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ABSTRACT

This paper presents an overview on two recent developments in optimization techniques that address
previous limitations that have been experienced with algorithmic methods in process synthesis:
combinatorics and local optima. The first part deals with the.develppment of logic. baaed models and
techniques for discrete optimization”rich can m&ew'molpimuuumuwdlumng
the combinatorial search. It will. beshewn that variouslevelscan-1* considered for theime%nttion of logic
in mixed-integer optimization techniques. The second part deals with the development of deterministic
optimization methods that can rigorously determine the global optimum in nonconvex optimization
models. It will be shown.thai this can feeeffectively accomplished with algorithms that exploit identifiable
Eqrélcilneg_r strggcé(tjjreﬁ Examples are presented throughout the paper and future research directions are also
riefly discu

INTRODUCTION

Process synthesis continues to be a major area of research in process systems engineering. Significant
advances have been achieved-in terms of developing synthesis methods for subsystems (reactor networks,
separation systems, heat exchanger networks) and for total flowsheets. Earlier reviews on general
developments can be found in Hendry, Rudd and Seader (1973), Mavacek (1978) and in Nishida,
Stephanopoulos and Westerberg (1981). A review on algorithmic methods based on MINLP was given by
Grossmann (1990a) at the previous POCAPD meeting in Snowmass. A recent review and trendsin MINLP
based methods wer erecently presented by Grossmann and Daichendt (1994) at the PSE94 meeting in Korea.
As for the synthesis of subsystems, reviews have been given by Gundersen and Naess (1988) on heat
exchanger networks, and by Westerberg (1985) and Floquet, Pibouleau and Domenech (1988) on separation
systems. From thesereviews it isapparent that some of the major trends in the synthesis area include an
increasing emphasis on the use of algorithmic methods that are based on MINLP optimization and their
combination and integration with other design methodologies.

It is important to note that from a practical point of view a major motivation behind algorithmic
techniques is the development of automated tools that can help design engineersto systematically explore a
large number of design alternatives. From a theoretical point of view a-major motivation is to develop
unified representationsand solution methods. Given the clear progressthat hasheen madein thelast decade
in algorithmic techniques, and given the advances that have:taken place in optimization and computer
technology, the debate of heuristics or physical insights vs. mathematical programming has become largely
irrelevant. It has generally become clear that a comprehensive approach to process synthesis will requirea
combination or integration of the different types of approaches. It has also become dear that significant




work and progressare till required in the underlying methods that support each of these approaches. It is
precisely thisissuethat isconsidered in thispaper in the context of_:algorithmic methods.

This paper concentrates in two fundamental areas of optimization techniques that are used to
support algorithmic methods in process synthesis. Specifically, we present an overview of two major
advances that have recently taken place: (é) die incorporation of logic in mixed-integer optimization
methods to reduce the combinatorial search and to facilitate problem formulation; (b) the development of
rigorous global optimization techniques that can handle nonconvcxities in the model and avoid getting
trapped in suboptimal solutions. These advances have been largely motivated by two major difficulties that
have been encountered in the solution of MINLP models for process synthesis. combinatorics and local
optima. The former are due to the potentially large number of Sructural alternatives that arise in process
synthesis, thelatter are due to the nonconvexities that arise in nonlinear process models. The negative
implication in the former is often the impossibility of solving large syﬁthesis models; the negative
implication of the latter is generating poor suboptimal designs.

Whilenew developmentsare still under way, areview of the progressachieved up todatein logic
based methodsand in global optimization would seem to be timely asthis might hopefully promote further
research work. These algorithmic techniques are also significant in that they can be applied to other areas
such as process scheduling and process analysis. The paper is organized as follows. We firgt discuss
general aspects of process synthesis to see how the work described in this paper fitsin the overall scheme.
We next present a motivation section to illustrate difficulties in existing algorithmic methods with
combinatorics and nonconvexities. The remaining part of the paper then concentrates in providing the
overview of the new developments in logic and global optimization. Finally, we present the conclusions
whereweindicate futuredirections for research.

GENERAL COMPONENTS OF PROCESS SYNTHESIS

Algorithmic methods in process synthesis arerather general in scope and they involve the following four
major components. (a) Representation of space of alternatives, (b) General solution strategy; (c)
Formulation of optimization model; (Si Application of solution method.

The representations can rangefrom rather high level abstractions such asis the case of targeting
methods, toreatively detailed flowshest descriptions such asisthe case of superstructure representations. It
isimportant to notethat theserepresentationsare in fact commonly closely related astheir differenceliesin
the level of abstraction that is used.

Having developed a representation, the next step to consider isthe general solution srategy. The
two common and extreme solution strategies are the smultaneous and the sequential approaches. The
simultaneous strategies attempt to optimize smultaneously all the components in a synthesis problem in
order to properly captureall the interactions and economic trade-offs. While conceptually superior, these
drategiesmay giveriseto larger problems. The sequential approach on theother hand has the advantage of
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dealing with smaller subproblcms since they se'queht'i'a]iiy"décbmpose the problem, although often at the
expense of sacrificing optimality.

Thenature of die optimization modelsis of cour se heavily dependent on the typeof representation
as well as on the general solution strategy being used Target models often involve only continuous
variables since they usually do not generate topologies nor do they consider capital cost as they deal with
higher level objectives (minimize utility consumption, maximize yield). Therefore, these models
commonly give rise to linear (LP) or nonlinear programming (NLP) problems. At the other extreme-
superstructufe models determine topologies and operating conditions, and account for capital costs, often
requiring 0-1 and continuousvariabtegiving riseto ntixed-intcger Unesr (MILP) or mixed-integer nonlinear
(MINLP) optimization models. Wiftin each of the levels of itfxeseittationtte degree of rigarousness of the
model can of cour sealsorangefromthe simpler short-cot modelsto detailed smulation models.

As for the solution methods a global optimum solution can be guaranteed if the problem can be
posed asan LP or MILP problem. Furthermore, in the case of LP models efficient solution times can be
expected since these problems are theoretically solvable in polynomial time. This is however not the case
of the MILP problems which generally are NP-complete, and therefore may have exponential time
requirements, at least in theworst case. If the problem is posed asan NLP or MINLP the first drawback is
that a unique global solution can only be guaranteed if the NLP or the continuousrelaxation of the MINLP
areconvex. Thisisof courseonly a sufficient condition. But nevertheless, nonconvexities are prevalent in
synthesis problems, often giving riseto multiple local solutions, or in fact even preventing convergence to
feasible solutions with conventional NLP techniques. In addition to the numerical and theoretical
difficulties of handling nonconvex models, there s the added difficulty of potential combinatorial explosion
for theMINLP case. In the context of process Synthesis agood example of the dilemma between the use of
MDLP and MINLP models are the approaches for superstructure optimization of flowsheets by Papoulias
and Grossmann (1983) and by Kocisand Grossmarm (1989). Theadvantage of the former isthat the global
optimum can be guaranteed but at the expense of using a discretized and approximate process model. The'
advantage of the latter isthat nonlinear process models can be explicitly handled, but with the disadvantage
that the global optimum cannot be guar anteed.

Based on the above discussion, it is clear that in order to properly support the development of
algorithmic techniques, whether for targeting or supersructure models, or for smultaneous or sequential
approaches, it isimper ative that limitations due to combinatorics and nonconvexities be addressed. It isin
this context that the two motivating examplesbelow are presented.

MOTIVATING EXAMPLES
MILP Model for Heat Integrated Distillation Sequences

In order to illustrate potential combinatorial difficulties with synthesis problems, consider the
MILP model reported in Raman and Grossmann (1993a) in which hem integration is considered between




different separation tasks in the synthesis of sharp ditillation sequences (see also Andrecovich and

Westerberg (1985) and Floudas and Paulcs (1988)). An example of a superstructure for 4 componentsis -

given in Fig. 1 . For the heat integration part, it is assumed that the pressures of the columns can be
adjugted in such away that the condenser of every column can potentialy supply heat to thereboilersof the
other columns as shown in Fig. 2 (multieffect columns are not considered). The MILP model involvesas
0-1 variables the potential existence of columns and the potential beat exchanges between columns and
reboilers, and as continuous variables the flows, heat loads and temperatures of condensers and reboilers,
with which pressure changesarc accounted for. Theobjective function consists of die minimization of the
investment cost of the columns and the operating cost for the utilities. The congtraints involve mass and
heat balances, and logical congtraintsthat enfer ce feasible temperatures if heat exchange take pla” and zero
flows and heat loadsif the corresponding 0-1 variablesare 9t to zero.

For a four component system such as the one in Fig. 1 the MILP model involves 100 0-1
variables, 191 continuous variablesand 258 congraints. The 100 binary variables are split asfollows - 10 to
model the existence of the digtillation columns and 90 to model the existence of heat exchange matches
between the reboilers and condensers of the various columns. The computer codes ZOOM, OSL and
SCICONIC were tried for solving this problem. The three of them were not able to even find a feasible
solution after enumeiating mem than 100,000 nodes and after running more than 1 CPU hour on an I1BM
RISC/6000! A major reason for this performance was that the relaxation gap is very largein this problem;
the LP relaxation in which the binary variables are treated as continuous the optimum is SI,117,000/yr.
while the optimal MILP solution is $1,900,000/yr. As will be shown later in the paper, by using logic
rigorous optimization of this problem can beachieved in only few seconds!

Fig. 1. Superdructure for 4-compoDent example.
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Fig. 2. Heat integration between different separation tasks.

Nonconvex Model for Pooling/Blending Problems _

To illustrate the potentia difficulties associated with the existence of multiple solutions in
nonlinear optimization NLP problems, we will consider as mativating example the pooling problem
proposed by Haverly (1978) which is shown in Figure 3. Three crudes A, B, and G with diffe_rer'rt ulfur
contents are to be combined to form two products x and y which have specifications on the maximum
sulfur content Note that streams A and B are mixed in apool and it is the existence of such a pool that
introduces non-convexities in the mathematical modd in the form of bilinear terms between the sulfur

-qudity of the streams exiting the pool, denoted as p, and flowrates Py, Py of the pool exiting streams. The
objective in this pooling problem is to maximize the profit subject to (i) linear overdl and component
balances, (ii) bilinear pool qudity and product quaity congtraints, and (iii) bounds on the products and
sulfur quality. This problem has been studied using severd loca nonlinear optimization agorithms which
have been reported to either obtain suboptimal solutions or fail to obtain even a feasible solution (see
Floudas and Aggarwd, 1990 for a review of previous gpproaches and a decomposition strategy which
alleviates but does not diminate the multiplicity of loca solutions problem). Table 1 presents results of
local optimization algorithms (e.g. MINOS) for severd starting points.

Table 1: Loca Optimization for the Pooling Problem

Solution Found
No. Sianins Quality Objective vaue Quditv P
1 100 -750.0000 150
2 125 -750.0000 150
3 150 -750.0000 150
4 175 0.0000 175
5 2.00 0.0000 2.00
6 2.25 -125.0000 2.50
7/ 2.50 -125.0000 2.50
8 2.75 -125.0000 2.50
9 300 -125.0000 2.50




Figure 3: Motivating Example (Pooling Problem) '
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Figure 4; Optimal Solution in Projected Space
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The non-convex nature of this pooling problem is better illustrated via Figure 4 where the optimal .
solution of the pooling model is shown for different values of the of the pool quality p. Note that the
global optimum occursat p « 1.5, while there exists a local optimum at p * 2.5 and between p » 1LSand p
=2.2 (approximately) the optimal solutions are of the form of constant line. As aresult, several garting
points for p in theflat region or theregion close to the local optimum terminate with the local solution or
even fail to obtain a solution.

Floudas and Visweswaran (1990) applied the decomposition global optimization approach GOP,
which is discussed in the global optimization section, to this pooling problem, aswell as lar ge instances of
other pooling problemsand multiperiod tankage problems (see also Visweswar an and FIoudas 1993) where

the global optimum is obtained r egar dlessof the starting point

INTEGRATION OF LOGIC IN MIXED-INTEGER PROGRAMMING

In this section we present a brief review of previous work on the modelling and solution techniques of logic
based discrete optimization. We also review basic concepts for the representation of logic and inference
problems. We then describe our recent work at Carnegie Melon on the integration of logic in mixed-

integer optimization which has been primarily motivated by process synthesis problems.

Review of Previous Work

A major issue in the application of mixed-integer programming is the efficient modelling of discrete
decisions. Different representationsare often possible for the same model, each of which may be solvable
with varying degrees of difficulty. In somecasesit ispossible to even formulate an MH-P problem so that
itissolvableasan LP, or else, sothat itsrelaxation gap is greatly reduced. While some basic under ganding
has been achieved on how to properly formulaic special classes of mixed-integer programs (see Rardin and
Choe, 1979; Nemhauser and Wolsey, 1988), the modelling of general purpose problems is largely
performed on an ad hoc basis. The use of prepositional logic, however, offers an alternate framework for
systematically developing mixed-integer optimization models as discussed by Jerodow and L owe (1984) and

by Willtams (1988). -

Theroleof logic at the level of modelling of discrete optimization problems has also been studied
by Balas (1974, 198S) who developed Disjunctive Programming (DP) as an alternate representation of
mixed-integer programming problems. In this case, discrete optimization problems are formulated as linear .
programs in which a subset of congtraints isexpressed through digunctions (sets of congtraints of which at
least one must be true). An interesting feature in the digunctive formulation is that no 0-1 variables are
explicitly included in the model, which isthe more natural form to model some problems as, for instance,
in the case of jobshop scheduling problems. Also, as noted by Balas (198S), every mixed-integer problem

can bereformulated asa digunctive program, and every bounded DP can berefonnulated as a mixed-integer
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program. The reason the digunctive programming formulation has not been used more extensively is that
very few methods have been proposed to explicitly solve the problem in that form. Most of die research
has focused on characterizing the convex hull of digunctive constraints and on the generation of.strong
cutting planes which are included in the corresponding mixed-integer problem to strengthen the LP
relaxation (Balas, 1985; Jcrodow and Lowe, 1984). The only reported method, to our knowledge, that
explicitly solves problem isthe algorithm by Beaumont (1991) for the case wherethe functions are linear
and thereis only one congtraint in each term of every digunction. The method is similar to a branch and
bound search except that the benching is donedirectly on thedigunctions. Thisrequiresthe addition and
deletion of the correspoiHiingdis tive constraints in the LP subproblems. Although this may increase
the overhead in the computations, Beaumom showed that the number of n ot e required for the ennmeration
of thebranch and bound treecan often be significantly reduced.

In terms of integrating logic explicitly for improving the solution efficiency of mixed-integer
programs, aside from our own work which will be described in the next section (Raman and Grossmann,
1991,1992,1993a*, 1994), Lien and Whale (1991) considered the addition of a subset of unit resolution
cuts for the branch and bound solution of MILP problems which produced large reductions of enumeration
of nodesin the MILP formulation for heat integrated synthesis by Andrecovkh énd Wegterberg (1985). It
should also be mentioned that logic has been considered earlier in process synthesis with the purpose of

performing high level decisionsin the gructuring of process flowsheets (Mahalec and Motard, 1977).

Representations of the logic
Most of the work described above has been restricted to the form of logic calkd prepositional logic for
developing modelling and solution techniques for discrete optimization problems (see Menddson, 1987, for
general review on logic). Thebasic imit of a propositkmallogte expres'S*" which can correspond o a stase
or to an action, iscalled a literal which is a single variable that can assume either of two values, true or
false. Associated with each literal J\ its negation NOT Y (-. Y) issuch that [Y OR -ill is alwaystrue. A
digunctive clause is a set of literals separated by OR operators [v], and is also called a digunction. A
proposition is any logical expression and consists of a set of clauses />;, i»l,../ that arerelated by the
logical operatorsOR [v], AND[A], IMPLICATION [=>].

In synthesis logic propositions usually refer to relations of existence of units in a supergructure.
These are commonly expressed by a set of conjunctions of clauses,

Am{LjAL2A...... AlLg} (@)

where Li is a logical proposition expressed with boolean variables Kj in terms of implications, OR,
EXCLUSIVE OR and AND operators. In synthesis problems Y\ isa boolean variable representing the
existence of unit i and -1Y J its nonexistence. There are two ways of transforming the propositionsin A. In
the smplest case, the logic propositions are converted into the conjunctive normal fonn [CNF] by removing

the implications through contrapositions in each of the clauses Lj in (1) and applying De Morgaris




Theorem. In thisway each clause in the CNF from consists of only OR operators with non-negated and

negated boolean variablesasfollows:

QC_'“:«Pl 0!)“:/ .W] A[v ft) v <r))JA.*rv (R) A <-r,)] @

where Pi and ?i are subsets of the boolean variables that correspond to some of the 0-1 variables, and sis

the number of clauses.
In the second representation, the logic propositions in the CNF form are convened into the
digunctive normal form [DNF] (see Clocksin and Nfellish, 1984) by moving the AN operators inwards and

the OR operators outwar ds by applying e ementary boolean operations. The DNF form isasfollows:

D [i*Ql left \ [*QI ieGI J  Idt> '«5 ] W

where Qj and_(Sj are theindex sets of the boolean variables which correspond to a partition of all the 0-1
variablesy\ i=7,../> in nqn-negaled and negated terms. Each clause separated by a digunction represents
the assgnment of unitsin a feasible configuration* where it isassumed that each boolean variable has a one-
to-one corregpondence with the 0-1 binary variables of theM EP model. Therefore, r represents the number
of alternatives in the supersructure. While the DNF form is more convenient to manipulate, the drawback

isthat the tranformation from CNF to DNF has exponential complexity in the worst case.

Toillugrate the CNF and DNF'repr&entaIionsin (2) and (3), consider the small example problem

shown in Fig.5. Thefollowing prepostional logic expressions apply:

4. YZWv Y2 = 13 (process | or process 2 imply process 3)
L2 3 =* Y VY2 (process 3 implies process 1 or process 2)
L3 -tY\ v -.~2 (donot select process lor do not select process 2)
x2 Y1
x3
A B _ C
| x5 ; x7
X x4 2 x5

Fig 5. Superstructure for small example.

