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ABSTRACT

This paper presents an overview on two recent developments in optimization techniques that address
previous limitations that have been experienced with algorithmic methods in process synthesis:
combinatorics and local optima. The first part deals with the development of logic baaed models and
techniques for discrete optimization^
the combinatorial search. It will be shewn that various levels can-1* considered for the imegnttion of logic
in mixed-integer optimization techniques. The second part deals with the development of deterministic
optimization methods that can rigorously determine the global optimum in nonconvex optimization
models. It will be shown thai this can fee effectively accomplished with algorithms that exploit identifiable
nonlinear structures. Examples are presented throughout the paper and future research directions are also
briefly discussed

INTRODUCTION

Process synthesis continues to be a major area of research in process systems engineering. Significant

advances have been achieved in terms of developing synthesis methods for subsystems (reactor networks,

separation systems, heat exchanger networks) and for total flowsheets. Earlier reviews on general

developments can be found in Hendry, Rudd and Seader (1973), Mavacek (1978) and in Nishida,

Stephanopoulos and Westerberg (1981). A review on algorithmic methods based on MINLP was given by

Grossmann (1990a) at the previous POCAPD meeting in Snowmass. A recent review and trends in MINLP

based methods were recently presented by Grossmann and Daichendt (1994) at the PSE94 meeting in Korea.

As for the synthesis of subsystems, reviews have been given by Gundersen and Naess (1988) on heat

exchanger networks, and by Westerberg (1985) and Floquet, Pibouleau and Domenech (1988) on separation

systems. From these reviews it is apparent that some of the major trends in the synthesis area include an

increasing emphasis on the use of algorithmic methods that are based on MINLP optimization and their

combination and integration with other design methodologies.

It is important to note that from a practical point of view a major motivation behind algorithmic

techniques is the development of automated tools that can help design engineers to systematically explore a

large number of design alternatives. From a theoretical point of view a major motivation is to develop

unified representations and solution methods. Given the clear progress that has been made in the last decade

in algorithmic techniques, and given the advances that have taken place in optimization and computer

technology, the debate of heuristics or physical insights vs. mathematical programming has become largely

irrelevant. It has generally become clear that a comprehensive approach to process synthesis will require a

combination or integration of the different types of approaches. It has also become dear that significant



work and progress are still required in the underlying methods that support each of these approaches. It is

precisely this issue that is considered in this paper in the context of algorithmic methods.

This paper concentrates in two fundamental areas of optimization techniques that are used to

support algorithmic methods in process synthesis. Specifically, we present an overview of two major

advances that have recently taken place: (a) die incorporation of logic in mixed-integer optimization

methods to reduce the combinatorial search and to facilitate problem formulation; (b) the development of

rigorous global optimization techniques that can handle nonconvcxities in the model and avoid getting

trapped in suboptimal solutions. These advances have been largely motivated by two major difficulties that

have been encountered in the solution of MINLP models for process synthesis: combinatorics and local

optima. The former are due to the potentially large number of structural alternatives that arise in process

synthesis; the latter are due to the nonconvcxities that arise in nonlinear process models. The negative

implication in the former is often the impossibility of solving large synthesis models; the negative

implication of the latter is generating poor suboptimal designs.

While new developments are still under way, a review of the progress achieved up to date in logic

based methods and in global optimization would seem to be timely as this might hopefully promote further

research work. These algorithmic techniques are also significant in that they can be applied to other areas

such as process scheduling and process analysis. The paper is organized as follows. We first discuss

general aspects of process synthesis to see how the work described in this paper fits in the overall scheme.

We next present a motivation section to illustrate difficulties in existing algorithmic methods with

combinatorics and nonconvexities. The remaining part of the paper then concentrates in providing the

overview of the new developments in logic and global optimization. Finally, we present the conclusions

where we indicate future directions for research.

GENERAL COMPONENTS OF PROCESS SYNTHESIS

Algorithmic methods in process synthesis are rather general in scope and they involve the following four

major components: (a) Representation of space of alternatives; (b) General solution strategy; (c)

Formulation of optimization model; (Si Application of solution method.

The representations can range from rather high level abstractions such as is the case of targeting

methods, to relatively detailed flowsheet descriptions such as is the case of superstructure representations. It

is important to note that these representations are in fact commonly closely related as their difference lies in

the level of abstraction that is used.

Having developed a representation, the next step to consider is the general solution strategy. The

two common and extreme solution strategies are the simultaneous and the sequential approaches. The

simultaneous strategies attempt to optimize simultaneously all the components in a synthesis problem in

order to properly capture all the interactions and economic trade-offs. While conceptually superior, these

strategies may give rise to larger problems. The sequential approach on the other hand has the advantage of



dealing with smaller subproblcms since they sequentially decompose the problem, although often at the

expense of sacrificing optimality.

The nature of die optimization models is of course heavily dependent on the type of representation

as well as on the general solution strategy being used Target models often involve only continuous

variables since they usually do not generate topologies nor do they consider capital cost as they deal with

higher level objectives (minimize utility consumption, maximize yield). Therefore, these models

commonly give rise to linear (LP) or nonlinear programming (NLP) problems. At the other extreme

superstructure models determine topologies and operating conditions, and account for capita! costs, often

requiring 0-1 and continuous variabte giving rise to nuxed-intcgerU

(MINLP) optimization models. Wiftin each of the levels of itfxeseittationtte

model can of course also range from the simpler short-cot models to detailed simulation models.

As for the solution methods a global optimum solution can be guaranteed if the problem can be

posed as an LP or MILP problem. Furthermore, in the case of LP models efficient solution times can be

expected since these problems are theoretically solvable in polynomial time. This is however not the case

of the MILP problems which generally are NP-complete, and therefore may have exponential time

requirements, at least in the worst case. If the problem is posed as an NLP or MINLP the first drawback is

that a unique global solution can only be guaranteed if the NLP or the continuous relaxation of the MINLP

are convex. This is of course only a sufficient condition. But nevertheless, nonconvexities are prevalent in

synthesis problems, often giving rise to multiple local solutions, or in fact even preventing convergence to

feasible solutions with conventional NLP techniques. In addition to the numerical and theoretical

difficulties of handling nonconvex models, there is the added difficulty of potential combinatorial explosion

for the MINLP case. In the context of process synthesis a good example of the dilemma between the use of

MDLP and MINLP models are the approaches for superstructure optimization of flowsheets by Papoulias

and Grossmann (1983) and by Kocis and Grossmarm (1989). The advantage of the former is that the global

optimum can be guaranteed but at the expense of using a discretized and approximate process model. The

advantage of the latter is that nonlinear process models can be explicitly handled, but with the disadvantage

that the global optimum cannot be guaranteed.

Based on the above discussion, it is clear that in order to properly support the development of

algorithmic techniques, whether for targeting or superstructure models, or for simultaneous or sequential

approaches, it is imperative that limitations due to combinatorics and nonconvexities be addressed. It is in

this context that the two motivating examples below are presented.

MOTIVATING EXAMPLES

MILP Model for Heat Integrated Distillation Sequences

In order to illustrate potential combinatorial difficulties with synthesis problems, consider the

MILP model reported in Raman and Grossmann (1993a) in which hem integration is considered between



different separation tasks in the synthesis of sharp distillation sequences (see also Andrecovich and

Westerberg (1985) and Floudas and Paulcs (1988)). An example of a superstructure for 4 components is

given in Fig. 1 . For the heat integration part, it is assumed that the pressures of the columns can be

adjusted in such a way that the condenser of every column can potentiaUy supply heat to the reboilers of the

other columns as shown in Fig. 2 (multieffect columns are not considered). The MILP model involves as

0-1 variables the potential existence of columns and the potential beat exchanges between columns and

reboilers, and as continuous variables the flows, heat loads and temperatures of condensers and reboilers,

with which pressure changes arc accounted for. The objective function consists of die minimization of the

investment cost of the columns and the operating cost for the utilities. The constraints involve mass and

heat balances, and logical constraints that enferce feasible temperatures if heat exchange take pla^

flows and heat loads if the corresponding 0-1 variables are 9et to zero.

For a four component system such as the one in Fig. 1 the MILP model involves 100 0-1

variables, 191 continuous variables and 258 constraints. The 100 binary variables are split as follows -10 to

model the existence of the distillation columns and 90 to model the existence of heat exchange matches

between the reboilers and condensers of the various columns. The computer codes ZOOM, OSL and

SCICONIC were tried for solving this problem. The three of them were not able to even find a feasible

solution after enumeiating mem than 100,000 nodes and after running more than 1 CPU hour on an IBM

RISC/6000! A major reason for this performance was that the relaxation gap is very large in this problem;

the LP relaxation in which the binary variables are treated as continuous the optimum is Sl,117,000/yr.

while the optimal MILP solution is $l,900,000/yr. As will be shown later in the paper, by using logic

rigorous optimization of this problem can be achieved in only few seconds!

B/CD

ABCO

AB/C

Fig. 1. Superstructure for 4-compoDent example.



Fig. 2. Heat integration between different separation tasks.

Nonconvex Model for Pooling/Blending Problems

To illustrate the potential difficulties associated with the existence of multiple solutions in

nonlinear optimization NLP problems, we will consider as motivating example the pooling problem

proposed by Haverly (1978) which is shown in Figure 3. Three crudes A, B, and G with different sulfur

contents are to be combined to form two products x and y which have specifications on the maximum

sulfur content Note that streams A and B are mixed in a pool and it is the existence of such a pool that

introduces non-convexities in the mathematical model in the form of bilinear terms between the sulfur

quality of the streams exiting the pool, denoted as p, and flowrates Px, Py of the pool exiting streams. The

objective in this pooling problem is to maximize the profit subject to (i) linear overall and component

balances, (ii) bilinear pool quality and product quality constraints, and (iii) bounds on the products and

sulfur quality. This problem has been studied using several local nonlinear optimization algorithms which

have been reported to either obtain suboptimal solutions or fail to obtain even a feasible solution (see

Floudas and Aggarwal, 1990 for a review of previous approaches and a decomposition strategy which

alleviates but does not eliminate the multiplicity of local solutions problem). Table 1 presents results of

local optimization algorithms (e.g. MINOS) for several starting points.

Table 1: Local Optimization for the Pooling Problem

No.
1
2
3
4
5
6
7
8
9

Sianins Oualitv
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

Solution Found
Objective value

-750.0000
-750.0000
-750.0000

0.0000
0.0000

-125.0000
-125.0000
-125.0000
-125.0000

Oualitv P
1.50
1.50
1.50
1.75
2.00
2.50
2.50
2.50
2.50



Figure 3: Motivating Example (Pooling Problem)
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Figure 4; Optimal Solution in Projected Space
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The non-convex nature of this pooling problem is better illustrated via Figure 4 where the optimal

solution of the pooling model is shown for different values of the of the pool quality p. Note that the

global optimum occurs at p « 1.5, while there exists a local optimum at p * 2.5 and between p • 1.S and p

=2.2 (approximately) the optimal solutions are of the form of constant line. As a result, several starting

points for p in the flat region or the region close to the local optimum terminate with the local solution or

even fail to obtain a solution.

Floudas and Visweswaran (1990) applied the decomposition global optimization approach GOP,

which is discussed in the global optimization section, to this pooling problem, as well as large instances of

other pooling problems and multiperiod tankage problems (see also Visweswaran and Floudas, 1993) where

the global optimum is obtained regardless of the starting point

INTEGRATION OF LOGIC IN MIXED-INTEGER PROGRAMMING

In this section we present a brief review of previous work on the modelling and solution techniques of logic

based discrete optimization. We also review basic concepts for the representation of logic and inference

problems. We then describe our recent work at Carnegie Mellon on the integration of logic in mixed-

integer optimization which has been primarily motivated by process synthesis problems.

Review of Previous Work

A major issue in the application of mixed-integer programming is the efficient modelling of discrete

decisions. Different representations are often possible for the same model, each of which may be solvable

with varying degrees of difficulty. In some cases it is possible to even formulate an MH-P problem so that

it is solvable as an LP, or else, so that its relaxation gap is greatly reduced. While some basic understanding

has been achieved on how to properly formulaic special classes of mixed-integer programs (see Rardin and

Choe, 1979; Nemhauser and Wolsey, 1988), the modelling of general purpose problems is largely

performed on an ad hoc basis. The use of prepositional logic, however, offers an alternate framework for

systematically developing mixed-integer optimization models as discussed by Jeroslow and Lowe (1984) and

by Williams (1988).

The role of logic at the level of modelling of discrete optimization problems has also been studied

by Balas (1974, 198S) who developed Disjunctive Programming (DP) as an alternate representation of

mixed-integer programming problems. In this case, discrete optimization problems are formulated as linear

programs in which a subset of constraints is expressed through disjunctions (sets of constraints of which at

least one must be true). An interesting feature in the disjunctive formulation is that no 0-1 variables are

explicitly included in the model, which is the more natural form to model some problems as, for instance,

in the case of jobshop scheduling problems. Also, as noted by Balas (198S), every mixed-integer problem

can be reformulated as a disjunctive program, and every bounded DP can be refonnulated as a mixed-integer



program. The reason the disjunctive programming formulation has not been used more extensively is that

very few methods have been proposed to explicitly solve the problem in that form. Most of die research

has focused on characterizing the convex hull of disjunctive constraints and on the generation of strong

cutting planes which are included in the corresponding mixed-integer problem to strengthen the LP

relaxation (Balas, 1985; Jcroslow and Lowe, 1984). The only reported method, to our knowledge, that

explicitly solves problem is the algorithm by Beaumont (1991) for the case where the functions are linear

and there is only one constraint in each term of every disjunction. The method is similar to a branch and

bound search except that the benching is done directly on the disjunctions. This requires the addition and

deletion of the correspoiHiingdis^tiv Although this may increase

the overhead in the computations, Beaumom showed that the number of n o t e

of the branch and bound tree can often be significantly reduced.

In terms of integrating logic explicitly for improving the solution efficiency of mixed-integer

programs, aside from our own work which will be described in the next section (Raman and Grossmann,

1991,1992,1993a*, 1994), Lien and Whale (1991) considered the addition of a subset of unit resolution

cuts for the branch and bound solution of MILP problems which produced large reductions of enumeration

of nodes in the MILP formulation for heat integrated synthesis by Andrecovkh and Westerberg (1985). It

should also be mentioned that logic has been considered earlier in process synthesis with the purpose of

performing high level decisions in the structuring of process flowsheets (Mahalec and Motard, 1977).

Representations of the logic

Most of the work described above has been restricted to the form of logic calkd prepositional logic for

developing modelling and solution techniques for discrete optimization problems (see Menddson, 1987, for

general review on logic). The basic imit of a propositkmallogte express*^

or to an action, is called a literal which is a single variable that can assume either of two values, true or

false. Associated with each literal J\ its negation NOT Y (-. Y) is such that [Y OR - i l l is always true. A

disjunctive clause is a set of literals separated by OR operators [v], and is also called a disjunction. A

proposition is any logical expression and consists of a set of clauses />;, i» l , . . / that are related by the

logical operators OR [v], AND [A], IMPLICATION [=>].

In synthesis logic propositions usually refer to relations of existence of units in a superstructure.

These are commonly expressed by a set of conjunctions of clauses,

Am{LjAL2A ALg} (1)

where Li is a logical proposition expressed with boolean variables Kj in terms of implications, OR,

EXCLUSIVE OR and AND operators. In synthesis problems Y\ is a boolean variable representing the

existence of unit i and -IYJ its nonexistence. There are two ways of transforming the propositions in A. In

the simplest case, the logic propositions are converted into the conjunctive normal fonn [CNF] by removing

the implications through contrapositions in each of the clauses Lj in (1) and applying De Morgans



Theorem. In this way each clause in the CNF from consists of only OR operators with non-negated and

negated boolean variables as follows:

0!) v W ] A [ v ft) v <-r,)]A...*r v (R) A <-r,)

where Pi and P i are subsets of the boolean variables that correspond to some of the 0-1 variables, and s is

the number of clauses.

In the second representation, the logic propositions in the CNF form are convened into the

disjunctive normal form [DNF] (see Clocksin and Nfellish, 1984) by moving the AN^

the OR operators outwards by applying elementary boolean operations. The DNF form is as follows:

UD [i*Ql left \ [i€Ql ieGl J l'«ft> ' « 5 J W

where Qj and Qj are the index sets of the boolean variables which correspond to a partition of all the 0-1

variables y,\ i=7,../> in non-negated and negated terms. Each clause separated by a disjunction represents

the assignment of units in a feasible configuration* where it is assumed that each boolean variable has a one-

to-one correspondence with the 0-1 binary variables of the MEP model. Therefore, r represents the number

of alternatives in the superstructure. While the DNF form is more convenient to manipulate, the drawback

is that the transformation from CNF to DNF has exponential complexity in the worst case.

To illustrate the CNF and DNF representations in (2) and (3), consider the small example problem

shown in Fig.5. The following prepositional logic expressions apply:

I4: Y\ v Y2 => 1"3 (process lor process 2 imply process 3)
L 2 : 1̂ 3 =* yl v Y2 (process 3 implies process 1 or process 2)

L3: -tY\ v - . ^ 2 (do not select process lor do not select process 2)

xl

Fig 5. Superstructure for small example.

Applying the contrapositive to Li and L2, and using De Morgan's theorem, the corresponding CNF

1 for the logic is:

Hi v Y3) A (-.72 v K3) A (-^3 v Y\ v YD A (-.ri v

Distributing the OR over the AND operators, the corresponding DNF representation is given by:

OD * <T\ A - ^ 2 A Y^) V (72 A -iFl A Y3) V (-JTl A -n72 A -1X3) (5)

Note that the disjunctions in (5) represent the three alternatives in Fig 5.

