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Abstract

Thispaper considersthe coupled design problems of task allocation and processor
specification for embedded multi-computer systems. Two unique problem represen-
tationsare proposed. Thefirst representation involves multi-dimensional bin pack-
ingwhile the second isbased on graph partitioning. Automated solution strategies
aredeveloped and evaluated for both representations. The paper concludeswith a

discussion of the results, pending research, and areas of future work.




wm

Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

Contents
1 Problem DefiNition. ...t 1
L1 OVEINVIBW..c.eeteeeeiee ettt b bbbttt ettt b bbb nne e 1
12 SOftWAr€ MOE..........ooviiieceee et st 2
121 TASKMOEL.....coiiiiiiii e 3
1.2.2 CommuUNICatioN MOGEL...........cccieiiiiieiie e 4
13 HalOWarC MOGE.......c.oooiiiiiieee e e 5
131 Processor MOGEL........cooiieiiiiiiicce ettt enee 5
1.3.2 Broadcast BUSMOOEL.........c.c.ooiiiiiiiiecese e 6
14 ASSONMENT MOUE......couiieiiieeee e 7
L5 FEASIDIITY....cceeeeeeeeeeecee e 8
151 Processor Utilization CONSFaiNt........ceveieerieiienie e 8
152 RAM and ROM Utilization CONSTaiNt.........ccceeveerieneenieieneeie e 9
15.3 I/0O Channd Utilization CONSraintS........cccoceveerierenieneseeee e 9
1.5.4 BusBandwidth Utilization CONSraint...........cccevverviiiinenneiieeneeseeseee 10
1.6 ObJECHVE FUNCLIONS ..ottt 1
L7 SUMIMINY..cc ettt bbb bt sae et eae b e 13
2 Representation One: Packing-Based............ccocoviiieieiiiiniieneeee s 14
2.1 Problem RepreSENtalion........cooeeieeieeieese e 14
2.2 Multi-Dimengional Bin Packing..........cccoeiiiiiiiiee e 16
2.2.1 GOBL.....eitietieiee ettt ettt 16
2.2.2 Background and Problem Definitions.........ccoooeeirenieeieeee e 16
2.2.3 Heurigtic Algorithms..........oooie e 19
2.2.4 EXPErimentation SIratEgY.........cceeeereereereeereeeeeeeeeeeseeseeeseeeneeeeeeeeeneesneens 21
2.2.5 INPULS ..t e 23
2.2.6 OULPUL FOMMEL. ... eeiiiee ettt e et esee e emeeesmneesneee e 23
2.2.7 RESUIES ... 24
2.2.8 CONCIUSION.......ccuiiiieiieieeie sttt sre et e s e be e sreesesseenreennas 32
2.3 SOIULION TECHNIQUES . ... ettt eee e 32
2.3 GOl et 32
2.3.2 Overview of Solution TEChNIQUES.........ooouiieeie e 33
2.3.3 Shrink-Wrapping AlGOrithm (SW)........cccveiieiiieereeese e 34
2.3.4 Exhaustive Search Algorithm (ENUM).......ccoooiiiiiiiiiie e 35
2.3.5 Smulated Annealing Algorithm (SA)......oe e 36
2.3.5.1 MOVE FUNCHION.....cuiiiiieii ettt ettt ree 36
2.3.5.2 COSt FUNCHION......ueiiiiiieieiie ettt ne e 37
2.3.5.3 Annealing Schedule...........coocoiiii i 38
2.3.6 Incremental Design Advisor Algorithm (DA).......cooeeeiieiieiieee e 43
YR A = (o 1= 4= 01 7 1SS 49
2.3.8 RESUIS ..ottt r e be et e sneene s 50
2.3.9 CONCIUSION......oiiiiiiiiiitiiteet ettt 52
24 SUMIMBEY. .1ttt b bbbt eae e s bt e et b e et eseesaeeneenbeenns 53
3 Representation Two: Graph Partitioning-Based...........cccoooiiiiiiiiieee 53
3.1 Problem ReEpreSenNtalion..........cceieereeie e 53
2 o 1o ] aTo N1 OSSP 56
4 Summary and FUtUre Dir@CLIONS. ......coiiiiieee et 57
4.1 Maximum Software Delay Paths.............cooooiriii e 57
4.2 MOOE DEVEOPMENT. ...ttt 58

i




Automated Task Allocatnm and Processor Specification Strategiesfor Multi-Microcontroller Systems

Contents
I L = 1= ot ST 59
APPENAIX A TNPUL DFGS.....cvieieeiecie ettt et et e e e eneesneenne 60
Appendix B: Upper and Lower Packing Bounds............ccoooiiiieieeie e 64
Appendix C: Heurigtic Packing Algorithm Results.............c.ccooooiiiiiiiiic 65
Appendix D: Flowchartsfor Packing-Based Algorithms.............ooooiiiiiiiiiie e 83
Appendix E: Results for Packing-Based Algorithms..........cccooiiiiiiiiiie 33
11

F T T

T T T TR

GEMEE LR gL R




Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

1 Problem Definition

* 11 Overview

Theresearch reported in thisdocument isaimed at automating a portion of the design
process for a specific class of computers, namely embedded, multi-computer systems.
Such systemshaveseveral distinguishingfeatures. First, they areembedded. Thisimpliesa
stand-alone system that is dedicated to a single function and that executes a single set of
softwar e routines. Thisisopposed to general purpose systems that can be programmed
to solveawidevariety of problems. Second, astheterm multi-computer implies, they con-
sist of a network of loosely-coupled, autonomous processor s. The processor s communi-
catewith each other at a high level via message passing over a communication network.
The communication networ k could be arbitrary, but thisresearch only consider s broad-
cast bus-based systems.

When designing such systems, the softwar e application must fir st bedecomposed or par-
titioned into a set of communicating softwar etasks. Thetasksatethen statically allocated
to processorsin the system. At thesametime, the hardwar e requirements of the proces-
sorsmust bedeter mined and specified.

Each softwaretask has a demand for the resour ces available on the processor to which it
iIsassigned. The demand imposed by a softwar e task can occur across many dimensions,
such as throughput, memory and 1/0 channels. Accordingly, each processor must be

. specified and designed to meet the cumulative demand of the softwar e tasks assigned to
it. A set of processor specifications and an assignment of tasks to processor s that satisfy
all task requirements without over -utilizing any of the har dware components are said to
befeasible.

Often, the specification of processorsis complicated by the desire to optimize an objective

function. An objectivefunction could be any measurable system parameter, such ascumu-
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lative cost or power consumption. If an objective function is given, then thedesign goal is
to find a set of processor specifications and an assignment of tasks to processorsthat are

feasible and that optimize the objectivéfunction.

Thetask allocation and processor specification problemsare coupled, sincetheir solutions
aremutually constrained. Because of feasibility consider ations, the assgnment of tasksto
processor s constrains the specification of each processor: Likewise, the specification of a
processor constrainstask allocation, sinceit limitsthesubset of tasksthat can be assigned
toit. Theresearch described in thisreport investigates automated ways of solving these
coupled problems. Again, the goal isto obtain a set of processor specifications and an
assignment of tasksto processor sthat axefeasibleand that optimize a stated objectivefunc-

tion.