Applying the contrapostiveto Li and L2, and using De Morgan'étheorem, the corresponding CNF
representation] for thelogicis:

Ac= HivY3) A (72vK3) A (*3VvYNVYD A (-riv=F2) @
Digributing the OR over the AND operators, the corresponding DNFrepresentationisgiven by:
OD* <TVA-"2AYA) V (72A-iFI AY3) V ([Tl A -n72 A -1X3) (5)

Notethat thedigunctionsin (5) represent thethree alternativesin Fig 5.
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In order to obtain an equivalent mathematical representation for any prepositional logic expression, thiscan
be easily performed using the CNF form as a basis. We mugt first ‘consider basic logical operators to
determine how each can be transformed into an equivalent representation in the form of an equation or
inequality. These transformations are then used to convert general logical expressions into an equivalent
mathematical representation (Cavalier and Soyster, 1987; Cavalier**al, 1990).

Table 2. Representation of logical relations with linear inequalities

Logical Comments Badean Representation as
Relation Expression Linesr Inogualities |
Logical OR PiVP2V. .V |yi+y2+eeyr * 1
Logical AND Pi AP2A. . AR yizl

y221

el
Implication P1=P2 -.P1VP2 1-yl+y2* 1
Equivalence P if and only if P2 (-Pi VP2)A(-,P2v yi«y?2

(PI=*P2)A(P2=>PI) PI)
ExclusiveOR | exactly oneof thevariables PixPay.xpr YI+Y2+.+y=]
istrue

To each literal Py a Unary variable Y\ isassigned. Then the negation or complement of/* (-.Pj)
isgiven by 1 -y The logical value of true corresponds to the binary value of 1 and false corresponds to
the binary value of 0. The basic operators used in prepositional logic and the representation of their
relationships are shown in Table 2. With the basic equivalent relations given in Table 2 (e.g. see
William's, 198S), one can systematically modd an arbitrary prepositional logic expression that is given in
terms of OR, AND, IMPLICATION operators, as a set of linear equality and ineguality constraints. One
approach is to systematically convert the logical expression into its equvalent conjunctive normal form
representation which involves the application of pure logical operations. The conjunctive normal form isa
conjunction of clauses, Q\ A C2 A ... A gs. Hence, for the conjunctive normal form to betrue, each clause
Q\ must be true independent of the others. Also since a clause Q\ isjust a digunction of literals, Pjv />2 v
-V Ppit can be expressed in the linear mathematical form as the inequality.

37 ¢« 32+ ... e yr * 1 (6)




Symbolic and Mathematical Methods for Logic Inference _
The most common logic inference problem is the satisfiability problem where, given the validity of a set of
propositions, one has to prove the truth or validity of a conclusion which may be either a literal or a
proposition. This inference problem is one of the basic issues in artificia intelligence and data bases.
However, the general satisfiability problem for prepositional logic is NP-complete (Cook, 1971; Karp,
1972). Therefore, research has focused on identifying classes of problems within the general satisfiability
problem that can be solved efficiently. Knowledge based systems commonly require the use of Horn clause
systems which have at most one non-negated literal in each clause. The inference problem for this class of
prepositional logic problems can be solved in linear time using unit resolution (Dowling and Gallier, 1984).
The unit resolution technique (e.g. see Clocksin and Mellish, 1981) is one of the most common inference
techniques, and in simple terms, it consists of solving sequentialy each logic clause one at a time. Chandra
and Hooker (1988) have extended the class of problems that can be solved in linear time to include extended
Horn clause systems. One of the most effective logic-based methods for solving the geheral satisfiability
problem is the algorithm of Davis and Putnam (1960) as treated by Loveland (1978). This approach is
closely related to the branch and bound method for mixed-integer programming. Jereslow and Wang (1990)
have developed branching heuristics to improve the performance of the Davis-Putnam procedure. It must be
noted that although the previous work has been restricted to prepositional logic, the techniques used for this
class are essential to higher order representations like predicate Ibgic which involve additional logic operators
likeforal [V] and it exists [3].

Since the logical propositions can be systematically converted into a set of linear inequalities,
instead of using symbolic inference techniques, the inference problem can be formulated as an integer linear
programming problem. In particular, given a problem in which al the logical propositions have been

converted to a set of linear inequalities, the inference problem that consists of proving agiven clause,

Prove P, (UP1)
st BPO i=U,.q

can be formulated as the following MILP (Cavalier and Soyster, 1987):
Min Z« X ¥

ie i
st Ay 2 a (UP2)
y € {03"

where Ay k ais die.set of inequalities obtained by translating B (P\.P2* s fq) into their linear
mathematical form, and the objective function is obtained by also converting the clause P, that is to be

proved into its equivalent mathematical form. Here, /(u) corresponds to the index set of the binary variables
associated with the clause P,. This clause isalways true if Z* 1 on minimizing the objective function as

an integer programming problem. If Z = 0 for the optimal integer solution, this establishes an instance

where the clause is false. Therefore, in this case, the clause is not always true. In many instances, the .
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optimal integer solution to problem (L1P2) will be obtained by solving its linear programming relaxation
(Hooker, 1988). Even if no integer solution is obtained, it may be possible to fetch conclusions from the
relaxed UP problem (Cavalier and Soyster, 1987).

The qualitative knowledge available about the design of a system can-be classified as one of the
following two types - hard logical betsor uncertain heuristics. Hard, logical factsare never violated - for
example, thereaction NaOH + HCl -~> NaCUH”" holdsfrom basic (Conical principles. Qualitative
knowledge in the form of heuristics on the other hand arejust rules of thumb which may not always-hold.
Therefore all the knowledge for synthesizing a design may not be consistent since the heuristics may
contradict one another; for example, arule that suggests to use higher temperaturesto increase yield may
conflict with arulethat suggests to use lower temperature to increase selectivity. Resolution of conflicts is
an important pan of reasoning. In general one mug violate a weaker (more uncertain) set of rulesin order
to satisfy stronger ones. Therefore, it becomes necessary to model the violation of heuristics, which is done
as follows (Post, 1987),

Clause or V (7
where either theclauseistrueor it isbeing violated (V). In order to discriminate between weak and strong
rules, penalties are associated with the violation v| of each heurigtic rule, i * U.jn. The penalty wj isa
non-negative number which reflects the uncertainty of the corresponding logical expresson. The more
uncertain therule, the lower the penalty for its violation. In this way, the logical inference problem with
uncertain knowledge can be formulated as an MELP problem where the objective is to obtain a solution that
satisfies all the logical relationships (i.e. Z* 0), and if that is not possible, to obtain a solution with the
least total penalty for violation of the heurigtics:

Min  Z « w'v

s Ay Z a : Logical facts (UP3)

By « v 2 b ; Heurigtics
y €{0l}"" v £O

Note that no violations are assigned to the inequalitiesAy 2B sincethese correspond to hard logical
facts that always have to be satisfied. The solution to (UP3) will then determine a design that best satisfies
the possibly conflicting qualitative knowledge about the system.

Logic-based Formulations for Discrete Optimization
Given a supergructure of alternatives for a given design problem, the general form of the mixed-integer
optimization model is (Grossmann, 1990a),

Min ZmJdy+ijlx)

s K(x) Z0 l
gx) +My £0 (DPI)
xe Xye Y




wherex is the vector of continuous variables involved in design like pressure, temperature and flow rates,
while y is the vector of binary decision variables like existence of a particular stream or unit Integer
variables might also be involved but these are often expressed in termsof 0-1 variables. Also, modd (DPI)
may contain among the inequalities pure integer. congtraints for logical specifications (e.g. select only one
reactor type). Ifall thefunctionsand constraintsarelinear (PI) correspoiKistoafr M11P prcbiem; otherwise
itisan MINLP. For the sake of simplicity, we a@methat/frj , 9(x) and h(x) are convex, differentiate
functions. The caseof nonconvexitieswill be addressed later in the paper.
The mixed-integer program (DPI), is not the only way of modelling the discrete optimization

problem in a superdructure. As has been shown by Raman and Grossmann (1994) that problem can be

formulated asthe generalized digunctive program:
Min Z=Y Y eu+f®
S I ¢

st hx)£ 0 (DP2)
Ya

V {8i()s0 ke SD
€Dy epmyy

£2(Y)=True
XER"ceR™YE  {truefalse}"!

in which Yfr are the boolean variables that establish whether a given term in a digunction istrue IgUc(x) <
0] or false [gUcfx) > 0], while CI(Y) arelogical relations assumed tobein théform of prépositional logic
involving only the boolean variables. Yfc are auxiliary variables that control the part of the feasible space
in which the continuous variables, x, lie, and he variables ¢;* represent fixed charges which areactivated to
a value fik if the corresponding term of the digunction is true. Finally, the logical conditions, £I(Y),
express relationships between the digunctive sets. In the context of synthesis problems the digunctionsin

(DP2) typically arisefor each unit i in the following form:

Y; -Y;
{)s0 ir=
8 v Bx=0 ®
=% c,»-0

in which the inegualities gi apply and a fixed cost n is incurred if the unit is selected (?;£ otherwise (~*YO
there is no fixed cost and a subset-of the x variables is set to zero with the matrix B*. An important
advantage of the above modelling framework isthat thereisno need to introduce artificial parametersfor the

"big-M" constraintsthat are normally used to mode digunctions.
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An interegting question that arises with problem (DP2) is whether it always pays to convert the.
general digunctive program into mixed-integer form. To answer this question for die case of linear
functions and constraints, Raman and Grossmann (1994) have developed the concept of w-MIP

represcntability whichisdefined asfollows:

Definition: The digunction vV  \Aik*"id isw-MIP representable iff the following conditions
ieDk .
hold:

(i) Thereexistsan i€ Dk for which the convex bull of the digunction isreducible to the congtraint:

Al x 2 btkytk O£ytk £1
(ii) Every feasible solution
XEF-{xI V KApxzb;)}
ieDk

for which Afkx* 2fcflfc,Afcx’ < &#, i * i implies that yft « 7 andyik = 0 Vi *i
Thus, in general, we can consider a partly transformed form of problem (DP2) where mixed-integer
equations are used for the w-M1P constraints pan of the problem, whiletherest iskept in digunctive form,

asthis pan is " poorly-behaved" in equation form. In general, this partially reformulated problem hasthe

Min Z« Z 27,-*?;;-% Z Zcit+f(z)

keSD'i€D,. LesDieD,

form,

S Mx}< 0 (DP3)

H*) + By SO
Ayk a

Ya
V jspx)s0 ke SD?
ieDk cl-*:rl.k

A(Y)«True
xelP.ye (Ojf. Y € {true, false}"*

in which the subset of digunctions SD* ¢ SD, which are w-MIP representable, have all been convened
into mixed-integer form. The inequalitiesr(x) + By £ 0 correspond to these constraints and to subsets of
the inequalities gikfccik) ~ 0,i € Dk, k € SD?, which have also been converted into mixed-integer
form. Finally, s& (x, cik) are the remaining inequalities which appear explicitly in the digunctionsk €
SD?.




Note also that a subset of the logical constraints in Q(Y) ¢ True, which are required for the
deffnition of the discrete optimization problem, have been trandated to the form of linear inequality
constraints Ay £ a. The simplest option is to convert the propositions into CNF which can then be
trandated readily into inequalities as was discussed in the previous section. In cases wher e the number of
these congraints become large, the generation of a smaller number of tighter congtraints through the
application of cutting plane techniques may be useful. The rest of the logic constraints, A(K) « True,
which areredundantand correspond to logic cuts that do not alter the optimal solution (Hooker et al, 1993),
have been left in symbolic form in order to improvethe enumeratfon in a branch and bound sear ch.

It should benoted that a particular case of (DP3) of interest is when the entire problem is converted
into mixed-integer form, but the logic cuts A(Y)« True areincluded as part of the formulation:

m
Min Z= ~YiVi +/(*)
P=|
S h(x)s0 (DP4)
Hx)+By * 0
Ay 2 a
AY) = True
xER'yye {0.4". Y e {true falsg}™

Solution methods

As was mentioned in the review section there are still few methods for solving mixed-integer optimization
problems that incorporate prepositional logic. As shown below, methods have been developed for
addressing linear and nonlinear problems. Obviously some of the methods are equally applicable to both
cases. However, for the sake of clarity, and to also emphasize the more useful methods in each case, we
will distinguish between methods for linear and nonlinear problems.

For linear problems the simplest case is when logic cuts A(K) ¢ True are added to an MDLP
problem as in (DP4). These cuts, which represent redundant constraints in high level form, can be
systematically generated for process networks as discussed in Raman and Grossmann (1993a). As an
example, the logic cuts for the network in Fig. 1 in terms of the potential existence of the 10 columns are

given by the propostions:

Yl = Y4v Y5 Y6=>Y3A Y9
Y2=>Y8AY10 Y7 = Y3A Y8
Y3 =>Y6v Y7 ' Y8=>Y2 vY7
Y4=>Y1AY10 YO=*Y5 v Y6
Y5=>Y1AY9 Y10=*Y2VY4
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There arc two bask ways of handling these cuts. One isto convert them into inequalitiesand add them to
the MDLP (Raman and Grossmann, 1992). White thiswill increase the number of constraints, it generally
reduces therelaxation gap. Theother extremeisto processthelogic symbolically as part of the branch and
bound search for theM OP. In thiscasethelogic is used to select the branching variablesand to determine
by infer ence whether additional Unary variablescan befixed at each node (Raman snd Grossaann, 1993a,b).
This can be accomplished by treating the logic either in CNF form asin (2) or in DNF form asin (3). The
former requires unit resolution for the inference, whik thelatter involvesthe solution of Boolean equations.
Although the DNF form is generally more expensive to obtain, its nice theoretical property is that one con
guarantee that in the worst case the number of enumerated nodes does not exceed twice the number of
clausesin (3) minusone (see Raman and Grossmann (1993a) for proof). A third alternative isto use a
hybrid approach in which only violated inequalities at the root node are included to strengthen the LP
relaxation, but the remaining enumeration isperformed by solving the logic symbolically.

For the case that the discrete optimization problem is formulated as in (DP3) by involving both
digunctions and mixed-integer congtraints, Raman and Grossmann(1994) proposed an extension of the
hybrid branch and bound method for (DP4) in which the digunctions are converted for convenience into
mixed-integer form, but the branching ruleisaltered torecognize the fact that no branching be performed on
digunctions that are logically satisfied, even if the corresponding 0-1 variables are non-integer. Note that
such an algorithm can also be applied to problem (DP2). Finally, it is worth to mention that Beaumont
(1991) has proposed an algorithm that applies to (DP2) in the case that only one equation is involved in
each digunction. In thisalgorithm constraints are successively added or deleted asneeded in the branch and
bound s=ar ch.

Similarly asin thelinear case, the smplest way to integrate logic in nonlinear discrete modelsis
to add the logic cutsto an MINLP asin problem (DP4) (see Raman and Grossmann, 1992). If these are
convened to inequalities this has the effect of reducing the relaxation gap. This has the important effect of
strengthening the lower bound that is predicted by the master problem in the Generalized Benders
decomposition method by Geoffrion (1972). As has been shown by Sahinidis and Grossmann (1991) the
"optimal" formulation for the GBD method is when there is no gap between the relaxed and the integer
optimum solution. In the case of the outer-approximation method by Dufan and Grossmann (1986) the
guantitativeor symboalic integration has the effect of potentially reducing the branch and bound enumeration
at the level of the MILP master problem. An interesting variation of the above idea isto integrate the logic
inference problem with heuristics (UP3) in the MILP magter problem as was proposed by Raman and
Grosslmann (1992). Firgt assume that given the solution of K NL P subproUems the MILP master problem
isrepresented by:
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Min a

¢ af4faj)
Xj M A *= 1-JT (M1
X€jr,y€y

in which ~xy) representseither the Lagrangian in the GBD method or an objective linearization in the
OA method, £2* isthe linear approximation to the continuous feasible space and INTfc represents integer
cutsto exclude configurations that wer e previoudy analyzed. Theinteger programming model (L1P3) can be
integrated in the above master problem(MI) by minimizing the weighted violation (plus an extraterm to

reflect the cost) and subject to congtraining the lower bound tothecurrent upper bound; that is,

Min [w'v + W(a-LB)/(UB*-LB)]
sta 2 4ix))
k= 1,.
xyeq x

Ay 2 a

By + v Zb (M2)

a £ UB

xeX.yeY

ae *\ v €{0,1}

inwhich w isa penalty chosen such that W « min* (ws,) ¢ LB isa valid lower bound to the solution of

the MINLP (e.g.. solution to the relaxed NL P problem or somereasonable but valid bound) and UBK isthe
current upper bound of the objective at iteration K. Theinteresting featurewith the master problem (M2) is
that optimality can still be guaranteed (within convexity assumptions) even though heuristics are used as
part of the search. The magter problem (M2) is especially appropriate for the GBD method because of the
|oose approximation that is obtained with that method. It isalso important to note that the master problem
(M 2) can be used when applying Benders decomposition (Benders, 1962) in the solution of MILP problems.