10



In order to obtain an equivalent mathematical representation for any prepositional logic expression, this can

be easily performed using the CNF form as a basis. We must first consider basic logical operators to

determine how each can be transformed into an equivalent representation in the form of an equation or

inequality. These transformations are then used to convert general logical expressions into an equivalent

mathematical representation (Cavalier and Soyster, 1987; Cavalier**al, 1990).

Table 2. Representation of logical relations with linear inequalities

Logical

Relation

Logical OR

Logical AND

Implication

Equivalence

Exclusive OR

Comments

Pi if and only if P2

(Pl=*P2)A(P2=>Pl)

exactly one of the variables

is true

Pi

Pi

(-Pi

Pi

Boolean

Expression

v P2 v .. v

A P2 A .. A

-.P1VP2

V P 2 ) A ( -

Pl)

Pr

Pr

,P2v

Pr

Representation as

yi + y2 + •• • yr * 1

1 - yl + y2 * 1

y i « y 2

To each literal Pv a Unary variable y\ is assigned. Then the negation or complement of/^ (-.Pj)

is given by 1 - yx. The logical value of true corresponds to the binary value of 1 and false corresponds to

the binary value of 0. The basic operators used in prepositional logic and the representation of their

relationships are shown in Table 2. With the basic equivalent relations given in Table 2 (e.g. see

William's, 198S), one can systematically model an arbitrary prepositional logic expression that is given in

terms of OR, AND, IMPLICATION operators, as a set of linear equality and inequality constraints. One

approach is to systematically convert the logical expression into its equvalent conjunctive normal form

representation which involves the application of pure logical operations. The conjunctive normal form is a

conjunction of clauses, Q\ A C2 A ... A g s . Hence, for the conjunctive normal form to be true, each clause

Q\ must be true independent of the others. Also since a clause Q\ is just a disjunction of literals, P j v />2 v

it can be expressed in the linear mathematical form as the inequality.

37 • >2 + • yr * 1 (6)

11



Symbolic and Mathematical Methods for Logic Inference

The most common logic inference problem is the satisfiability problem where, given the validity of a set of

propositions, one has to prove the truth or validity of a conclusion which may be either a literal or a

proposition. This inference problem is one of the basic issues in artificial intelligence and data bases.

However, the general satisfiability problem for prepositional logic is NP-complete (Cook, 1971; Karp,

1972). Therefore, research has focused on identifying classes of problems within the general satisfiability

problem that can be solved efficiently. Knowledge based systems commonly require the use of Horn clause

systems which have at most one non-negated literal in each clause. The inference problem for this class of

prepositional logic problems can be solved in linear time using unit resolution (Dowling and Gallier, 1984).

The unit resolution technique (e.g. see Clocksin and Mellish, 1981) is one of the most common inference

techniques, and in simple terms, it consists of solving sequentially each logic clause one at a time. Chandra

and Hooker (1988) have extended the class of problems that can be solved in linear time to include extended

Horn clause systems. One of the most effective logic-based methods for solving the general satisfiability

problem is the algorithm of Davis and Putnam (1960) as treated by Loveland (1978). This approach is

closely related to the branch and bound method for mixed-integer programming. Jereslow and Wang (1990)

have developed branching heuristics to improve the performance of the Davis-Putnam procedure. It must be

noted that although the previous work has been restricted to prepositional logic, the techniques used for this

class are essential to higher order representations like predicate logic which involve additional logic operators

like for all [V] and it exists [3].

Since the logical propositions can be systematically converted into a set of linear inequalities,

instead of using symbolic inference techniques, the inference problem can be formulated as an integer linear

programming problem. In particular, given a problem in which all the logical propositions have been

converted to a set of linear inequalities, the inference problem that consists of proving a given clause,

Prove Pu (UP1)

st B(P0 i = U,..,q

can be formulated as the following MILP (Cavalier and Soyster, 1987):

Min Z« X

st A y 2 a (UP2)

y € {0J}n

where Ay k a is die set of inequalities obtained by translating B (P\.P2* •• f q) into their linear

mathematical form, and the objective function is obtained by also converting the clause Pu that is to be

proved into its equivalent mathematical form. Here, /(u) corresponds to the index set of the binary variables

associated with the clause Pu. This clause is always true if Z * 1 on minimizing the objective function as

an integer programming problem. If Z = 0 for the optimal integer solution, this establishes an instance

where the clause is false. Therefore, in this case, the clause is not always true. In many instances, the

12



optimal integer solution to problem (LIP2) will be obtained by solving its linear programming relaxation

(Hooker, 1988). Even if no integer solution is obtained, it may be possible to fetch conclusions from the

relaxed UP problem (Cavalier and Soyster, 1987).

The qualitative knowledge available about the design of a system can be classified as one of the

following two types - hard logical bets or uncertain heuristics. Hard, logical facts are never violated - for

example, the reaction NaOH + HCl -~> N a C U H ^ holds from basic (Conical principles. Qualitative

knowledge in the form of heuristics on the other hand are just rules of thumb which may not always hold.

Therefore all the knowledge for synthesizing a design may not be consistent since the heuristics may

contradict one another; for example, a rule that suggests to use higher temperatures to increase yield may

conflict with a rule that suggests to use lower temperature to increase selectivity. Resolution of conflicts is

an important pan of reasoning. In general one must violate a weaker (more uncertain) set of rules in order

to satisfy stronger ones. Therefore, it becomes necessary to model the violation of heuristics, which is done

as follows (Post, 1987),

Clause or V (7)

where either the clause is true or it is being violated (V). In order to discriminate between weak and strong

rules, penalties are associated with the violation v| of each heuristic rule, i * U.jn. The penalty wj is a

non-negative number which reflects the uncertainty of the corresponding logical expression. The more

uncertain the rule, the lower the penalty for its violation. In this way, the logical inference problem with

uncertain knowledge can be formulated as an MELP problem where the objective is to obtain a solution that

satisfies all the logical relationships (i.e. Z * 0 ) , and if that is not possible, to obtain a solution with the

least total penalty for violation of the heuristics:

Min Z « wTv

st Ay Z a : Logical facts (UP3)

By • v 2 b : Heuristics

y € {0,l}n. v £ 0

Note that no violations are assigned to the inequalities Ay 2B since these correspond to hard logical

facts that always have to be satisfied. The solution to (UP3) will then determine a design that best satisfies

the possibly conflicting qualitative knowledge about the system.

Logic-based Formulations for Discrete Optimization

Given a superstructure of alternatives for a given design problem, the general form of the mixed-integer

optimization model is (Grossmann, 1990a),

Min ZmJy+jlx)

st k(x) Z 0

g(x) + My £ 0 (DPI)

xe X.ye Y

13



where x is the vector of continuous variables involved in design like pressure, temperature and flow rates,

while y is the vector of binary decision variables like existence of a particular stream or unit Integer

variables might also be involved but these are often expressed in terms of 0-1 variables. Also, model (DPI)

may contain among the inequalities pure integer constraints for logical specifications (e.g. select only one

reactor type). If all the functions and constraints are linear (PI) correspoiKis to afrMIlP pro

it is an MINLP. For the sake of simplicity, we assume that/frj, g(x) and h(x) are convex, differentiate

functions. The case of nonconvexities will be addressed later in the paper.

The mixed-integer program (DPI), is not the only way of modelling the discrete optimization

problem in a superstructure. As has been shown by Raman and Grossmann (1994) that problem can be

formulated as the generalized disjunctive program:

st

i k

£ 0 (DP2)

ke SD

x€Rn
9ceRm,Y€ {true,false}"1

in which Yfr are the boolean variables that establish whether a given term in a disjunction is true lgUc(x) <

0] or false [gUcfx) > 0], while Cl(Y) are logical relations assumed to be in the form of prepositional logic

involving only the boolean variables. Yfc are auxiliary variables that control the part of the feasible space

in which the continuous variables, x, lie, and he variables c,* represent fixed charges which are activated to

a value fik if the corresponding term of the disjunction is true. Finally, the logical conditions, £l(Y),

express relationships between the disjunctive sets. In the context of synthesis problems the disjunctions in

(DP2) typically arise for each unit i in the following form:

(8)

in which the inequalities gi apply and a fixed cost n is incurred if the unit is selected (?;£ otherwise (~*Y0

there is no fixed cost and a subset of the x variables is set to zero with the matrix B*. An important

advantage of the above modelling framework is that there is no need to introduce artificial parameters for the

"big-M" constraints that are normally used to model disjunctions.
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An interesting question that arises with problem (DP2) is whether it always pays to convert the

general disjunctive program into mixed-integer form. To answer this question for die case of linear

functions and constraints, Raman and Grossmann (1994) have developed the concept of w-MIP

represcntability which is defined asfollows:

Definition: The disjunction V \Aikx^bid is
ieDk

hold:

iff the following conditions

(i) There exists an i€ Dk for which the convex bull of the disjunction is reducible to the constraint:

2 btkytk

(ii) Every feasible solution

x'€F-{xl V
ieDk

0 £ ytk

for which Afkx* 2 fcflfc, Afcx < &#, i * i implies that yft « 7 andyik = 0 Vi *i

Thus, in general, we can consider a partly transformed form of problem (DP2) where mixed-integer

equations are used for the w-MIP constraints pan of the problem, while the rest is kept in disjunctive form,

as this pan is "poorly-behaved" in equation form. In general, this partially reformulated problem has the

form,

Min Z «

st (DP3)

H*) +
Ay k

V
ieDk

By SO
a

ke SD2

A(Y) « True

xelP.ye (Ojf. Y € {true, false}"1

in which the subset of disjunctions SD1 c SD, which are w-MIP representable, have all been convened

into mixed-integer form. The inequalities r(x) + By £ 0 correspond to these constraints and to subsets of

the inequalities gikfc cik) ^ 0, i € Dk, k € SD2, which have also been converted into mixed-integer

form. Finally, s& (x, cik) are the remaining inequalities which appear explicitly in the disjunctions k €

SD2 .
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Note also that a subset of the logical constraints in Q(Y) • True, which are required for the

definition of the discrete optimization problem, have been translated to the form of linear inequality

constraints Ay £ a. The simplest option is to convert the propositions into CNF which can then be

translated readily into inequalities as was discussed in the previous section. In cases where the number of

these constraints become large, the generation of a smaller number of tighter constraints through the

application of cutting plane techniques may be useful. The rest of the logic constraints, A(K) « True,

which are redundant and correspond to logic cuts that do not alter the optimal solution (Hooker et al, 1993),

have been left in symbolic form in order to improve the enumeration in a branch and bound search.

It should be noted that a particular case of (DP3) of interest is when the entire problem is converted

into mixed-integer form, but the logic cuts A(Y)« True are included as part of the formulation:

Min Z= ^YiVi +/(*)
i = l

st h(x)<0 (DP4)

Hx) + By * 0

Ay 2 a

x€Rn
9ye {0.1}m. Y e {true, false}9"

Solution methods

As was mentioned in the review section there are still few methods for solving mixed-integer optimization

problems that incorporate prepositional logic. As shown below, methods have been developed for

addressing linear and nonlinear problems. Obviously some of the methods are equally applicable to both

cases. However, for the sake of clarity, and to also emphasize the more useful methods in each case, we

will distinguish between methods for linear and nonlinear problems.

For linear problems the simplest case is when logic cuts A(K) • True are added to an MDLP

problem as in (DP4). These cuts, which represent redundant constraints in high level form, can be

systematically generated for process networks as discussed in Raman and Grossmann (1993a). As an

example, the logic cuts for the network in Fig. 1 in terms of the potential existence of the 10 columns are

given by the propositions:

Yl =* Y4v Y5 Y6=>Y3A Y9

Y2=>Y8AY10 Y7 =* Y3 A Y8

Y3 =>Y6v Y7 Y8=>Y2 vY7

Y4 =>Y1 A Y10 Y9=*Y5 v Y6

Y5=>Y1AY9 Y10=*Y2VY4
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There arc two bask ways of handling these cuts. One is to convert them into inequalities and add them to

the MDLP (Raman and Grossmann, 1992). White this will increase the number of constraints, it generally

reduces the relaxation gap. The other extreme is to process the logic symbolically as part of the branch and

bound search for the MOP. In this case the logic is used to select the branching variables and to determine

by inference whether additional Unary variables can be fixed at each node (Ram

This can be accomplished by treating the logic either in CNF form as in (2) or in DNF form as in (3). The

former requires unit resolution for the inference, whik the latter involves the solution of Boolean equations.

Although the DNF form is generally more expensive to obtain, its nice theoretical property is that one con

guarantee that in the worst case the number of enumerated nodes does not exceed twice the number of

clauses in (3) minus one (see Raman and Grossmann (1993a) for proof). A third alternative is to use a

hybrid approach in which only violated inequalities at the root node are included to strengthen the LP

relaxation, but the remaining enumeration is performed by solving the logic symbolically.

For the case that the discrete optimization problem is formulated as in (DP3) by involving both

disjunctions and mixed-integer constraints, Raman and Grossmann(1994) proposed an extension of the

hybrid branch and bound method for (DP4) in which the disjunctions are converted for convenience into

mixed-integer form, but the branching rule is altered to recognize the fact that no branching be performed on

disjunctions that are logically satisfied, even if the corresponding 0-1 variables are non-integer. Note that

such an algorithm can also be applied to problem (DP2). Finally, it is worth to mention that Beaumont

(1991) has proposed an algorithm that applies to (DP2) in the case that only one equation is involved in

each disjunction. In this algorithm constraints are successively added or deleted as needed in the branch and

bound search.

Similarly as in the linear case, the simplest way to integrate logic in nonlinear discrete models is

to add the logic cuts to an MINLP as in problem (DP4) (see Raman and Grossmann, 1992). If these are

convened to inequalities this has the effect of reducing the relaxation gap. This has the important effect of

strengthening the lower bound that is predicted by the master problem in the Generalized Benders

decomposition method by Geoffrion (1972). As has been shown by Sahinidis and Grossmann (1991) the

"optimal" formulation for the GBD method is when there is no gap between the relaxed and the integer

optimum solution. In the case of the outer-approximation method by Duran and Grossmann (1986) the

quantitative or symbolic integration has the effect of potentially reducing the branch and bound enumeration

at the level of the MILP master problem. An interesting variation of the above idea is to integrate the logic

inference problem with heuristics (UP3) in the MILP master problem as was proposed by Raman and

Grossmann (1992). First assume that given the solution of K NLP subproUems the MILP master problem

is represented by:
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Min a
st a £ 4fa j)

x j ^ ^ *= 1-.JT (Ml)

x€jr,y€y

in which ^xty) represents either the Lagrangian in the GBD method or an objective linearization in the

OA method, £2* is the linear approximation to the continuous feasible space and INTfc represents integer

cuts to exclude configurations that were previously analyzed. The integer programming model (LIP3) can be

integrated in the above master problem(Ml) by minimizing the weighted violation (plus an extra term to

reflect the cost) and subject to constraining the lower bound to the current upper bound; that is,

Min [wTv + w(a-LB)/(UB*-LB)]

y €

Ay 2 a

By + v Zb (M2)

a £ UBk

xeX.yeY

ae * \ v €{0,1}

in which w is a penalty chosen such that w « min* (w%) f LB is a valid lower bound to the solution of

the MINLP (e.g.. solution to the relaxed NLP problem or some reasonable but valid bound) and UBK is the

current upper bound of the objective at iteration K. The interesting feature with the master problem (M2) is

that optimality can still be guaranteed (within convexity assumptions) even though heuristics are used as

part of the search. The master problem (M2) is especially appropriate for the GBD method because of the

loose approximation that is obtained with that method. It is also important to note that the master problem

(M2) can be used when applying Benders decomposition (Benders, 1962) in the solution of MILP problems.

For the case that the nonlinear discrete optimization problem is formulated as the generalized

disjunctive program in (DP2) one can develop corresponding logic-based OA and GBD algorithms as

described in Turkay and Grossmaim (1994). First, for fixed values of the boolean variables, Yfk * true and

false, the corresponding NLP subproblem is as follows:
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m
Min

(SP)

\ \forYv*true

x e
htote that oiu^ooosOTiirtsconespoiKiMg to true boolean Also fixed charges-ft* are

only applied to these terms. Assuming that K subproblems (SP) are solved in which sets of linearizations

M...JC are generated for subsets of disjunction terms L(ik) -{11 Y*ik ~ true }. ont can define the

following disjunctive OA master problem:

Min

st

i k

I -1..X

•

V
ieDk

«*> +

am-
ae R,

Vhfxtftx-x1) £ 0

cu

True

xe RH.t:€ Rm.Ye

•

leHik) k

{true, false}"

(MDP2)

ke SD

It should be noted that before applying the above master problem it is necessary to solve various

subproblems so as to produce at least one linear approximation of each of the terms in the disjunctions. As

shown by Turkay and Grossmann (1994) selecting the smallest number of subproblems amounts to the

solution of a set covering problem. The above problem (MDP2) can be solved by any of the methods

described for the linear case. It is also interesting to note that for the case of flowsheet synthesis problems

Turkay and Grossmann (1994) have shown that the above solution method becomes equivalent to the

modelling/decomposition strategy by Kocis and Grossmann (1988) if the master problem (MDP2) is

converted into MEJ> form using a convex hull representation. Also, these authors have shown that while a

logic-based GBD method cannot be derived as in the case of the OA algorithm, one can nevertheless
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determine for the MILP version of the master problem (MDP2) one Benders iteration which then yields a

sequence similar to the GBD method for the algebraic case.