Therest of thissection is organized asfollows: Sections 1.2 and 1.3 describe in detail the
softwar e and hardware models and assumptions. Section 1.4 describes how task assign-
ment ismodeled. Section 1.5 discusses feasbility. Section 1.6 consider s objective func-

tions. Section 1.7 concludeswith a conciserestatement of the problem.

12 Software Model

The software model that isused isa Data Elow Graph .(DFG'). Thenodesin the graph cor-
respond to tasks and the arcs represent inter-task communication. Thistype of model is
frequently used to represent signal processing applications [4], but is not limited to that
domain. An example DFG (taken from [4])is shown in Figure 1.

NI, T T - S S S R BV R e dddede b G



Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems
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IN = Input Task DET = Detection Tak
LPF = Low PassFilter STl = Short Term Integration

FFT = Fast Fourier Transform  OUT = Output Task
WGT = Weighting Task

Figurel
ExampleDFG
There are some hidden caveats associated with the model. Firgt, only software applica-
tions that have statically predictable task sequences are supported. Thisexcludesthings
likerecursion, for example. Second, the tasks themselves are assumed to have satically
predictable resource and communication requirements. Thisisrequired for static task
allocation. If thiswas not true, the effectiveness of a satic assgnment of tasks to proces-

sorswould be workload-dependent.

121 Tak Modd

Theresource demand imposed by a task can occur across many dimensions, such as
throughput, memory and 1/O. The task model must capture the resour ce requirements
that are pertinent to the design problem at hand. Such requirementswill be application
gpecific. For example, computationally intensive signal processing applications are pri-
marily concerned with throughput, while demand for all other resourcesis secondary.
Conver sy, automotive applications have modest throughput requirements while sys-
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tern cost, which is sensitive to the mix of memory and 1/O in each processor, isa domi-
nant concern.

In general, thetask model will contain a vector of resour cerequirements. Each vector ele-
ment corresponds to a global resource available in the processor. The design automation
techniques that have been developed are compatible with any such well-formed task
model.

During the development and verification of the design automation algorithms, the task
model shown in Figure 2 was used.

T”k=(a'ﬁvx's!£'¢!7)
a= Period e = Digital 1/0 Channels
(3=Xput Requirement $=Analog | /O Channels
X =CodeSize y* PWM Output Channéls
5=DataSize
Figure 2
TaskModel

Thea-val uerepresentsthetask'sinvocation period. The other parameters congtitute its
demand vector. Specifically, the p-valueisthe CPU throughput requirement, the %- and 8-
values are memory requirementsand the £-, ¢ and y-values are | /O channe require-

ments.

122 Communication M odel

Likewise, amode is needed for inter-task communication. Unlike thetask model, the
communication model is one-dimensional. It merely specifies the exchange of data

-
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between tasks. The communication model used during the development of the design

. automation algorithms is shown in Figure 3.

Communication = (q, i)

r\» Period
i = DataSize

Figure3
CommunicationModel

13 Hardware Model

The hardware model consists of an arbitrary number of heterogeneous processors com-

municating via message passing over a broadcast bus.

131 Processor Model

like the task model, the processor model is multi-dimensional. When specified, a proces-
sor contains avector of resource capacities. The processor model, therefore, consists of all
sets of valid capacities that can be selected for each vector element. The union over al sets
of valid capacities represents all possible processor specifications, and hence the hard-

. ware design space for a processor. Again, the processor model should be chosen based on
the design problem at hand, and it should be compatible with the task model.

The processor model used during the development and verification of the design auto-

mation algorithmsis shown in Figure 4.
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Processor =(a, b, ¢, d, e, 1)

a=Xput(MHz)

b =ROM (bytes)

c=RAM (bytes)

d = Digital I/O Channels
e=Analog /O Channéls
f = PWM Output Channels

Figure4
Processor Model

132 Broadcast Bus Model
li ke the communication model, the broadcast bus model is one-dimensional. The model
used during algorithm development was based on a Controller Area Network (CAN)

link [5]. Itisshown in Figure5.

Bus=(g/h)

g=type
h = BW(MH2) .

Figure5
Broadcast BusModel

A S i b sbiaebiade ot s iz £ SRR




Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

14 Assignment Model

The set of tasks assigned to a given processor constitutesthe task set for that processor. A
set of condraintsis needed to determine whether the execution of the task set on the pro-
~cessor isfeadble thisisd'|scussed in detail in Section 1.5.

Assigning communicating tasks (i.e. tasksjoined by an arc in the DFG) to the same pro-
cessor resultsin intra-processor communication. Similarly, assigning tasks to different

pr OCESSOr S gener ates inter-processor communication. Intra-processor communication is
free, sinceit involves sharing data within the same, local data space. | nter-processor com-
munication, however, requires message passing over thebroadcast bus, asillustrated in
Figure®6.

DATA

Figure6
I nter-Processor Communication resultsin MessageTraffic
Theset of all inter-processor communicationsformsthetask set'for thebroadcast bus. The
amount of time (i.e. buscycles) needed to carry out any given transfer will depend onthe
busbeing used. Again, a set of constraintsis needed to determine whether the bus can
handle the transmission needs of thetask set; thisisalso discussed in Section 1.5. Regard-
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less, the broadcast bus has a finite capacity for message traffic which, alpng with the com- :

munication requirements specified in the DFG, place additional constraints on feasibility

15 Feasibility

A set of processor specifications and an assignment of tasks to processor s that satisfy all
task requirements without over-utilizing any of the hardware components are said to be
feasibl e. A set of con's't'rai nts isneéded to defihethefeasi bility condition. Such constraints
will be specific to the har dwar e components and oper ating systemsused in thedesign. To
preserve gener ality, the design automation techniques can accommodate any set of con-
cise, computationally tractable cbnstrajnts The set of constraints that wer e used when

developing the design automation algorithms are presented in the subsections that fol-
low.
151 Processor Utilization Congraint

The processor utilization constraint insures that the throughput of each processor is not
over-utilized. It isshown in Figure 7.

- "
V(i,k)[ 3 ESak]

imk i

i € DFG Graph Nodes »
k 6 Processors

B| = Xput required for task i

a; = Period for task i

% = Xput capacity of processor k

(i =>k) = task i assigned to processor k

Figure7
Processor Utilization Constraint
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*

152 RAM and ROM Utilization Constraint

. Processor memory is distinguished asbeing either RAM or ROM. Constraints are needed
to ensure that the amount of RAM and ROM available in each processor is not over-uti-

lized. These are shown in Figure 8.