For the case that the nonlinear discrete optimization problem is formulated as the generalized
digunctive program in (DP2) one can develop corresponding logic-based OA and GBD algorithms as
described in Turkay and Grossmaim (1994). Firgt, for fixed values of the boolean variables, Yfk * true and
Yix = false, the corresponding NL P subproblem is as follows:




Min Z= fcu +/0

5t hix)s 0 (SP)

\[‘:;’:o}forw*true

c =0 forY =wfalse i wi

X e Ru’ Cik € Ru'
htote that oiu” 000sOTiirtsconespoiKiMg to true boolean varisbies are imposed. Also fixed charges-ft* are

ke SD

only applied to these terms. Assuming that K subproblems (SP) are solved in which sets of linearizations
M...JC are generated for subsets of digunction terms L(ik) -{11 Y*ik ~ true}. ont can define the
following digunctive OA master problem:

Min z-ZZciH o
ik

< a 2fi) + VAT (x-xl)

I -1.X
> + Vhixtftx-x")£0 (MDP2)
Ya
V lga@+Veat) & -Hs0leHik) | ke SD
ieDy CLL- yu

am-: True
ae R, xe R"t:€ R".Ye {true, false}"

It should be noted that before applying the above master problem it is necessary to solve various
subproblems so as to produce at least one linear approximation of each of the terms in thedigunctions. As
shown by Turkay and Grossmann (1994) selecting the smallest number of subproblems amounts to the
solution of a set covering problem. The above problem (MDP2) can be solved by any of the methods
described for the linear case. It isalso interesting to note that for the case of flowsheet synthesis problems
Turkay and Grossmann (1994) have shown that the above solution method becomes equivalent to the

modelling/decomposition strategy by Kocis and Grossmann (1988) if the master problem (MDP2) is
| converted into MEJ> form using a convex hull representation. Also, these authors have shown that whilea

logic-based GBD method cannot be derived as in the case of the OA algorithm, one can nevertheless
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determine for the MILP version of the master problem (MDP2) one Benders iteration which then yields a

sequence similar tothe GBD method for the algebraic case.

Computational Experience

From the methods described in the previous section the symbolic integration of logic both in DNF and
CNF form have been automated in a special version of OSL, the MILP solver from IBM (Raman and
Grossmann, 1993a). Also sysematic methods have been developed to automate the gener ation of logic cuts
in process networ ks (Raman and Grossmann, 1993a; Hooker et al; 1994). Work isalso currently under way
to automate the logic version of the OA and GBD algorithms.

In order to appreciate the potential impact of integrating logic in discrete optimization problems
numerical results on selected examples are givén in Table 3. Example (a) deals with an MILP for the
synthesis of separation sequences involving 6 components (see Raman and Grossmann, 1992). Applying
thegandard version of Bender sdecomposition convci”eix” isIKH achieved aftcr scveralhour eaiK InKr ¢ than
one hundred iterations on an older Vax-computer. In constrast, adding inequalities for the logic cutsin
(DP4) convergenceis achieved in only 13'iterations, and this despite the fact that the number of congtraints
isdoubled. Note that the integrated master with heuristicsis not as effective in thiscase. Example (b) deals
with a small MINLP planning problem in which similar trendsare observed when adding the logic cuts.
The examples in (c) 'deaJ with the symbolic and hybrid integration of logic u§ng branch and bound (see
Raman and Grossmann, 1993). Note that for the MILP for the separation of 6 components the reduction in
number of nodes enumerated is significant The more.imprve results, however, are with the heat
integrated mode which corresponds to the mativating example. Adding the inequalities for the logic cuts
the problem is solved to optimality in only 8 sec! And thisisaccomplished by almost doubling the number
of congtraints. With the symboalic integration of logic with DNF the time is even further reduced to less
than 3 sec! Thereason for the reduction isthat in the symbolic integration thereis no need to handle the
inequalities for the logic cuts. It should be noted that the DNF logic involved 194 digunctive terms.
Therefore, theoretically it is possible to guarantee that the number of nodes in this type of enumeration will
not exceed 387 nodes. In actual fact only 20 were needed. Finally, the examplein (d) illustrates a problem
in which a process network was initially formulated as the generalized digunctive program (DP2) (see
Raman and Grossmann, 1994). Converting it all into MILP form requires more than 1 hour of solution
timewith OSL. If instead the problem is formulated as in (DP3) in which digunctions are identified that
are not w-MIP representable the modified branch and bound method requiresless than 10 minutes of CPU
time. Fig. 6 presentsthetree searchesfor a very small version of this problem. Notethat even in thiscase
thelogic-based branch and bound for the di§unctive modd (DP3) requiresonly 4 nodesas opposed to the 16
that are needed when the modd isposed entirely asan MILP and solved with sandard branch and bound
methods.
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(a) Bianch and bound for sttndant MILP modeL

-193.73

also —T1, Y3, Y41,
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-168.9
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-155.7

(b) Logic based branch and bound for digunctive model (DP3)
Fig. 6 . Comparison of tree searches with standard and logic based branch and bound.




Table 3. Computational Results on Selected Example Problems

(a) NfILP model 6 component separation. Benders decomposition

Origind Model Model with Logic Integrated Master
(DPI) (DP4) (M2)
Constraints:
Heuristic 187
Logic constraints 70 70
Other 86 86 86
[terations >100 13 43
Cpu-time* >1000 11.99 338.7
‘smin Micro-VaxD (SCICON1C) '
(b) MINL P model planningproblem GeneralizedBendersDecomposition
Model with logic Integrated Master
(DPI) : (DP4) (M2)
Heuristic constraints ' 5
Logic constraints 1 8 8
Other congtraints 9 9 9
Number iterations 7z 3 4
| CPU time* 28.20 . 117 188
‘ssec Micro-Vax D (SCICONIC/MINQS)
(c) MIL P models. Branch and bound o
! : Origina Model with DNF basd Hybrid DNF
Model (DPI) logic (DP4) approach approach
Sx.components
Logic 0 70 - 0 1n
constraints
no. of nodes 141 8 18 5
CPU time* 3.46 118 1.06 0.7
CHIET
Logic 0 215 0 4
constraints
nodes > 100,000 74 20 17
CPUtime* > 5,000 8.37 2.76 2.62

5ecBM -RS6000(0SL)

(d) MILP Process Network with semi-continuous demands

MILP modd (DPI) | Digunctive Modd (DP3)
Congtraints 1332 13382
[Variables 1326 132
Binary , 73 73
| Nodes 16,532 1.771
CPU time* 76.2 8.3

*sminlBM -RS6000(OSL)
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GLOBAL OPTIMIZATION

Background

A significant effort has been expénded in the last.five decades toward theoretical and algorithmic
studies of local optimization algorithms and their computational testing in applications that arise in
Process Synthesis Design and CootroL.  Relative to such an extensive effort that has been devoted to local
nonlinear optimization approaches, there'has been much less work on the theoretical and algorithmic
development of global optimization methods. In the last decade the area of global optimization has
attracted a lot of ihterest form the Operations Research and Applied M atheniatics community, whilein the
last five yean we h.ave experienced a resurgence of interest in Chemical Engineering for new methods of
global optimization as well as the application of available global optimization algorithms to important
chemical engineering problems. Thisrecent surge of interest is attributed to three main reasons. Fihrst, a
large number of process synthesis, design and, control problems are indeed global optimization problems.
Second, the existing local nonlinear optimization approaches (e.g. generalized reduced gradient and
successive quadr atic programming methods) may either fail to obtain even a feasible solution or are trapped
to alocal optimum solution which may differ in value significantly form the global solution. Third, the
global optimum solution may have a very different physical interpretation when it is compared to local
solutions (eg. in phase equilibrium a local solution may provideincorrect prediction of types of phases at
equilibrium, aswell asthe components compasition in each phase).

The existing approaches for global optimization are classified as deterministic or probabilistic.
The deter minigtic approachesinclude: (a) Lipschitzian methods (e.g. Hansen et al. 1992 a, b), (b) Branch
and Bound methods (e.g. Al-Khayyal and Falk|983; Horgt and Tuy, 1987; Al-Khayyal 1990), (c) Cutting
Plane methods (e.g. Tuy et al. 1985), (d) Difference of Convex (D.C.) and Reverse Convex methods (e.g.
Tuy 1987 a,b), () Outer Approximation methods (e.g. Hor et al. 1992), (0 Primal-Dual methods (e.g.
Shor 1990; Floudas and Visweswaran 1990,1993; Ben-Tal et al 1994), (g) Reformulation-Linearization
methods (e.g. Sherali and Alameddine, 1992; Sherali and Tunchilek 1992), and (h) Interval methods (e.g.
Hansen 1979). The probabilistic methods include (i) random search approaches (e.g. Kirkpatrick et a.
1983), and (ii) clustering methods (e. g. Rinnoy Kan and Timmer 1987). Recent books for global
optimization that discuss the above classes are available by Pardalos and Rosen (1987), Torn and Zilinskas
(1989), Ratschek and Rokne (1988), Horst and Tuy (1990) and Floudas and Pardalos (1992).
_ Contributions from the chemical engineering community to the area of global optimization can be
traced to the early work of Stcphanopoulosand Westerberg (1975), Westerberg and Shah (1978), and Wang
and Luus (1978). Renewed interest in seeking global solution was motivated form the work of Floudas et
al (1989). The firgt exact primal-dual global optimization approach was proposed by Floudas and
Visweswaran (1990), (1993) and its features were explored for quadratically constrained and polynomial -
problems in the work of Visweswaran and Floudas (1992), (1993). At the same time Swaney (1990)
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proposed a branch and bound global optimization approach and more recently Quesada and Grossmann -
(1993) combined convex undeiestimators in a branch and bound framework for fractional programs.
Manousiouthakis and Sourlas (1992) proposed a reformulation to a series of rever se convex problems, and
Tsirukis and Reklaitis (1993 a,b) proposed a feature extraction algorithm for constrained global
optimization. Maranas and Floudas (1992,1993,1994 a,b) prdposed a novel branch and bound method
combined with a difference of convex functions transformation for the global optimization of atomic
clustersand molecular conformation problemsthat arisein computational diemistry. Vaidyanathan and
El-Halwagi (1994) proposed an interval analysis based method and Ryoo and Sahinidis (1994) proposed
reduction testsfor branch and bound based methods.

In this review paper, we will focus, on deterministic global optimization methods since they
provide a rigorous framework for exploiting the inherent structure of process synthesis models . In
particular, wewill discuss decomposition based primal-dual methods and branch and bound with difference
of convex functions global optimization approaches developed in the Computer-Aided Systems Laboratory,
CASL, of the Department of Chemical Engineering of Princeton University.

Decomposition Methods
Floudas and Visweswaran (1990, 1993) proposed a deterministic primal-relaxed dual global
optimization approach, GOP, for solving several classes of non-convex optimization problems for their

global optimum solutions. These classesare defined as:

Determine a globally e-optimal solution of the following problem:

min f(x.y)
Xy
bjetto g(xy) £ O (P
h(xy) = 0
X € X
y €Y

where X and Y are non-empty, compact, convex sets, g(x,y) isan m-vector of ineguality constraints and
h(x.y) isap-vector of equality congtraints. It isassumed that the functions ftx.y), g(x,y) and h(xy) are
continuous, piecewise differentiable and given in analytical form over X x Y. Thevariablesy are defined in
such away that:

(a) f(x,y) isconvex in x for every fixed y, and convex iny for every fixed r,

(b) g(x,y) isconvex in x for every fixed y, and convex iny for every fixed x and
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(© A(xj)isaffiirinxforevei 7ftted>,aiulaffinein>tocveiy fixedx.

Examples of process synthesis problems with this structure are superstructures for separation
systems, and heat exchanger networks in which balance equations involve bilinear terms, as well as phase
equilibrium problems that can be transformed so as to exhibit the bi-convex characteristics of the above
conditions.

Making use of dudity theory along with several new theoretical properties, a global optimization
agorithm, GOP, has been proposed for the solution of the problem through a series of primal and relaxed
dul problems that provide valid upper and lower bounds on thegloba solution. The GOP agorithm
decomposes the original problem into primal and relaxed dual subproblems. The primal problem is
solved by projecting on they variables, and takes the form:

wyk) = MB* £(xy%)

X

subject to gx/) £0 (P2)
hx) * 0.
X€ X

A feasible solution x* of the primal problem (P2) with objective viy*) represents an upper bound
on the globa optimum (i.e. Upper BouMfevfy*;) solution of (Pl), and at the same time it provides the
Lagrangemultipliers X*. |1L* for theequality and inequality constraints respectively.

The Lagrange multipliers (X*. \i¥) are subsequently used to formulate the Lagrange function L (x,y;
X*. \fy which is used in the dual problem. Invoking the dual of (PI) and making use of several properties of
the problem structure, the GOP agorithm solves arelaxation of the dua problem through a series of relaxed
dual subproblems. They-spaceis partitioned into subdomainsand each relaxed dual subproblem representsa
valid underestimation af* (P1) for aparticular subdomain. Each relaxed dual is awociatftd with a combination of

bounds B, of the x variables which appear in bilinear X-y products in the Lagrange function, and takes the
forms:

MIN HB
S.L
: 7
ugzl.{xs-’.y. l*.nk)x:
Vx L(x.y.z*.p")]x; $0¢ 2P =2 lem12..(R-1)
Yy, L(x.y.lt.uk) L 208 .x‘-nJF = xf'
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(P3)

current
Ve, LOCYX N \NK * 0 «f xf? = &P fiteration
K

Vi L(xy K uK) K 20 ¢ xPP st

¥

Thefirst three sets of constraints of (P3) correspond to the previous (K -1) iterations with the firgt
one dencting the L gepagf. undfifpditPftting cute and the second tnd third defining the partitioning of the y-
space. In the current iteration K the bounds Bj of the previous iterations are fixed while the current
combinations of bounds Bp need to be considered. The last three sets of constraints, which change as B,
change, are the underestimating cuts for the partitioned subdomain under consideration. Hence, the relaxed
dual problems at the current iteration K are equivalent to setting the x-variables to a combination of their
bounds Bp,and solving for a corresponding domain of the y-variables. After solving (P3) for all combinations
of bounds Bp, we select the minimum of these solutions and the solutions of the previous iterations. This
will provide the new y to be considered in the primal problem (P2) and its corresponding solution is
guaranteed to be a valid lower bound on (PI). Solving the primal problem (P2) and updating the upper bound
as the minimum solution found, a monotonically non-increasing sequence of updated upper bounds is
generated. Solving thereléxed dual problems (P3), a monotonically non-decreasing sequence of valid lower
bounds is generated due to the accumulation of previous congraints. Asaresult, the GOP algorithm attains
finite conver gence to an e-global solution of (P1) through successive iteration between the primal and relaxed
dual problems.

The GOP algorithm along with itsprimal problem (P2) and itsrelaxed dual problems (P3) havean
interesting geometrical interpretation. Figures 7a, 7b and 7c illustrate graphically the GOP applied to the
motivating pooling/blending problem discussed earlier. For a garting point of p * 2, the primal problem
corresponds to point A of Figure 7a. Note that for p * 2 the primal problem is a linear programming
problem with objective equal to zero. The y-space, which is 1 £p £ 3, is pardoned into 2 sub-domains,
onefor 1£p£2 and theother for 27 p £ 3, and one relaxed dual problem is solved for each sub-
domain. Figure 7a shows the linear underestimator AB for 1 £p S2, and the underestimator AC for
2 £p £3. Notethat the underetimatorsarelinear since therelaxed dual problemsare linear in p and the
points B and C correspond to the éolutions of the corresponding relaxed dual problems. Also note that the .
underestimator AB passes through the global optimum (p * 1.3, -750). At the end of the firgt iteration we
have an upper bound of zero and a lower bound of -1500. Since -1500 < -350, the next point under
condderation for pisp = 1. For p « 1 the primal problem has as solution point D with objective value of
-700. Sincepoint D isin the boundary of therangeof p, there is only onerelaxed dual problem and hence

one underegtimator, shown as DE in Figure 7b, where point E is the solution of therelaxed dual problem.
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At the end of the second iteration, we have an upper bound of -700 and a lower bound of -884.61. Since
-884.61 < -350, the next p under consderation isp « 1.41. Figure 7c shows the underestimating function
after three iterations of the GOP algorithm. Note that we have a piece-wise linear underestimating function.
Also note that since the primal problem for p« 1.41 has lower value than -350 we can eliminate the domain

2 £p £3. The GOP algorithm has quickly identified the region of the global optimum by providing tight

upper and lower-bounds, and conver ges to the global solution in 6-7 iterations.

Visweswaran and Floudas (1990) demongrated that the Global Optimization Algorithm. GOP, cm
address several classes of BoB-coovex mathematical problems that include:

(i) Bilinear, negative definite and indefinite quadratic programming problems.

(if) Quadratic programming problemswith quadratic constraints.

(iii) Uncongrained optimization of polynomial functions.

(iv) Optimization problems with polynomial constraints.

(v) Congrained optimization of ratiosof polynomials.

Analysis of the results, obtained via the computational experience of the GOP algorithm on the
above mentioned classes of nonconvex optimization problems, verified that a global optimum solution can be
obtained from any darting point

Visweswaran and Floudas (1992) studied the class of polynomial functions of one variable in the
objective and congtraints of problem (PI) and showed that the primal problem reduces to a single function
evaluation whilethe relaxed dual problem is equivalent to the smultaneous solution of two linear equations
in two variables. The resulting global optimization approach was demongrated to perform favorably
compared to other algorithms.

Visweswaran and Floudas (1993) proposed new theoretical properties that enhance significantly the
computational performance of the GOP algorithm. These properties exploit further (i) the structure of the
linearized Lagrange function around x¥, which contains bilinear termsin x and y, linear termsin x, and either
linear or convex termsin y, and (ii) the gradients of linearized Lagrange function around x*, which arelinear
functions of only the y variables. Thefirst property identifies the combinations of bounds that need not be
considered if the gradients of the linearized L agrange function maintain the same sign. The second property
shows that if the gradient of.the linearized Lagrange function with respect to xi is zero, then we can set x\ to
either itslower or upper bound. Thethird property allowsfor updates of the bounds on the x variables at each
iteration. Properties 1 and 2 reduce significantly the number of combinations of bounds of the x variables,
and hencereduce the number of relaxed dual problems that needed to be solved at each iteration. Property 3
results in tighter underestimators for each of the partitioned subdomains, which in turn results in faser
conver gence of the upper and lower bounding sequences. The effect of the new properties is illustrated
through application of the GOP algorithm to a difficult indefinite quadratic problem, a multiperiod tankage
quality problem that occurs frequently in the modeling of refinery processes, and a set of pooling/blending

problems from the literature. In addition, extensive computational experience is reported for randomly
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generated concaveand indefinite quadratic programming problems of different sizes. Theresults show that the
properties help to make the algorithm computationally efficient for fairly large problems. Visweswaran and
Floudas (1994) presented a (MILP) formulation for aU relaxed duak ai each ben”on of the GOP algroithm.
This is baaed on a branch and bound framework for the GOP and allows for implicit enumeration of the
partitioned subdomains.