Computational Experience

From the methods described in the previous section the symbolic integration of logic both in DNF and

CNF form have been automated in a special version of OSL, the MILP solver from IBM (Raman and

Grossmann, 1993a). Also systematic methods have been developed to automate the generation of logic cuts

in process networks (Raman and Grossmann, 1993a; Hooker et alf 1994). Work is also currently under way

to automate the logic version of the OA and GBD algorithms.

In order to appreciate the potential impact of integrating logic in discrete optimization problems

numerical results on selected examples are given in Table 3. Example (a) deals with an MILP for the

synthesis of separation sequences involving 6 components (see Raman and Grossmann, 1992). Applying

the standard version of Benders decomposition convci^eix^ is IKH achieved aftcrscvcralhoureaiKlnKrc than

one hundred iterations on an older Vax-computer. In constrast, adding inequalities for the logic cuts in

(DP4) convergence is achieved in only 13 iterations, and this despite the fact that the number of constraints

is doubled. Note that the integrated master with heuristics is not as effective in this case. Example (b) deals

with a small MINLP planning problem in which similar trends are observed when adding the logic cuts.

The examples in (c) deal with the symbolic and hybrid integration of logic using branch and bound (see

Raman and Grossmann, 1993). Note that for the MILP for the separation of 6 components the reduction in

number of nodes enumerated is significant The more impressive results, however, are with the heat

integrated model which corresponds to the motivating example. Adding the inequalities for the logic cuts

the problem is solved to optimality in only 8 sec! And this is accomplished by almost doubling the number

of constraints. With the symbolic integration of logic with DNF the time is even further reduced to less

than 3 sec! The reason for the reduction is that in the symbolic integration there is no need to handle the

inequalities for the logic cuts. It should be noted that the DNF logic involved 194 disjunctive terms.

Therefore, theoretically it is possible to guarantee that the number of nodes in this type of enumeration will

not exceed 387 nodes. In actual fact only 20 were needed. Finally, the example in (d) illustrates a problem

in which a process network was initially formulated as the generalized disjunctive program (DP2) (see

Raman and Grossmann, 1994). Converting it all into MILP form requires more than 1 hour of solution

time with OSL. If instead the problem is formulated as in (DP3) in which disjunctions are identified that

are not w-MIP representable the modified branch and bound method requires less than 10 minutes of CPU

time. Fig. 6 presents the tree searches for a very small version of this problem. Note that even in this case

the logic-based branch and bound for the disjunctive model (DP3) requires only 4 nodes as opposed to the 16

that are needed when the model is posed entirely as an MILP and solved with standard branch and bound

methods.
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lfS.73

(a) Bianch and bound for sttndant MILP modeL

-193.73

-168.9
also-J3,Y41

-155.7

(b) Logic based branch and bound for disjunctive model (DP3)

Fig. 6 . Comparison of tree searches with standard and logic based branch and bound.
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Table 3. Computational Results on Selected Example Problems

(a) NflLP model 6 component separation. Benders decomposition

Constraints:
Heuristic
Logic constraints
Other
Iterations
Cpu-time*

Original Model
(DPI)

86
>100
>1000

Model with Logic
(DP4)

70
86
13

11.99

Integrated Master
(M2)

187
70
86
43

338.7
•min Micro-VaxD (SCICON1C)

(b) MINLP model plannin

Heuristic constraints
Logic constraints
Other constraints
Number iterations
CPU time*

g problem Generalized Benders Decomposition

(DPI)

1
9
7

28.20

Model with logic
(DP4)

8
9
3

11.7

Integrated Master
(M2)

5
8
9
4

18.8
•sec Micro-Vax D (SCICONIC/MINOS)

(c) MILP models. Branch and bound

Six components
Logic
constraints
no. of nodes
CPU time*

Original
Model (DPI)

0

141
3.46

Heat Integrated Distillation
Logic
constraints
nodes
CPUtime*

0

> 100,000
> 5,000

Model with
logic (DP4)

70

8
1.18

215

74
8.37

DNF based
approach

0

18
1.06

0

20
2.76

Hybrid DNF
approach

11

5
0.7

4

17
2.62

•secBM-RS6000(OSL)

(d) MILP Process Network with semi-continuous demands

Constraints
Variables
Binary
Nodes
CPU time*

MILP model (DPI)
1382
1326
73

16,532
76.2

Disjunctive Model (DP3)
1382
1326
73

1,771
8.3

•minlBM-RS6000(OSL)

22



GLOBAL OPTIMIZATION

Background

A significant effort has been expended in the last five decades toward theoretical and algorithmic

studies of local optimization algorithms and their computational testing in applications that arise in

Process Synthesis Design and CootroL Relative to such an extensive effort that has been devoted to local

nonlinear optimization approaches, there has been much less work on the theoretical and algorithmic

development of global optimization methods. In the last decade the area of global optimization has

attracted a lot of interest form the Operations Research and Applied Matheniatics community, while in the

last five yean we have experienced a resurgence of interest in Chemical Engineering for new methods of

global optimization as well as the application of available global optimization algorithms to important

chemical engineering problems. This recent surge of interest is attributed to three main reasons. First, a

large number of process synthesis, design and, control problems are indeed global optimization problems.

Second, the existing local nonlinear optimization approaches (e.g. generalized reduced gradient and

successive quadratic programming methods) may either fail to obtain even a feasible solution or are trapped

to a local optimum solution which may differ in value significantly form the global solution. Third, the

global optimum solution may have a very different physical interpretation when it is compared to local

solutions (eg. in phase equilibrium a local solution may provide incorrect prediction of types of phases at

equilibrium, as well as the components' composition in each phase).

The existing approaches for global optimization are classified as deterministic or probabilistic.

The deterministic approaches include: (a) Lipschitzian methods (e.g. Hansen et al. 1992 a, b), (b) Branch

and Bound methods (e.g. Al-Khayyal and Falkl983; Horst and Tuy, 1987; Al-Khayyal 1990), (c) Cutting

Plane methods (e.g. Tuy et al. 1985), (d) Difference of Convex (D.C.) and Reverse Convex methods (e.g.

Tuy 1987 a,b), (e) Outer Approximation methods (e.g. Horst et al. 1992), (0 Primal-Dual methods (e.g.

Shor 1990; Floudas and Visweswaran 1990,1993; Ben-Tal et al 1994), (g) Reformulation-Linearization

methods (e.g. Sherali and Alameddine, 1992; Sherali and Tuncbilek 1992), and (h) Interval methods (e.g.

Hansen 1979). The probabilistic methods include (i) random search approaches (e.g. Kirkpatrick et a.

1983), and (ii) clustering methods (e. g. Rinnoy Kan and Timmer 1987). Recent books for global

optimization that discuss the above classes are available by Pardalos and Rosen (1987), Torn and Zilinskas

(1989), Ratschek and Rokne (1988), Horst and Tuy (1990) and Floudas and Pardalos (1992).

Contributions from the chemical engineering community to the area of global optimization can be

traced to the early work of Stcphanopoulos and Westerberg (1975), Westcrberg and Shah (1978), and Wang

and Luus (1978). Renewed interest in seeking global solution was motivated form the work of Floudas et

al (1989). The first exact primal-dual global optimization approach was proposed by Floudas and

Visweswaran (1990), (1993) and its features were explored for quadratically constrained and polynomial

problems in the work of Visweswaran and Floudas (1992), (1993). At the same time Swaney (1990)
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proposed a branch and bound global optimization approach and more recently Quesada and Grossmann

(1993) combined convex undeiestimators in a branch and bound framework for fractional programs.

Manousiouthakis and Sourlas (1992) proposed a reformulation to a series of reverse convex problems, and

Tsirukis and Reklaitis (1993 a,b) proposed a feature extraction algorithm for constrained global

optimization. Maranas and Floudas (1992,1993,1994 a,b) proposed a novel branch and bound method

combined with a difference of convex functions transformation for the global optimization of atomic

clusters and molecular conformation problems that arise in computational diemistry. Vaidyanathan and

El-Halwagi (1994) proposed an interval analysis based method and Ryoo and Sahinidis (1994) proposed

reduction tests for branch and bound based methods.

In this review paper, we will focus, on deterministic global optimization methods since they

provide a rigorous framework for exploiting the inherent structure of process synthesis models . In

particular, we will discuss decomposition based primal-dual methods and branch and bound with difference

of convex functions global optimization approaches developed in the Computer-Aided Systems Laboratory,

CASL, of the Department of Chemical Engineering of Princeton University.

Decomposition Methods

Floudas and Visweswaran (1990, 1993) proposed a deterministic primal-relaxed dual global

optimization approach, GOP, for solving several classes of non-convex optimization problems for their

global optimum solutions. These classes are defined as:

Determine a globally e-optimal solution of the following problem:

min f(x.y)

subject to g (x,y) £ 0 (PI)

h(x,y) = 0

X € X

y € Y

where X and Y are non-empty, compact, convex sets, g(x,y) is an m-vector of inequality constraints and

h(x.y) is a p-vector of equality constraints. It is assumed that the functions ftx.y), g(x,y) and h(xty) are

continuous, piecewise differentiable and given in analytical form over X x Y. The variables y are defined in

such a way that:

(a) f(x,y) is convex in x for every fixed y, and convex in y for every fixed r,

(b) g(x,y) is convex in x for every fixed y, and convex in y for every fixed x and
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(c) A(xj)isaffii^inxforevei7ftted>,aiulaffinein>tocveiy fixedx.

Examples of process synthesis problems with this structure are superstructures for separation

systems, and heat exchanger networks in which balance equations involve bilinear terms, as well as phase

equilibrium problems that can be transformed so as to exhibit the bi-convex characteristics of the above

conditions.

Making use of duality theory along with several new theoretical properties, a global optimization

algorithm, GOP, has been proposed for the solution of the problem through a series of primal and relaxed

d u l problems that provide valid upper and lower bounds on tbeglobal solution. The GOP algorithm

decomposes the original problem into primal and relaxed dual subproblems. The primal problem is

solved by projecting on the y variables, and takes the form:

MB*

x

subject to g (x,/) £ 0 (P2)

h (x^) * 0

X€ X

A feasible solution xk of the primal problem (P2) with objective viy*) represents an upper bound

on the global optimum (i.e. Upper BouMfevfy*;) solution of (PI), and at the same time it provides the

Lagrange multipliers X*. |JL* for the equality and inequality constraints respectively.

The Lagrange multipliers (X*. \ik) are subsequently used to formulate the Lagrange function L (x,yt

X*. \fy which is used in the dual problem. Invoking the dual of (PI) and making use of several properties of

the problem structure, the GOP algorithm solves a relaxation of the dual problem through a series of relaxed

dual subproblems. The y-space is partitioned into subdomains and each relaxed dual subproblem represents a

valid underestimation erf1 (PI) for a particular subdomain. Each relaxed dual is awociatftd with a combination of

bounds Bp of the x variables which appear in bilinear x-y products in the Lagrange function, and takes the

forms:

MIN HB

S.I.
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(P3)

Vx. L(x.y,XK.nK)\xK * 0 «f xf?

Vx.

current

iteration

K

The first three sets of constraints of (P3) correspond to the previous (K-l) iterations with the first

one denoting the i ̂ grpngf. undfifpstitPftting cute and the second tnd third defining the partitioning of the y-

space. In the current iteration K the bounds Bj of the previous iterations are fixed while the current

combinations of bounds Bp need to be considered. The last three sets of constraints, which change as Bp

change, are the underestimating cuts for the partitioned subdomain under consideration. Hence, the relaxed

dual problems at the current iteration K are equivalent to setting the x-variables to a combination of their

bounds Bp,and solving for a corresponding domain of the y-variables. After solving (P3) for all combinations

of bounds Bp, we select the minimum of these solutions and the solutions of the previous iterations. This

will provide the new y to be considered in the primal problem (P2) and its corresponding solution is

guaranteed to be a valid lower bound on (PI). Solving the primal problem (P2) and updating the upper bound

as the minimum solution found, a monotonically non-increasing sequence of updated upper bounds is

generated. Solving the relaxed dual problems (P3), a monotonically non-decreasing sequence of valid lower

bounds is generated due to the accumulation of previous constraints. As a result, the GOP algorithm attains

finite convergence to an e-global solution of (PI) through successive iteration between the primal and relaxed

dual problems.

The GOP algorithm along with its primal problem (P2) and its relaxed dual problems (P3) have an

interesting geometrical interpretation. Figures 7a, 7b and 7c illustrate graphically the GOP applied to the

motivating pooling/blending problem discussed earlier. For a starting point of p * 2, the primal problem

corresponds to point A of Figure 7a. Note that for p * 2 the primal problem is a linear programming

problem with objective equal to zero. The y-space, which is 1 £ p £ 3, is pardoned into 2 sub-domains,

one for 1 £ p £ 2 and the other for 2 ^ p £ 3, and one relaxed dual problem is solved for each sub-

domain. Figure 7a shows the linear underestimator AB for 1 £ p S 2, and the underestimator AC for

2 £ p £ 3. Note that the underestimators are linear since the relaxed dual problems are linear in p and the

points B and C correspond to the solutions of the corresponding relaxed dual problems. Also note that the

underestimator AB passes through the global optimum (p * 1.3, -750). At the end of the first iteration we

have an upper bound of zero and a lower bound of -1500. Since -1500 < -350, the next point under

consideration for p is p = 1. For p « 1 the primal problem has as solution point D with objective value of

-700. Since point D is in the boundary of the range of p, there is only one relaxed dual problem and hence

one underestimator, shown as DE in Figure 7b, where point E is the solution of the relaxed dual problem.
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Figure 7(a)t Iteration I

F

Figure 7(b): Iteration H

Figure 7(c)t Undereitimator after Iteration III
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At the end of the second iteration, we have an upper bound of -700 and a lower bound of -884.61. Since

-884.61 < -350, the next p under consideration is p « 1.41. Figure 7c shows the underestimating function

after three iterations of the GOP algorithm. Note that we have a piece-wise linear underestimating function.

Also note that since the primal problem for p« 1.41 has lower value than -350 we can eliminate the domain

2 £ p £ 3. The GOP algorithm has quickly identified the region of the global optimum by providing tight

upper and lower bounds, and converges to the global solution in 6-7 iterations.

Visweswaran and Floudas (1990) demonstrated that the Global Optimization Algorithm. GOP, cm

address several classes of BOB-COO vex mathematical problems that include:

(i) Bilinear, negative definite and indefinite quadratic programming problems.

(ii) Quadratic programming problems with quadratic constrain

(iii) Unconstrained optimization of polynomial functions.

(iv) Optimization problems with polynomial constraints.

(v) Constrained optimization of ratios of polynomials.

Analysis of the results, obtained via the computational experience of the GOP algorithm on the

above mentioned classes of nonconvex optimization problems, verified that a global optimum solution can be

obtained from any starting point

Visweswaran and Floudas (1992) studied the class of polynomial functions of one variable in the

objective and constraints of problem (PI) and showed that the primal problem reduces to a single function

evaluation while the relaxed dual problem is equivalent to the simultaneous solution of two linear equations

in two variables. The resulting global optimization approach was demonstrated to perform favorably

compared to other algorithms.

Visweswaran and Floudas (1993) proposed new theoretical properties that enhance significantly the

computational performance of the GOP algorithm. These properties exploit further (i) the structure of the

linearized Lagrange function around xk, which contains bilinear terms in x and y, linear terms in x, and either

linear or convex terms in y, and (ii) the gradients of linearized Lagrange function around xk, which are linear

functions of only the y variables. The first property identifies the combinations of bounds that need not be

considered if the gradients of the linearized Lagrange function maintain the same sign. The second property

shows that if the gradient of the linearized Lagrange function with respect to xi is zero, then we can set x\ to

either its lower or upper bound. The third property allows for updates of the bounds on the x variables at each

iteration. Properties 1 and 2 reduce significantly the number of combinations of bounds of the x variables,

and hence reduce the number of relaxed dual problems that needed to be solved at each iteration. Property 3

results in tighter underestimators for each of the partitioned subdomains, which in turn results in faster

convergence of the upper and lower bounding sequences. The effect of the new properties is illustrated

through application of the GOP algorithm to a difficult indefinite quadratic problem, a multiperiod tankage

quality problem that occurs frequently in the modeling of refinery processes, and a set of pooling/blending

problems from the literature. In addition, extensive computational experience is reported for randomly
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generated concave and indefinite quadratic programming problems of different sizes. The results show that the

properties help to make the algorithm computationally efficient for fairly large problems. Visweswaran and

Floudas (1994) presented a (MILP) formulation for aU relaxed duak ai each ben^on of the GOP algroithm.

This is baaed on a branch and bound framework for the GOP and allows for implicit enumeration of the

partitioned subdomains.

A very important advance on the GOP approach has been recendy made by Liu and F k > ^

It is shown thai the GOP approach can be applied to very general dasses of nonlinear problems defined as:

MIN F(x)

x

ST. Gi(x)£O i « l , 2 , . . . , m (P4)

X€ X

where X is a non empty, compact, convex set in Rn, and the functions F(x), Gi(x) are C2 continuous on X.

This result, even though it is an existence theorem, is very significant because it extends the classes of

mathematical problems that the GOP can be applied to firom polynomials or ratios of polynomials to arbitrary

nonlinear objective function and constraints that may include exponential terms and trigonometrk: terms with

the only requirement that these functions have continuous first and second order derivatives. Based on this

result, it is clear the GOP approach is applicable to very broad mathematical problems.