Y x.sb
vap|imk '

z 8. gc
imk Tk

i €DFG Graph Nodes

k 6 Processors

Xi = ROM required for task i

$i = RAM required for task i

bfc = ROM capacity of processor k

¢k = RAM capacity of processor k

(i =>k) stask i assigned to processor k

Figure8
RAM and ROM Utilization Constraints

153 1/0 Channel Utilization Constraints

|/0 channels are distinguished as being either digital, analog or pulse. Simple con-
straints are needed to ensure that the availability of each I/O channel type is not over-uti-
- lized. These are shown in Figure 9.
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Y e.sd
Skl K

v,k ,devi se,

Y v.sf
[iSk D ¥

i 6 DFG Graph Nodes
ke Processors

g = Digital 1/0 required for task i
<c=Analog | /O required for task i
Yi=PWM Outputsrequired for task i
dfc = Digital 1/0 on processor k

e = Analog | /O on processor k

fk = PWM outputson processor k

(i =k) =task i assigned to processor k

Figure9
1/0 Channel Constraints

154 Bus Bandwidth Utilization Constraint

A constraint is needed to ensure that message transfers over the bus do not over-utilize
the available bandwidth. Before this can be done, however, a_model isneeded that pre-
dicts transmission time for data transfers of arbitrary size. Such a model was derived for
the CAN busin [2] and is reproduced in Figure 10. |

10
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- [21<>12)

C =Trangmisson Time (seconds)
D = Data Trander Size (bytes)
h = CAN link Bandwidth (HZz)

Figure 10
Transmission TimeMode for CAN Bus

The bus bandwidth utilization constraint is shown in Figure 11.

1.
Viyks| T n"'lﬂ
imk 0¥
yz
\ kz /

i,y € DFG Graph Nodes

- k,ze Processors
i(iy) = IPC Transmission timefrom task i totask y
Tlgy) = Trander period from task i totask y

Figure 1l
Bus Bandwidth Constraint

16 Objective Functions
Solution of the processor specification problem is often complicated by the desire to opti-

mize an objectivefunction. An objective function can be any easily computed figure of
merit that is relevant to the design. The design automation techniques that were devel-

11
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oped can accept any concise, computationally tractable objective function stated in terms
of the processor specifications.

The objective function that was used when developing the design automation algorithms
was based on cumulative system cost. The system was assumed to consist of a network of
heter ogeneous, custom, single-chip microprocessors. The cost of each micropr ocessor
was based on a non-linear function of its diesize, and die size was specification-depen-
dent. The diesize contribution for each variable in an example processor model isshown
in Figure 12. The cumulative system cost function that was used is shown in Figure 13.

Module . Sze  Area(mils)

7000
1800

2400
3200

Core
ROM (bytes)

Digital 1/0
Analog I/0
PWM Outputs

CAN Interface
Routing

2900

Ik
2k
4k
8k
16k
24k
32k
64k

RAM (bytes) | 256 1100
512
Ik
2k
4k
8k
16k
0
32
0
8
0
2

- | 30% of Total Area

Figure 12
Die Size Contributionsfar Processor Model Variables
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Cost = Log‘ ” )

Vin1l

n = # of processors
Area; = Die Size of Procesor i

Figure 13
CostFunction

Theareaand cost functions were adapted from models for an existing family of dedicated
processors. They were chosen ssimply because they provided aredlistic set of design
trade-offs. Other functions can be substituted into the optimization agorithms.

17 Summary

This section hasintroduced and described the problem being consider ed, along with the
models and assumptions that were used. A concise statement of the problem isshown in
Figure 14.

13
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Given:

1). A software application represented by a DFG
a). Tak Modé
b). Communication M odel

2). A hardware ar chitecture
a). Processor M odel
b). Broadcast BusM odel

3). A set of Feashility Congtraints

4). An Objective Function

Do :

1). Determine the number of processors

2). Specify all processors

3). Assign each nodein the DFG to a processor
Such That:

1). All feagbility congtraints are satisfied
2). Theobjectivefunction is optimized

Figure 14
Problem Definition

2 Representation One: Packing-Based
21 Problem Representation

Once a processor has been specified, only a subset of the DFG nodes can be assigned to it
without violating any feasbility constraints. Thisleadsnaturally to a packing-based repre-
sentation of the problem defined in Section 1.

Each processor can beviewed asa bin having a vector of resour ce capacities. Smilarly,
each task is an object with a vector of resour cerequirements. Likewise, the communica-
tion buscan betreated asascalar bin with a capacity equal toitsbandwidth. Thetask allo-
cation problem becomes a matter of packingthe multi-dimensional objectsinto the multi-
dimensional bins. Feasbility requires that none of thebins, including the scalar bus bin,
overflow. Solution of the coupled design problems amounts to developing a method of

14
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successively or incrementally specifying the processor s and invoking a packing algo-
rithm to perform task allocation. The processor specification that optimizesthe objective
function and that can be successfully packed is chosen as the solution.

Based on this problem representation, an algorithm for finding the optimum solution to
the coupled design problemsisshown in Figure 15. Thisalgorithm isclearly exponential
and computationally intractable. Thus, heuristic techniqueswill be investigated that are
tractable and that return near-optimal solutions.

Fori = 1 to#Graph Nodes [
For All Specification Combinationsfor i Processors |
U(Packable){
If (Cost < Best) [
Update Best

Figure 15
OptimumAlgorithm
The rest of this section is organized as follows. Section 2.2 investigates multi-dimensional
bin packing and task allocation. Section 2.3 introduces and evaluates four distinct solu-
tion techniques based on the packing paradigm. Section 2.4 concludes with a discussion
of the results.

15
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2.2 Multi-Dimensional Bin Packing
221 Goa

Thegoal-of thissection isto statethetask allocation problem asa multi-dimensional bin
packingproblem. Solution techniquesarethen proposed and investigated. Themajor result
of thissection is a heurigtic algorithm that performstask allocation.

2.22 Background and Problem Definitions

Bin packingisawell under stood and investigated NP-completeproblem [7]', [10]. It has
been previoudy used to model the task allocation problem for global and distributed
memory multiprocessors [4]. Thework reported in [4], however, only considered bins
withscalar, uniformcapacities. Thus, task allocation decisionswer eone-dimensional, based

solely on throughput requirements.

Thetask allocation problem now being consider ed must balance the demand for
resour ces acrossmany dimensions. Thisrequiresa multi-dimensional extension to thebin

packing problem, aswell as algorithms that solve this new problem.

To understand the connection between bin packing and task allocation, first consider the
task allocation problem that results when communication between tasksisignored. This
problem isisomor phic to the packing problem defined in Figure 16. Asthefigureindi-
cates, the decision problem amountsto whether or not a set of vector objects can be
packed into a set of vector binswithout overflowing any bin. Clearly, this packing prob-
lemisjust amulti-dimensional extension tothebin packing decision problem. Before, bins
wer echar acterized by asingle, scalar capacity. Now, however , avector of r esour cecapacities

isneeded to represent a bin.

16
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Given:
A set of objects with finite requirement vectors.
A set of binswith finite capacity vectors.

Decision Problem:

Can the objects be assigned to bins such that the requirements
of al objects are satisfied without exceeding the:-capacities
of any bin?

Bin

Capacity * (a,b,0)

| f Objet 1
\demandM (oj,Py,X1)
Assgn
°
]
®

||
zall 5o} Nz
°
®
.
Bin Object n
Capacity s(ab,c) demand — (oty,By.Xp)

b

a

ik

Figure 16
Multi-Dimensional Bin Packing Problem (without Communication)
Next, assume that communication between tasksis not ignored. Now, the task allocation
problem isisomor phic to the packing problem defined in Figure 17. In this case, an addi-
tional scalar bin isused to model the bandwidth capacity of thebus. Whenever commu-
nicating tasks (objects) areassigned to different processor s (bins) then a portion of thebus
bandwidth (scalar bin) isconsumed. The decision problem amountsto whether or not a
set of vector objects can be packed into a set of vector binswithout overflowing any bin,

17




Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

including the scalar one. Note, of course, that demand for the scalar bin is actually a func-

tion of the assignment of vector objects to bins.