A very important advance on the GOP approach hasbeen recendy made by Liu and F k > (1993).
Itisshown thai the GOP approach can beapplied to very general dasses of nonlinear problems defined as.

MIN F(X)

X

ST. Gi(EO  i«l,2,...,m (P4)
X€ X

where X isa non empty, compact, convex set in R", and the functions F(x), Gi(x) are C? continuous on X.
This result, even though it is an existence theorem, is very significant because it extends the classes of
mathematical problemsthat the GOP can be applied tofirompolynomialsor ratios of polynomialsto arbitrary
nonlinear objective function and congtraints that may include exponential termsand trigonometrk: termswith
the only requirement that these functions have continuous first and second order derivatives. Based on this
result, it isclear the GOP approach isapplicable to very broad mathematical problems.

Branch and Bound Methods with (D. C.) transformatton
A novel branch and bound global optimization approach which combines a special type of

difference of convex functions  tranformation with lower bounding underestimating functtons was recently
proposed by Maranas and Floudas (1994 ab). This approach is applicable to the broad class of
optimization problems gated in (P4), and this special type of (IXC.) transformation is the basis of the
result reported in Liu and Floudas (1993). In the sequel, we will discuss the essential elements of this
approach by considering the problem of:

MIN F(x)

X
<P5)
ST. x€X * {xj[xf £ xj £ xi£xj\i=1,2,...,n}

where X isa nonempty, compact, convex set in R", and the objective function F(x) is C? continuous on

X.

Adding a separable quadratic term to F(x), introducing new variables x{ * x; and subtracting the
sameterm firom F(x) we have;




MIN F(x) + ai[xf-—xl-x:]

=]
xfiXj £ xj
(x) sx{<(x{)°
| (P6)
ST. xj-x{ =0 - f«1.2. .. n

Thekey ideais to employ eigenvalue analyss and define the nonnegative parameter ain uch a
way that thefollowing tern:

+(x)-F(x) + a £x?
i=1
becomes convex. Then, (P6) takestheform

MIN o(x) —a Y x,x]

inl
xf EX; EXF

(x))' sx;s(x]) | (FT)
ST Xj - x[ = 0

which has as objective a difference of two convex functions out of which the one that is substracted is
separable quadratic. Formulating the dua of (F7) and goplying die KKT conditions, Maranas and Floudas
(1994JBL) showed that thedud of (P7) isequivaent to (P8) (see Appendix A3 of that paper):

MIN L =5 14 X x|
| £ = J (P8)
XfAXi <xf

where a is a nonnegative parameter which is greater or equa to the negative one haf of the minimum

eigenvalue of the Hessian of F(x) over the box xf £ x £ x"; i°** 1 2 ..n

/ -1 T

ti.e af MAX| Oy-—iﬂn > j ) Note thet the term added to F(x) has the effect of overpowering the
LY

nonconvexity characterigtics of F(x) with the addition of the term (2 @) to all of the eigenvalues of its




Hessian. The smaller the value of a, the tighter the uiulefestimator Ux) is fcr F(x) which may imply less
total manber af iteral(ionsfor con\ve'rgence. Hence, onewould ideally desirethenon negative parameter ato

be exactly equal to I\—;‘ min | **** ex>%** th* tothe branch and bound widi difference of convex
/

£ %
function transformation it suffices to find an upper bound Q ti—T’\-a}vi 1 p* KA o gx xgg tothis

upper bound. In this case we add more convex terms than needed and do not produce the tightest
waderestimtol , hat we satisfy dierequiredconditionsfor convergence.

Given F(x), the aekction ef the nonnegative parameter a may involve (i) die derivation of analytical
expressions for the eigenvalues af its Hessian, or (1) the devetoproemcrf bounds on the eigenvalues of the
Hessian of F(x). Mannas and Floudas (1992), (1993) studied alternative (i) for a variety of
atomic/molecular clusters.. They derived analytical expressions for the eigenvalues for any potential
function which is a function of only the distance between atoms (e. g. Lennard-Jones, Coulomb, Mie,
Morse, Gaussian, Bom-Mayer, Buckingham). Mannas and Floudas (1994. a, b) proposed a number of
ways of obtaining bounds on the eigenvalues of the Hessian of F(x). One general way is via the use of the
measure of a matrix, a concept recently applied to the stability ef reactor networks at die process synthesis
level (see Kokossisand Floudas, 1994). If adenotes die Hessan of F(x),thcn the measure of the matrix
(-A), denoted as\i (-A), providesan upper bound on (-Xmin)- ''® formulation isa convex problem, and we
can use either the 1 or ©o norm.  Appendix A.2 of Mannas and Floudas (1994*), describes such a
formulation.

It should be pointed out however that if Xmin goesto (- «>), then thisrepresentsa casein which we cannot
creste <) convex. A sufficient condition which excludes such a possibility iswhen the dements of the
Hessian matrix have finite values. This can be seen easily using the measure ef a matrix concept One
instance of Xmin tending to (- °°) isreported in the Weber's facility location problem (see Mannas and
Flouds, 1994.C)

Thefunction L(x) isalower bounding function of F(x), and exhibits the following important properties:
Property 1.  L(x)isawaysavalid underestimatorofF(x) insdethebox [xf; x}], that is

L (x)<IF(x).

Property 2. L(x) matchesF(x) at all corner points af the box.
Property 3:  L(x)isconvex in thebox [xf, x}].

Property 4. Themaximum separation between L (x) and F(x) isbounded and is
proportional toaand to the suare of the diagonal of thebox [xf, xj ], that is

31




max  (FO-Ux)=iai (x?-xf)‘

xf sx; gx!

Property 5.  TheundercdiiiuttorL (x) congtructed over tsub-tox of thecurrent box is

always lighter than the underestimator of the current box.

In summary, the properties show that L(x) is a convex, lower bounding function of F(x),'L(x)
matches F(x) at all comer points ef the box congraints insde which it hasbeen defined. The values of L (x)
at any point, if L(x) is constructed over a tighter box of constraints each time, define a nondecreasing
sequence. Also note that Property 4 answer sthe question of how small the sub-boxes must become before
the upper and lower bounds of F(x) are within £ If 5 is the diagonal of the sub-box, and E is the

conver gencetolerance, we have have:

8« 4e
a

Notethat 8 isproportional to the squareroot of e and inversely proportional to the square root of a.
Asareault, the smaller valueof a thefaster the conver gencerate becomes.

These properties of the lower bounding function, L(x), coupled with an efficient partitioning
schemeresulted in a branch and bound global optimization approach that is guaranteed to converge to an e-
global solution in afinite number of iterations. Maranasand Floudas (1994*) analyzed the structure of the
branch and bound tree resulting from the subdivision process and developed formulas for finite upper and
lower bounds on the total number of iterationsrequired for £ - convergence. The maximum number of
iterations is exponential in the total number of variables while the minimum number of iterations depends
linearly on the total number of variables. Computational experience with molecular conformafio'n
problems indicated that the total number of iterations is much close to the minimum one.

Figure 8 provides the geometrical interpretation of the lower bounding scheme for a function F(x)
of one variable x in abox[x", x"]. Starting at a point x° we partition the original box into two intervals
[x", x°] and [x°, x“], while F(x°) is the current upper bound. For each interval we solve the
corresponding convex lower bounding problem and obtain their respective minima at x*, L (x*) and x?,

L (x?) respectively. Noteat thispoint the underestimating functions shown with non-solid lines.
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Figure 8: Geometric Interpretation of
Branch and Bound with (D.C.)

> mInFJV), single variable problem in X

v L(X) = F(X) 4+ a(X"®® -XXX"BP - X)
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Since L(x*) < L(x?) we focus on the [x", x°] for the second iteration, evaluate the function F(x)
andpaitition the interval [x", x°] into the intervals [x", x!] and [x*, x°]. For each of these intervals we
obtain the undcrcstimators and their minima which arc at x* and x* respectively. SinceL (x*) > L (x*) we
focuson theinterval [x*, x*] forthe next intention and evaluate F(x*). Note that we are very closeto the

global solution in just two iterations.

The branch and bound with (D. C) transformation was applied to (a) clusters of atoms/molecules in which
only non-bonded interactions take place, (b) molecular sructuredetenninatm of small molecules in which
bonded and non-bonded interactionsar e taken into account, and (c) financial planning modelsfor multiperiod
operation. Application (a) resulted in ratiosof polynomialsand exponential termsin the distances between
atoms. Application (b) involved very complex expressionsnot only in the distances but also in the dihedral
angles and had ratios of polynomials, exponentials, and trigonometric terms. Application (c) employed
multiperod models for stochastic programming using the mean-variance model over all possible scenarios,
and resulted in generalized polynomials and square root terms. All computational results highlight the

power of the (D. C.) transformation within a branch and bound framework.

Global Optimization Tools and Computational Experience
Global optimization tools have been recently developed in the Computer Aided Systems
Laboratory, CASL, of the Department of Chemical Engineering at Princeton University for the primal-
relaxed dual algorithm, GOP, and the branch and bound approach that combines (D.C.) transformation and
a special type of lower bounding function. These tools are denoted as cGOP and OtBB for the
decomposition and branch and bound global optimization algorithms respectively. Both cGOP and aBB
are written entirely in C and make use of MINOS, NPSOL, CPLEX for linear subproblems; MINOS,
NPSOL for nonlinear programming subproblems. They have been implemented as a library of subroutines
with emphasis on modularity and expandability, the subroutines for the sametask have the same interfaces,
and modificationsin the problem data are allowed at any stage. Both cGOPand aBB have a user specified
function capability which allows for connection to any external subroutine that can be treated as a black
box. Thecurrent versionsof cGOPand aB B can beeither sandalone or can be called as subroutines.
Computational experience with cGOP and aBB isshown in Table4 and Table 5 for awide variety
of applications, that include: pooling/blending problems, heat exchanger network synthesis problems,
nonsharp separation synthesis, problems with quadratic obj ective and box constraints, concave
programming problems, bilevel linear optimization problems, minimization of the Gibbs free energy with
NR1L and UNIQUAC in phaseand chemical reaction equilibrium, tangent plane stability criterion in phase
equilibrium, clusters of atoms and molecules, molecular gructure determination problems, and financial
planning problems. Thefirg three and the last pooling problems correspond to the Haverly problem and

themultiperiod tankage problem and aredescribed in Floudasand Visweswaran (1990) and Visweswvaran and
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Floudas (1993). The fourth and fifth pooling problems are described inBen-Taletal (1994). Thefirst two
heat exchMiger problems are taken from Floudasand Ciric (1989) while the lagt three aredescibed in Ben-
Taletal.(1994). Thefirg two heat exchanger problems are taken from Floudas and Ciric (1989) whik the
last three are described in Quesada and Gfossmann (1993). The separations problem is described in
Aggarwal and Floudas (1990). The minimization of Gibbsfirceenergy problemsarc discussed in McDonald
and Floudas (1994a). The tangent pine stability criterion problems are presentéd in McDonald and
Floudas (1994b). The quadratic objective with box condraints, concave objective with linear constraints,
and indefinite quadratic problems are discussed in Visweswaran and Floudas (1993). The Lennard Jones
clusters of atoms problems are discussed in Mannas and Floudas (1993). The molecular sructure
determination problems are presented in Maranas and Floudas (1994jub.). The molecular sructure
detenninadon problems arc presetted MM amnas and Floudas (1994 ab). Thefinancial planning problems
aredescribed in Maranaset al. (1994). AsTables4, 5 illustrate, small medium, and in certain caseslarge
global optimization problems can be solved within a modest computational effort.
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Table S Computational Rowilte with (XBB

Cluners of Aims/Maleciics

bl Name haV2 NCV BT
us 18 3 1%
u13 33 3 15%
LJ18 48 3 1.5%
LJ22 60 3 15%
U24 66 3 13%

Problom Name ly. NQV. RI
PRO 21 2 0.01%
APRO 27 . 2 0.01%
ABUT 51 3 0.01%
BUT 54 3 0.01%
NPEN 90 4 0.01%

Financial Plangi

Exoblem Name hu'd NCV. N
FM 100 8 8 n
FM300 8 8 1
FM500 8 8 1
FM1000 8 8 1
FM 10000 8 8 1n
FMC100 8 8 u
FMCTX100 8 8 1

i

20
16
19

Ni

200
1000
100
1000

N~poowhN E

TV : tota number of variables
NCV : nonconvex variables
RT:relativetolerance
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CONCLUDING REMARKS

This paper has attempted to present an overview of two major emergihé areas in algorithmic synthess:
logic and global optimization. Asindicated at the beginning of the paper these areas-have been motivated
by the need to improve the modelling in discrete optimization techniques, reduce the combinatorial search
and avoid getting trapped into poor suboptimal scdutions. In the next two subsections we briefly discuss
somefuturedirectionsfor research.

Current and Future Directions for Logic Based Optimization

Comparing the review on MINLP given by Grossmann (1990a) at the previous Snowmass mesting, it is
apparent that the work on logic based optimization has provided a new direction to address the need of
integrating qualitative knowledge into mixed-integer obtimizalion models for synthesis (see also Rippin,
1989). As has been shown by developing new-models and branch and bound methods that effectively
incorporate logic, order of magnitudereductionscan be achieved in the combinatorial search involved in
these problems. Furthermore, another very important aspect has been to achieve a better understanding of
some fundamental issues related to the modelling of discrete optimization problems. In particular, the
concept of w-MI P representability has proved to be a useful theoretical concept few characterizing the nature
of discrete congtraints. While significant progress has been made, it is clear that a number of major issues
and challenges till remain for futureresearch. Theseincludethefollowing:

1 The handling of temporal and modal logic ischallenging and should proveto be very usgful for a
wide range of problemsin process scheduling.

2. Other kinds of logic cuts should be investigated apart ffom the logic relating unitsin a
aupergructure. The cutsaffect the solution efficiency considerably and also allow one to better understand
the modelling of discrete programming problems. One possibility for logic cuts are constraints that prevent
multiple mathematical representationsfor the same design configuration within a superstructure.

3. M ost of the work on integration of logic has been directed to discrete linear problems. Still much
work remainsin theintegration of logic for nonlinear problems. In addition, thereisthe issue of
integration with new cutting plane methods such astheoneby Balaset al. (1993).

4. The problem of developing techniques to efficiently modd and solve supergructures of large scale
process flowsheet problemsisanother major issue. The use of digunctions should servetoreducethe level
of nonlinearity present in a mixed-integer representation,as well as allow for a systematic scheme for
generating efficient models for these problems.

5. Further study isrequiredon ther epresentability of dig unctive congraints as mixed-integer
congtraints. Our work on w-MIP representability can only beregarded aspreiminary work in thearea and

hasjust demongrated the potential for research in thisproblem. A better undersanding of representability

issues could lead to the development of modelling languages for generating efficient discr ete optimization
models.




6. The ctevetopment of computer softwareth” efficiently susomates the various approaches based on
logic and their more extensivetesting on Iarge'scaleproblemsisstill required.
7. Theintegration with other design methodologiesshould beexploit in which logic information
can be generated from a preliminary screening. Exampleof thisarethework by Friedleretal (1991) and
thework by Daichcndtand Grossmann (19%4aJ>).
8. The ultimate objectiveis| D provideaso” foundation to new danesof hybrid optiinization
modelswhich areexpressed in terms of equationsand logic relatwns. This shouW also provide a clefflkik
with dynamic smulation models which yi#A tend to exhibit this sructure.

Progressand better understanding in theabove problem will undoubtabiy lead to a new generation
of discrete optimization models and solution methods. Furthermore, it is clear that these efforts can
complement advancesin global optimization.

Current and Future Directions in Global Optimization

In the global optimization section we have attempted to present an overview of global optimization
methods which are based on-the concepts of decomposition and branch and bound coupled with a (DC)
transformation. From thisreview, it is apparent that we have experienced a significant progressin the area
of global optiinization and its applications in Chemical Engineering over the last five years. New
theoretical results and algorithms have emerged and their application to a number of Process Synthesis,
Design, and Control problems has already resulted in encouraging results. At.the sametime applicationsin
the area of computational chemistry, facility location, and financial planning demonstrate clearly the
potential impact of global optimization in the design of new materials and biological systems, the design of
process layout, and the design of financial management systems. It isalso worth noting that it isthe first
time that the progress in the area of global optimization is reviewed in a FOCAPD meeting, which is
indicative of the recent advances, the potential usefulness, and the growth of this area in Chemical
Engineering Design and Control. Global optimization, asa new area, however has a number of important
challengesand several open problemswhich will be the subject of current and future research woik. These
challengesinclude:

1) new global optimization approaches for non-convex (MINLP) models arising in Process
Synthesis;

) global optimization methods for generalized geometric programming problems (e.g. signomials)
which arisein many design and robust control applications,

©)] new global optimization methods for nonconvex models with trigonometric and exponential
functions that arisein Computational Chemistry, Biology and fMwumil reaction engineering applications;
4 global optimization methods which can determine all solutions of nonlinear systems of equations
that arisein phaseequilibrium, azcotropic distillation, and r eaction engineering;

3




(5) global optimization methods for bilcvel and muUileve linear and nonlinear models that appear in
planning problems, flexibility analysis, and optimal control approachesin batch distillation;
(6) new glpbal optimization approaches whkA can addressimpliciUy define functions, and
(7 digributed computing methods for global optimization with theaim at addressing medium to large
scale optimization problems.