Branch and Bound Methods with (D. C.) transformation

A novel branch and bound global optimization approach which combines a special type of

difference of convex functions' transformation with lower bounding underestimating functions was recently

proposed by Maranas and Floudas (1994 a,b). This approach is applicable to the broad class of

optimization problems stated in (P4), and this special type of (IXC.) transformation is the basis of the

result reported in Liu and Floudas (1993). In the sequel, we will discuss the essential elements of this

approach by considering the problem of:

MIN F(x)

x

<P5)
ST. x€X * {xj|xf £ xj £ xi£xj\i = l,2,...,n}

where X is a nonempty, compact, convex set in Rn, and the objective function F(x) is C2 continuous on
X.

Adding a separable quadratic term to F(x), introducing new variables x{ * xh and subtracting the

same term firom F(x) we have:

29



MIN

xf i X j £ x"

(P6)
S.T. xj-x{ =0 f«1.2 n

The key idea is to employ eigenvalue analysis and define the nonnegative parameter a in such a

way that the following tern:

£+ (x)-F(x) + a £x?

becomes convex. Then, (P6) takes the form

MIN

xf £ xi £ x

(FT)

S.T. Xj - x[ = 0

which has as objective a difference of two convex functions out of which the one that is substracted is

separable quadratic. Formulating the dual of (F7) and applying die KKT conditions, Maranas and Floudas

(1994 JBL) showed that the dual of (P7) is equivalent to (P8) (see Appendix A3 of that paper):

MIN ( ) ( ) l ( f i X r i )
L 7J (P8)

xf ̂  Xi < xf

where a is a nonnegative parameter which is greater or equal to the negative one half of the minimum
eigenvalue of the Hessian of F(x) over the box xf £ xk £ x", i ** 1, 2, ...,n

I i.e a £ MAX j 0y-—\min > I Note that the term added to F(x) has the effect of overpowering the

nonconvexity characteristics of F(x) with the addition of the term (2 a) to all of the eigenvalues of its
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Hessian. The smaller the value of a, the tighter the uiulefestimator Ux) is fcr F(x) which may imply less

total manber erf iterations for convergence. Hence, one would ideally desire the non negative parameter a to

be exactly equal to I — ^ m i n I **** •*>***« th* to the branch and bound widi difference of con vex

function transformation it suffices to find an upper bound on f - T ^ a w i 1 »* 9ckci ° •* *$& t ° t h i s

upper bound. In this case we add more convex terms than needed and do not produce the tightest

r, bat we satisfy die required conditions for convergence.

Given F(x), the aekction erf the nonnegative parameter a may involve (i) die derivation of analytical

expressions for the eigenvalues erf its Hessian, or (u) the devetoproemcrf bounds on the eigenvalues of the

Hessian of F(x). Mannas and Floudas (1992), (1993) studied alternative (i) for a variety of

atomic/molecular clusters. They derived analytical expressions for the eigenvalues for any potential

function which is a function of only the distance between atoms (e. g. Lennard-Jones, Coulomb, Mie,

Morse, Gaussian, Bom-Mayer, Buckingham). Mannas and Floudas (1994. a, b) proposed a number of

ways of obtaining bounds on the eigenvalues of the Hessian of F(x). One general way is via the use of the

measure of a matrix, a concept recently applied to the stability erf reactor networks at die process synthesis

level (see Kokossis and Floudas, 1994). If a denotes die Hessian of F(x),thcn the measure of the matrix

(-A), denoted as \i (-A), provides an upper bound on (-Xmin)- Ils formulation is a convex problem, and we

can use either the 1 or ©o norm. Appendix A.2 of Mannas and Floudas (1994*), describes such a

formulation.

It should be pointed out however that if Xmin goes to (- «>), then this represents a case in which we cannot
create <J>(x) convex. A sufficient condition which excludes such a possibility is when the dements of the

Hessian matrix have finite values. This can be seen easily using the measure erf a matrix concept One

instance of Xmin tending to (- °°) is reported in the Weber's facility location problem (see Mannas and

Flouds, 1994.C)

The function L(x) is a lower bounding function of F(x), and exhibits the following important properties:
Property 1: L(x) is always a valid underestimatorofF(x) inside the box [xff x * ] , that is

L(x)<IF(x) .

Property 2: L(x) matches F(x) at all corner points erf the box.
Property 3: L(x) is convex in the box [xf, x"] .

Property 4: The maximum separation between L(x) and F(x) is bounded and is
proportional to a and to the square of the diagonal of the box [xf, x " ] , that is
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max (F(x)-Ux)) = iai(x?-xf)

Property 5: The undercstiiiuttorL(x) constructed over tsub-tox of the current box is

always lighter than the underestimator of the current box.

In summary, the properties show that L(x) is a convex, lower bounding function of F(x), L(x)

matches F(x) at all comer points erf the box constraints inside which it has been defined. The values of L(x)

at any point, if L(x) is constructed over a tighter box of constraints each time, define a nondecreasing

sequence. Also note that Property 4 answers the question of how small the sub-boxes must become before

the upper and lower bounds of F(x) are within £. If 5 is the diagonal of the sub-box, and E is the

convergence tolerance, we have have:

Note that 8 is proportional to the square root of e and inversely proportional to the square root of a.

As a result, the smaller value of a the faster the convergence rate becomes.

These properties of the lower bounding function, L(x), coupled with an efficient partitioning

scheme resulted in a branch and bound global optimization approach that is guaranteed to converge to an e-

global solution in a finite number of iterations. Maranas and Floudas (1994*) analyzed the structure of the

branch and bound tree resulting from the subdivision process and developed formulas for finite upper and

lower bounds on the total number of iterations required for £ - convergence. The maximum number of

iterations is exponential in the total number of variables while the minimum number of iterations depends

linearly on the total number of variables. Computational experience with molecular conformation

problems indicated that the total number of iterations is much close to the minimum one.

Figure 8 provides the geometrical interpretation of the lower bounding scheme for a function F(x)

of one variable x in a box[xL, x u ] . Starting at a point x° we partition the original box into two intervals

[x L , x°] and [x°, x u ] , while F(x°) is the current upper bound. For each interval we solve the

corresponding convex lower bounding problem and obtain their respective minima at x1 , L(x*) and x2,

L(x2) respectively. Note at this point the underestimating functions shown with non-solid lines.
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Figure 8: Geometric Interpretation of
Branch and Bound with (D.C.)

K=l

> mlnF(JV), single variable problem in X

a(XLBD -XXXUBD - X)
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Since L(x*) < L(x2) we focus on the [xL, x°] for the second iteration, evaluate the function F(x1)

andpaitition the interval [xL, x°] into the intervals [xL, x1] and [x1, x 0 ] . For each of these intervals we

obtain the undcrcstimators and their minima which arc at x3 and x4 respectively. Since L(x3) > L(x4) we

focus on the interval [x1, x4] forthe next intention and evaluate F(x4). Note that we are very close to the

global solution in just two iterations.

The branch and bound with (D. C) transformation was applied to (a) clusters of atoms/molecules in which

only non-bonded interactions take place, (b) molecular structure detenninatm

bonded and non-bonded interactions are taken into account, and (c) financial planning models for multiperiod

operation. Application (a) resulted in ratios of polynomials and exponential terms in the distances between

atoms. Application (b) involved very complex expressions not only in the distances but also in the dihedral

angles and had ratios of polynomials, exponentials, and trigonometric terms. Application (c) employed

multiperod models for stochastic programming using the mean-variance model over all possible scenarios,

and resulted in generalized polynomials and square root terms. All computational results highlight the

power of the (D. C.) transformation within a branch and bound framework.

Global Optimization Tools and Computational Experience

Global optimization tools have been recently developed in the Computer Aided Systems

Laboratory, CASL, of the Department of Chemical Engineering at Princeton University for the primal-

relaxed dual algorithm, GOP, and the branch and bound approach that combines (D.C.) transformation and

a special type of lower bounding function. These tools are denoted as cGOP and OtBB for the

decomposition and branch and bound global optimization algorithms respectively. Both cGOP and a B B

are written entirely in C and make use of MINOS, NPSOL, CPLEX for linear subproblems; MINOS,

NPSOL for nonlinear programming subproblems. They have been implemented as a library of subroutines

with emphasis on modularity and expandability, the subroutines for the same task have the same interfaces,

and modifications in the problem data are allowed at any stage. Both cGOP and a B B have a user specified

function capability which allows for connection to any external subroutine that can be treated as a black

box. The current versions of cGOP and a B B can be either standalone or can be called as subroutines.

Computational experience with cGOP and a B B is shown in Table 4 and Table 5 for a wide variety

of applications, that include: pooling/blending problems, heat exchanger network synthesis problems,

nonsharp separation synthesis, problems with quadratic objective and box constraints, concave

programming problems, bilevel linear optimization problems, minimization of the Gibbs free energy with

NR1L and UNIQUAC in phase and chemical reaction equilibrium, tangent plane stability criterion in phase

equilibrium, clusters of atoms and molecules, molecular structure determination problems, and financial

planning problems. The first three and the last pooling problems correspond to the Haverly problem and

the multiperiod tankage problem and are described in Floudas and Visweswaran (1990) and Visweswaran and
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Floudas (1993). The fourth and fifth pooling problems are described inBen-TaletaL(1994). The first two

heat exchMigcr problems are taken from Floudas and Ciric (1989) while the last three are descibed in Ben-

Taletal.(1994). The first two heat exchanger problems are taken from Floudas and Ciric (1989) whik the

last three are described in Quesada and Gfossmann (1993). The separations problem is described in

Aggarwal and Floudas (1990). The minimization of Gibbsfirce energy problems arc discussed in McDonald

and Floudas (1994a). The tangent p ine stability criterion problems are presented in McDonald and

Floudas (1994b). The quadratic objective with box constraints, concave objective with linear constraints,

and indefinite quadratic problems are discussed in Visweswaran and Floudas (1993). The Lennard Jones

clusters of atoms problems are discussed in Mannas and Floudas (1993). The molecular structure

determination problems are presented in Maranas and Floudas (1994jub.). The molecular structure

detenninaoon problems arc presetted mM The financial planning problems

are described in Maranas et aL (1994). As Tables 4, 5 illustrate, small medium, and in certain cases large

global optimization problems can be solved within a modest computational effort.
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Plane
Stability
Criterion**

Quadratic
Objective,
Box
CrOnstFaints

Concave
Objective
Linear
Constraints

Indefinite
Objective,
Linear
Constraints

Bilevel
Linear

N x :
Ny
Nc
Nl
CPU
•*

TWA3G
PBW3T1
PBW3G1
PBW3T6
PBW3G6

QBR1
QBR2
QBR3
QBR4

CLR1
CLR2
CLR3
CLR4
CLR5
CLR6

IND1
IND2
IND3
IND4
IND5
IND6
IND7
IND8

BL1
BL2
BL3
BL4
BLS
BL6
BL7
BL8
BL9
BL10
BL11

number of x-
number of y-

<$
6
6
6
6

10
20
30
30

50
100
SO
SO
SO

100

100
SO

100
SO
50
50
75
50

2
2
1
1
6
1
]
]

2

• variables
• variables

number of constraints
number of iterations
see's in HP-730

3
3
3
3
3

300
300
160
300

SO
100
ISO
200
250
250

100
50
50

100
200
200
200
250

3
2
1
1
3
1
2
1
1
2
3

2
2
2
2
2

«

-

so
100
100
100
100
100

100
50
50
50
50

100
100
100

6
5
6
5
10
5
4
4
4
4
6

using GLOPEQ (McDonald and Floodas, 1994)

85
53

213
549
757

2
2
2
2

2
2
2
2
2
2

2
2
2
2
3
2
2
2

3
3
2
3
3
3
2
3
3
2
5

0.94
0.62
2.37
4.98
7.09

6.45
46.01

345.83
411.016

1.62
22.95
0.65
2.73

10.47
47.5

11.53
0.71
4.35
1.28

15.17
6.76

17.72
22.27

0.47
0.28
0.11
0.23
0.75
0.29
0.16
0.23
0.22
0.16
0.82
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Table Si Computational Rg«ult« with (XBB

n.

Problem Name
U8
U13
LJ18
LJ22
U24

Mnlwulor ^trurtUK '

PRO
APRO
ABUT
BUT
NPEN

TV
18
33
48
60
66

iy.
21
27
51
54
90

NCV
3
3
3
3
3

NCV

2
2
3
3
4

RT
1%
1.5%
1.5%
1.5%
13%

RI

0.01%
0.01%
0.01%
0.01%
0.01%

15
20
16
19

Ni

400
200

1000
100

1000

m.
NCV

FM100
FM300
FM500
FM1000
FM10000
FMC100
FMCTX100

8
8
8
8
8
8
8

8 1
8 1
8 1
8 1
8 1
8 1
8 1

1 2
I 2
I 3
1 6
1 6
1 2
I 7

TV: total number of variables

NCV : nonconvex variables

RT: relative tolerance
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CONCLUDING REMARKS

This paper has attempted to present an overview of two major emerging areas in algorithmic synthesis:

logic and global optimization. As indicated at the beginning of the paper these areas have been motivated

by the need to improve the modelling in discrete optimization techniques, reduce the combinatorial search

and avoid getting trapped into poor suboptimal scdutions. In the next two subsections we briefly discuss

some future directions for research.

Current and Future Directions for Logic Based Optimization

Comparing the review on MINLP given by Grossmann (1990a) at the previous Snowmass meeting, it is

apparent that the work on logic based optimization has provided a new direction to address the need of

integrating qualitative knowledge into mixed-integer optimization models for synthesis (see also Rippin,

1989). As has been shown by developing new models and branch and bound methods that effectively

incorporate logic, order of magnitude reductions can be achieved in the combinatorial search involved in

these problems. Furthermore, another very important aspect has been to achieve a better understanding of

some fundamental issues related to the modelling of discrete optimization problems. In particular, the

concept of w-MIP representability has proved to be a useful theoretical concept few characterizing the nature

of discrete constraints. While significant progress has been made, it is clear that a number of major issues

and challenges still remain for future research. These include the following:

1. The handling of temporal and modal logic is challenging and should prove to be very useful for a

wide range of problems in process scheduling.

2. Other kinds of logic cuts should be investigated apart from the logic relating units in a

superstructure. The cuts affect the solution efficiency considerably and also allow one to better understand

the modelling of discrete programming problems. One possibility for logic cuts are constraints that prevent

multiple mathematical representations for the same design configuration within a superstructure.

3. Most of the work on integration of logic has been directed to discrete linear problems. Still much

work remains in the integration of logic for nonlinear problems. In addition, there is the issue of

integration with new cutting plane methods such as the one by Balas et al. (1993).

4. The problem of developing techniques to efficiently model and solve superstructures of large scale

process flowsheet problems is another major issue. The use of disjunctions should serve to reduce the level

of nonlinearity present in a mixed-integer representation, as well as allow for a systematic scheme for

generating efficient models for these problems.

5. Further study is required on the representability of disjunctive constraints as mixed-integer

constraints. Our work on w-MIP representability can only be regarded as preliminary work in the area and

has just demonstrated the potential for research in this problem. A better understanding of representability

issues could lead to the development of modelling languages for generating efficient discrete optimization

models.
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6. The ctevetopment of computer software th^

logic and their more extensive testing on large scale problems is still required.

7. The integration with other design methodologies should be exploi t

can be generated from a preliminary screening. Example of this are the work by FriedleretaL (1991) and

the work by Daichcndtand Grossmann (1994aJ>).

8. The ultimate objective is ID provide a s o ^ foundation to new danes of hybrid optiinization

models which are expressed in terms of equations and logic relatwns. This shouW also provide a clefflkik

with dynamic simulation models which yi#A tend to exhibit this structure.

Progress and better understanding in the above problem will undoubtabiy lead to a new generation

of discrete optimization models and solution methods. Furthermore, it is clear that these efforts can

complement advances in global optimization.

Current and Future Directions in Global Optimization

In the global optimization section we have attempted to present an overview of global optimization

methods which are based on the concepts of decomposition and branch and bound coupled with a (DC)

transformation. From this review, it is apparent that we have experienced a significant progress in the area

of global optiinization and its applications in Chemical Engineering over the last five years. New

theoretical results and algorithms have emerged and their application to a number of Process Synthesis,

Design, and Control problems has already resulted in encouraging results. At the same time applications in

the area of computational chemistry, facility location, and financial planning demonstrate clearly the

potential impact of global optimization in the design of new materials and biological systems, the design of

process layout, and the design of financial management systems. It is also worth noting that it is the first

time that the progress in the area of global optimization is reviewed in a FOCAPD meeting, which is

indicative of the recent advances, the potential usefulness, and the growth of this area in Chemical

Engineering Design and Control. Global optimization, as a new area, however has a number of important

challenges and several open problems which will be the subject of current and future research woik. These

challenges include:

(1) new global optimization approaches for non-convex (MINLP) models arising in Process

Synthesis;

(2) global optimization methods for generalized geometric programming problems (e.g. signomials)

which arise in many design and robust control applications;

(3) new global optimization methods for nonconvex models with trigonometric and exponential

functions that arise in Computational Chemistry, Biology and fMwû ml reaction engineering applications;
(4) global optimization methods which can determine all solutions of nonlinear systems of equations
that arise in phase equilibrium, azcotropic distillation, and reaction engineering;
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(5) global optimization methods for bilcvcl and muUilevel linear and nonlinear models that appear in

planning problems, flexibility analysis, and optimal control approaches in batch distillation;

(6) new global optimization approaches whkA can address impliciUy define functions; and

(7) distributed computing methods for global optimization with the aim at addressing medium to large

scale optimization problems.