Given:
A set of objects with finite requirement vectors.
A set of binswith finite capacity vectors.
A scalar bin with finite capacity.
A function f: (Assignment Decisions) -> (Scalar. bin capacity)

Decision Problem:

Can the objects be assigned to bins such that the requirements
of all objects are satisfied without exceeding the capacities
of any bin?

Bin _
Capacity «(a,b,c)

] y {Obj ect 1
: S \demand  «daifi gt
NZAH HExH Assgn .
®
®
®
| ]
]
L] O

Bin { @Wject n
Capacity = (a,b,c) demand = (0t Ba.Xal/

Figure 17
Multi-Dimensional Bin Packing Problem (with Communication)

18
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The multi-dimensional bin packing problemsdefined in Figures 16 and 17 are unique,
meaning that no smilar extensionsto the bin packing problem have been found in thelit-
erature. The Figure 17 problem will be used to represent task allocation. Solution tech-
niques for this problem will be proposed and investigated.

223 Heurigtic Algorithms

Algorithmsfor finding the optimum solution to the packing problem defined in Figure 17
areintractable. Thus, effective heuristic algorithmswer e needed. A set of candidate algo-
rithmswas created. They wereinspired by theclassicfir st- and best-fit heuristic solutions
tothebin packing problem, aswell asthetechniquesreported in [4]. All of thealgorithms
areone-pass, greedy algorithms. Each one chooses an object, oneby one, and assignsit to
abin. Thiscontinuesuntil all objectsare assigned to binsand the packing iscomplete, or
elsea set isleft of objectsthat will not fit into any of theremainingbins. In this case, the
algorithm fails. Each algorithm isdefined by a five character acronym, asdefined in Fig-
urels.

19
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DDDD [
+ :

A: Average'of all vector elements
X: Maximum over all vector elements

Node QOrder

R- Random :

N: Decreasing based on Node Size

A: Decreasing based on Arc Size

' B: Decreasing based on Node and Arc Sizes

TicE i
R: Random
X: M2 Bin Utilization
N: Minimum Bin Utilization
Nb: Minimum Bus Utilization

Binlevd
A: Average of all vector elements
' X: Maximum over all vector elements

Bl Select

F: First Fit

X: Maximum Bin Utilization
N: Minimum Bin Utilization
Nb: Minimum Bus Utilization

Figure 18
Candidate Heuristic Algorithms
The first character of the acronym specifies the method of bin selection. Four possibilities
were considered: choosing thefirst bin into which the object fits, the bin with the mini-
mum utilization level, the bin with the maximum level, or the bin that minimizes the
level of the scalar bin (i.e. bus bandwidth). The second character specifies the method
used for determining the utilization level of abin. Two possibilities were considered:
either the average or the maximum level over all vector elements.

20
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If two or morebins arefound to be equally good according to the bin selection palicy,
then tie breaking isinvoked. Thethird character indicatesthetie breaking strategy. Four
strategieswere consdered: random tie breaking, tie breaking based on the maximum or
minimum bin utilization levels or tiebreaking based on thelevel of the scalar bin (i.e. bus
bandwidth).

Theorder in which thenodes are selected to be assigned to binshas a pronounced effect
on the solution. Thefourth character indicates the node ordering scheme. Four ordering
schemeswer e consider ed: random ordering, decreasing order based on nodesize, decr eas-
ing order based on arcsizeand decreasing order based on nodeand arcsizes. Nodesizewas
based on the resour ce requirements of the node (task). Arc sizewasbased on the cumula-
tive scalar bin (i.e. bus bandwidth) requirements of the arcs connected to thenodein
guestion. Decreasing on node and ar c sizeschoosesthenodewith themaximum size, node
or arc, at each point in the ordering process.

Thefifth and last character specified how node size was deter mined. Two possibilities
wer e considered: the average or the maximum utilization requirement across all vector
elements.

224 Experimentation Strategy

A set of experiments was undertaken to gauge the effectiveness of the heuristic algo-
rithms. The packing problem shown in Figure 19 was used for all experimentation. Note
that this problem isjust a specific instance of the problem type defined in Figure 17. Bas-
cally, the problem amountsto packing an input DFG into an arbitrary number of " unit-
PESs', which communication over a 1 Mbps CAN bus. Intra-PE communication isfree,
while inter-PE communication consumes bus bandwidth, based on the CAN bustrans-
mission time model presented previoudy in Figure 10.

21




Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

Inter-PE

: 1
I::> Unit-PE,| |Unit-PEy} * * * |Unit-PE,

16 MHz

unit-PE
10

Xput ROM RAM DIO AIO PIO

_ Figure 19 _
Packing Problem I nstance usedfor Experimentation

Experimentation consisted of four phases. The goal of each phase is summarized in Fig-
ure 20.
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P e

Investigate the effect of node ordering.
PhaseTwo:

I nvestigate the effect of the bin selection policy.
Phase Three:

| nvestigate the effect of tie breaking.
PhaseFour:

Compare the best heuristic algorithm against

the opttmum algorithms.

Figure20
Four ExperimentationPhases

225 Inputs

Sixteen DFGs were used as inputs for the experiments. Eleven were randomly generated,
threewerereal and two were contrived. The randomly generated DFGswere produced in
an automated way, based on user-supplied probability distributions for the graph vari-
ables. The real DFGs were adapted from data obtained from the characterization of an
automotive powertrain controller, reported in [1]. They were used without modification,
except that the ROM requirement for each task was scaled by (1/10). This was doneto
allow certain large tasks to fit into the "unit-PEs." The contrived DFGs were hand-
crafted.

The graph values for all DFGs, stated as utilization percentages of Munit-FE" capacities,
are summarized in Appendix A.
2.2.6 Output Format

When a heuristic algorithm was applied to an input DFG, three metrics were used to
gauge its effectiveness:
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1. Number of Bins ("unit-PES") in the Solution.
2. Scaar Bin (bus BW) Utilization Level for the Solution.
3. Run Time for the Algorithm.

Metrics 1 and 2 wereplotted on x-y graphs, asshown in Figure21. The method used to
calculate upper and lower boundson the number of binsisdescribed in Appendix B. The
number of binsrequired for a packing was nor malized to thelower bound. All run times

wer e measured on a DECgation 3100 engineering wor kstation.

Upper Bound-

Region of

Feasible Packings

Lover Bound}-

Scalar Bin Utilization 10

Figure 21
Output Format .