Even though the above challengesr epr esent undoubtedly formidable tasks, we should see exciting
developmentsover the next dfcatfp.
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ABSTRACT

This paper presents an overview on two recent developments in optimization techniques that address
previous limitations that have been experienced with algorithmic methods in process synthesis:
combinatorics and local optima. The first part deals with the.develppment of logic. baaed models and
techniques for discrete optimization”rich can m&ew'molpimuuumuwdlumng
the combinatorial search. It will. beshewn that variouslevelscan-1* considered for theime%nttion of logic
in mixed-integer optimization techniques. The second part deals with the development of deterministic
optimization methods that can rigorously determine the global optimum in nonconvex optimization
models. It will be shown.thai this can feeeffectively accomplished with algorithms that exploit identifiable
Eqrélcilneg_r strggcé(tjjreﬁ Examples are presented throughout the paper and future research directions are also
riefly discu

INTRODUCTION

Process synthesis continues to be a major area of research in process systems engineering. Significant
advances have been achieved-in terms of developing synthesis methods for subsystems (reactor networks,
separation systems, heat exchanger networks) and for total flowsheets. Earlier reviews on general
developments can be found in Hendry, Rudd and Seader (1973), Mavacek (1978) and in Nishida,
Stephanopoulos and Westerberg (1981). A review on algorithmic methods based on MINLP was given by
Grossmann (1990a) at the previous POCAPD meeting in Snowmass. A recent review and trendsin MINLP
based methods wer erecently presented by Grossmann and Daichendt (1994) at the PSE94 meeting in Korea.
As for the synthesis of subsystems, reviews have been given by Gundersen and Naess (1988) on heat
exchanger networks, and by Westerberg (1985) and Floquet, Pibouleau and Domenech (1988) on separation
systems. From thesereviews it isapparent that some of the major trends in the synthesis area include an
increasing emphasis on the use of algorithmic methods that are based on MINLP optimization and their
combination and integration with other design methodologies.

It is important to note that from a practical point of view a major motivation behind algorithmic
techniques is the development of automated tools that can help design engineersto systematically explore a
large number of design alternatives. From a theoretical point of view a-major motivation is to develop
unified representationsand solution methods. Given the clear progressthat hasheen madein thelast decade
in algorithmic techniques, and given the advances that have:taken place in optimization and computer
technology, the debate of heuristics or physical insights vs. mathematical programming has become largely
irrelevant. It has generally become clear that a comprehensive approach to process synthesis will requirea
combination or integration of the different types of approaches. It has also become dear that significant




work and progressare till required in the underlying methods that support each of these approaches. It is
precisely thisissuethat isconsidered in thispaper in the context of_:algorithmic methods.

This paper concentrates in two fundamental areas of optimization techniques that are used to
support algorithmic methods in process synthesis. Specifically, we present an overview of two major
advances that have recently taken place: (é) die incorporation of logic in mixed-integer optimization
methods to reduce the combinatorial search and to facilitate problem formulation; (b) the development of
rigorous global optimization techniques that can handle nonconvcxities in the model and avoid getting
trapped in suboptimal solutions. These advances have been largely motivated by two major difficulties that
have been encountered in the solution of MINLP models for process synthesis. combinatorics and local
optima. The former are due to the potentially large number of Sructural alternatives that arise in process
synthesis, thelatter are due to the nonconvexities that arise in nonlinear process models. The negative
implication in the former is often the impossibility of solving large syﬁthesis models; the negative
implication of the latter is generating poor suboptimal designs.

Whilenew developmentsare still under way, areview of the progressachieved up todatein logic
based methodsand in global optimization would seem to be timely asthis might hopefully promote further
research work. These algorithmic techniques are also significant in that they can be applied to other areas
such as process scheduling and process analysis. The paper is organized as follows. We firgt discuss
general aspects of process synthesis to see how the work described in this paper fitsin the overall scheme.
We next present a motivation section to illustrate difficulties in existing algorithmic methods with
combinatorics and nonconvexities. The remaining part of the paper then concentrates in providing the
overview of the new developments in logic and global optimization. Finally, we present the conclusions
whereweindicate futuredirections for research.

GENERAL COMPONENTS OF PROCESS SYNTHESIS

Algorithmic methods in process synthesis arerather general in scope and they involve the following four
major components. (a) Representation of space of alternatives, (b) General solution strategy; (c)
Formulation of optimization model; (Si Application of solution method.

The representations can rangefrom rather high level abstractions such asis the case of targeting
methods, toreatively detailed flowshest descriptions such asisthe case of superstructure representations. It
isimportant to notethat theserepresentationsare in fact commonly closely related astheir differenceliesin
the level of abstraction that is used.

Having developed a representation, the next step to consider isthe general solution srategy. The
two common and extreme solution strategies are the smultaneous and the sequential approaches. The
simultaneous strategies attempt to optimize smultaneously all the components in a synthesis problem in
order to properly captureall the interactions and economic trade-offs. While conceptually superior, these
drategiesmay giveriseto larger problems. The sequential approach on theother hand has the advantage of
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dealing with smaller subproblcms since they se'queht'i'a]iiy"décbmpose the problem, although often at the
expense of sacrificing optimality.

Thenature of die optimization modelsis of cour se heavily dependent on the typeof representation
as well as on the general solution strategy being used Target models often involve only continuous
variables since they usually do not generate topologies nor do they consider capital cost as they deal with
higher level objectives (minimize utility consumption, maximize yield). Therefore, these models
commonly give rise to linear (LP) or nonlinear programming (NLP) problems. At the other extreme-
superstructufe models determine topologies and operating conditions, and account for capital costs, often
requiring 0-1 and continuousvariabtegiving riseto ntixed-intcger Unesr (MILP) or mixed-integer nonlinear
(MINLP) optimization models. Wiftin each of the levels of itfxeseittationtte degree of rigarousness of the
model can of cour sealsorangefromthe simpler short-cot modelsto detailed smulation models.

As for the solution methods a global optimum solution can be guaranteed if the problem can be
posed asan LP or MILP problem. Furthermore, in the case of LP models efficient solution times can be
expected since these problems are theoretically solvable in polynomial time. This is however not the case
of the MILP problems which generally are NP-complete, and therefore may have exponential time
requirements, at least in theworst case. If the problem is posed asan NLP or MINLP the first drawback is
that a unique global solution can only be guaranteed if the NLP or the continuousrelaxation of the MINLP
areconvex. Thisisof courseonly a sufficient condition. But nevertheless, nonconvexities are prevalent in
synthesis problems, often giving riseto multiple local solutions, or in fact even preventing convergence to
feasible solutions with conventional NLP techniques. In addition to the numerical and theoretical
difficulties of handling nonconvex models, there s the added difficulty of potential combinatorial explosion
for theMINLP case. In the context of process Synthesis agood example of the dilemma between the use of
MDLP and MINLP models are the approaches for superstructure optimization of flowsheets by Papoulias
and Grossmann (1983) and by Kocisand Grossmarm (1989). Theadvantage of the former isthat the global
optimum can be guaranteed but at the expense of using a discretized and approximate process model. The'
advantage of the latter isthat nonlinear process models can be explicitly handled, but with the disadvantage
that the global optimum cannot be guar anteed.

Based on the above discussion, it is clear that in order to properly support the development of
algorithmic techniques, whether for targeting or supersructure models, or for smultaneous or sequential
approaches, it isimper ative that limitations due to combinatorics and nonconvexities be addressed. It isin
this context that the two motivating examplesbelow are presented.

MOTIVATING EXAMPLES
MILP Model for Heat Integrated Distillation Sequences

In order to illustrate potential combinatorial difficulties with synthesis problems, consider the
MILP model reported in Raman and Grossmann (1993a) in which hem integration is considered between




different separation tasks in the synthesis of sharp ditillation sequences (see also Andrecovich and

Westerberg (1985) and Floudas and Paulcs (1988)). An example of a superstructure for 4 componentsis -

given in Fig. 1 . For the heat integration part, it is assumed that the pressures of the columns can be
adjugted in such away that the condenser of every column can potentialy supply heat to thereboilersof the
other columns as shown in Fig. 2 (multieffect columns are not considered). The MILP model involvesas
0-1 variables the potential existence of columns and the potential beat exchanges between columns and
reboilers, and as continuous variables the flows, heat loads and temperatures of condensers and reboilers,
with which pressure changesarc accounted for. Theobjective function consists of die minimization of the
investment cost of the columns and the operating cost for the utilities. The congtraints involve mass and
heat balances, and logical congtraintsthat enfer ce feasible temperatures if heat exchange take pla” and zero
flows and heat loadsif the corresponding 0-1 variablesare 9t to zero.

For a four component system such as the one in Fig. 1 the MILP model involves 100 0-1
variables, 191 continuous variablesand 258 congraints. The 100 binary variables are split asfollows - 10 to
model the existence of the digtillation columns and 90 to model the existence of heat exchange matches
between the reboilers and condensers of the various columns. The computer codes ZOOM, OSL and
SCICONIC were tried for solving this problem. The three of them were not able to even find a feasible
solution after enumeiating mem than 100,000 nodes and after running more than 1 CPU hour on an I1BM
RISC/6000! A major reason for this performance was that the relaxation gap is very largein this problem;
the LP relaxation in which the binary variables are treated as continuous the optimum is SI,117,000/yr.
while the optimal MILP solution is $1,900,000/yr. As will be shown later in the paper, by using logic
rigorous optimization of this problem can beachieved in only few seconds!

Fig. 1. Superdructure for 4-compoDent example.
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Fig. 2. Heat integration between different separation tasks.

Nonconvex Model for Pooling/Blending Problems _

To illustrate the potentia difficulties associated with the existence of multiple solutions in
nonlinear optimization NLP problems, we will consider as mativating example the pooling problem
proposed by Haverly (1978) which is shown in Figure 3. Three crudes A, B, and G with diffe_rer'rt ulfur
contents are to be combined to form two products x and y which have specifications on the maximum
sulfur content Note that streams A and B are mixed in apool and it is the existence of such a pool that
introduces non-convexities in the mathematical modd in the form of bilinear terms between the sulfur

-qudity of the streams exiting the pool, denoted as p, and flowrates Py, Py of the pool exiting streams. The
objective in this pooling problem is to maximize the profit subject to (i) linear overdl and component
balances, (ii) bilinear pool qudity and product quaity congtraints, and (iii) bounds on the products and
sulfur quality. This problem has been studied using severd loca nonlinear optimization agorithms which
have been reported to either obtain suboptimal solutions or fail to obtain even a feasible solution (see
Floudas and Aggarwd, 1990 for a review of previous gpproaches and a decomposition strategy which
alleviates but does not diminate the multiplicity of loca solutions problem). Table 1 presents results of
local optimization algorithms (e.g. MINOS) for severd starting points.

Table 1: Loca Optimization for the Pooling Problem

Solution Found
No. Sianins Quality Objective vaue Quditv P
1 100 -750.0000 150
2 125 -750.0000 150
3 150 -750.0000 150
4 175 0.0000 175
5 2.00 0.0000 2.00
6 2.25 -125.0000 2.50
7/ 2.50 -125.0000 2.50
8 2.75 -125.0000 2.50
9 300 -125.0000 2.50




Figure 3: Motivating Example (Pooling Problem) '
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Figure 4; Optimal Solution in Projected Space
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The non-convex nature of this pooling problem is better illustrated via Figure 4 where the optimal .
solution of the pooling model is shown for different values of the of the pool quality p. Note that the
global optimum occursat p « 1.5, while there exists a local optimum at p * 2.5 and between p » 1LSand p
=2.2 (approximately) the optimal solutions are of the form of constant line. As aresult, several garting
points for p in theflat region or theregion close to the local optimum terminate with the local solution or
even fail to obtain a solution.

Floudas and Visweswaran (1990) applied the decomposition global optimization approach GOP,
which is discussed in the global optimization section, to this pooling problem, aswell as lar ge instances of
other pooling problemsand multiperiod tankage problems (see also Visweswar an and FIoudas 1993) where

the global optimum is obtained r egar dlessof the starting point

INTEGRATION OF LOGIC IN MIXED-INTEGER PROGRAMMING

In this section we present a brief review of previous work on the modelling and solution techniques of logic
based discrete optimization. We also review basic concepts for the representation of logic and inference
problems. We then describe our recent work at Carnegie Melon on the integration of logic in mixed-

integer optimization which has been primarily motivated by process synthesis problems.

Review of Previous Work

A major issue in the application of mixed-integer programming is the efficient modelling of discrete
decisions. Different representationsare often possible for the same model, each of which may be solvable
with varying degrees of difficulty. In somecasesit ispossible to even formulate an MH-P problem so that
itissolvableasan LP, or else, sothat itsrelaxation gap is greatly reduced. While some basic under ganding
has been achieved on how to properly formulaic special classes of mixed-integer programs (see Rardin and
Choe, 1979; Nemhauser and Wolsey, 1988), the modelling of general purpose problems is largely
performed on an ad hoc basis. The use of prepositional logic, however, offers an alternate framework for
systematically developing mixed-integer optimization models as discussed by Jerodow and L owe (1984) and

by Willtams (1988). -

Theroleof logic at the level of modelling of discrete optimization problems has also been studied
by Balas (1974, 198S) who developed Disjunctive Programming (DP) as an alternate representation of
mixed-integer programming problems. In this case, discrete optimization problems are formulated as linear .
programs in which a subset of congtraints isexpressed through digunctions (sets of congtraints of which at
least one must be true). An interesting feature in the digunctive formulation is that no 0-1 variables are
explicitly included in the model, which isthe more natural form to model some problems as, for instance,
in the case of jobshop scheduling problems. Also, as noted by Balas (198S), every mixed-integer problem

can bereformulated asa digunctive program, and every bounded DP can berefonnulated as a mixed-integer
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program. The reason the digunctive programming formulation has not been used more extensively is that
very few methods have been proposed to explicitly solve the problem in that form. Most of die research
has focused on characterizing the convex hull of digunctive constraints and on the generation of.strong
cutting planes which are included in the corresponding mixed-integer problem to strengthen the LP
relaxation (Balas, 1985; Jcrodow and Lowe, 1984). The only reported method, to our knowledge, that
explicitly solves problem isthe algorithm by Beaumont (1991) for the case wherethe functions are linear
and thereis only one congtraint in each term of every digunction. The method is similar to a branch and
bound search except that the benching is donedirectly on thedigunctions. Thisrequiresthe addition and
deletion of the correspoiHiingdis tive constraints in the LP subproblems. Although this may increase
the overhead in the computations, Beaumom showed that the number of n ot e required for the ennmeration
of thebranch and bound treecan often be significantly reduced.

In terms of integrating logic explicitly for improving the solution efficiency of mixed-integer
programs, aside from our own work which will be described in the next section (Raman and Grossmann,
1991,1992,1993a*, 1994), Lien and Whale (1991) considered the addition of a subset of unit resolution
cuts for the branch and bound solution of MILP problems which produced large reductions of enumeration
of nodesin the MILP formulation for heat integrated synthesis by Andrecovkh énd Wegterberg (1985). It
should also be mentioned that logic has been considered earlier in process synthesis with the purpose of

performing high level decisionsin the gructuring of process flowsheets (Mahalec and Motard, 1977).

Representations of the logic
Most of the work described above has been restricted to the form of logic calkd prepositional logic for
developing modelling and solution techniques for discrete optimization problems (see Menddson, 1987, for
general review on logic). Thebasic imit of a propositkmallogte expres'S*" which can correspond o a stase
or to an action, iscalled a literal which is a single variable that can assume either of two values, true or
false. Associated with each literal J\ its negation NOT Y (-. Y) issuch that [Y OR -ill is alwaystrue. A
digunctive clause is a set of literals separated by OR operators [v], and is also called a digunction. A
proposition is any logical expression and consists of a set of clauses />;, i»l,../ that arerelated by the
logical operatorsOR [v], AND[A], IMPLICATION [=>].

In synthesis logic propositions usually refer to relations of existence of units in a supergructure.
These are commonly expressed by a set of conjunctions of clauses,

Am{LjAL2A...... AlLg} (@)

where Li is a logical proposition expressed with boolean variables Kj in terms of implications, OR,
EXCLUSIVE OR and AND operators. In synthesis problems Y\ isa boolean variable representing the
existence of unit i and -1Y J its nonexistence. There are two ways of transforming the propositionsin A. In
the smplest case, the logic propositions are converted into the conjunctive normal fonn [CNF] by removing

the implications through contrapositions in each of the clauses Lj in (1) and applying De Morgaris




Theorem. In thisway each clause in the CNF from consists of only OR operators with non-negated and

negated boolean variablesasfollows:

QC_'“:«Pl 0!)“:/ .W] A[v ft) v <r))JA.*rv (R) A <-r,)] @

where Pi and ?i are subsets of the boolean variables that correspond to some of the 0-1 variables, and sis

the number of clauses.
In the second representation, the logic propositions in the CNF form are convened into the
digunctive normal form [DNF] (see Clocksin and Nfellish, 1984) by moving the AN operators inwards and

the OR operators outwar ds by applying e ementary boolean operations. The DNF form isasfollows:

D [i*Ql left \ [*QI ieGI J  Idt> '«5 ] W

where Qj and_(Sj are theindex sets of the boolean variables which correspond to a partition of all the 0-1
variablesy\ i=7,../> in nqn-negaled and negated terms. Each clause separated by a digunction represents
the assgnment of unitsin a feasible configuration* where it isassumed that each boolean variable has a one-
to-one corregpondence with the 0-1 binary variables of theM EP model. Therefore, r represents the number
of alternatives in the supersructure. While the DNF form is more convenient to manipulate, the drawback

isthat the tranformation from CNF to DNF has exponential complexity in the worst case.

Toillugrate the CNF and DNF'repr&entaIionsin (2) and (3), consider the small example problem

shown in Fig.5. Thefollowing prepostional logic expressions apply:

4. YZWv Y2 = 13 (process | or process 2 imply process 3)
L2 3 =* Y VY2 (process 3 implies process 1 or process 2)
L3 -tY\ v -.~2 (donot select process lor do not select process 2)
x2 Y1
x3
A B _ C
| x5 ; x7
X x4 2 x5

Fig 5. Superstructure for small example.