Even though the above challenges represent undoubtedly formidable tasks, we should see exciting

developments over the next dfcatfp
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ABSTRACT

This paper presents an overview on two recent developments in optimization techniques that address
previous limitations that have been experienced with algorithmic methods in process synthesis:
combinatorics and local optima. The first part deals with the development of logic baaed models and
techniques for discrete optimization^
the combinatorial search. It will be shewn that various levels can-1* considered for the imegnttion of logic
in mixed-integer optimization techniques. The second part deals with the development of deterministic
optimization methods that can rigorously determine the global optimum in nonconvex optimization
models. It will be shown thai this can fee effectively accomplished with algorithms that exploit identifiable
nonlinear structures. Examples are presented throughout the paper and future research directions are also
briefly discussed

INTRODUCTION

Process synthesis continues to be a major area of research in process systems engineering. Significant

advances have been achieved in terms of developing synthesis methods for subsystems (reactor networks,

separation systems, heat exchanger networks) and for total flowsheets. Earlier reviews on general

developments can be found in Hendry, Rudd and Seader (1973), Mavacek (1978) and in Nishida,

Stephanopoulos and Westerberg (1981). A review on algorithmic methods based on MINLP was given by

Grossmann (1990a) at the previous POCAPD meeting in Snowmass. A recent review and trends in MINLP

based methods were recently presented by Grossmann and Daichendt (1994) at the PSE94 meeting in Korea.

As for the synthesis of subsystems, reviews have been given by Gundersen and Naess (1988) on heat

exchanger networks, and by Westerberg (1985) and Floquet, Pibouleau and Domenech (1988) on separation

systems. From these reviews it is apparent that some of the major trends in the synthesis area include an

increasing emphasis on the use of algorithmic methods that are based on MINLP optimization and their

combination and integration with other design methodologies.

It is important to note that from a practical point of view a major motivation behind algorithmic

techniques is the development of automated tools that can help design engineers to systematically explore a

large number of design alternatives. From a theoretical point of view a major motivation is to develop

unified representations and solution methods. Given the clear progress that has been made in the last decade

in algorithmic techniques, and given the advances that have taken place in optimization and computer

technology, the debate of heuristics or physical insights vs. mathematical programming has become largely

irrelevant. It has generally become clear that a comprehensive approach to process synthesis will require a

combination or integration of the different types of approaches. It has also become dear that significant



work and progress are still required in the underlying methods that support each of these approaches. It is

precisely this issue that is considered in this paper in the context of algorithmic methods.

This paper concentrates in two fundamental areas of optimization techniques that are used to

support algorithmic methods in process synthesis. Specifically, we present an overview of two major

advances that have recently taken place: (a) die incorporation of logic in mixed-integer optimization

methods to reduce the combinatorial search and to facilitate problem formulation; (b) the development of

rigorous global optimization techniques that can handle nonconvcxities in the model and avoid getting

trapped in suboptimal solutions. These advances have been largely motivated by two major difficulties that

have been encountered in the solution of MINLP models for process synthesis: combinatorics and local

optima. The former are due to the potentially large number of structural alternatives that arise in process

synthesis; the latter are due to the nonconvcxities that arise in nonlinear process models. The negative

implication in the former is often the impossibility of solving large synthesis models; the negative

implication of the latter is generating poor suboptimal designs.

While new developments are still under way, a review of the progress achieved up to date in logic

based methods and in global optimization would seem to be timely as this might hopefully promote further

research work. These algorithmic techniques are also significant in that they can be applied to other areas

such as process scheduling and process analysis. The paper is organized as follows. We first discuss

general aspects of process synthesis to see how the work described in this paper fits in the overall scheme.

We next present a motivation section to illustrate difficulties in existing algorithmic methods with

combinatorics and nonconvexities. The remaining part of the paper then concentrates in providing the

overview of the new developments in logic and global optimization. Finally, we present the conclusions

where we indicate future directions for research.

GENERAL COMPONENTS OF PROCESS SYNTHESIS

Algorithmic methods in process synthesis are rather general in scope and they involve the following four

major components: (a) Representation of space of alternatives; (b) General solution strategy; (c)

Formulation of optimization model; (Si Application of solution method.

The representations can range from rather high level abstractions such as is the case of targeting

methods, to relatively detailed flowsheet descriptions such as is the case of superstructure representations. It

is important to note that these representations are in fact commonly closely related as their difference lies in

the level of abstraction that is used.

Having developed a representation, the next step to consider is the general solution strategy. The

two common and extreme solution strategies are the simultaneous and the sequential approaches. The

simultaneous strategies attempt to optimize simultaneously all the components in a synthesis problem in

order to properly capture all the interactions and economic trade-offs. While conceptually superior, these

strategies may give rise to larger problems. The sequential approach on the other hand has the advantage of



dealing with smaller subproblcms since they sequentially decompose the problem, although often at the

expense of sacrificing optimality.

The nature of die optimization models is of course heavily dependent on the type of representation

as well as on the general solution strategy being used Target models often involve only continuous

variables since they usually do not generate topologies nor do they consider capital cost as they deal with

higher level objectives (minimize utility consumption, maximize yield). Therefore, these models

commonly give rise to linear (LP) or nonlinear programming (NLP) problems. At the other extreme

superstructure models determine topologies and operating conditions, and account for capita! costs, often

requiring 0-1 and continuous variabte giving rise to nuxed-intcgerU

(MINLP) optimization models. Wiftin each of the levels of itfxeseittationtte

model can of course also range from the simpler short-cot models to detailed simulation models.

As for the solution methods a global optimum solution can be guaranteed if the problem can be

posed as an LP or MILP problem. Furthermore, in the case of LP models efficient solution times can be

expected since these problems are theoretically solvable in polynomial time. This is however not the case

of the MILP problems which generally are NP-complete, and therefore may have exponential time

requirements, at least in the worst case. If the problem is posed as an NLP or MINLP the first drawback is

that a unique global solution can only be guaranteed if the NLP or the continuous relaxation of the MINLP

are convex. This is of course only a sufficient condition. But nevertheless, nonconvexities are prevalent in

synthesis problems, often giving rise to multiple local solutions, or in fact even preventing convergence to

feasible solutions with conventional NLP techniques. In addition to the numerical and theoretical

difficulties of handling nonconvex models, there is the added difficulty of potential combinatorial explosion

for the MINLP case. In the context of process synthesis a good example of the dilemma between the use of

MDLP and MINLP models are the approaches for superstructure optimization of flowsheets by Papoulias

and Grossmann (1983) and by Kocis and Grossmarm (1989). The advantage of the former is that the global

optimum can be guaranteed but at the expense of using a discretized and approximate process model. The

advantage of the latter is that nonlinear process models can be explicitly handled, but with the disadvantage

that the global optimum cannot be guaranteed.

Based on the above discussion, it is clear that in order to properly support the development of

algorithmic techniques, whether for targeting or superstructure models, or for simultaneous or sequential

approaches, it is imperative that limitations due to combinatorics and nonconvexities be addressed. It is in

this context that the two motivating examples below are presented.

MOTIVATING EXAMPLES

MILP Model for Heat Integrated Distillation Sequences

In order to illustrate potential combinatorial difficulties with synthesis problems, consider the

MILP model reported in Raman and Grossmann (1993a) in which hem integration is considered between



different separation tasks in the synthesis of sharp distillation sequences (see also Andrecovich and

Westerberg (1985) and Floudas and Paulcs (1988)). An example of a superstructure for 4 components is

given in Fig. 1 . For the heat integration part, it is assumed that the pressures of the columns can be

adjusted in such a way that the condenser of every column can potentiaUy supply heat to the reboilers of the

other columns as shown in Fig. 2 (multieffect columns are not considered). The MILP model involves as

0-1 variables the potential existence of columns and the potential beat exchanges between columns and

reboilers, and as continuous variables the flows, heat loads and temperatures of condensers and reboilers,

with which pressure changes arc accounted for. The objective function consists of die minimization of the

investment cost of the columns and the operating cost for the utilities. The constraints involve mass and

heat balances, and logical constraints that enferce feasible temperatures if heat exchange take pla^

flows and heat loads if the corresponding 0-1 variables are 9et to zero.

For a four component system such as the one in Fig. 1 the MILP model involves 100 0-1

variables, 191 continuous variables and 258 constraints. The 100 binary variables are split as follows -10 to

model the existence of the distillation columns and 90 to model the existence of heat exchange matches

between the reboilers and condensers of the various columns. The computer codes ZOOM, OSL and

SCICONIC were tried for solving this problem. The three of them were not able to even find a feasible

solution after enumeiating mem than 100,000 nodes and after running more than 1 CPU hour on an IBM

RISC/6000! A major reason for this performance was that the relaxation gap is very large in this problem;

the LP relaxation in which the binary variables are treated as continuous the optimum is Sl,117,000/yr.

while the optimal MILP solution is $l,900,000/yr. As will be shown later in the paper, by using logic

rigorous optimization of this problem can be achieved in only few seconds!

B/CD

ABCO

AB/C

Fig. 1. Superstructure for 4-compoDent example.



Fig. 2. Heat integration between different separation tasks.

Nonconvex Model for Pooling/Blending Problems

To illustrate the potential difficulties associated with the existence of multiple solutions in

nonlinear optimization NLP problems, we will consider as motivating example the pooling problem

proposed by Haverly (1978) which is shown in Figure 3. Three crudes A, B, and G with different sulfur

contents are to be combined to form two products x and y which have specifications on the maximum

sulfur content Note that streams A and B are mixed in a pool and it is the existence of such a pool that

introduces non-convexities in the mathematical model in the form of bilinear terms between the sulfur

quality of the streams exiting the pool, denoted as p, and flowrates Px, Py of the pool exiting streams. The

objective in this pooling problem is to maximize the profit subject to (i) linear overall and component

balances, (ii) bilinear pool quality and product quality constraints, and (iii) bounds on the products and

sulfur quality. This problem has been studied using several local nonlinear optimization algorithms which

have been reported to either obtain suboptimal solutions or fail to obtain even a feasible solution (see

Floudas and Aggarwal, 1990 for a review of previous approaches and a decomposition strategy which

alleviates but does not eliminate the multiplicity of local solutions problem). Table 1 presents results of

local optimization algorithms (e.g. MINOS) for several starting points.

Table 1: Local Optimization for the Pooling Problem

No.
1
2
3
4
5
6
7
8
9

Sianins Oualitv
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

Solution Found
Objective value

-750.0000
-750.0000
-750.0000

0.0000
0.0000

-125.0000
-125.0000
-125.0000
-125.0000

Oualitv P
1.50
1.50
1.50
1.75
2.00
2.50
2.50
2.50
2.50



Figure 3: Motivating Example (Pooling Problem)
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Figure 4; Optimal Solution in Projected Space
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The non-convex nature of this pooling problem is better illustrated via Figure 4 where the optimal

solution of the pooling model is shown for different values of the of the pool quality p. Note that the

global optimum occurs at p « 1.5, while there exists a local optimum at p * 2.5 and between p • 1.S and p

=2.2 (approximately) the optimal solutions are of the form of constant line. As a result, several starting

points for p in the flat region or the region close to the local optimum terminate with the local solution or

even fail to obtain a solution.

Floudas and Visweswaran (1990) applied the decomposition global optimization approach GOP,

which is discussed in the global optimization section, to this pooling problem, as well as large instances of

other pooling problems and multiperiod tankage problems (see also Visweswaran and Floudas, 1993) where

the global optimum is obtained regardless of the starting point

INTEGRATION OF LOGIC IN MIXED-INTEGER PROGRAMMING

In this section we present a brief review of previous work on the modelling and solution techniques of logic

based discrete optimization. We also review basic concepts for the representation of logic and inference

problems. We then describe our recent work at Carnegie Mellon on the integration of logic in mixed-

integer optimization which has been primarily motivated by process synthesis problems.

Review of Previous Work

A major issue in the application of mixed-integer programming is the efficient modelling of discrete

decisions. Different representations are often possible for the same model, each of which may be solvable

with varying degrees of difficulty. In some cases it is possible to even formulate an MH-P problem so that

it is solvable as an LP, or else, so that its relaxation gap is greatly reduced. While some basic understanding

has been achieved on how to properly formulaic special classes of mixed-integer programs (see Rardin and

Choe, 1979; Nemhauser and Wolsey, 1988), the modelling of general purpose problems is largely

performed on an ad hoc basis. The use of prepositional logic, however, offers an alternate framework for

systematically developing mixed-integer optimization models as discussed by Jeroslow and Lowe (1984) and

by Williams (1988).

The role of logic at the level of modelling of discrete optimization problems has also been studied

by Balas (1974, 198S) who developed Disjunctive Programming (DP) as an alternate representation of

mixed-integer programming problems. In this case, discrete optimization problems are formulated as linear

programs in which a subset of constraints is expressed through disjunctions (sets of constraints of which at

least one must be true). An interesting feature in the disjunctive formulation is that no 0-1 variables are

explicitly included in the model, which is the more natural form to model some problems as, for instance,

in the case of jobshop scheduling problems. Also, as noted by Balas (198S), every mixed-integer problem

can be reformulated as a disjunctive program, and every bounded DP can be refonnulated as a mixed-integer



program. The reason the disjunctive programming formulation has not been used more extensively is that

very few methods have been proposed to explicitly solve the problem in that form. Most of die research

has focused on characterizing the convex hull of disjunctive constraints and on the generation of strong

cutting planes which are included in the corresponding mixed-integer problem to strengthen the LP

relaxation (Balas, 1985; Jcroslow and Lowe, 1984). The only reported method, to our knowledge, that

explicitly solves problem is the algorithm by Beaumont (1991) for the case where the functions are linear

and there is only one constraint in each term of every disjunction. The method is similar to a branch and

bound search except that the benching is done directly on the disjunctions. This requires the addition and

deletion of the correspoiHiingdis^tiv Although this may increase

the overhead in the computations, Beaumom showed that the number of n o t e

of the branch and bound tree can often be significantly reduced.

In terms of integrating logic explicitly for improving the solution efficiency of mixed-integer

programs, aside from our own work which will be described in the next section (Raman and Grossmann,

1991,1992,1993a*, 1994), Lien and Whale (1991) considered the addition of a subset of unit resolution

cuts for the branch and bound solution of MILP problems which produced large reductions of enumeration

of nodes in the MILP formulation for heat integrated synthesis by Andrecovkh and Westerberg (1985). It

should also be mentioned that logic has been considered earlier in process synthesis with the purpose of

performing high level decisions in the structuring of process flowsheets (Mahalec and Motard, 1977).

Representations of the logic

Most of the work described above has been restricted to the form of logic calkd prepositional logic for

developing modelling and solution techniques for discrete optimization problems (see Menddson, 1987, for

general review on logic). The basic imit of a propositkmallogte express*^

or to an action, is called a literal which is a single variable that can assume either of two values, true or

false. Associated with each literal J\ its negation NOT Y (-. Y) is such that [Y OR - i l l is always true. A

disjunctive clause is a set of literals separated by OR operators [v], and is also called a disjunction. A

proposition is any logical expression and consists of a set of clauses />;, i» l , . . / that are related by the

logical operators OR [v], AND [A], IMPLICATION [=>].

In synthesis logic propositions usually refer to relations of existence of units in a superstructure.

These are commonly expressed by a set of conjunctions of clauses,

Am{LjAL2A ALg} (1)

where Li is a logical proposition expressed with boolean variables Kj in terms of implications, OR,

EXCLUSIVE OR and AND operators. In synthesis problems Y\ is a boolean variable representing the

existence of unit i and -IYJ its nonexistence. There are two ways of transforming the propositions in A. In

the simplest case, the logic propositions are converted into the conjunctive normal fonn [CNF] by removing

the implications through contrapositions in each of the clauses Lj in (1) and applying De Morgans



Theorem. In this way each clause in the CNF from consists of only OR operators with non-negated and

negated boolean variables as follows:

0!) v W ] A [ v ft) v <-r,)]A...*r v (R) A <-r,)

where Pi and P i are subsets of the boolean variables that correspond to some of the 0-1 variables, and s is

the number of clauses.

In the second representation, the logic propositions in the CNF form are convened into the

disjunctive normal form [DNF] (see Clocksin and Nfellish, 1984) by moving the AN^

the OR operators outwards by applying elementary boolean operations. The DNF form is as follows:

UD [i*Ql left \ [i€Ql ieGl J l'«ft> ' « 5 J W

where Qj and Qj are the index sets of the boolean variables which correspond to a partition of all the 0-1

variables y,\ i=7,../> in non-negated and negated terms. Each clause separated by a disjunction represents

the assignment of units in a feasible configuration* where it is assumed that each boolean variable has a one-

to-one correspondence with the 0-1 binary variables of the MEP model. Therefore, r represents the number

of alternatives in the superstructure. While the DNF form is more convenient to manipulate, the drawback

is that the transformation from CNF to DNF has exponential complexity in the worst case.

To illustrate the CNF and DNF representations in (2) and (3), consider the small example problem

shown in Fig.5. The following prepositional logic expressions apply:

I4: Y\ v Y2 => 1"3 (process lor process 2 imply process 3)
L 2 : 1̂ 3 =* yl v Y2 (process 3 implies process 1 or process 2)

L3: -tY\ v - . ^ 2 (do not select process lor do not select process 2)

xl

Fig 5. Superstructure for small example.