227 Resllts
Reaultsfor all four experimentation phases are summarized in Appendix C. The discus-

sion that follows is based on those results.
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The goal of thefirst phase of experimentation was to deter mine the effect of node order -
ing on the heuristic algorithms. Thiswas done by comparing firg-fit algorithmswith dif-
ferent ordering schemes. Specifically, the following six algorithms wer e compar ed:

F-R- (Basdine)!
F-NX

F-NA

F-A-

F-BX

F-BA

o bk wdpE

Theresultsrevealed several tilings. First ordering based on node size tended to decrease
the number of bins that were needed. Unfortunatdy, thisdid not lead to wise utilization
of the scalar bin, which in several instances, prevented a feasible solution from being
found. Second, orderingbased on arc sizetended to decrease the scalar bin utilization
level. This allowed a feasible solution to be found for all DFGs, however the solutions
often required dightly morebins. Thiswas dueto poor packing caused by excessive frag-
mentation. Ordering based on node and arc sizes, however, worked quitewell. This
scheme appeared to exploit the benefits of the other two (i.e. fewer binsand effective use
of the scalar bin) without suffering from their weaknesses (i.e. not finding a solution).

The effect of basing node size on the average or maximum vector element was found to
be marginal and inconclusive. Furthermore, there was no significant run time variation
across algorithms. Thisisintuitive, since node ordering only requiresthe nodesto be
sorted once before packing begins.

Summarizing, theresults from phase oneindicated that node ordering based on decreas
ing node and arc sizes was the most effective technique, and nodes size based on the
maximum vector element was preferred for smplicity. This scheme was used for all sub-
sequent experimentation phases.

1. Asdéfined previoudy: (F-R-) = Firg-fit bin sdection and random nodeordering.

25




Automated TaskAll ocati onandProcessor Specifi cationStrategiesfor Multi-Computer Systems

Ll

The results of phase one are summarized in Figure 22.

1. Ordering on node size requires fewer bins but resultsin poor scalar bin utilization.
2. Ordering on arc size usesthe scalar bin wisely but requires more bins.
3. Ordering on node and arc sizes balances 1 and 2.

4. The effect of whether node size is based on the maximum or aver age vector
element is marginal ‘and inconclusive.

5. Thereis no significant run-timevariation across algorithms.

Conclusion:

1. Only (???BX) algorithmswill be considered in subsequent phases.

Figure 22
Summary of Phase One Results

The goal of the second phase of experimentation was to investigate the effect of the bin
selection policy. Thiswas done by comparing the effectiveness of the following seven
algorithms:

F-BX (baseling)? .
XXRBX

XARBX

XNRBX

NXRBX
- NARBX

Nb-RBX

NOo bk wNRE

2. Asdefined previoudy: (F-BX) = Firg-fit bin selection, decreasing order based on nodeand arcsizesand node size based on the maxi-
mum vector element.
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Thereaultsrevealed several things. Fird, selecting the least utilized bin performed wor se
than the basdling, firg-fit. Thisisintuitive. Selecting the least utilized bin isa poor pack-
ing heuristic, sinceit never triesto completdy fill a started bin. Thisleadsto excessive
fragmentation and thus more bins compared tofir st-fit. Second, selecting the most uti-
lized bin performed no better thanfirst-fit.Thiswasasurprising result. Theimplication
isthat thereisno analog to the best-fit decreasing algorithm, which hasbeen shown tobe
so effective for the classic bin packing problem. Thereason for thisisalso intuitive: there
isno notion of what constitutes a best fit for a multi-dimensional object being placed in a
multi-dimensional bin. A bin assignment that isthebestfitfor a particular dimension may
actually impair the packing acr oss other dimensions. To under stand this, consider apply-
ing the (XXRBX) algorithm to the 1- and 2-dimensional examples shown in Figure 23.
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..Consider a 1-dimensional problem for which XXRBXis effective.

Nodes:
0.7
0.4 E-BX. XXRBX:

0.35 0.95 0.90 0.15 1.00 1.00
0.25
0.15
0.15

a,d b,c.e f aef b,cd

_"‘('DQOO'Q_J

...Consider another 1-dimensional problem for which XXRBX is effective.

Nodes;

0.87 _
0.35 E-BX: XXRBX:
0.331 - v

0.02 0.98 0.96 0.06 100 100
0.10 a,eh b,cd,f g af,gh} {bcde
0.06
0.06
0.01

-~ D OoO0 oW

=M

...Combine the two 1-D problems into a single 2-Dproblem - see what happens?

Nodes;

070 0.87 EBXC XXRBX:

040 0.35 0.85,0.98)(1.00,0.96)(0.15,0.06) 0.85,0.98)(1.00,0.96)(0.15,0.06)
8:32 8:33 aeh | |bcdg| | f aeh | |bcdg| | f
015 0.10
015 0.06
0.00 0.06

0.00 0.01

SO PO Q0 Tw

Figure 23
Example showing the ineffectiveness of multi-dimensional best-fit algorithms

28




Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

Asthe example indicates, interactions acr oss dimensions nullify the effectiveness of best-

fit packing heuristics.

Sdlecting the bin that minimizes utilization of the scalar bin (i.e. bus) wasfound to be
superior to firg-fit. On average, thistechniquerequired no moreor lessbins than firg-fit
(for thereason given above), but it did return packingswith significantly lower scalar bin
utilization levels. In fact, thismethod is a wise choice for task allocation since, coupled
with the node ordering scheme found in phase one, it leadsto a natural and dynamic

clustering of heavily communicating tasks which conserves bus bandwidth.

Asin phase one, basing node size on the aver age or maximum vector element had a mar-
ginal and inconclusive effect. Therefore the maximum vector element was preferred for

smplicity.

Thebasdine algorithm, firg-fit, did have a measurablerun time advantageover the other
algorithms. However, based on itssuperior performance, selecting thebin that minimizes
usage of the scalar bin was preferred and thiswas the technique that was used in all sub-

sequent experimentation phases.

Theresults of phasetwo aresummarized in Figure 24.
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QObservations:

1. On Average, selecting the least-utilized bin requires more bins than
first fit with acomparable scalar bin utilization level.

2. On Average, sdlecting the most-utilized bin requires no fewer bins
than first it with a comparable scalar bin utilization level.

3. On Average, selecting the bin that minimizes scalar bin utilization produces
lower scalar bin levels than first-fit with a comparable number of bins.

4. The effect of whether bin level is based on the maximum or average
vector element is marginal and inconclusive. '

5. (F-BX) has arun-time advantage over all other algorithms.

6. The run-times of all other agorithms are comparable.

concluysion:

1. Only (Nb?2BX) algorithmswill be considered in subsequent phases.

Figure24
Summary of Phase Two Results
The goal of phase three was to determine the effect of employing a tie breaking strategy.
To accomplish this, the following two algorithms were compared:

1. Nb-RBX (baseline)®
2. NbXXBX

As the results indicate, there was no measurabl e benefit for tie breaking. Again, the rea-
son that the tie-breaking schemes were ineffective is due to inter-dimensional interactions

that render node utilization-based bin selections no better than random selection.