Applying the contrapostiveto Li and L2, and using De Morgan'étheorem, the corresponding CNF
representation] for thelogicis:

Ac= HivY3) A (72vK3) A (*3VvYNVYD A (-riv=F2) @
Digributing the OR over the AND operators, the corresponding DNFrepresentationisgiven by:
OD* <TVA-"2AYA) V (72A-iFI AY3) V ([Tl A -n72 A -1X3) (5)

Notethat thedigunctionsin (5) represent thethree alternativesin Fig 5.
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In order to obtain an equivalent mathematical representation for any prepositional logic expression, thiscan
be easily performed using the CNF form as a basis. We mugt first ‘consider basic logical operators to
determine how each can be transformed into an equivalent representation in the form of an equation or
inequality. These transformations are then used to convert general logical expressions into an equivalent
mathematical representation (Cavalier and Soyster, 1987; Cavalier**al, 1990).

Table 2. Representation of logical relations with linear inequalities

Logical Comments Badean Representation as
Relation Expression Linesr Inogualities |
Logical OR PiVP2V. .V |yi+y2+eeyr * 1
Logical AND Pi AP2A. . AR yizl

y221

el
Implication P1=P2 -.P1VP2 1-yl+y2* 1
Equivalence P if and only if P2 (-Pi VP2)A(-,P2v yi«y?2

(PI=*P2)A(P2=>PI) PI)
ExclusiveOR | exactly oneof thevariables PixPay.xpr YI+Y2+.+y=]
istrue

To each literal Py a Unary variable Y\ isassigned. Then the negation or complement of/* (-.Pj)
isgiven by 1 -y The logical value of true corresponds to the binary value of 1 and false corresponds to
the binary value of 0. The basic operators used in prepositional logic and the representation of their
relationships are shown in Table 2. With the basic equivalent relations given in Table 2 (e.g. see
William's, 198S), one can systematically modd an arbitrary prepositional logic expression that is given in
terms of OR, AND, IMPLICATION operators, as a set of linear equality and ineguality constraints. One
approach is to systematically convert the logical expression into its equvalent conjunctive normal form
representation which involves the application of pure logical operations. The conjunctive normal form isa
conjunction of clauses, Q\ A C2 A ... A gs. Hence, for the conjunctive normal form to betrue, each clause
Q\ must be true independent of the others. Also since a clause Q\ isjust a digunction of literals, Pjv />2 v
-V Ppit can be expressed in the linear mathematical form as the inequality.

37 ¢« 32+ ... e yr * 1 (6)




Symbolic and Mathematical Methods for Logic Inference _
The most common logic inference problem is the satisfiability problem where, given the validity of a set of
propositions, one has to prove the truth or validity of a conclusion which may be either a literal or a
proposition. This inference problem is one of the basic issues in artificia intelligence and data bases.
However, the general satisfiability problem for prepositional logic is NP-complete (Cook, 1971; Karp,
1972). Therefore, research has focused on identifying classes of problems within the general satisfiability
problem that can be solved efficiently. Knowledge based systems commonly require the use of Horn clause
systems which have at most one non-negated literal in each clause. The inference problem for this class of
prepositional logic problems can be solved in linear time using unit resolution (Dowling and Gallier, 1984).
The unit resolution technique (e.g. see Clocksin and Mellish, 1981) is one of the most common inference
techniques, and in simple terms, it consists of solving sequentialy each logic clause one at a time. Chandra
and Hooker (1988) have extended the class of problems that can be solved in linear time to include extended
Horn clause systems. One of the most effective logic-based methods for solving the geheral satisfiability
problem is the algorithm of Davis and Putnam (1960) as treated by Loveland (1978). This approach is
closely related to the branch and bound method for mixed-integer programming. Jereslow and Wang (1990)
have developed branching heuristics to improve the performance of the Davis-Putnam procedure. It must be
noted that although the previous work has been restricted to prepositional logic, the techniques used for this
class are essential to higher order representations like predicate Ibgic which involve additional logic operators
likeforal [V] and it exists [3].

Since the logical propositions can be systematically converted into a set of linear inequalities,
instead of using symbolic inference techniques, the inference problem can be formulated as an integer linear
programming problem. In particular, given a problem in which al the logical propositions have been

converted to a set of linear inequalities, the inference problem that consists of proving agiven clause,

Prove P, (UP1)
st BPO i=U,.q

can be formulated as the following MILP (Cavalier and Soyster, 1987):
Min Z« X ¥

ie i
st Ay 2 a (UP2)
y € {03"

where Ay k ais die.set of inequalities obtained by translating B (P\.P2* s fq) into their linear
mathematical form, and the objective function is obtained by also converting the clause P, that is to be

proved into its equivalent mathematical form. Here, /(u) corresponds to the index set of the binary variables
associated with the clause P,. This clause isalways true if Z* 1 on minimizing the objective function as

an integer programming problem. If Z = 0 for the optimal integer solution, this establishes an instance

where the clause is false. Therefore, in this case, the clause is not always true. In many instances, the .
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optimal integer solution to problem (L1P2) will be obtained by solving its linear programming relaxation
(Hooker, 1988). Even if no integer solution is obtained, it may be possible to fetch conclusions from the
relaxed UP problem (Cavalier and Soyster, 1987).

The qualitative knowledge available about the design of a system can-be classified as one of the
following two types - hard logical betsor uncertain heuristics. Hard, logical factsare never violated - for
example, thereaction NaOH + HCl -~> NaCUH”" holdsfrom basic (Conical principles. Qualitative
knowledge in the form of heuristics on the other hand arejust rules of thumb which may not always-hold.
Therefore all the knowledge for synthesizing a design may not be consistent since the heuristics may
contradict one another; for example, arule that suggests to use higher temperaturesto increase yield may
conflict with arulethat suggests to use lower temperature to increase selectivity. Resolution of conflicts is
an important pan of reasoning. In general one mug violate a weaker (more uncertain) set of rulesin order
to satisfy stronger ones. Therefore, it becomes necessary to model the violation of heuristics, which is done
as follows (Post, 1987),

Clause or V (7
where either theclauseistrueor it isbeing violated (V). In order to discriminate between weak and strong
rules, penalties are associated with the violation v| of each heurigtic rule, i * U.jn. The penalty wj isa
non-negative number which reflects the uncertainty of the corresponding logical expresson. The more
uncertain therule, the lower the penalty for its violation. In this way, the logical inference problem with
uncertain knowledge can be formulated as an MELP problem where the objective is to obtain a solution that
satisfies all the logical relationships (i.e. Z* 0), and if that is not possible, to obtain a solution with the
least total penalty for violation of the heurigtics:

Min  Z « w'v

s Ay Z a : Logical facts (UP3)

By « v 2 b ; Heurigtics
y €{0l}"" v £O

Note that no violations are assigned to the inequalitiesAy 2B sincethese correspond to hard logical
facts that always have to be satisfied. The solution to (UP3) will then determine a design that best satisfies
the possibly conflicting qualitative knowledge about the system.

Logic-based Formulations for Discrete Optimization
Given a supergructure of alternatives for a given design problem, the general form of the mixed-integer
optimization model is (Grossmann, 1990a),

Min ZmJdy+ijlx)

s K(x) Z0 l
gx) +My £0 (DPI)
xe Xye Y




wherex is the vector of continuous variables involved in design like pressure, temperature and flow rates,
while y is the vector of binary decision variables like existence of a particular stream or unit Integer
variables might also be involved but these are often expressed in termsof 0-1 variables. Also, modd (DPI)
may contain among the inequalities pure integer. congtraints for logical specifications (e.g. select only one
reactor type). Ifall thefunctionsand constraintsarelinear (PI) correspoiKistoafr M11P prcbiem; otherwise
itisan MINLP. For the sake of simplicity, we a@methat/frj , 9(x) and h(x) are convex, differentiate
functions. The caseof nonconvexitieswill be addressed later in the paper.
The mixed-integer program (DPI), is not the only way of modelling the discrete optimization

problem in a superdructure. As has been shown by Raman and Grossmann (1994) that problem can be

formulated asthe generalized digunctive program:
Min Z=Y Y eu+f®
S I ¢

st hx)£ 0 (DP2)
Ya

V {8i()s0 ke SD
€Dy epmyy

£2(Y)=True
XER"ceR™YE  {truefalse}"!

in which Yfr are the boolean variables that establish whether a given term in a digunction istrue IgUc(x) <
0] or false [gUcfx) > 0], while CI(Y) arelogical relations assumed tobein théform of prépositional logic
involving only the boolean variables. Yfc are auxiliary variables that control the part of the feasible space
in which the continuous variables, x, lie, and he variables ¢;* represent fixed charges which areactivated to
a value fik if the corresponding term of the digunction is true. Finally, the logical conditions, £I(Y),
express relationships between the digunctive sets. In the context of synthesis problems the digunctionsin

(DP2) typically arisefor each unit i in the following form:

Y; -Y;
{)s0 ir=
8 v Bx=0 ®
=% c,»-0

in which the inegualities gi apply and a fixed cost n is incurred if the unit is selected (?;£ otherwise (~*YO
there is no fixed cost and a subset-of the x variables is set to zero with the matrix B*. An important
advantage of the above modelling framework isthat thereisno need to introduce artificial parametersfor the

"big-M" constraintsthat are normally used to mode digunctions.
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An interegting question that arises with problem (DP2) is whether it always pays to convert the.
general digunctive program into mixed-integer form. To answer this question for die case of linear
functions and constraints, Raman and Grossmann (1994) have developed the concept of w-MIP

represcntability whichisdefined asfollows:

Definition: The digunction vV  \Aik*"id isw-MIP representable iff the following conditions
ieDk .
hold:

(i) Thereexistsan i€ Dk for which the convex bull of the digunction isreducible to the congtraint:

Al x 2 btkytk O£ytk £1
(ii) Every feasible solution
XEF-{xI V KApxzb;)}
ieDk

for which Afkx* 2fcflfc,Afcx’ < &#, i * i implies that yft « 7 andyik = 0 Vi *i
Thus, in general, we can consider a partly transformed form of problem (DP2) where mixed-integer
equations are used for the w-M1P constraints pan of the problem, whiletherest iskept in digunctive form,

asthis pan is " poorly-behaved" in equation form. In general, this partially reformulated problem hasthe

Min Z« Z 27,-*?;;-% Z Zcit+f(z)

keSD'i€D,. LesDieD,

form,

S Mx}< 0 (DP3)

H*) + By SO
Ayk a

Ya
V jspx)s0 ke SD?
ieDk cl-*:rl.k

A(Y)«True
xelP.ye (Ojf. Y € {true, false}"*

in which the subset of digunctions SD* ¢ SD, which are w-MIP representable, have all been convened
into mixed-integer form. The inequalitiesr(x) + By £ 0 correspond to these constraints and to subsets of
the inequalities gikfccik) ~ 0,i € Dk, k € SD?, which have also been converted into mixed-integer
form. Finally, s& (x, cik) are the remaining inequalities which appear explicitly in the digunctionsk €
SD?.




Note also that a subset of the logical constraints in Q(Y) ¢ True, which are required for the
deffnition of the discrete optimization problem, have been trandated to the form of linear inequality
constraints Ay £ a. The simplest option is to convert the propositions into CNF which can then be
trandated readily into inequalities as was discussed in the previous section. In cases wher e the number of
these congraints become large, the generation of a smaller number of tighter congtraints through the
application of cutting plane techniques may be useful. The rest of the logic constraints, A(K) « True,
which areredundantand correspond to logic cuts that do not alter the optimal solution (Hooker et al, 1993),
have been left in symbolic form in order to improvethe enumeratfon in a branch and bound sear ch.

It should benoted that a particular case of (DP3) of interest is when the entire problem is converted
into mixed-integer form, but the logic cuts A(Y)« True areincluded as part of the formulation:

m
Min Z= ~YiVi +/(*)
P=|
S h(x)s0 (DP4)
Hx)+By * 0
Ay 2 a
AY) = True
xER'yye {0.4". Y e {true falsg}™

Solution methods

As was mentioned in the review section there are still few methods for solving mixed-integer optimization
problems that incorporate prepositional logic. As shown below, methods have been developed for
addressing linear and nonlinear problems. Obviously some of the methods are equally applicable to both
cases. However, for the sake of clarity, and to also emphasize the more useful methods in each case, we
will distinguish between methods for linear and nonlinear problems.

For linear problems the simplest case is when logic cuts A(K) ¢ True are added to an MDLP
problem as in (DP4). These cuts, which represent redundant constraints in high level form, can be
systematically generated for process networks as discussed in Raman and Grossmann (1993a). As an
example, the logic cuts for the network in Fig. 1 in terms of the potential existence of the 10 columns are

given by the propostions:

Yl = Y4v Y5 Y6=>Y3A Y9
Y2=>Y8AY10 Y7 = Y3A Y8
Y3 =>Y6v Y7 ' Y8=>Y2 vY7
Y4=>Y1AY10 YO=*Y5 v Y6
Y5=>Y1AY9 Y10=*Y2VY4

16




There arc two bask ways of handling these cuts. One isto convert them into inequalitiesand add them to
the MDLP (Raman and Grossmann, 1992). White thiswill increase the number of constraints, it generally
reduces therelaxation gap. Theother extremeisto processthelogic symbolically as part of the branch and
bound search for theM OP. In thiscasethelogic is used to select the branching variablesand to determine
by infer ence whether additional Unary variablescan befixed at each node (Raman snd Grossaann, 1993a,b).
This can be accomplished by treating the logic either in CNF form asin (2) or in DNF form asin (3). The
former requires unit resolution for the inference, whik thelatter involvesthe solution of Boolean equations.
Although the DNF form is generally more expensive to obtain, its nice theoretical property is that one con
guarantee that in the worst case the number of enumerated nodes does not exceed twice the number of
clausesin (3) minusone (see Raman and Grossmann (1993a) for proof). A third alternative isto use a
hybrid approach in which only violated inequalities at the root node are included to strengthen the LP
relaxation, but the remaining enumeration isperformed by solving the logic symbolically.

For the case that the discrete optimization problem is formulated as in (DP3) by involving both
digunctions and mixed-integer congtraints, Raman and Grossmann(1994) proposed an extension of the
hybrid branch and bound method for (DP4) in which the digunctions are converted for convenience into
mixed-integer form, but the branching ruleisaltered torecognize the fact that no branching be performed on
digunctions that are logically satisfied, even if the corresponding 0-1 variables are non-integer. Note that
such an algorithm can also be applied to problem (DP2). Finally, it is worth to mention that Beaumont
(1991) has proposed an algorithm that applies to (DP2) in the case that only one equation is involved in
each digunction. In thisalgorithm constraints are successively added or deleted asneeded in the branch and
bound s=ar ch.

Similarly asin thelinear case, the smplest way to integrate logic in nonlinear discrete modelsis
to add the logic cutsto an MINLP asin problem (DP4) (see Raman and Grossmann, 1992). If these are
convened to inequalities this has the effect of reducing the relaxation gap. This has the important effect of
strengthening the lower bound that is predicted by the master problem in the Generalized Benders
decomposition method by Geoffrion (1972). As has been shown by Sahinidis and Grossmann (1991) the
"optimal" formulation for the GBD method is when there is no gap between the relaxed and the integer
optimum solution. In the case of the outer-approximation method by Dufan and Grossmann (1986) the
guantitativeor symboalic integration has the effect of potentially reducing the branch and bound enumeration
at the level of the MILP master problem. An interesting variation of the above idea isto integrate the logic
inference problem with heuristics (UP3) in the MILP magter problem as was proposed by Raman and
Grosslmann (1992). Firgt assume that given the solution of K NL P subproUems the MILP master problem
isrepresented by:
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Min a

¢ af4faj)
Xj M A *= 1-JT (M1
X€jr,y€y

in which ~xy) representseither the Lagrangian in the GBD method or an objective linearization in the
OA method, £2* isthe linear approximation to the continuous feasible space and INTfc represents integer
cutsto exclude configurations that wer e previoudy analyzed. Theinteger programming model (L1P3) can be
integrated in the above master problem(MI) by minimizing the weighted violation (plus an extraterm to

reflect the cost) and subject to congtraining the lower bound tothecurrent upper bound; that is,

Min [w'v + W(a-LB)/(UB*-LB)]
sta 2 4ix))
k= 1,.
xyeq x

Ay 2 a

By + v Zb (M2)

a £ UB

xeX.yeY

ae *\ v €{0,1}

inwhich w isa penalty chosen such that W « min* (ws,) ¢ LB isa valid lower bound to the solution of

the MINLP (e.g.. solution to the relaxed NL P problem or somereasonable but valid bound) and UBK isthe
current upper bound of the objective at iteration K. Theinteresting featurewith the master problem (M2) is
that optimality can still be guaranteed (within convexity assumptions) even though heuristics are used as
part of the search. The magter problem (M2) is especially appropriate for the GBD method because of the
|oose approximation that is obtained with that method. It isalso important to note that the master problem
(M 2) can be used when applying Benders decomposition (Benders, 1962) in the solution of MILP problems.