Applying the contrapositive to Li and L2, and using De Morgan's theorem, the corresponding CNF

1 for the logic is:

Hi v Y3) A (-.72 v K3) A (-^3 v Y\ v YD A (-.ri v

Distributing the OR over the AND operators, the corresponding DNF representation is given by:

OD * <T\ A - ^ 2 A Y^) V (72 A -iFl A Y3) V (-JTl A -n72 A -1X3) (5)

Note that the disjunctions in (5) represent the three alternatives in Fig 5.
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In order to obtain an equivalent mathematical representation for any prepositional logic expression, this can

be easily performed using the CNF form as a basis. We must first consider basic logical operators to

determine how each can be transformed into an equivalent representation in the form of an equation or

inequality. These transformations are then used to convert general logical expressions into an equivalent

mathematical representation (Cavalier and Soyster, 1987; Cavalier**al, 1990).

Table 2. Representation of logical relations with linear inequalities

Logical

Relation

Logical OR

Logical AND

Implication

Equivalence

Exclusive OR

Comments

Pi if and only if P2

(Pl=*P2)A(P2=>Pl)

exactly one of the variables

is true

Pi

Pi

(-Pi

Pi

Boolean

Expression

v P2 v .. v

A P2 A .. A

-.P1VP2

V P 2 ) A ( -

Pl)

Pr

Pr

,P2v

Pr

Representation as

yi + y2 + •• • yr * 1

1 - yl + y2 * 1

y i « y 2

To each literal Pv a Unary variable y\ is assigned. Then the negation or complement of/^ (-.Pj)

is given by 1 - yx. The logical value of true corresponds to the binary value of 1 and false corresponds to

the binary value of 0. The basic operators used in prepositional logic and the representation of their

relationships are shown in Table 2. With the basic equivalent relations given in Table 2 (e.g. see

William's, 198S), one can systematically model an arbitrary prepositional logic expression that is given in

terms of OR, AND, IMPLICATION operators, as a set of linear equality and inequality constraints. One

approach is to systematically convert the logical expression into its equvalent conjunctive normal form

representation which involves the application of pure logical operations. The conjunctive normal form is a

conjunction of clauses, Q\ A C2 A ... A g s . Hence, for the conjunctive normal form to be true, each clause

Q\ must be true independent of the others. Also since a clause Q\ is just a disjunction of literals, P j v />2 v

it can be expressed in the linear mathematical form as the inequality.

37 • >2 + • yr * 1 (6)
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Symbolic and Mathematical Methods for Logic Inference

The most common logic inference problem is the satisfiability problem where, given the validity of a set of

propositions, one has to prove the truth or validity of a conclusion which may be either a literal or a

proposition. This inference problem is one of the basic issues in artificial intelligence and data bases.

However, the general satisfiability problem for prepositional logic is NP-complete (Cook, 1971; Karp,

1972). Therefore, research has focused on identifying classes of problems within the general satisfiability

problem that can be solved efficiently. Knowledge based systems commonly require the use of Horn clause

systems which have at most one non-negated literal in each clause. The inference problem for this class of

prepositional logic problems can be solved in linear time using unit resolution (Dowling and Gallier, 1984).

The unit resolution technique (e.g. see Clocksin and Mellish, 1981) is one of the most common inference

techniques, and in simple terms, it consists of solving sequentially each logic clause one at a time. Chandra

and Hooker (1988) have extended the class of problems that can be solved in linear time to include extended

Horn clause systems. One of the most effective logic-based methods for solving the general satisfiability

problem is the algorithm of Davis and Putnam (1960) as treated by Loveland (1978). This approach is

closely related to the branch and bound method for mixed-integer programming. Jereslow and Wang (1990)

have developed branching heuristics to improve the performance of the Davis-Putnam procedure. It must be

noted that although the previous work has been restricted to prepositional logic, the techniques used for this

class are essential to higher order representations like predicate logic which involve additional logic operators

like for all [V] and it exists [3].

Since the logical propositions can be systematically converted into a set of linear inequalities,

instead of using symbolic inference techniques, the inference problem can be formulated as an integer linear

programming problem. In particular, given a problem in which all the logical propositions have been

converted to a set of linear inequalities, the inference problem that consists of proving a given clause,

Prove Pu (UP1)

st B(P0 i = U,..,q

can be formulated as the following MILP (Cavalier and Soyster, 1987):

Min Z« X

st A y 2 a (UP2)

y € {0J}n

where Ay k a is die set of inequalities obtained by translating B (P\.P2* •• f q) into their linear

mathematical form, and the objective function is obtained by also converting the clause Pu that is to be

proved into its equivalent mathematical form. Here, /(u) corresponds to the index set of the binary variables

associated with the clause Pu. This clause is always true if Z * 1 on minimizing the objective function as

an integer programming problem. If Z = 0 for the optimal integer solution, this establishes an instance

where the clause is false. Therefore, in this case, the clause is not always true. In many instances, the

12



optimal integer solution to problem (LIP2) will be obtained by solving its linear programming relaxation

(Hooker, 1988). Even if no integer solution is obtained, it may be possible to fetch conclusions from the

relaxed UP problem (Cavalier and Soyster, 1987).

The qualitative knowledge available about the design of a system can be classified as one of the

following two types - hard logical bets or uncertain heuristics. Hard, logical facts are never violated - for

example, the reaction NaOH + HCl -~> N a C U H ^ holds from basic (Conical principles. Qualitative

knowledge in the form of heuristics on the other hand are just rules of thumb which may not always hold.

Therefore all the knowledge for synthesizing a design may not be consistent since the heuristics may

contradict one another; for example, a rule that suggests to use higher temperatures to increase yield may

conflict with a rule that suggests to use lower temperature to increase selectivity. Resolution of conflicts is

an important pan of reasoning. In general one must violate a weaker (more uncertain) set of rules in order

to satisfy stronger ones. Therefore, it becomes necessary to model the violation of heuristics, which is done

as follows (Post, 1987),

Clause or V (7)

where either the clause is true or it is being violated (V). In order to discriminate between weak and strong

rules, penalties are associated with the violation v| of each heuristic rule, i * U.jn. The penalty wj is a

non-negative number which reflects the uncertainty of the corresponding logical expression. The more

uncertain the rule, the lower the penalty for its violation. In this way, the logical inference problem with

uncertain knowledge can be formulated as an MELP problem where the objective is to obtain a solution that

satisfies all the logical relationships (i.e. Z * 0 ) , and if that is not possible, to obtain a solution with the

least total penalty for violation of the heuristics:

Min Z « wTv

st Ay Z a : Logical facts (UP3)

By • v 2 b : Heuristics

y € {0,l}n. v £ 0

Note that no violations are assigned to the inequalities Ay 2B since these correspond to hard logical

facts that always have to be satisfied. The solution to (UP3) will then determine a design that best satisfies

the possibly conflicting qualitative knowledge about the system.

Logic-based Formulations for Discrete Optimization

Given a superstructure of alternatives for a given design problem, the general form of the mixed-integer

optimization model is (Grossmann, 1990a),

Min ZmJy+jlx)

st k(x) Z 0

g(x) + My £ 0 (DPI)

xe X.ye Y

13



where x is the vector of continuous variables involved in design like pressure, temperature and flow rates,

while y is the vector of binary decision variables like existence of a particular stream or unit Integer

variables might also be involved but these are often expressed in terms of 0-1 variables. Also, model (DPI)

may contain among the inequalities pure integer constraints for logical specifications (e.g. select only one

reactor type). If all the functions and constraints are linear (PI) correspoiKis to afrMIlP pro

it is an MINLP. For the sake of simplicity, we assume that/frj, g(x) and h(x) are convex, differentiate

functions. The case of nonconvexities will be addressed later in the paper.

The mixed-integer program (DPI), is not the only way of modelling the discrete optimization

problem in a superstructure. As has been shown by Raman and Grossmann (1994) that problem can be

formulated as the generalized disjunctive program:

st

i k

£ 0 (DP2)

ke SD

x€Rn
9ceRm,Y€ {true,false}"1

in which Yfr are the boolean variables that establish whether a given term in a disjunction is true lgUc(x) <

0] or false [gUcfx) > 0], while Cl(Y) are logical relations assumed to be in the form of prepositional logic

involving only the boolean variables. Yfc are auxiliary variables that control the part of the feasible space

in which the continuous variables, x, lie, and he variables c,* represent fixed charges which are activated to

a value fik if the corresponding term of the disjunction is true. Finally, the logical conditions, £l(Y),

express relationships between the disjunctive sets. In the context of synthesis problems the disjunctions in

(DP2) typically arise for each unit i in the following form:

(8)

in which the inequalities gi apply and a fixed cost n is incurred if the unit is selected (?;£ otherwise (~*Y0

there is no fixed cost and a subset of the x variables is set to zero with the matrix B*. An important

advantage of the above modelling framework is that there is no need to introduce artificial parameters for the

"big-M" constraints that are normally used to model disjunctions.
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An interesting question that arises with problem (DP2) is whether it always pays to convert the

general disjunctive program into mixed-integer form. To answer this question for die case of linear

functions and constraints, Raman and Grossmann (1994) have developed the concept of w-MIP

represcntability which is defined asfollows:

Definition: The disjunction V \Aikx^bid is
ieDk

hold:

iff the following conditions

(i) There exists an i€ Dk for which the convex bull of the disjunction is reducible to the constraint:

2 btkytk

(ii) Every feasible solution

x'€F-{xl V
ieDk

0 £ ytk

for which Afkx* 2 fcflfc, Afcx < &#, i * i implies that yft « 7 andyik = 0 Vi *i

Thus, in general, we can consider a partly transformed form of problem (DP2) where mixed-integer

equations are used for the w-MIP constraints pan of the problem, while the rest is kept in disjunctive form,

as this pan is "poorly-behaved" in equation form. In general, this partially reformulated problem has the

form,

Min Z «

st (DP3)

H*) +
Ay k

V
ieDk

By SO
a

ke SD2

A(Y) « True

xelP.ye (Ojf. Y € {true, false}"1

in which the subset of disjunctions SD1 c SD, which are w-MIP representable, have all been convened

into mixed-integer form. The inequalities r(x) + By £ 0 correspond to these constraints and to subsets of

the inequalities gikfc cik) ^ 0, i € Dk, k € SD2, which have also been converted into mixed-integer

form. Finally, s& (x, cik) are the remaining inequalities which appear explicitly in the disjunctions k €

SD2 .
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Note also that a subset of the logical constraints in Q(Y) • True, which are required for the

definition of the discrete optimization problem, have been translated to the form of linear inequality

constraints Ay £ a. The simplest option is to convert the propositions into CNF which can then be

translated readily into inequalities as was discussed in the previous section. In cases where the number of

these constraints become large, the generation of a smaller number of tighter constraints through the

application of cutting plane techniques may be useful. The rest of the logic constraints, A(K) « True,

which are redundant and correspond to logic cuts that do not alter the optimal solution (Hooker et al, 1993),

have been left in symbolic form in order to improve the enumeration in a branch and bound search.

It should be noted that a particular case of (DP3) of interest is when the entire problem is converted

into mixed-integer form, but the logic cuts A(Y)« True are included as part of the formulation:

Min Z= ^YiVi +/(*)
i = l

st h(x)<0 (DP4)

Hx) + By * 0

Ay 2 a

x€Rn
9ye {0.1}m. Y e {true, false}9"

Solution methods

As was mentioned in the review section there are still few methods for solving mixed-integer optimization

problems that incorporate prepositional logic. As shown below, methods have been developed for

addressing linear and nonlinear problems. Obviously some of the methods are equally applicable to both

cases. However, for the sake of clarity, and to also emphasize the more useful methods in each case, we

will distinguish between methods for linear and nonlinear problems.

For linear problems the simplest case is when logic cuts A(K) • True are added to an MDLP

problem as in (DP4). These cuts, which represent redundant constraints in high level form, can be

systematically generated for process networks as discussed in Raman and Grossmann (1993a). As an

example, the logic cuts for the network in Fig. 1 in terms of the potential existence of the 10 columns are

given by the propositions:

Yl =* Y4v Y5 Y6=>Y3A Y9

Y2=>Y8AY10 Y7 =* Y3 A Y8

Y3 =>Y6v Y7 Y8=>Y2 vY7

Y4 =>Y1 A Y10 Y9=*Y5 v Y6

Y5=>Y1AY9 Y10=*Y2VY4
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There arc two bask ways of handling these cuts. One is to convert them into inequalities and add them to

the MDLP (Raman and Grossmann, 1992). White this will increase the number of constraints, it generally

reduces the relaxation gap. The other extreme is to process the logic symbolically as part of the branch and

bound search for the MOP. In this case the logic is used to select the branching variables and to determine

by inference whether additional Unary variables can be fixed at each node (Ram

This can be accomplished by treating the logic either in CNF form as in (2) or in DNF form as in (3). The

former requires unit resolution for the inference, whik the latter involves the solution of Boolean equations.

Although the DNF form is generally more expensive to obtain, its nice theoretical property is that one con

guarantee that in the worst case the number of enumerated nodes does not exceed twice the number of

clauses in (3) minus one (see Raman and Grossmann (1993a) for proof). A third alternative is to use a

hybrid approach in which only violated inequalities at the root node are included to strengthen the LP

relaxation, but the remaining enumeration is performed by solving the logic symbolically.

For the case that the discrete optimization problem is formulated as in (DP3) by involving both

disjunctions and mixed-integer constraints, Raman and Grossmann(1994) proposed an extension of the

hybrid branch and bound method for (DP4) in which the disjunctions are converted for convenience into

mixed-integer form, but the branching rule is altered to recognize the fact that no branching be performed on

disjunctions that are logically satisfied, even if the corresponding 0-1 variables are non-integer. Note that

such an algorithm can also be applied to problem (DP2). Finally, it is worth to mention that Beaumont

(1991) has proposed an algorithm that applies to (DP2) in the case that only one equation is involved in

each disjunction. In this algorithm constraints are successively added or deleted as needed in the branch and

bound search.

Similarly as in the linear case, the simplest way to integrate logic in nonlinear discrete models is

to add the logic cuts to an MINLP as in problem (DP4) (see Raman and Grossmann, 1992). If these are

convened to inequalities this has the effect of reducing the relaxation gap. This has the important effect of

strengthening the lower bound that is predicted by the master problem in the Generalized Benders

decomposition method by Geoffrion (1972). As has been shown by Sahinidis and Grossmann (1991) the

"optimal" formulation for the GBD method is when there is no gap between the relaxed and the integer

optimum solution. In the case of the outer-approximation method by Duran and Grossmann (1986) the

quantitative or symbolic integration has the effect of potentially reducing the branch and bound enumeration

at the level of the MILP master problem. An interesting variation of the above idea is to integrate the logic

inference problem with heuristics (UP3) in the MILP master problem as was proposed by Raman and

Grossmann (1992). First assume that given the solution of K NLP subproUems the MILP master problem

is represented by:
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Min a
st a £ 4fa j)

x j ^ ^ *= 1-.JT (Ml)

x€jr,y€y

in which ^xty) represents either the Lagrangian in the GBD method or an objective linearization in the

OA method, £2* is the linear approximation to the continuous feasible space and INTfc represents integer

cuts to exclude configurations that were previously analyzed. The integer programming model (LIP3) can be

integrated in the above master problem(Ml) by minimizing the weighted violation (plus an extra term to

reflect the cost) and subject to constraining the lower bound to the current upper bound; that is,

Min [wTv + w(a-LB)/(UB*-LB)]

y €

Ay 2 a

By + v Zb (M2)

a £ UBk

xeX.yeY

ae * \ v €{0,1}

in which w is a penalty chosen such that w « min* (w%) f LB is a valid lower bound to the solution of

the MINLP (e.g.. solution to the relaxed NLP problem or some reasonable but valid bound) and UBK is the

current upper bound of the objective at iteration K. The interesting feature with the master problem (M2) is

that optimality can still be guaranteed (within convexity assumptions) even though heuristics are used as

part of the search. The master problem (M2) is especially appropriate for the GBD method because of the

loose approximation that is obtained with that method. It is also important to note that the master problem

(M2) can be used when applying Benders decomposition (Benders, 1962) in the solution of MILP problems.

For the case that the nonlinear discrete optimization problem is formulated as the generalized

disjunctive program in (DP2) one can develop corresponding logic-based OA and GBD algorithms as

described in Turkay and Grossmaim (1994). First, for fixed values of the boolean variables, Yfk * true and

false, the corresponding NLP subproblem is as follows:
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m
Min

(SP)

\ \forYv*true

x e
htote that oiu^ooosOTiirtsconespoiKiMg to true boolean Also fixed charges-ft* are

only applied to these terms. Assuming that K subproblems (SP) are solved in which sets of linearizations

M...JC are generated for subsets of disjunction terms L(ik) -{11 Y*ik ~ true }. ont can define the

following disjunctive OA master problem:

Min

st

i k

I -1..X

•

V
ieDk

«*> +

am-
ae R,

Vhfxtftx-x1) £ 0

cu

True

xe RH.t:€ Rm.Ye

•

leHik) k

{true, false}"

(MDP2)

ke SD

It should be noted that before applying the above master problem it is necessary to solve various

subproblems so as to produce at least one linear approximation of each of the terms in the disjunctions. As

shown by Turkay and Grossmann (1994) selecting the smallest number of subproblems amounts to the

solution of a set covering problem. The above problem (MDP2) can be solved by any of the methods

described for the linear case. It is also interesting to note that for the case of flowsheet synthesis problems

Turkay and Grossmann (1994) have shown that the above solution method becomes equivalent to the

modelling/decomposition strategy by Kocis and Grossmann (1988) if the master problem (MDP2) is

converted into MEJ> form using a convex hull representation. Also, these authors have shown that while a

logic-based GBD method cannot be derived as in the case of the OA algorithm, one can nevertheless
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determine for the MILP version of the master problem (MDP2) one Benders iteration which then yields a

sequence similar to the GBD method for the algebraic case.