3. AsDdfined Previoudy: (Nb-RBX) = Sdection of bin that minimizes scalar bin utilization, decreasing order based on nodeand arc sizes,
node size based on the maximum vector eement and random tie breaking.
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The goal of the fourth and final phase of experimentation was to provide a consistency
check, by comparing the solution returned by the best heuristic algorithm (Nb-RBX)
againgt the optimum solutions. The solution requiring the fewest binswas found by an
algorithm named QPT-BINS. Thisalgorithm did an exhaustive search over all possible
assignments of objectsto bins, beginning with one and incrementing the number of bins
until a solution was found. Likewise, another exhaustive search algorithm, OPT-BUS
was used to find the solution that least utilized the scalar bin. Thus, three algorithms
wer e compar ed: |

1. Nb-RBX (heuristic)

2. OPT-BINS
3. OPT-BUS

Astheresultsindicate, theheuristic algorithm, (Nb-RBX), perfonnswell compared to the
optimum algorithms. It also hasa sgnificant run time advantage. In general, note that
OPT-BINS and OPT-BUS are both exponential algorithms. They havetime complexities
of O(Processor $'°®) and 0(2~ ") respectively, making them computationally intracta-
ble for the vast majority of the problem space.

Theresults of phasesthree and four are summarized in Figure 25.
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Observations:

1. Tie-breaking has no measurabl e effect.

2. (Nb-RBX) returns near-optimal solutions.

1. (Nb-RBX) isthe most effective heuristic algorithm.

Figure 25
Summary of Phase Threeand Four Results

228 Conclusion

A unique extension to the bin packing problem, multi-dimensional bin packing, was
derived which is isomorphic to the task allocation problem. Heuristic algorithms were
proposed to solve this problem. The performant:e of the algorithms was compared on six-
teen input DFGs with respect to three figures of merit. The (Nb-RBX) heuristic algorithm
was found to be the most effective. Furthermore, this algorithm was shown to produce
near-optimal results with a significant run time advantage over the optimal search algo-
rithms. The (Nb-RBX) algorithm will therefore be used as a fast and efficient technique
for performing task allocation.

2.3 Solution Techniques

231 God

The goal of this section is to develop and eval uate solution techniques, based on the (Nb-
RBX) packing algorithm, for the coupled design problems defined in Section 1. Recall that
solution of the coupled design problems amounts to finding a set of processor specifica-
tions and an assignment of tasks to processors that satisfy the feasibility constraints and
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optimize the objective function described in Section 1. Themgor results of thissection are

the algorithms that are devel oped.

232 Overview of Solution Techniques

The previous section developed an efident heuristic packing algorithm for performing

task alocation. Solutions to the coupled design problems were obtained by combining

this agorithm with incrementa or successive processor specification strategies. Spedifi-

cdly, four solution techniques have been developed. They arelisted in Figure 26.

_ Pr ocessor I feflk
Algorithm  #of PEs Specification Allocation Description
SW Dynamic Congtraint-Driven Nb-RBX Shrink-Wrapping
ENUM Static Search Nb-RBX Exhaustive Search
SA Static Simulated Annealing NUIBX Simulated. Annealing
DA Dynamic | Incremental Refinement| Nb-RBX Design Advisor

Asthefigureindicates, al techniques use the same packing algorithm (Nb-RBX) to per-

Figure 26

Four Solution Techniquesfor Problem Representation One

form task dlocation. Two of the techniques, SW and DA, dynamically determine how
many processors to use; the others, ENUM and SA, require thisasan input. SW and

ENUM were devel oped as strawman approacheswhilethe SA and DA agorithmsarethe
main results of this section. All of the agorithms were implemented in C++ using AT&T

compiler version 3.0.
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233 Shrink-Wrapping Algorithm (SW)

A strawman algorithm was created based on thenotion of shrink-wrappitig. It works as
follows. First, an upper bound on the number of processor sisobtained using the method .
derived in Appendix B. Next, the processor s are specified by choosing the maximum pos-
siblevaluefor each hardware design variable. The (Nb-RBX) algorithrri isthen invoked
which attemptsto pack the DFG graph into the processors.

If the packing algorithm returns no solution, then one of two situations has occurred.
Either no solution existsfor the given DFG and hardwar e ar chitecture, or else-a solution
existsthat the heuristic packing algorithm failed to find. Note, however, that if the latter
case occurs, it isdueentirely to the inefficiencies of the packing algorithm since the hard-
war e ar chitecture was set to the maximum number of maximally-specified processors.

Ifthepacking algorithm doesreturn avalid solution, thehar dwar eisthen shrink-wrapped
tomatch thetask allocation that wasfound. Shrink-wrapping of the hardwareimpliestwo
things. First, any unused processorsin thedesign areremoved. Second, all of the design
variablesin the used processors are set to the smallest values that do not violate any of
the feagbility constraints. In order for shrink-wrapping to be computationally tractable,
the hardware design variables and the feagbility constraints based on them must be
mutually independent. Thisistruefor the variables and constraints that wer e presented
in Section 1. In general, thisis a reasonable assumption.

The solution obtained with the SW algorithm isdriven by the task aIIocation returned by
(Nb-RBX). The number of processorsin the design is determined dynamically as a by-
product of the task assignment decisions that wer e made. Shrink-wrapping returns the.
lowest complexity hardwar e ar chitecture that will support this task allocation. As such,
no attempt ismade at optimizing the objective function. This algorithm isrobust, how-
ever, in the sense that itsonly limitations on finding a solution when one exists arethose
inherent in the (Nb-RBX) packing algorithm. Also, since task allocation (i.e. packing) and
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processor specification are both performed only once, thisalgorithm establishes a lower

bound on run time.
A flowchart of the SW algorithm is shown in Appendix D.

2.34 Exhaustive Search Algorithm (ENUM)

An exhausfivesearch algorithm, ENUM, was created asa strawman. First, thenumber of
processorsto be used in the design isinput to the algorithm. Next, the algorithm cycles
through all possible specification combinations for the given number of processors. For
each specification combination, the (Nb-RBX) algorithm isinvoked which attemptsto
pack the DFG into the processors.

If the (Nb-RBX) algorithm returns no solution, then one of two situations hasoccurred.
" Either no solution actually existsfor the given DFG and processor specifications, or elsea
solution exists that the packing algorithm failed to find. Once again, if thelatter case

occurs, it isdue entirely to the inefficiencies of the packing algorithm.

If the (Nb-RBX) algorithm returnsa solution, die objective function isinvoked to deter-
mineitsrelativemerit. At each step, a copy is maintained of the best, feasible solution
seen thusfar. Upon completion, the best observed solution isreturned by the algorithm.

Unlike the SW algorithm, ENUM actually attempts to optimize the objective function.
Because of the exhaustive search, however, it has exponential time complexity. This
results in long run times, even for problemsof modest size, likethe SW algorithm,
ENUM isalsorobugt, in the sensethat itsonly limitations on finding an existing solution
arethoseinherent in the packing algorithm. Furthermore, since all feasible processor
combinations are compar ed, thisalgorithm establishes an upper bound on the degr ee of
optimization obtainable with a (Nb-RBX)-based solution technique.

A flowchart of the ENUM algorithm isshown in Appendix D.
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235 Smulated Annealing Algorithm (SA)

Analgorithm, SA, wascreated that usessimulated annealing ([9],[11]) to optimize pr oces-
sor specifications and the (Nb-RBX) algorithm to perform task allocation. The execution

of thesetwo algorithmsisinterlaced.

