideas, let us again consider our example. Assume that the three fundamental requirementsto be met by the
object in Figure 6 are "cog", "dday" and "path." ("Cog" provides a measure on how expensive the solution will
be, in terms of its required resources, i.e., registers, multiplexers, adders, etc. " Delay" providesthecritical combi-
natorial path for each control step. Finally, " path" measuresthetotal number of control steps between specific oper-
ations.) As part of the discipline char acterization, the set of consistency congraints (informally) shown below could
be defined among such requirements. Observe that these consistency condraints state qualitative inverse propor-
tionalities among the requirements " cogt", " path", and " dday", i.e., they explicitly indicatethat trade-offs are pos-
sible among these requirements. Observe also that each consistency congraint is annotated with comments on how
to actually implement the specific trade-off.

(1) Cost
- Qualitative inver se proportionality with Delay. Trade-off: try to use less costly (dower) resour ces.
- Qualitative inver se proportionality with Path. Trade-off: try to share resour ces.

(2) Delay (thecritical path istoo long)

- Qualitative inver se proportionality with Cost. Trade-off; try to use fast (mor e expensive) resources, or try
to diminish resource sharing on critical path.

- Qualitative inver se proportionality with Path. Trade-off: try to "break" critical path, by introducing extra
control steps.

(3) Path (too many controls steps in between two specific operations)
- Qualitative inver se proportionality with Cost. Trade-off: try to diminish resour ce sharing.

- Qualitative inver se proportionality with Cost& Delay. Trade-off: try to chain together operationsin target
path, maybe using faster resour ces. '

Page 24

If some of the trade-offs expressed by these consistency congtraints happen to be possible among the solution's cur-
rent unsatisfied and satisfied requirements, then the current candidate solution may be quite close to a satisfycing
one. In other words, the most adequate backtracking strategy would be to resynthesize the particular component,
imposing the trade-offs indicated by the set of relevant active consistency congraints. For instance, if the require-
ment " cogt" is not being meet by the abject under design, but if there is some margin for trade-offs on therequire-
ments "path" and/or "dday," i.e., if these requirements are being over achieved by the current solution, then the
first set of consistency congraints shown above (tagged (1)) determine the most effective backtracking strategy to

pursue, and maybe even using the tactics suggested by these consistency congraints.

On the other hand, if no local trade-offs are possible among these local requirements, it may be that the particular
region of the solution space being explored does not hold any acceptable solutions. The network of active consis-
tency congraints, relating all of the relevant propertiesin the particular h/s codesign process (e.g., each of theorig-
inal algorithmsto the resulting pull of tasks, each of such tasks ask to the particular hardwar e and softwar e process
whereit ended up being implemented, and so forth) should then be accessed again, and the next least costly back-
tracking strategy should be considered, as discussed before. In conclusion, then, the network of consistency con-
sraints captured in the design state providesthe " causality chain'® needed for effectively implementing a controlled
and effective search of the global and also of all of the "local" solution spaces that can be defined on a design pro-

cesses of this level of complexity.

9 Minerva

Dueto itsinherent complexity, the h/s codesign problem must be decomposed into smaller subproblems, and CAD
tools should be developed to efficiently address each of these sub-problems. However, conventional CAD tools
cannot implement a h/s codesign methodology, or, for that matter, cannot implement any complex design methodol-
ogy. For instance, the history of the design process — the set of iterations already made in the particular codesign
process — cannot be captured by conventional CAD tools. In addition, the semantics of theseiterations— therea-
sons for backtracking to specific points and what these iterations mean in terms of the coverage of the solution
space — would also be missing. Moreover, handling of sub-problem interactions, during active problem solving
and during backtracking, cannot, again, be handled by these conventional, "local" CAD tools. In summary, then,
any high level strategic decision that needs to rely on some sort of global view of the entire design process, cannot
be achieved by just using "local," conventional CAD tools. If we consider the current trend in industry of moving
towards total product development, including manufacturing, and the adoption of concurrent design practices,
sometimes digributed among geographically separated sites, it is highly impraobable that all planning and manage-
ment strategic decisions associated with these highly complex, cross-disciplinary, and distributed design processes,
can continue fundamentally relying on "informal mental pictures’ maintained by individual designers. It is highly

inefficient, and even more important, too risky.

Page 25

In this paper we have presented a formalism of design that allows for the explicit characterization of design disci-
plines and provides a unified, problem based representation of design processes. Thisformalism isthebasisfor the
creation of a new generation of powerful CAD meta-tools that can implement arbitrarily complex, cross-disciplin-
ary design methodologies, and offer advanced design process planning and management services based on such
methodologies, answering to the industry needs. One such tool is Minerva. [2] Minervais capable of dynamically
generating a global, unified, semantically rich representation of the entire design process, and based on such arep-
resentation, provides designers with a set of high-level design process planning and management services that
include: plan generation; plan execution; automatic problem reformulation (i.e., decomposition) in case of impasse
during plan generation or during plan execution; support to backtracking for redesign and for problem re-defini-
tion; and effective handling of problem interactions in all of the above situations. All of the above services are

offered assuming the most complex scenario, i.e., a concurrent design environment

Minervais discipline independent and can be customized to any design discipline. It istherefore highly suitable for

supporting total product development.*® One of Minerva's key components is a knowledge base where the explicit
characterization of the discipline of interest, as defined in the formalism (i.e., relevant design aobjects, organized
into a discipline hierarchy, and the set of design aobjectives and consistency constraints necessary for capturing the
specifics of a particular methodology or set of methodologies of interest) can be declaratively defined. So, design-
ersmay browsethediscipline hierarchy, asdefined in theknowledge base, in order to select thetarget design object
for a given design process. Designers may also browse the " library” of objectives, in order to select the class of
design problem that isto be solved in the context of the selected design object Observe that selecting thetop level
objective ultimately means selecting the methodology that will be used in addressing the particular problem. (In
Minerva, nothing preclude the definition of two or more " codesign" objectives, each one embodying a different
codesign methodology, though. Alter native objective decompositions, offering (on the fly) alternative methodolo-

gies, are also supported by Minerva. For a complete discussion on Minerva's knowledge base see [9].)