Computational Experience

From the methods described in the previous section the symbolic integration of logic both in DNF and

CNF form have been automated in a special version of OSL, the MILP solver from IBM (Raman and

Grossmann, 1993a). Also systematic methods have been developed to automate the generation of logic cuts

in process networks (Raman and Grossmann, 1993a; Hooker et alf 1994). Work is also currently under way

to automate the logic version of the OA and GBD algorithms.

In order to appreciate the potential impact of integrating logic in discrete optimization problems

numerical results on selected examples are given in Table 3. Example (a) deals with an MILP for the

synthesis of separation sequences involving 6 components (see Raman and Grossmann, 1992). Applying

the standard version of Benders decomposition convci^eix^ is IKH achieved aftcrscvcralhoureaiKlnKrc than

one hundred iterations on an older Vax-computer. In constrast, adding inequalities for the logic cuts in

(DP4) convergence is achieved in only 13 iterations, and this despite the fact that the number of constraints

is doubled. Note that the integrated master with heuristics is not as effective in this case. Example (b) deals

with a small MINLP planning problem in which similar trends are observed when adding the logic cuts.

The examples in (c) deal with the symbolic and hybrid integration of logic using branch and bound (see

Raman and Grossmann, 1993). Note that for the MILP for the separation of 6 components the reduction in

number of nodes enumerated is significant The more impressive results, however, are with the heat

integrated model which corresponds to the motivating example. Adding the inequalities for the logic cuts

the problem is solved to optimality in only 8 sec! And this is accomplished by almost doubling the number

of constraints. With the symbolic integration of logic with DNF the time is even further reduced to less

than 3 sec! The reason for the reduction is that in the symbolic integration there is no need to handle the

inequalities for the logic cuts. It should be noted that the DNF logic involved 194 disjunctive terms.

Therefore, theoretically it is possible to guarantee that the number of nodes in this type of enumeration will

not exceed 387 nodes. In actual fact only 20 were needed. Finally, the example in (d) illustrates a problem

in which a process network was initially formulated as the generalized disjunctive program (DP2) (see

Raman and Grossmann, 1994). Converting it all into MILP form requires more than 1 hour of solution

time with OSL. If instead the problem is formulated as in (DP3) in which disjunctions are identified that

are not w-MIP representable the modified branch and bound method requires less than 10 minutes of CPU

time. Fig. 6 presents the tree searches for a very small version of this problem. Note that even in this case

the logic-based branch and bound for the disjunctive model (DP3) requires only 4 nodes as opposed to the 16

that are needed when the model is posed entirely as an MILP and solved with standard branch and bound

methods.
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lfS.73

(a) Bianch and bound for sttndant MILP modeL

-193.73

-168.9
also-J3,Y41

-155.7

(b) Logic based branch and bound for disjunctive model (DP3)

Fig. 6 . Comparison of tree searches with standard and logic based branch and bound.
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Table 3. Computational Results on Selected Example Problems

(a) NflLP model 6 component separation. Benders decomposition

Constraints:
Heuristic
Logic constraints
Other
Iterations
Cpu-time*

Original Model
(DPI)

86
>100
>1000

Model with Logic
(DP4)

70
86
13

11.99

Integrated Master
(M2)

187
70
86
43

338.7
•min Micro-VaxD (SCICON1C)

(b) MINLP model plannin

Heuristic constraints
Logic constraints
Other constraints
Number iterations
CPU time*

g problem Generalized Benders Decomposition

(DPI)

1
9
7

28.20

Model with logic
(DP4)

8
9
3

11.7

Integrated Master
(M2)

5
8
9
4

18.8
•sec Micro-Vax D (SCICONIC/MINOS)

(c) MILP models. Branch and bound

Six components
Logic
constraints
no. of nodes
CPU time*

Original
Model (DPI)

0

141
3.46

Heat Integrated Distillation
Logic
constraints
nodes
CPUtime*

0

> 100,000
> 5,000

Model with
logic (DP4)

70

8
1.18

215

74
8.37

DNF based
approach

0

18
1.06

0

20
2.76

Hybrid DNF
approach

11

5
0.7

4

17
2.62

•secBM-RS6000(OSL)

(d) MILP Process Network with semi-continuous demands

Constraints
Variables
Binary
Nodes
CPU time*

MILP model (DPI)
1382
1326
73

16,532
76.2

Disjunctive Model (DP3)
1382
1326
73

1,771
8.3

•minlBM-RS6000(OSL)
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GLOBAL OPTIMIZATION

Background

A significant effort has been expended in the last five decades toward theoretical and algorithmic

studies of local optimization algorithms and their computational testing in applications that arise in

Process Synthesis Design and CootroL Relative to such an extensive effort that has been devoted to local

nonlinear optimization approaches, there has been much less work on the theoretical and algorithmic

development of global optimization methods. In the last decade the area of global optimization has

attracted a lot of interest form the Operations Research and Applied Matheniatics community, while in the

last five yean we have experienced a resurgence of interest in Chemical Engineering for new methods of

global optimization as well as the application of available global optimization algorithms to important

chemical engineering problems. This recent surge of interest is attributed to three main reasons. First, a

large number of process synthesis, design and, control problems are indeed global optimization problems.

Second, the existing local nonlinear optimization approaches (e.g. generalized reduced gradient and

successive quadratic programming methods) may either fail to obtain even a feasible solution or are trapped

to a local optimum solution which may differ in value significantly form the global solution. Third, the

global optimum solution may have a very different physical interpretation when it is compared to local

solutions (eg. in phase equilibrium a local solution may provide incorrect prediction of types of phases at

equilibrium, as well as the components' composition in each phase).

The existing approaches for global optimization are classified as deterministic or probabilistic.

The deterministic approaches include: (a) Lipschitzian methods (e.g. Hansen et al. 1992 a, b), (b) Branch

and Bound methods (e.g. Al-Khayyal and Falkl983; Horst and Tuy, 1987; Al-Khayyal 1990), (c) Cutting

Plane methods (e.g. Tuy et al. 1985), (d) Difference of Convex (D.C.) and Reverse Convex methods (e.g.

Tuy 1987 a,b), (e) Outer Approximation methods (e.g. Horst et al. 1992), (0 Primal-Dual methods (e.g.

Shor 1990; Floudas and Visweswaran 1990,1993; Ben-Tal et al 1994), (g) Reformulation-Linearization

methods (e.g. Sherali and Alameddine, 1992; Sherali and Tuncbilek 1992), and (h) Interval methods (e.g.

Hansen 1979). The probabilistic methods include (i) random search approaches (e.g. Kirkpatrick et a.

1983), and (ii) clustering methods (e. g. Rinnoy Kan and Timmer 1987). Recent books for global

optimization that discuss the above classes are available by Pardalos and Rosen (1987), Torn and Zilinskas

(1989), Ratschek and Rokne (1988), Horst and Tuy (1990) and Floudas and Pardalos (1992).

Contributions from the chemical engineering community to the area of global optimization can be

traced to the early work of Stcphanopoulos and Westerberg (1975), Westcrberg and Shah (1978), and Wang

and Luus (1978). Renewed interest in seeking global solution was motivated form the work of Floudas et

al (1989). The first exact primal-dual global optimization approach was proposed by Floudas and

Visweswaran (1990), (1993) and its features were explored for quadratically constrained and polynomial

problems in the work of Visweswaran and Floudas (1992), (1993). At the same time Swaney (1990)
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proposed a branch and bound global optimization approach and more recently Quesada and Grossmann

(1993) combined convex undeiestimators in a branch and bound framework for fractional programs.

Manousiouthakis and Sourlas (1992) proposed a reformulation to a series of reverse convex problems, and

Tsirukis and Reklaitis (1993 a,b) proposed a feature extraction algorithm for constrained global

optimization. Maranas and Floudas (1992,1993,1994 a,b) proposed a novel branch and bound method

combined with a difference of convex functions transformation for the global optimization of atomic

clusters and molecular conformation problems that arise in computational diemistry. Vaidyanathan and

El-Halwagi (1994) proposed an interval analysis based method and Ryoo and Sahinidis (1994) proposed

reduction tests for branch and bound based methods.

In this review paper, we will focus, on deterministic global optimization methods since they

provide a rigorous framework for exploiting the inherent structure of process synthesis models . In

particular, we will discuss decomposition based primal-dual methods and branch and bound with difference

of convex functions global optimization approaches developed in the Computer-Aided Systems Laboratory,

CASL, of the Department of Chemical Engineering of Princeton University.

Decomposition Methods

Floudas and Visweswaran (1990, 1993) proposed a deterministic primal-relaxed dual global

optimization approach, GOP, for solving several classes of non-convex optimization problems for their

global optimum solutions. These classes are defined as:

Determine a globally e-optimal solution of the following problem:

min f(x.y)

subject to g (x,y) £ 0 (PI)

h(x,y) = 0

X € X

y € Y

where X and Y are non-empty, compact, convex sets, g(x,y) is an m-vector of inequality constraints and

h(x.y) is a p-vector of equality constraints. It is assumed that the functions ftx.y), g(x,y) and h(xty) are

continuous, piecewise differentiable and given in analytical form over X x Y. The variables y are defined in

such a way that:

(a) f(x,y) is convex in x for every fixed y, and convex in y for every fixed r,

(b) g(x,y) is convex in x for every fixed y, and convex in y for every fixed x and
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(c) A(xj)isaffii^inxforevei7ftted>,aiulaffinein>tocveiy fixedx.

Examples of process synthesis problems with this structure are superstructures for separation

systems, and heat exchanger networks in which balance equations involve bilinear terms, as well as phase

equilibrium problems that can be transformed so as to exhibit the bi-convex characteristics of the above

conditions.

Making use of duality theory along with several new theoretical properties, a global optimization

algorithm, GOP, has been proposed for the solution of the problem through a series of primal and relaxed

d u l problems that provide valid upper and lower bounds on tbeglobal solution. The GOP algorithm

decomposes the original problem into primal and relaxed dual subproblems. The primal problem is

solved by projecting on the y variables, and takes the form:

MB*

x

subject to g (x,/) £ 0 (P2)

h (x^) * 0

X€ X

A feasible solution xk of the primal problem (P2) with objective viy*) represents an upper bound

on the global optimum (i.e. Upper BouMfevfy*;) solution of (PI), and at the same time it provides the

Lagrange multipliers X*. |JL* for the equality and inequality constraints respectively.

The Lagrange multipliers (X*. \ik) are subsequently used to formulate the Lagrange function L (x,yt

X*. \fy which is used in the dual problem. Invoking the dual of (PI) and making use of several properties of

the problem structure, the GOP algorithm solves a relaxation of the dual problem through a series of relaxed

dual subproblems. The y-space is partitioned into subdomains and each relaxed dual subproblem represents a

valid underestimation erf1 (PI) for a particular subdomain. Each relaxed dual is awociatftd with a combination of

bounds Bp of the x variables which appear in bilinear x-y products in the Lagrange function, and takes the

forms:

MIN HB

S.I.
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(P3)

Vx. L(x.y,XK.nK)\xK * 0 «f xf?

Vx.

current

iteration

K

The first three sets of constraints of (P3) correspond to the previous (K-l) iterations with the first

one denoting the i ̂ grpngf. undfifpstitPftting cute and the second tnd third defining the partitioning of the y-

space. In the current iteration K the bounds Bj of the previous iterations are fixed while the current

combinations of bounds Bp need to be considered. The last three sets of constraints, which change as Bp

change, are the underestimating cuts for the partitioned subdomain under consideration. Hence, the relaxed

dual problems at the current iteration K are equivalent to setting the x-variables to a combination of their

bounds Bp,and solving for a corresponding domain of the y-variables. After solving (P3) for all combinations

of bounds Bp, we select the minimum of these solutions and the solutions of the previous iterations. This

will provide the new y to be considered in the primal problem (P2) and its corresponding solution is

guaranteed to be a valid lower bound on (PI). Solving the primal problem (P2) and updating the upper bound

as the minimum solution found, a monotonically non-increasing sequence of updated upper bounds is

generated. Solving the relaxed dual problems (P3), a monotonically non-decreasing sequence of valid lower

bounds is generated due to the accumulation of previous constraints. As a result, the GOP algorithm attains

finite convergence to an e-global solution of (PI) through successive iteration between the primal and relaxed

dual problems.

The GOP algorithm along with its primal problem (P2) and its relaxed dual problems (P3) have an

interesting geometrical interpretation. Figures 7a, 7b and 7c illustrate graphically the GOP applied to the

motivating pooling/blending problem discussed earlier. For a starting point of p * 2, the primal problem

corresponds to point A of Figure 7a. Note that for p * 2 the primal problem is a linear programming

problem with objective equal to zero. The y-space, which is 1 £ p £ 3, is pardoned into 2 sub-domains,

one for 1 £ p £ 2 and the other for 2 ^ p £ 3, and one relaxed dual problem is solved for each sub-

domain. Figure 7a shows the linear underestimator AB for 1 £ p S 2, and the underestimator AC for

2 £ p £ 3. Note that the underestimators are linear since the relaxed dual problems are linear in p and the

points B and C correspond to the solutions of the corresponding relaxed dual problems. Also note that the

underestimator AB passes through the global optimum (p * 1.3, -750). At the end of the first iteration we

have an upper bound of zero and a lower bound of -1500. Since -1500 < -350, the next point under

consideration for p is p = 1. For p « 1 the primal problem has as solution point D with objective value of

-700. Since point D is in the boundary of the range of p, there is only one relaxed dual problem and hence

one underestimator, shown as DE in Figure 7b, where point E is the solution of the relaxed dual problem.
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Figure 7(a)t Iteration I

F

Figure 7(b): Iteration H

Figure 7(c)t Undereitimator after Iteration III
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At the end of the second iteration, we have an upper bound of -700 and a lower bound of -884.61. Since

-884.61 < -350, the next p under consideration is p « 1.41. Figure 7c shows the underestimating function

after three iterations of the GOP algorithm. Note that we have a piece-wise linear underestimating function.

Also note that since the primal problem for p« 1.41 has lower value than -350 we can eliminate the domain

2 £ p £ 3. The GOP algorithm has quickly identified the region of the global optimum by providing tight

upper and lower bounds, and converges to the global solution in 6-7 iterations.

Visweswaran and Floudas (1990) demonstrated that the Global Optimization Algorithm. GOP, cm

address several classes of BOB-COO vex mathematical problems that include:

(i) Bilinear, negative definite and indefinite quadratic programming problems.

(ii) Quadratic programming problems with quadratic constrain

(iii) Unconstrained optimization of polynomial functions.

(iv) Optimization problems with polynomial constraints.

(v) Constrained optimization of ratios of polynomials.

Analysis of the results, obtained via the computational experience of the GOP algorithm on the

above mentioned classes of nonconvex optimization problems, verified that a global optimum solution can be

obtained from any starting point

Visweswaran and Floudas (1992) studied the class of polynomial functions of one variable in the

objective and constraints of problem (PI) and showed that the primal problem reduces to a single function

evaluation while the relaxed dual problem is equivalent to the simultaneous solution of two linear equations

in two variables. The resulting global optimization approach was demonstrated to perform favorably

compared to other algorithms.

Visweswaran and Floudas (1993) proposed new theoretical properties that enhance significantly the

computational performance of the GOP algorithm. These properties exploit further (i) the structure of the

linearized Lagrange function around xk, which contains bilinear terms in x and y, linear terms in x, and either

linear or convex terms in y, and (ii) the gradients of linearized Lagrange function around xk, which are linear

functions of only the y variables. The first property identifies the combinations of bounds that need not be

considered if the gradients of the linearized Lagrange function maintain the same sign. The second property

shows that if the gradient of the linearized Lagrange function with respect to xi is zero, then we can set x\ to

either its lower or upper bound. The third property allows for updates of the bounds on the x variables at each

iteration. Properties 1 and 2 reduce significantly the number of combinations of bounds of the x variables,

and hence reduce the number of relaxed dual problems that needed to be solved at each iteration. Property 3

results in tighter underestimators for each of the partitioned subdomains, which in turn results in faster

convergence of the upper and lower bounding sequences. The effect of the new properties is illustrated

through application of the GOP algorithm to a difficult indefinite quadratic problem, a multiperiod tankage

quality problem that occurs frequently in the modeling of refinery processes, and a set of pooling/blending

problems from the literature. In addition, extensive computational experience is reported for randomly
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generated concave and indefinite quadratic programming problems of different sizes. The results show that the

properties help to make the algorithm computationally efficient for fairly large problems. Visweswaran and

Floudas (1994) presented a (MILP) formulation for aU relaxed duak ai each ben^on of the GOP algroithm.

This is baaed on a branch and bound framework for the GOP and allows for implicit enumeration of the

partitioned subdomains.

A very important advance on the GOP approach has been recendy made by Liu and F k > ^

It is shown thai the GOP approach can be applied to very general dasses of nonlinear problems defined as:

MIN F(x)

x

ST. Gi(x)£O i « l , 2 , . . . , m (P4)

X€ X

where X is a non empty, compact, convex set in Rn, and the functions F(x), Gi(x) are C2 continuous on X.

This result, even though it is an existence theorem, is very significant because it extends the classes of

mathematical problems that the GOP can be applied to firom polynomials or ratios of polynomials to arbitrary

nonlinear objective function and constraints that may include exponential terms and trigonometrk: terms with

the only requirement that these functions have continuous first and second order derivatives. Based on this

result, it is clear the GOP approach is applicable to very broad mathematical problems.