Asthe smulated annealing algorithm progresses, a move function is executed that ran-
domly perturbsthe processor specifications. After arandom mbveis attempted, the (Nb-
RBX) algorithm isinvoked which triesto pack the new processors. If a feasible packing
was found, the processor s are shrink-wr apped. The smulated annealing costfunction is
then used to rate the new solution attempt. This cost function consists of two terms. The
first term representsthedesign objective function. The second term represents a penalty
that isincurred if the (Nb-RBX) algorithm failed to return a solution. The magnitude of
the penalty isa function of how far the (Nb-RBX) algorithm progressed before failing. By
trying to optimizeits cost function, the simulated annealing algorithm actually triesto
return asolution that isfeasible (i.e. packable) and.that optimizes the design objective

function.

Since smulated annealing is a general solution strategy, three portions of the annealing
algorithm wer etailored to the problem: the move function, the cost function and the

annealing schedule, asdescribed below.

2.35.2 MoveFunction

A move function was needed that createsa new set of processor specificationsby ran-
domly perturbingthecurrent ones. The neighborhood of the current stateisdefined asthe
set of states that are reachable within one move. A requirement of the move function is
that it must be able to traver se the entire design space through an arbitrary sequence of

moves begun from any starting state. Furthermore, the neighbor hood generated by a
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move function should be large enough to allow large hops through the design spacein

. relatively few moves.

Two candidates for the move function were investigated, as shown in Figure 27.

1. Randomly pick (pe P). 1. Randomly pick (pe P).

2. Randomly pick (ve DV). 2. Randomly pick (ve DV).

3. Randomly increment or 3. Randomly pick (ce VSy)-
decrement v in p. 4.Sgtvinptoc.

P = {S of Processors}
DV = (St of Design Variables}
VS - {Value Set for Design Variablei|

Figure27 .
Move Functions
The first function takes a randomly selected design variable from a randomly selected
processor .and randomly increments or decrementsit The second function takes a ran-
domly selected design variable from a randomly selected processor and sets it to a ran-
domly selected element from the set of all possible values.

: The premise behind the first function was that it forced incremental change which was
thought to improve optimization. The second function, however, had a larger neighbor-
hood. Initial experimentation was conducted and the second function was fouiul to uni-

versally outperform thefirst. Accordingly, it was adopted as the move function.

2.35.2 Cost Function

The cost function rates the worth of each candidate solution. The function that was devel-
oped is shown in Figure 28.
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n
© Cost = Log£Area?1-r (15x UT)
i=1

n = #of processors _
UT =# of unassigned tasks
Areg; = Die Size of Processor i

Figure 28

Cost Function
The cost function consists of two terms. Thefirs term isidentical to the design objective
function being optimized. The second term represents a penalty that isincurred if the
(Nb-RBX) algorithm fails to find a feasible packing. The magnitude of the penalty
dependson how far the (Nb-RBX) algorithm progressed befor e failing. Each task that has
not yet been assigned to a bin when the packing algorithm fails contributes a fixed
amount to thetotal penalty. Thus, if the (Nb-RBX) algorithm can pack most of the DFG
into the processor s, less of a penalty isincurred, résulting inalower cogt. Thefixed
amount incurred by each unpacked task was deter mined empirically through experimen-
tation. It was found that the penalty term must be large enough to distinguish an infeas -
ble solution from potentially costly feasible ones. Theidea of incor por ating penalty terms
into the cost function was adapted from [12].

2.3.5.3 Annealing Schedule _ :

The annealing schedule deter mines when-and how the algorithm begins, acceptsran-
domly generated solutions and terminates. As such, it iscrucial to the operation of the -
algorithm. An improperly designed annealing schedule can result in poor optimization
and/or excessive run times. Four specific issues must be solved by the annealing sched-
ule:

1. Starting Temperature
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2. Equilibrium Detection
3. Temperature Decrement Function
4. Termination Condition

Each of theseitemsisdiscussed in detail. The approaches used wer e adapted from [6],
[8],[9]and[11].

The starting temper ature must be hot enough to melt the system. When the system is
melted, a randomly generated solution with higher cost isaccepted as often, on average,
asonewith lower cost. Thisimpliesthat the starting temper atur e should be reasonably
higher than the sandard deviation of the cost function. Accordingly, the starting temper -
aturedefined in Figure29 wasused [§].

T°«20xa

a= Standard Deviation of Cost Function

Figure29
StartingTemperature
Before the starting temperature can be calculated, an estimation of the standard deviation
of the cost function is needed. Thisis obtained by collecting cost statistics during a ran-
dom walk through the design space. The Iength of this random walk should be depen-
dent on problem size. Sincethe actual problem sizes are exponential, however, aheuristic
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was needed that increases with problem size in abounded way. The heuristic that was
used is shown in Figure 30.

sze = 3xnx fICARD(VS)

Vi

n = number of processors
VS| = Value set for Design Variablei

'CARD(j) = Cardinality of Setj

Figure 30

Problem SizeHeuristic
When the simulated annealing algorithm is running, transition to a.lower temperatureis
allowed once equilibrium is established at the current temperature. Therefore, a method
of detecting equilibrium is necessary. The method used was adapted from [8]. It is based
on the observation that once equilibrium is established, the ratio of the number of
accepted states with costs that fall within a defined probability interval of the average to
all accepted states approaches a constant value. If the probability distribution for cost is
assumed to be normal, which is a fair assumption at high temperatures, then a target
ratio can be established as shown in Figure 31.
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Area = ERF(0.5) = 0.38

/!

_EEN

x-0.50) X (X +050)

Probability Interval = (X - 0.5a, X + 0.5a)

Equilibrium Target Ratio = 0.38

Figure 31
Equilibrium Target Ratio
Before transition to a lower temperature is allowed, the target ratio must be met over a
sample size equal to the heuristic problem size defined in Figure 30. Algorithmically, this
isequivalenttorequiringaninside-interval thresholdtobemet befor ean outside-interval tol-
eranceisexceeded. Thevaluesfor theinside-intervalthresholdandoutside-interval tolerance,

based on the target ratio defined in Figure 31, are givenin Figure 32.

Inside-Interval Threshold = (0.38) x size

Outside-interval Tolerance = (1 - 0.38) x size

Figure 32
I nside-I nterval Thresholdand Outside-interval ToleranceValues
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To determinewhether or not theinside-interval threshold has been met or the outside-inter-

val tolerance has been exceeded, it is necessary to know whether or not the cost of each
randomly generated solution falls within the defined probability interval around the .
average cost. Furthermore, thisimplies that a running calculation of cost statistics must

be maintained. These statistics are calculated over awindow of the most recently accepted
costs. The size of the window was determined empirically and set to ten.

As temperature decreases, the number of states accepted at any given temperature also
decreases. Thus, thetarget inside-interval threshold may never be reached at |ow tempera-
tures, trapping the algorithm at an above freezing temperature. To avoid this situation, a
maximiun niunber of moves at any given temperature was established. If this number is
reached before equilibrium is detected, then the temperature is automatically decre-
mented. The maximum number of moves was set to an empirically determined function
of heuristic problem size; it is defined in Figure 33.