Figures 5 and 6 show the global view of the design process exactly asit is symbolically represented by Minerva.
Designers working concurrently in a design process through Minerva are shown snapshots of this view, whenever
they wish to select a new sub-problem to work on. After the sub-problem selection process in concluded, designers
are allowed to fully concentrate their effort on solving the particular sub-problem at hand (using specific, conven-
tional CAD tools), and Minerva will automatically provide them with all of the potentially relevant information
being developed outside the context of the particular problem. (This information sharing is implemented in Min-

ervathrough the active consistency constraints). Also, when afailureoccurs, Minervawill not only provide design-

16. Itisimportant to note that thisis radically different from developing adesign environment from scratch that embodies the specifics of a
particular discipline and methodology, as is the case, for instance, of the environment for hardware-software codesign described in [12].
Clearly, this kind of dedicated, "hardcoded solution" is not suitable for total product development, since each product would ultimately
require the development of a dedicated environment capturing its specific needs.

Page 26

ers with a glabal, semantically rich view of the entire design process, thus allowing the particular failure to be put
in perspective, but will also suggest adequate backtracking strategies, as discussed before.

In closing, we fed that a meta-tool such as Minerva, if properly used, will ultimately allow for design processesto
be repeatable and subjected to a systematic accessmenr. Unfortunatdy, space preclude usfrom discussing Minerva
in more detail. For a detailed description of the Minerva design process planning and management meta-tool see
[2]{4].

10 Conclusons

We have presented a formalism of design that allows for the explicit characterization of design disciplines and pro-
vides a unified, problem based representation of design processes. This formalism isthe basis for the creation of a
new generation of powerful CAD meta-tools that can implement arbitrarily complex, cross-disciplinary design
methodologies and offer advanced design process planning and management services based on such methodolo-
gies. Such servicesinclude: (1) full support to concurrent design, by allowing for theintegration and optimal (par-
tially ordered) sequencing of all of the sub-activities comprised in arbitrary product development processes, and by
promoting an adequate handling of sub-problem interactions in such a complex scenario; and (2) full support to
"global" backtracking strategies, i.e., backtracking strategies that may traverse an arbitrary number of levels of
abdraction, and possibly relate decisions concerning to objects of radically distinct natures. Observe that in the
context of complex, cross-disciplinary methodologies, which tend to be highly iterative in nature, this last feature
may have a dramatic impact on productivity, by allowing for a controlled and effective exploration of the (typically
huge) solutions space. Observe, finally, that this formalism, may also be useful in helping designersto develop and
to evaluate, in a systematic form, complex design methodologies and available, conventional CAD tools.

11 Bibliography
[1] M.F. Jacome, and SW.Director. " A Formal Basisfor Design Process Planning and Management.” 1n Proceed-

ings of I nternational Conference on CAD, ACM/IEEE. November 1994,

[2] M.F. Jacome, and SW.Director. " Design Process Management for CAD Frameworks." In Proceedings of 29th
ACM/I EEE Design Automation Conference. ACM Press, 1992.

[3] J.C. Lopez, M.F. Jacome, and SW. Director. " Design Assistance for CAD Frameworks" In Proceedings of
First GI/ACM/IEEE/IFI P European Design Automation Conference. ACM Press, 1992.

[4] M.F. Jacome, and SW.Director. "Minerva: A Meta-Toal for Design Process Planning and Management." To

appear.
[5] H.A.Simon. Tlie Sciences of theArtificial. The MIT Press, 1981.

[6] PR. Sutton,J.B. Brockman., and SW. Director. " Design Management Using Dynamically Defined Flows." In .

Proceedings of 30th ACM/I EEE Design Automation Conference, ACM Press, 1993.

[7] K.O.tenBosh, P.Bingley, and P. van der Wdlf. " Design Flow ManagementintheNEL SISCAD Framework." In -
Proceedings of 28th ACM/I EEE Design Automation Conference, ACM Press, 1991.

Page 27

[8] E.D. Sacerdoci. "Planning in a Hierarchy of Abstraction Spaces." Artificial Intelligence, 5:115-135,1974.

[9] M.F. Jacome. Design Process Planning and Managementfor CAD Frameworks. PhD thesis, CarnegieMédlon
Univergty, Department of Electrical and Computer Engineering, September 1993.

[10] D.E.Thomas, JK. Adams, and H. Schmit. " A Mode and Methodology for Har dwar e-Software Codesign.”
| EEE Design and Test of Computers, pages 6-15, September 1993.

[11] R. Cloutier, and D. Thomas, " Synthesis of Pipelined Instruction Set Processors' In Proceedings of the ACM/
|EEE 30th Design Automation Conference, ACM, 1993

[12] T.B.lsmail andA.A.Jerraya. " SynthessStepsand Design M odelsfor Cdaesign." Computer, pages44-52, Feb-
ruary 1995.