For the case that the nonlinear discrete optimization problem is formulated as the generalized
digunctive program in (DP2) one can develop corresponding logic-based OA and GBD algorithms as
described in Turkay and Grossmaim (1994). Firgt, for fixed values of the boolean variables, Yfk * true and
Yix = false, the corresponding NL P subproblem is as follows:




Min Z= fcu +/0

5t hix)s 0 (SP)

\[‘:;’:o}forw*true

c =0 forY =wfalse i wi

X e Ru’ Cik € Ru'
htote that oiu” 000sOTiirtsconespoiKiMg to true boolean varisbies are imposed. Also fixed charges-ft* are

ke SD

only applied to these terms. Assuming that K subproblems (SP) are solved in which sets of linearizations
M...JC are generated for subsets of digunction terms L(ik) -{11 Y*ik ~ true}. ont can define the
following digunctive OA master problem:

Min z-ZZciH o
ik

< a 2fi) + VAT (x-xl)

I -1.X
> + Vhixtftx-x")£0 (MDP2)
Ya
V lga@+Veat) & -Hs0leHik) | ke SD
ieDy CLL- yu

am-: True
ae R, xe R"t:€ R".Ye {true, false}"

It should be noted that before applying the above master problem it is necessary to solve various
subproblems so as to produce at least one linear approximation of each of the terms in thedigunctions. As
shown by Turkay and Grossmann (1994) selecting the smallest number of subproblems amounts to the
solution of a set covering problem. The above problem (MDP2) can be solved by any of the methods
described for the linear case. It isalso interesting to note that for the case of flowsheet synthesis problems
Turkay and Grossmann (1994) have shown that the above solution method becomes equivalent to the

modelling/decomposition strategy by Kocis and Grossmann (1988) if the master problem (MDP2) is
| converted into MEJ> form using a convex hull representation. Also, these authors have shown that whilea

logic-based GBD method cannot be derived as in the case of the OA algorithm, one can nevertheless
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determine for the MILP version of the master problem (MDP2) one Benders iteration which then yields a

sequence similar tothe GBD method for the algebraic case.

Computational Experience

From the methods described in the previous section the symbolic integration of logic both in DNF and
CNF form have been automated in a special version of OSL, the MILP solver from IBM (Raman and
Grossmann, 1993a). Also sysematic methods have been developed to automate the gener ation of logic cuts
in process networ ks (Raman and Grossmann, 1993a; Hooker et al; 1994). Work isalso currently under way
to automate the logic version of the OA and GBD algorithms.

In order to appreciate the potential impact of integrating logic in discrete optimization problems
numerical results on selected examples are givén in Table 3. Example (a) deals with an MILP for the
synthesis of separation sequences involving 6 components (see Raman and Grossmann, 1992). Applying
thegandard version of Bender sdecomposition convci”eix” isIKH achieved aftcr scveralhour eaiK InKr ¢ than
one hundred iterations on an older Vax-computer. In constrast, adding inequalities for the logic cutsin
(DP4) convergenceis achieved in only 13'iterations, and this despite the fact that the number of congtraints
isdoubled. Note that the integrated master with heuristicsis not as effective in thiscase. Example (b) deals
with a small MINLP planning problem in which similar trendsare observed when adding the logic cuts.
The examples in (c) 'deaJ with the symbolic and hybrid integration of logic u§ng branch and bound (see
Raman and Grossmann, 1993). Note that for the MILP for the separation of 6 components the reduction in
number of nodes enumerated is significant The more.imprve results, however, are with the heat
integrated mode which corresponds to the mativating example. Adding the inequalities for the logic cuts
the problem is solved to optimality in only 8 sec! And thisisaccomplished by almost doubling the number
of congtraints. With the symboalic integration of logic with DNF the time is even further reduced to less
than 3 sec! Thereason for the reduction isthat in the symbolic integration thereis no need to handle the
inequalities for the logic cuts. It should be noted that the DNF logic involved 194 digunctive terms.
Therefore, theoretically it is possible to guarantee that the number of nodes in this type of enumeration will
not exceed 387 nodes. In actual fact only 20 were needed. Finally, the examplein (d) illustrates a problem
in which a process network was initially formulated as the generalized digunctive program (DP2) (see
Raman and Grossmann, 1994). Converting it all into MILP form requires more than 1 hour of solution
timewith OSL. If instead the problem is formulated as in (DP3) in which digunctions are identified that
are not w-MIP representable the modified branch and bound method requiresless than 10 minutes of CPU
time. Fig. 6 presentsthetree searchesfor a very small version of this problem. Notethat even in thiscase
thelogic-based branch and bound for the di§unctive modd (DP3) requiresonly 4 nodesas opposed to the 16
that are needed when the modd isposed entirely asan MILP and solved with sandard branch and bound
methods.
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(a) Bianch and bound for sttndant MILP modeL

-193.73

also —T1, Y3, Y41,
=I42.Y4}

-168.9

also-J3,Y41
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alro Y3,-Yd1,
=¥42.Y43

-155.7

(b) Logic based branch and bound for digunctive model (DP3)
Fig. 6 . Comparison of tree searches with standard and logic based branch and bound.




Table 3. Computational Results on Selected Example Problems

(a) NfILP model 6 component separation. Benders decomposition

Origind Model Model with Logic Integrated Master
(DPI) (DP4) (M2)
Constraints:
Heuristic 187
Logic constraints 70 70
Other 86 86 86
[terations >100 13 43
Cpu-time* >1000 11.99 338.7
‘smin Micro-VaxD (SCICON1C) '
(b) MINL P model planningproblem GeneralizedBendersDecomposition
Model with logic Integrated Master
(DPI) : (DP4) (M2)
Heuristic constraints ' 5
Logic constraints 1 8 8
Other congtraints 9 9 9
Number iterations 7z 3 4
| CPU time* 28.20 . 117 188
‘ssec Micro-Vax D (SCICONIC/MINQS)
(c) MIL P models. Branch and bound o
! : Origina Model with DNF basd Hybrid DNF
Model (DPI) logic (DP4) approach approach
Sx.components
Logic 0 70 - 0 1n
constraints
no. of nodes 141 8 18 5
CPU time* 3.46 118 1.06 0.7
CHIET
Logic 0 215 0 4
constraints
nodes > 100,000 74 20 17
CPUtime* > 5,000 8.37 2.76 2.62

5ecBM -RS6000(0SL)

(d) MILP Process Network with semi-continuous demands

MILP modd (DPI) | Digunctive Modd (DP3)
Congtraints 1332 13382
[Variables 1326 132
Binary , 73 73
| Nodes 16,532 1.771
CPU time* 76.2 8.3

*sminlBM -RS6000(OSL)
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GLOBAL OPTIMIZATION

Background

A significant effort has been expénded in the last.five decades toward theoretical and algorithmic
studies of local optimization algorithms and their computational testing in applications that arise in
Process Synthesis Design and CootroL.  Relative to such an extensive effort that has been devoted to local
nonlinear optimization approaches, there'has been much less work on the theoretical and algorithmic
development of global optimization methods. In the last decade the area of global optimization has
attracted a lot of ihterest form the Operations Research and Applied M atheniatics community, whilein the
last five yean we h.ave experienced a resurgence of interest in Chemical Engineering for new methods of
global optimization as well as the application of available global optimization algorithms to important
chemical engineering problems. Thisrecent surge of interest is attributed to three main reasons. Fihrst, a
large number of process synthesis, design and, control problems are indeed global optimization problems.
Second, the existing local nonlinear optimization approaches (e.g. generalized reduced gradient and
successive quadr atic programming methods) may either fail to obtain even a feasible solution or are trapped
to alocal optimum solution which may differ in value significantly form the global solution. Third, the
global optimum solution may have a very different physical interpretation when it is compared to local
solutions (eg. in phase equilibrium a local solution may provideincorrect prediction of types of phases at
equilibrium, aswell asthe components compasition in each phase).

The existing approaches for global optimization are classified as deterministic or probabilistic.
The deter minigtic approachesinclude: (a) Lipschitzian methods (e.g. Hansen et al. 1992 a, b), (b) Branch
and Bound methods (e.g. Al-Khayyal and Falk|983; Horgt and Tuy, 1987; Al-Khayyal 1990), (c) Cutting
Plane methods (e.g. Tuy et al. 1985), (d) Difference of Convex (D.C.) and Reverse Convex methods (e.g.
Tuy 1987 a,b), () Outer Approximation methods (e.g. Hor et al. 1992), (0 Primal-Dual methods (e.g.
Shor 1990; Floudas and Visweswaran 1990,1993; Ben-Tal et al 1994), (g) Reformulation-Linearization
methods (e.g. Sherali and Alameddine, 1992; Sherali and Tunchilek 1992), and (h) Interval methods (e.g.
Hansen 1979). The probabilistic methods include (i) random search approaches (e.g. Kirkpatrick et a.
1983), and (ii) clustering methods (e. g. Rinnoy Kan and Timmer 1987). Recent books for global
optimization that discuss the above classes are available by Pardalos and Rosen (1987), Torn and Zilinskas
(1989), Ratschek and Rokne (1988), Horst and Tuy (1990) and Floudas and Pardalos (1992).
_ Contributions from the chemical engineering community to the area of global optimization can be
traced to the early work of Stcphanopoulosand Westerberg (1975), Westerberg and Shah (1978), and Wang
and Luus (1978). Renewed interest in seeking global solution was motivated form the work of Floudas et
al (1989). The firgt exact primal-dual global optimization approach was proposed by Floudas and
Visweswaran (1990), (1993) and its features were explored for quadratically constrained and polynomial -
problems in the work of Visweswaran and Floudas (1992), (1993). At the same time Swaney (1990)
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proposed a branch and bound global optimization approach and more recently Quesada and Grossmann -
(1993) combined convex undeiestimators in a branch and bound framework for fractional programs.
Manousiouthakis and Sourlas (1992) proposed a reformulation to a series of rever se convex problems, and
Tsirukis and Reklaitis (1993 a,b) proposed a feature extraction algorithm for constrained global
optimization. Maranas and Floudas (1992,1993,1994 a,b) prdposed a novel branch and bound method
combined with a difference of convex functions transformation for the global optimization of atomic
clustersand molecular conformation problemsthat arisein computational diemistry. Vaidyanathan and
El-Halwagi (1994) proposed an interval analysis based method and Ryoo and Sahinidis (1994) proposed
reduction testsfor branch and bound based methods.

In this review paper, we will focus, on deterministic global optimization methods since they
provide a rigorous framework for exploiting the inherent structure of process synthesis models . In
particular, wewill discuss decomposition based primal-dual methods and branch and bound with difference
of convex functions global optimization approaches developed in the Computer-Aided Systems Laboratory,
CASL, of the Department of Chemical Engineering of Princeton University.

Decomposition Methods
Floudas and Visweswaran (1990, 1993) proposed a deterministic primal-relaxed dual global
optimization approach, GOP, for solving several classes of non-convex optimization problems for their

global optimum solutions. These classesare defined as:

Determine a globally e-optimal solution of the following problem:

min f(x.y)
Xy
bjetto g(xy) £ O (P
h(xy) = 0
X € X
y €Y

where X and Y are non-empty, compact, convex sets, g(x,y) isan m-vector of ineguality constraints and
h(x.y) isap-vector of equality congtraints. It isassumed that the functions ftx.y), g(x,y) and h(xy) are
continuous, piecewise differentiable and given in analytical form over X x Y. Thevariablesy are defined in
such away that:

(a) f(x,y) isconvex in x for every fixed y, and convex iny for every fixed r,

(b) g(x,y) isconvex in x for every fixed y, and convex iny for every fixed x and
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(© A(xj)isaffiirinxforevei 7ftted>,aiulaffinein>tocveiy fixedx.

Examples of process synthesis problems with this structure are superstructures for separation
systems, and heat exchanger networks in which balance equations involve bilinear terms, as well as phase
equilibrium problems that can be transformed so as to exhibit the bi-convex characteristics of the above
conditions.

Making use of dudity theory along with several new theoretical properties, a global optimization
agorithm, GOP, has been proposed for the solution of the problem through a series of primal and relaxed
dul problems that provide valid upper and lower bounds on thegloba solution. The GOP agorithm
decomposes the original problem into primal and relaxed dual subproblems. The primal problem is
solved by projecting on they variables, and takes the form:

wyk) = MB* £(xy%)

X

subject to gx/) £0 (P2)
hx) * 0.
X€ X

A feasible solution x* of the primal problem (P2) with objective viy*) represents an upper bound
on the globa optimum (i.e. Upper BouMfevfy*;) solution of (Pl), and at the same time it provides the
Lagrangemultipliers X*. |1L* for theequality and inequality constraints respectively.

The Lagrange multipliers (X*. \i¥) are subsequently used to formulate the Lagrange function L (x,y;
X*. \fy which is used in the dual problem. Invoking the dual of (PI) and making use of several properties of
the problem structure, the GOP agorithm solves arelaxation of the dua problem through a series of relaxed
dual subproblems. They-spaceis partitioned into subdomainsand each relaxed dual subproblem representsa
valid underestimation af* (P1) for aparticular subdomain. Each relaxed dual is awociatftd with a combination of

bounds B, of the x variables which appear in bilinear X-y products in the Lagrange function, and takes the
forms:

MIN HB
S.L
: 7
ugzl.{xs-’.y. l*.nk)x:
Vx L(x.y.z*.p")]x; $0¢ 2P =2 lem12..(R-1)
Yy, L(x.y.lt.uk) L 208 .x‘-nJF = xf'
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(P3)

current
Ve, LOCYX N \NK * 0 «f xf? = &P fiteration
K

Vi L(xy K uK) K 20 ¢ xPP st

¥

Thefirst three sets of constraints of (P3) correspond to the previous (K -1) iterations with the firgt
one dencting the L gepagf. undfifpditPftting cute and the second tnd third defining the partitioning of the y-
space. In the current iteration K the bounds Bj of the previous iterations are fixed while the current
combinations of bounds Bp need to be considered. The last three sets of constraints, which change as B,
change, are the underestimating cuts for the partitioned subdomain under consideration. Hence, the relaxed
dual problems at the current iteration K are equivalent to setting the x-variables to a combination of their
bounds Bp,and solving for a corresponding domain of the y-variables. After solving (P3) for all combinations
of bounds Bp, we select the minimum of these solutions and the solutions of the previous iterations. This
will provide the new y to be considered in the primal problem (P2) and its corresponding solution is
guaranteed to be a valid lower bound on (PI). Solving the primal problem (P2) and updating the upper bound
as the minimum solution found, a monotonically non-increasing sequence of updated upper bounds is
generated. Solving thereléxed dual problems (P3), a monotonically non-decreasing sequence of valid lower
bounds is generated due to the accumulation of previous congraints. Asaresult, the GOP algorithm attains
finite conver gence to an e-global solution of (P1) through successive iteration between the primal and relaxed
dual problems.

The GOP algorithm along with itsprimal problem (P2) and itsrelaxed dual problems (P3) havean
interesting geometrical interpretation. Figures 7a, 7b and 7c illustrate graphically the GOP applied to the
motivating pooling/blending problem discussed earlier. For a garting point of p * 2, the primal problem
corresponds to point A of Figure 7a. Note that for p * 2 the primal problem is a linear programming
problem with objective equal to zero. The y-space, which is 1 £p £ 3, is pardoned into 2 sub-domains,
onefor 1£p£2 and theother for 27 p £ 3, and one relaxed dual problem is solved for each sub-
domain. Figure 7a shows the linear underestimator AB for 1 £p S2, and the underestimator AC for
2 £p £3. Notethat the underetimatorsarelinear since therelaxed dual problemsare linear in p and the
points B and C correspond to the éolutions of the corresponding relaxed dual problems. Also note that the .
underestimator AB passes through the global optimum (p * 1.3, -750). At the end of the firgt iteration we
have an upper bound of zero and a lower bound of -1500. Since -1500 < -350, the next point under
condderation for pisp = 1. For p « 1 the primal problem has as solution point D with objective value of
-700. Sincepoint D isin the boundary of therangeof p, there is only onerelaxed dual problem and hence

one underegtimator, shown as DE in Figure 7b, where point E is the solution of therelaxed dual problem.
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At the end of the second iteration, we have an upper bound of -700 and a lower bound of -884.61. Since
-884.61 < -350, the next p under consderation isp « 1.41. Figure 7c shows the underestimating function
after three iterations of the GOP algorithm. Note that we have a piece-wise linear underestimating function.
Also note that since the primal problem for p« 1.41 has lower value than -350 we can eliminate the domain

2 £p £3. The GOP algorithm has quickly identified the region of the global optimum by providing tight

upper and lower-bounds, and conver ges to the global solution in 6-7 iterations.

Visweswaran and Floudas (1990) demongrated that the Global Optimization Algorithm. GOP, cm
address several classes of BoB-coovex mathematical problems that include:

(i) Bilinear, negative definite and indefinite quadratic programming problems.

(if) Quadratic programming problemswith quadratic constraints.

(iii) Uncongrained optimization of polynomial functions.

(iv) Optimization problems with polynomial constraints.

(v) Congrained optimization of ratiosof polynomials.

Analysis of the results, obtained via the computational experience of the GOP algorithm on the
above mentioned classes of nonconvex optimization problems, verified that a global optimum solution can be
obtained from any darting point

Visweswaran and Floudas (1992) studied the class of polynomial functions of one variable in the
objective and congtraints of problem (PI) and showed that the primal problem reduces to a single function
evaluation whilethe relaxed dual problem is equivalent to the smultaneous solution of two linear equations
in two variables. The resulting global optimization approach was demongrated to perform favorably
compared to other algorithms.

Visweswaran and Floudas (1993) proposed new theoretical properties that enhance significantly the
computational performance of the GOP algorithm. These properties exploit further (i) the structure of the
linearized Lagrange function around x¥, which contains bilinear termsin x and y, linear termsin x, and either
linear or convex termsin y, and (ii) the gradients of linearized Lagrange function around x*, which arelinear
functions of only the y variables. Thefirst property identifies the combinations of bounds that need not be
considered if the gradients of the linearized L agrange function maintain the same sign. The second property
shows that if the gradient of.the linearized Lagrange function with respect to xi is zero, then we can set x\ to
either itslower or upper bound. Thethird property allowsfor updates of the bounds on the x variables at each
iteration. Properties 1 and 2 reduce significantly the number of combinations of bounds of the x variables,
and hencereduce the number of relaxed dual problems that needed to be solved at each iteration. Property 3
results in tighter underestimators for each of the partitioned subdomains, which in turn results in faser
conver gence of the upper and lower bounding sequences. The effect of the new properties is illustrated
through application of the GOP algorithm to a difficult indefinite quadratic problem, a multiperiod tankage
quality problem that occurs frequently in the modeling of refinery processes, and a set of pooling/blending

problems from the literature. In addition, extensive computational experience is reported for randomly
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generated concaveand indefinite quadratic programming problems of different sizes. Theresults show that the
properties help to make the algorithm computationally efficient for fairly large problems. Visweswaran and
Floudas (1994) presented a (MILP) formulation for aU relaxed duak ai each ben”on of the GOP algroithm.
This is baaed on a branch and bound framework for the GOP and allows for implicit enumeration of the
partitioned subdomains.