Branch and Bound Methods with (D. C.) transformation

A novel branch and bound global optimization approach which combines a special type of

difference of convex functions' transformation with lower bounding underestimating functions was recently

proposed by Maranas and Floudas (1994 a,b). This approach is applicable to the broad class of

optimization problems stated in (P4), and this special type of (IXC.) transformation is the basis of the

result reported in Liu and Floudas (1993). In the sequel, we will discuss the essential elements of this

approach by considering the problem of:

MIN F(x)

x

<P5)
ST. x€X * {xj|xf £ xj £ xi£xj\i = l,2,...,n}

where X is a nonempty, compact, convex set in Rn, and the objective function F(x) is C2 continuous on
X.

Adding a separable quadratic term to F(x), introducing new variables x{ * xh and subtracting the

same term firom F(x) we have:
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MIN

xf i X j £ x"

(P6)
S.T. xj-x{ =0 f«1.2 n

The key idea is to employ eigenvalue analysis and define the nonnegative parameter a in such a

way that the following tern:

£+ (x)-F(x) + a £x?

becomes convex. Then, (P6) takes the form

MIN

xf £ xi £ x

(FT)

S.T. Xj - x[ = 0

which has as objective a difference of two convex functions out of which the one that is substracted is

separable quadratic. Formulating the dual of (F7) and applying die KKT conditions, Maranas and Floudas

(1994 JBL) showed that the dual of (P7) is equivalent to (P8) (see Appendix A3 of that paper):

MIN ( ) ( ) l ( f i X r i )
L 7J (P8)

xf ̂  Xi < xf

where a is a nonnegative parameter which is greater or equal to the negative one half of the minimum
eigenvalue of the Hessian of F(x) over the box xf £ xk £ x", i ** 1, 2, ...,n

I i.e a £ MAX j 0y-—\min > I Note that the term added to F(x) has the effect of overpowering the

nonconvexity characteristics of F(x) with the addition of the term (2 a) to all of the eigenvalues of its
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Hessian. The smaller the value of a, the tighter the uiulefestimator Ux) is fcr F(x) which may imply less

total manber erf iterations for convergence. Hence, one would ideally desire the non negative parameter a to

be exactly equal to I — ^ m i n I **** •*>***« th* to the branch and bound widi difference of con vex

function transformation it suffices to find an upper bound on f - T ^ a w i 1 »* 9ckci ° •* *$& t ° t h i s

upper bound. In this case we add more convex terms than needed and do not produce the tightest

r, bat we satisfy die required conditions for convergence.

Given F(x), the aekction erf the nonnegative parameter a may involve (i) die derivation of analytical

expressions for the eigenvalues erf its Hessian, or (u) the devetoproemcrf bounds on the eigenvalues of the

Hessian of F(x). Mannas and Floudas (1992), (1993) studied alternative (i) for a variety of

atomic/molecular clusters. They derived analytical expressions for the eigenvalues for any potential

function which is a function of only the distance between atoms (e. g. Lennard-Jones, Coulomb, Mie,

Morse, Gaussian, Bom-Mayer, Buckingham). Mannas and Floudas (1994. a, b) proposed a number of

ways of obtaining bounds on the eigenvalues of the Hessian of F(x). One general way is via the use of the

measure of a matrix, a concept recently applied to the stability erf reactor networks at die process synthesis

level (see Kokossis and Floudas, 1994). If a denotes die Hessian of F(x),thcn the measure of the matrix

(-A), denoted as \i (-A), provides an upper bound on (-Xmin)- Ils formulation is a convex problem, and we

can use either the 1 or ©o norm. Appendix A.2 of Mannas and Floudas (1994*), describes such a

formulation.

It should be pointed out however that if Xmin goes to (- «>), then this represents a case in which we cannot
create <J>(x) convex. A sufficient condition which excludes such a possibility is when the dements of the

Hessian matrix have finite values. This can be seen easily using the measure erf a matrix concept One

instance of Xmin tending to (- °°) is reported in the Weber's facility location problem (see Mannas and

Flouds, 1994.C)

The function L(x) is a lower bounding function of F(x), and exhibits the following important properties:
Property 1: L(x) is always a valid underestimatorofF(x) inside the box [xff x * ] , that is

L(x)<IF(x) .

Property 2: L(x) matches F(x) at all corner points erf the box.
Property 3: L(x) is convex in the box [xf, x"] .

Property 4: The maximum separation between L(x) and F(x) is bounded and is
proportional to a and to the square of the diagonal of the box [xf, x " ] , that is
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max (F(x)-Ux)) = iai(x?-xf)

Property 5: The undercstiiiuttorL(x) constructed over tsub-tox of the current box is

always lighter than the underestimator of the current box.

In summary, the properties show that L(x) is a convex, lower bounding function of F(x), L(x)

matches F(x) at all comer points erf the box constraints inside which it has been defined. The values of L(x)

at any point, if L(x) is constructed over a tighter box of constraints each time, define a nondecreasing

sequence. Also note that Property 4 answers the question of how small the sub-boxes must become before

the upper and lower bounds of F(x) are within £. If 5 is the diagonal of the sub-box, and E is the

convergence tolerance, we have have:

Note that 8 is proportional to the square root of e and inversely proportional to the square root of a.

As a result, the smaller value of a the faster the convergence rate becomes.

These properties of the lower bounding function, L(x), coupled with an efficient partitioning

scheme resulted in a branch and bound global optimization approach that is guaranteed to converge to an e-

global solution in a finite number of iterations. Maranas and Floudas (1994*) analyzed the structure of the

branch and bound tree resulting from the subdivision process and developed formulas for finite upper and

lower bounds on the total number of iterations required for £ - convergence. The maximum number of

iterations is exponential in the total number of variables while the minimum number of iterations depends

linearly on the total number of variables. Computational experience with molecular conformation

problems indicated that the total number of iterations is much close to the minimum one.

Figure 8 provides the geometrical interpretation of the lower bounding scheme for a function F(x)

of one variable x in a box[xL, x u ] . Starting at a point x° we partition the original box into two intervals

[x L , x°] and [x°, x u ] , while F(x°) is the current upper bound. For each interval we solve the

corresponding convex lower bounding problem and obtain their respective minima at x1 , L(x*) and x2,

L(x2) respectively. Note at this point the underestimating functions shown with non-solid lines.
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Figure 8: Geometric Interpretation of
Branch and Bound with (D.C.)

K=l

> mlnF(JV), single variable problem in X

a(XLBD -XXXUBD - X)
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Since L(x*) < L(x2) we focus on the [xL, x°] for the second iteration, evaluate the function F(x1)

andpaitition the interval [xL, x°] into the intervals [xL, x1] and [x1, x 0 ] . For each of these intervals we

obtain the undcrcstimators and their minima which arc at x3 and x4 respectively. Since L(x3) > L(x4) we

focus on the interval [x1, x4] forthe next intention and evaluate F(x4). Note that we are very close to the

global solution in just two iterations.

The branch and bound with (D. C) transformation was applied to (a) clusters of atoms/molecules in which

only non-bonded interactions take place, (b) molecular structure detenninatm

bonded and non-bonded interactions are taken into account, and (c) financial planning models for multiperiod

operation. Application (a) resulted in ratios of polynomials and exponential terms in the distances between

atoms. Application (b) involved very complex expressions not only in the distances but also in the dihedral

angles and had ratios of polynomials, exponentials, and trigonometric terms. Application (c) employed

multiperod models for stochastic programming using the mean-variance model over all possible scenarios,

and resulted in generalized polynomials and square root terms. All computational results highlight the

power of the (D. C.) transformation within a branch and bound framework.

Global Optimization Tools and Computational Experience

Global optimization tools have been recently developed in the Computer Aided Systems

Laboratory, CASL, of the Department of Chemical Engineering at Princeton University for the primal-

relaxed dual algorithm, GOP, and the branch and bound approach that combines (D.C.) transformation and

a special type of lower bounding function. These tools are denoted as cGOP and OtBB for the

decomposition and branch and bound global optimization algorithms respectively. Both cGOP and a B B

are written entirely in C and make use of MINOS, NPSOL, CPLEX for linear subproblems; MINOS,

NPSOL for nonlinear programming subproblems. They have been implemented as a library of subroutines

with emphasis on modularity and expandability, the subroutines for the same task have the same interfaces,

and modifications in the problem data are allowed at any stage. Both cGOP and a B B have a user specified

function capability which allows for connection to any external subroutine that can be treated as a black

box. The current versions of cGOP and a B B can be either standalone or can be called as subroutines.

Computational experience with cGOP and a B B is shown in Table 4 and Table 5 for a wide variety

of applications, that include: pooling/blending problems, heat exchanger network synthesis problems,

nonsharp separation synthesis, problems with quadratic objective and box constraints, concave

programming problems, bilevel linear optimization problems, minimization of the Gibbs free energy with

NR1L and UNIQUAC in phase and chemical reaction equilibrium, tangent plane stability criterion in phase

equilibrium, clusters of atoms and molecules, molecular structure determination problems, and financial

planning problems. The first three and the last pooling problems correspond to the Haverly problem and

the multiperiod tankage problem and are described in Floudas and Visweswaran (1990) and Visweswaran and
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Floudas (1993). The fourth and fifth pooling problems are described inBen-TaletaL(1994). The first two

heat exchMigcr problems are taken from Floudas and Ciric (1989) while the last three are descibed in Ben-

Taletal.(1994). The first two heat exchanger problems are taken from Floudas and Ciric (1989) whik the

last three are described in Quesada and Gfossmann (1993). The separations problem is described in

Aggarwal and Floudas (1990). The minimization of Gibbsfirce energy problems arc discussed in McDonald

and Floudas (1994a). The tangent p ine stability criterion problems are presented in McDonald and

Floudas (1994b). The quadratic objective with box constraints, concave objective with linear constraints,

and indefinite quadratic problems are discussed in Visweswaran and Floudas (1993). The Lennard Jones

clusters of atoms problems are discussed in Mannas and Floudas (1993). The molecular structure

determination problems are presented in Maranas and Floudas (1994jub.). The molecular structure

detenninaoon problems arc presetted mM The financial planning problems

are described in Maranas et aL (1994). As Tables 4, 5 illustrate, small medium, and in certain cases large

global optimization problems can be solved within a modest computational effort.
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Plane
Stability
Criterion**

Quadratic
Objective,
Box
CrOnstFaints

Concave
Objective
Linear
Constraints

Indefinite
Objective,
Linear
Constraints

Bilevel
Linear

N x :
Ny
Nc
Nl
CPU
•*

TWA3G
PBW3T1
PBW3G1
PBW3T6
PBW3G6

QBR1
QBR2
QBR3
QBR4

CLR1
CLR2
CLR3
CLR4
CLR5
CLR6

IND1
IND2
IND3
IND4
IND5
IND6
IND7
IND8

BL1
BL2
BL3
BL4
BLS
BL6
BL7
BL8
BL9
BL10
BL11

number of x-
number of y-

<$
6
6
6
6

10
20
30
30

50
100
SO
SO
SO

100

100
SO

100
SO
50
50
75
50

2
2
1
1
6
1
]
]

2

• variables
• variables

number of constraints
number of iterations
see's in HP-730

3
3
3
3
3

300
300
160
300

SO
100
ISO
200
250
250

100
50
50

100
200
200
200
250

3
2
1
1
3
1
2
1
1
2
3

2
2
2
2
2

«

-

so
100
100
100
100
100

100
50
50
50
50

100
100
100

6
5
6
5
10
5
4
4
4
4
6

using GLOPEQ (McDonald and Floodas, 1994)

85
53

213
549
757

2
2
2
2

2
2
2
2
2
2

2
2
2
2
3
2
2
2

3
3
2
3
3
3
2
3
3
2
5

0.94
0.62
2.37
4.98
7.09

6.45
46.01

345.83
411.016

1.62
22.95
0.65
2.73

10.47
47.5

11.53
0.71
4.35
1.28

15.17
6.76

17.72
22.27

0.47
0.28
0.11
0.23
0.75
0.29
0.16
0.23
0.22
0.16
0.82

36



Table Si Computational Rg«ult« with (XBB

n.

Problem Name
U8
U13
LJ18
LJ22
U24

Mnlwulor ^trurtUK '

PRO
APRO
ABUT
BUT
NPEN

TV
18
33
48
60
66

iy.
21
27
51
54
90

NCV
3
3
3
3
3

NCV

2
2
3
3
4

RT
1%
1.5%
1.5%
1.5%
13%

RI

0.01%
0.01%
0.01%
0.01%
0.01%

15
20
16
19

Ni

400
200

1000
100

1000

m.
NCV

FM100
FM300
FM500
FM1000
FM10000
FMC100
FMCTX100

8
8
8
8
8
8
8

8 1
8 1
8 1
8 1
8 1
8 1
8 1

1 2
I 2
I 3
1 6
1 6
1 2
I 7

TV: total number of variables

NCV : nonconvex variables

RT: relative tolerance
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CONCLUDING REMARKS

This paper has attempted to present an overview of two major emerging areas in algorithmic synthesis:

logic and global optimization. As indicated at the beginning of the paper these areas have been motivated

by the need to improve the modelling in discrete optimization techniques, reduce the combinatorial search

and avoid getting trapped into poor suboptimal scdutions. In the next two subsections we briefly discuss

some future directions for research.

Current and Future Directions for Logic Based Optimization

Comparing the review on MINLP given by Grossmann (1990a) at the previous Snowmass meeting, it is

apparent that the work on logic based optimization has provided a new direction to address the need of

integrating qualitative knowledge into mixed-integer optimization models for synthesis (see also Rippin,

1989). As has been shown by developing new models and branch and bound methods that effectively

incorporate logic, order of magnitude reductions can be achieved in the combinatorial search involved in

these problems. Furthermore, another very important aspect has been to achieve a better understanding of

some fundamental issues related to the modelling of discrete optimization problems. In particular, the

concept of w-MIP representability has proved to be a useful theoretical concept few characterizing the nature

of discrete constraints. While significant progress has been made, it is clear that a number of major issues

and challenges still remain for future research. These include the following:

1. The handling of temporal and modal logic is challenging and should prove to be very useful for a

wide range of problems in process scheduling.

2. Other kinds of logic cuts should be investigated apart from the logic relating units in a

superstructure. The cuts affect the solution efficiency considerably and also allow one to better understand

the modelling of discrete programming problems. One possibility for logic cuts are constraints that prevent

multiple mathematical representations for the same design configuration within a superstructure.

3. Most of the work on integration of logic has been directed to discrete linear problems. Still much

work remains in the integration of logic for nonlinear problems. In addition, there is the issue of

integration with new cutting plane methods such as the one by Balas et al. (1993).

4. The problem of developing techniques to efficiently model and solve superstructures of large scale

process flowsheet problems is another major issue. The use of disjunctions should serve to reduce the level

of nonlinearity present in a mixed-integer representation, as well as allow for a systematic scheme for

generating efficient models for these problems.

5. Further study is required on the representability of disjunctive constraints as mixed-integer

constraints. Our work on w-MIP representability can only be regarded as preliminary work in the area and

has just demonstrated the potential for research in this problem. A better understanding of representability

issues could lead to the development of modelling languages for generating efficient discrete optimization

models.
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6. The ctevetopment of computer software th^

logic and their more extensive testing on large scale problems is still required.

7. The integration with other design methodologies should be exploi t

can be generated from a preliminary screening. Example of this are the work by FriedleretaL (1991) and

the work by Daichcndtand Grossmann (1994aJ>).

8. The ultimate objective is ID provide a s o ^ foundation to new danes of hybrid optiinization

models which are expressed in terms of equations and logic relatwns. This shouW also provide a clefflkik

with dynamic simulation models which yi#A tend to exhibit this structure.

Progress and better understanding in the above problem will undoubtabiy lead to a new generation

of discrete optimization models and solution methods. Furthermore, it is clear that these efforts can

complement advances in global optimization.

Current and Future Directions in Global Optimization

In the global optimization section we have attempted to present an overview of global optimization

methods which are based on the concepts of decomposition and branch and bound coupled with a (DC)

transformation. From this review, it is apparent that we have experienced a significant progress in the area

of global optiinization and its applications in Chemical Engineering over the last five years. New

theoretical results and algorithms have emerged and their application to a number of Process Synthesis,

Design, and Control problems has already resulted in encouraging results. At the same time applications in

the area of computational chemistry, facility location, and financial planning demonstrate clearly the

potential impact of global optimization in the design of new materials and biological systems, the design of

process layout, and the design of financial management systems. It is also worth noting that it is the first

time that the progress in the area of global optimization is reviewed in a FOCAPD meeting, which is

indicative of the recent advances, the potential usefulness, and the growth of this area in Chemical

Engineering Design and Control. Global optimization, as a new area, however has a number of important

challenges and several open problems which will be the subject of current and future research woik. These

challenges include:

(1) new global optimization approaches for non-convex (MINLP) models arising in Process

Synthesis;

(2) global optimization methods for generalized geometric programming problems (e.g. signomials)

which arise in many design and robust control applications;

(3) new global optimization methods for nonconvex models with trigonometric and exponential

functions that arise in Computational Chemistry, Biology and fMwû ml reaction engineering applications;
(4) global optimization methods which can determine all solutions of nonlinear systems of equations
that arise in phase equilibrium, azcotropic distillation, and reaction engineering;
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(5) global optimization methods for bilcvcl and muUilevel linear and nonlinear models that appear in

planning problems, flexibility analysis, and optimal control approaches in batch distillation;

(6) new global optimization approaches whkA can address impliciUy define functions; and

(7) distributed computing methods for global optimization with the aim at addressing medium to large

scale optimization problems.

Even though the above challenges represent undoubtedly formidable tasks, we should see exciting

developments over the next dfcatfp
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