A very important advance on the GOP approach hasbeen recendy made by Liu and F k > (1993).
Itisshown thai the GOP approach can beapplied to very general dasses of nonlinear problems defined as.

MIN F(X)

X

ST. Gi(EO  i«l,2,...,m (P4)
X€ X

where X isa non empty, compact, convex set in R", and the functions F(x), Gi(x) are C? continuous on X.
This result, even though it is an existence theorem, is very significant because it extends the classes of
mathematical problemsthat the GOP can be applied tofirompolynomialsor ratios of polynomialsto arbitrary
nonlinear objective function and congtraints that may include exponential termsand trigonometrk: termswith
the only requirement that these functions have continuous first and second order derivatives. Based on this
result, it isclear the GOP approach isapplicable to very broad mathematical problems.

Branch and Bound Methods with (D. C.) transformatton
A novel branch and bound global optimization approach which combines a special type of

difference of convex functions  tranformation with lower bounding underestimating functtons was recently
proposed by Maranas and Floudas (1994 ab). This approach is applicable to the broad class of
optimization problems gated in (P4), and this special type of (IXC.) transformation is the basis of the
result reported in Liu and Floudas (1993). In the sequel, we will discuss the essential elements of this
approach by considering the problem of:

MIN F(x)

X
<P5)
ST. x€X * {xj[xf £ xj £ xi£xj\i=1,2,...,n}

where X isa nonempty, compact, convex set in R", and the objective function F(x) is C? continuous on

X.

Adding a separable quadratic term to F(x), introducing new variables x{ * x; and subtracting the
sameterm firom F(x) we have;




MIN F(x) + ai[xf-—xl-x:]

=]
xfiXj £ xj
(x) sx{<(x{)°
| (P6)
ST. xj-x{ =0 - f«1.2. .. n

Thekey ideais to employ eigenvalue analyss and define the nonnegative parameter ain uch a
way that thefollowing tern:

+(x)-F(x) + a £x?
i=1
becomes convex. Then, (P6) takestheform

MIN o(x) —a Y x,x]

inl
xf EX; EXF

(x))' sx;s(x]) | (FT)
ST Xj - x[ = 0

which has as objective a difference of two convex functions out of which the one that is substracted is
separable quadratic. Formulating the dua of (F7) and goplying die KKT conditions, Maranas and Floudas
(1994JBL) showed that thedud of (P7) isequivaent to (P8) (see Appendix A3 of that paper):

MIN L =5 14 X x|
| £ = J (P8)
XfAXi <xf

where a is a nonnegative parameter which is greater or equa to the negative one haf of the minimum

eigenvalue of the Hessian of F(x) over the box xf £ x £ x"; i°** 1 2 ..n

/ -1 T

ti.e af MAX| Oy-—iﬂn > j ) Note thet the term added to F(x) has the effect of overpowering the
LY

nonconvexity characterigtics of F(x) with the addition of the term (2 @) to all of the eigenvalues of its




Hessian. The smaller the value of a, the tighter the uiulefestimator Ux) is fcr F(x) which may imply less
total manber af iteral(ionsfor con\ve'rgence. Hence, onewould ideally desirethenon negative parameter ato

be exactly equal to I\—;‘ min | **** ex>%** th* tothe branch and bound widi difference of convex
/

£ %
function transformation it suffices to find an upper bound Q ti—T’\-a}vi 1 p* KA o gx xgg tothis

upper bound. In this case we add more convex terms than needed and do not produce the tightest
waderestimtol , hat we satisfy dierequiredconditionsfor convergence.

Given F(x), the aekction ef the nonnegative parameter a may involve (i) die derivation of analytical
expressions for the eigenvalues af its Hessian, or (1) the devetoproemcrf bounds on the eigenvalues of the
Hessian of F(x). Mannas and Floudas (1992), (1993) studied alternative (i) for a variety of
atomic/molecular clusters.. They derived analytical expressions for the eigenvalues for any potential
function which is a function of only the distance between atoms (e. g. Lennard-Jones, Coulomb, Mie,
Morse, Gaussian, Bom-Mayer, Buckingham). Mannas and Floudas (1994. a, b) proposed a number of
ways of obtaining bounds on the eigenvalues of the Hessian of F(x). One general way is via the use of the
measure of a matrix, a concept recently applied to the stability ef reactor networks at die process synthesis
level (see Kokossisand Floudas, 1994). If adenotes die Hessan of F(x),thcn the measure of the matrix
(-A), denoted as\i (-A), providesan upper bound on (-Xmin)- ''® formulation isa convex problem, and we
can use either the 1 or ©o norm.  Appendix A.2 of Mannas and Floudas (1994*), describes such a
formulation.

It should be pointed out however that if Xmin goesto (- «>), then thisrepresentsa casein which we cannot
creste <) convex. A sufficient condition which excludes such a possibility iswhen the dements of the
Hessian matrix have finite values. This can be seen easily using the measure ef a matrix concept One
instance of Xmin tending to (- °°) isreported in the Weber's facility location problem (see Mannas and
Flouds, 1994.C)

Thefunction L(x) isalower bounding function of F(x), and exhibits the following important properties:
Property 1.  L(x)isawaysavalid underestimatorofF(x) insdethebox [xf; x}], that is

L (x)<IF(x).

Property 2. L(x) matchesF(x) at all corner points af the box.
Property 3:  L(x)isconvex in thebox [xf, x}].

Property 4. Themaximum separation between L (x) and F(x) isbounded and is
proportional toaand to the suare of the diagonal of thebox [xf, xj ], that is
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max  (FO-Ux)=iai (x?-xf)‘

xf sx; gx!

Property 5.  TheundercdiiiuttorL (x) congtructed over tsub-tox of thecurrent box is

always lighter than the underestimator of the current box.

In summary, the properties show that L(x) is a convex, lower bounding function of F(x),'L(x)
matches F(x) at all comer points ef the box congraints insde which it hasbeen defined. The values of L (x)
at any point, if L(x) is constructed over a tighter box of constraints each time, define a nondecreasing
sequence. Also note that Property 4 answer sthe question of how small the sub-boxes must become before
the upper and lower bounds of F(x) are within £ If 5 is the diagonal of the sub-box, and E is the

conver gencetolerance, we have have:

8« 4e
a

Notethat 8 isproportional to the squareroot of e and inversely proportional to the square root of a.
Asareault, the smaller valueof a thefaster the conver gencerate becomes.

These properties of the lower bounding function, L(x), coupled with an efficient partitioning
schemeresulted in a branch and bound global optimization approach that is guaranteed to converge to an e-
global solution in afinite number of iterations. Maranasand Floudas (1994*) analyzed the structure of the
branch and bound tree resulting from the subdivision process and developed formulas for finite upper and
lower bounds on the total number of iterationsrequired for £ - convergence. The maximum number of
iterations is exponential in the total number of variables while the minimum number of iterations depends
linearly on the total number of variables. Computational experience with molecular conformafio'n
problems indicated that the total number of iterations is much close to the minimum one.

Figure 8 provides the geometrical interpretation of the lower bounding scheme for a function F(x)
of one variable x in abox[x", x"]. Starting at a point x° we partition the original box into two intervals
[x", x°] and [x°, x“], while F(x°) is the current upper bound. For each interval we solve the
corresponding convex lower bounding problem and obtain their respective minima at x*, L (x*) and x?,

L (x?) respectively. Noteat thispoint the underestimating functions shown with non-solid lines.
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Figure 8: Geometric Interpretation of
Branch and Bound with (D.C.)

> mInFJV), single variable problem in X

v L(X) = F(X) 4+ a(X"®® -XXX"BP - X)
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Since L(x*) < L(x?) we focus on the [x", x°] for the second iteration, evaluate the function F(x)
andpaitition the interval [x", x°] into the intervals [x", x!] and [x*, x°]. For each of these intervals we
obtain the undcrcstimators and their minima which arc at x* and x* respectively. SinceL (x*) > L (x*) we
focuson theinterval [x*, x*] forthe next intention and evaluate F(x*). Note that we are very closeto the

global solution in just two iterations.

The branch and bound with (D. C) transformation was applied to (a) clusters of atoms/molecules in which
only non-bonded interactions take place, (b) molecular sructuredetenninatm of small molecules in which
bonded and non-bonded interactionsar e taken into account, and (c) financial planning modelsfor multiperiod
operation. Application (a) resulted in ratiosof polynomialsand exponential termsin the distances between
atoms. Application (b) involved very complex expressionsnot only in the distances but also in the dihedral
angles and had ratios of polynomials, exponentials, and trigonometric terms. Application (c) employed
multiperod models for stochastic programming using the mean-variance model over all possible scenarios,
and resulted in generalized polynomials and square root terms. All computational results highlight the

power of the (D. C.) transformation within a branch and bound framework.

Global Optimization Tools and Computational Experience
Global optimization tools have been recently developed in the Computer Aided Systems
Laboratory, CASL, of the Department of Chemical Engineering at Princeton University for the primal-
relaxed dual algorithm, GOP, and the branch and bound approach that combines (D.C.) transformation and
a special type of lower bounding function. These tools are denoted as cGOP and OtBB for the
decomposition and branch and bound global optimization algorithms respectively. Both cGOP and aBB
are written entirely in C and make use of MINOS, NPSOL, CPLEX for linear subproblems; MINOS,
NPSOL for nonlinear programming subproblems. They have been implemented as a library of subroutines
with emphasis on modularity and expandability, the subroutines for the sametask have the same interfaces,
and modificationsin the problem data are allowed at any stage. Both cGOPand aBB have a user specified
function capability which allows for connection to any external subroutine that can be treated as a black
box. Thecurrent versionsof cGOPand aB B can beeither sandalone or can be called as subroutines.
Computational experience with cGOP and aBB isshown in Table4 and Table 5 for awide variety
of applications, that include: pooling/blending problems, heat exchanger network synthesis problems,
nonsharp separation synthesis, problems with quadratic obj ective and box constraints, concave
programming problems, bilevel linear optimization problems, minimization of the Gibbs free energy with
NR1L and UNIQUAC in phaseand chemical reaction equilibrium, tangent plane stability criterion in phase
equilibrium, clusters of atoms and molecules, molecular gructure determination problems, and financial
planning problems. Thefirg three and the last pooling problems correspond to the Haverly problem and

themultiperiod tankage problem and aredescribed in Floudasand Visweswaran (1990) and Visweswvaran and
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Floudas (1993). The fourth and fifth pooling problems are described inBen-Taletal (1994). Thefirst two
heat exchMiger problems are taken from Floudasand Ciric (1989) while the lagt three aredescibed in Ben-
Taletal.(1994). Thefirg two heat exchanger problems are taken from Floudas and Ciric (1989) whik the
last three are described in Quesada and Gfossmann (1993). The separations problem is described in
Aggarwal and Floudas (1990). The minimization of Gibbsfirceenergy problemsarc discussed in McDonald
and Floudas (1994a). The tangent pine stability criterion problems are presentéd in McDonald and
Floudas (1994b). The quadratic objective with box condraints, concave objective with linear constraints,
and indefinite quadratic problems are discussed in Visweswaran and Floudas (1993). The Lennard Jones
clusters of atoms problems are discussed in Mannas and Floudas (1993). The molecular sructure
determination problems are presented in Maranas and Floudas (1994jub.). The molecular sructure
detenninadon problems arc presetted MM amnas and Floudas (1994 ab). Thefinancial planning problems
aredescribed in Maranaset al. (1994). AsTables4, 5 illustrate, small medium, and in certain caseslarge
global optimization problems can be solved within a modest computational effort.
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Table S Computational Rowilte with (XBB

Cluners of Aims/Maleciics

bl Name haV2 NCV BT
us 18 3 1%
u13 33 3 15%
LJ18 48 3 1.5%
LJ22 60 3 15%
U24 66 3 13%

Problom Name ly. NQV. RI
PRO 21 2 0.01%
APRO 27 . 2 0.01%
ABUT 51 3 0.01%
BUT 54 3 0.01%
NPEN 90 4 0.01%

Financial Plangi

Exoblem Name hu'd NCV. N
FM 100 8 8 n
FM300 8 8 1
FM500 8 8 1
FM1000 8 8 1
FM 10000 8 8 1n
FMC100 8 8 u
FMCTX100 8 8 1

i

20
16
19

Ni

200
1000
100
1000

N~poowhN E

TV : tota number of variables
NCV : nonconvex variables
RT:relativetolerance
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CONCLUDING REMARKS

This paper has attempted to present an overview of two major emergihé areas in algorithmic synthess:
logic and global optimization. Asindicated at the beginning of the paper these areas-have been motivated
by the need to improve the modelling in discrete optimization techniques, reduce the combinatorial search
and avoid getting trapped into poor suboptimal scdutions. In the next two subsections we briefly discuss
somefuturedirectionsfor research.

Current and Future Directions for Logic Based Optimization

Comparing the review on MINLP given by Grossmann (1990a) at the previous Snowmass mesting, it is
apparent that the work on logic based optimization has provided a new direction to address the need of
integrating qualitative knowledge into mixed-integer obtimizalion models for synthesis (see also Rippin,
1989). As has been shown by developing new-models and branch and bound methods that effectively
incorporate logic, order of magnitudereductionscan be achieved in the combinatorial search involved in
these problems. Furthermore, another very important aspect has been to achieve a better understanding of
some fundamental issues related to the modelling of discrete optimization problems. In particular, the
concept of w-MI P representability has proved to be a useful theoretical concept few characterizing the nature
of discrete congtraints. While significant progress has been made, it is clear that a number of major issues
and challenges till remain for futureresearch. Theseincludethefollowing:

1 The handling of temporal and modal logic ischallenging and should proveto be very usgful for a
wide range of problemsin process scheduling.

2. Other kinds of logic cuts should be investigated apart ffom the logic relating unitsin a
aupergructure. The cutsaffect the solution efficiency considerably and also allow one to better understand
the modelling of discrete programming problems. One possibility for logic cuts are constraints that prevent
multiple mathematical representationsfor the same design configuration within a superstructure.

3. M ost of the work on integration of logic has been directed to discrete linear problems. Still much
work remainsin theintegration of logic for nonlinear problems. In addition, thereisthe issue of
integration with new cutting plane methods such astheoneby Balaset al. (1993).

4. The problem of developing techniques to efficiently modd and solve supergructures of large scale
process flowsheet problemsisanother major issue. The use of digunctions should servetoreducethe level
of nonlinearity present in a mixed-integer representation,as well as allow for a systematic scheme for
generating efficient models for these problems.

5. Further study isrequiredon ther epresentability of dig unctive congraints as mixed-integer
congtraints. Our work on w-MIP representability can only beregarded aspreiminary work in thearea and

hasjust demongrated the potential for research in thisproblem. A better undersanding of representability

issues could lead to the development of modelling languages for generating efficient discr ete optimization
models.




6. The ctevetopment of computer softwareth” efficiently susomates the various approaches based on
logic and their more extensivetesting on Iarge'scaleproblemsisstill required.
7. Theintegration with other design methodologiesshould beexploit in which logic information
can be generated from a preliminary screening. Exampleof thisarethework by Friedleretal (1991) and
thework by Daichcndtand Grossmann (19%4aJ>).
8. The ultimate objectiveis| D provideaso” foundation to new danesof hybrid optiinization
modelswhich areexpressed in terms of equationsand logic relatwns. This shouW also provide a clefflkik
with dynamic smulation models which yi#A tend to exhibit this sructure.

Progressand better understanding in theabove problem will undoubtabiy lead to a new generation
of discrete optimization models and solution methods. Furthermore, it is clear that these efforts can
complement advancesin global optimization.

Current and Future Directions in Global Optimization

In the global optimization section we have attempted to present an overview of global optimization
methods which are based on-the concepts of decomposition and branch and bound coupled with a (DC)
transformation. From thisreview, it is apparent that we have experienced a significant progressin the area
of global optiinization and its applications in Chemical Engineering over the last five years. New
theoretical results and algorithms have emerged and their application to a number of Process Synthesis,
Design, and Control problems has already resulted in encouraging results. At.the sametime applicationsin
the area of computational chemistry, facility location, and financial planning demonstrate clearly the
potential impact of global optimization in the design of new materials and biological systems, the design of
process layout, and the design of financial management systems. It isalso worth noting that it isthe first
time that the progress in the area of global optimization is reviewed in a FOCAPD meeting, which is
indicative of the recent advances, the potential usefulness, and the growth of this area in Chemical
Engineering Design and Control. Global optimization, asa new area, however has a number of important
challengesand several open problemswhich will be the subject of current and future research woik. These
challengesinclude:

1) new global optimization approaches for non-convex (MINLP) models arising in Process
Synthesis;

) global optimization methods for generalized geometric programming problems (e.g. signomials)
which arisein many design and robust control applications,

©)] new global optimization methods for nonconvex models with trigonometric and exponential
functions that arisein Computational Chemistry, Biology and fMwumil reaction engineering applications;
4 global optimization methods which can determine all solutions of nonlinear systems of equations
that arisein phaseequilibrium, azcotropic distillation, and r eaction engineering;

3




(5) global optimization methods for bilcvel and muUileve linear and nonlinear models that appear in
planning problems, flexibility analysis, and optimal control approachesin batch distillation;
(6) new glpbal optimization approaches whkA can addressimpliciUy define functions, and
(7 digributed computing methods for global optimization with theaim at addressing medium to large
scale optimization problems.

Even though the above challengesr epr esent undoubtedly formidable tasks, we should see exciting
developmentsover the next dfcatfp.
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