Max Moves = 7 x (Outside-Interval Tolerance)

Figure 33
Maximum Move Criterion
When the annealing temperature is decreased, the temperature decrementfunction is
invoked to determine what the new temperature should be. The temperature decrement
function that was used is shown in Figure 34 [8].
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"EXPszeXP(Gg_)

01T (Texp<O.IT)
I =] "EXP (MT<Tgx,<0JT)
05T (Texp>05T)

Figure34
TemperatureDecrementFunction
Thisfunction performs exponential temperature reductions. Reductions wer e bounded,
however, to fall within 10% and 50% of the current temperature. Thiswasdonefo avoid
qguenching when little cost variation isencountered, and extremely long run timeswhen
cost fluctuates wildly.

Thelast aspect of the annealing schedule to be considered is the termination condition.
Thealgorithm should terminate when no lower cost solutions are found and the temper -
ature hasdropped to a level whereno higher cost solutions are accepted. A smple
method was used to detect this; the algorithm ter minateswhen no solution has been
accepted for four consecutive temperatures.

A flowchart of the SA algorithm is shown in Appendix D.

236 Incremental Design Advisor Algorithm (DA)

Analgorithm, DA, wascreated that isdriven by anincremental design advisor. Thealgo-
rithm worksasfollows. First, alower bound on thenumber of processor sisobtained using
the method derived in Appendix B. Next, the processor s are specified by choosing the
minimum possiblevaluefor each hardware design variable. The (Nb-RBX) algorithmis

then invoked which attempts to pack the DFG into the processors.
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If the (Nb-RBX) algorithm should happen to fail, meaning a task is encountered that will
not fit into any of theexisting bins, then theincremental design advisor isinvoked. The
design advisor examines the current hardwar e configuration and partial packing state,
and then makes a har dwar e specification change. When the advisor completes, the (Nb-
RBX) algorithm isre-invoked and continues from where it |eft off. In thisway, the algo-
rithm returns a solution that is obtained incrementally from a series of packing attempts

and specification refinements.

The success of this approach hinges on two assumptions. First/notethat when the design
advisor isinvoked, it suggests the best possible hardwar e modification based on an
incomplete, local view of thedesign. Thus, likeMICON [3], the solutionisbased on a
seriesof locally optimum design decisions. Therefore, likeMI1CON, thealgorithm assumes
that a solution obtained in this manner is afair approximation of the optimum solution.
Sebond, notethat thestarting placefor thisalgorithm istheminimum complexityhardware
configuration. Each timethe design advisor isinvoked, the complexity of the hardware
specification isincrementally increased. Sincethedési gn objectivefunction given in Figure
13 increases monotonically with hardwar e complexity, the algorithm essentially begins
with the most desirable hardwar e configuration and then moves to an incrementally less
desrable configuration every time the design advisor isinvoked. Thus, for optimization
to occur, the algorithm assumesthat a monotonic relationship exists between the design
obj ective function and har dwar e complexity. Thisisa fair assumption for most, but not
all objective functions.

The operation of the design advisor is described next. When the design advisor is
invoked, it isgiven a set of specified, partially packéd processors and a task that will not
fit into any of them. Based on thisinformation, a set of candidate hardware changesis
created. Thisisdone by sequentially forcing the task into each existing processor and
then shrink-wrapping the har dwar eto meet the feasbility constraints of the new partial
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packing. Additionally, another candidate hardware change is created by adding a new
processor, assigning thetask to it, and then shrink-wrapping thisnew configuration. Thisis
illustrated in

B ] I
-

Figure 35 :
CandidateHardwareChanges
Once this set of candidate hardware changes has been created, the relative merit of the
alternatives must be computed and compared. Relative merit was based on two things:

1. Rdativechangein the objectivefunction.
2. Rdativechangein thebus utilization level.

For the candidate hardware changes involving the existing processors, the objective func-
tion change was defined as the percentage difference between the old and new configura-
tions. However, for the candidate change containing the new processor, things were
handled differently. In general, adding a new processor tends to be more costly than
modifying an existing one. Thus, if only relative cost differences were considered, modifi-
cation of an existing processor would almost universally be preferred to adding a new
one. Note, however, that this situation is pessimistic. It assumes that the task being
assigned to the new processor must bear the entire overhead burden associated with it.
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Thisis generally not true, however, because if the new processor is subsequently used by
the packing algorithm its over head will be amortized across additional tasks. To account
for this, an attempt was made to amortize the over head burden of the new processor
when computing the objective function change. Thiswas done by multiplying the proces-
sor over head by the maximum of the reciprocal of the unpacked tasks and the maximum
utilization level across all dimensions for the task being assigned to it. The method used
to calculate objective function changesis summarized in Figure 36.
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For asolution using an existing_ processor:

_ OF (NEW)-OF (OLD)

ACF OF (OLD)

OF() = Objective Function
OLD = old processor specs
NEW = new shrink-wrapped processor specs

Eor asolution using.anew processor

OV = OF (BASE) - OF(OLD)
TO(J) = OF( NEW - OF( BASE)

TC()) +OVx MAX< Jf MAX,.,U(i)

A = OF (OLD)
OFO = Objective Function OV = Processor Overhead
UT = Number of unassigned tasks  TC(j) = Cost of implementing Tak |
OLD = old processor specs U(i) = Utilization Leve for Resourcei

NEW ssOLD + specsfor new shrink-wrapped processor
BASE = OLD + specsfor new, empty processor

Figure 36 _
Calculating the objectivefunction changefor candidate solutions

To quantify therelative change in bus utilization, the notion o£penalty points (from

MICON, [3]) wasused. Thisisshown in Figure 37.

47




Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

ABW = u <OLD> « u <NEW> _u <OLD>
BW BW

BW = BusBandwidth

U(i) = Bus Bandwidth Utilization for solution i
OLD =0Old processor specs

NEW = New processor specs

Figure 37

Bandwidth Changefor Candidate Solutions
When computing the relative merit of a hardware change, the changes in objective func-
tion and bus utilization must be properly balanced. Favoring the objective function leads
to greater optimization. waever, if bus bandwidth is not managed wisdly, then the algo-
rithm may fail after several invocations of the design advisor. Therefore, a method was
needed to quantitatively weight these terms. After several candidate weighting schemes
were tried, the penalty function defined in Figure 38 was found to work very well.

 Penalty » (1+ABW) [I+exp(k(I+AOF))]

DOF = Objective Function Change
DOF = Bus Bandwidth Change

Figure 38
DA Penalty Function
Essentially, the penalty function weights the objective function and bus bandwidth
changes. Theweighting is controlled by a unit-less parameter, k. When (k<I), the expo-
nential term vanishes and the penalty function is dominated by bus bandwidth. Con-
versaly, when (k>1), the exponential term increases and the objective function dominates.
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- Conceivably, any valueof k in therange (-1 < k < 1) could have been used. Experimenta-
tion showed, however, that communication-intensive inputsrequired small values of k
for robustness, while non-communication-intensive inputs needed higher k values for
good optimization. To solvethisdilemma, an iter ative approach wastaken. Internally, the
DA algorithm isinvoked four times, with k=[-3,-1,1,3]. Thebest solution from the four

iterationsisreturned.
Flowcharts for the DA algorithm and die design advisor areshown in Appendix D.

2.3.7 Experimentation

Experimentation was undertaken to deter mine the effectiveness of the algorithms. The
same DFGs, summarized in Appendix A, wereused asinputs. Theobjective function and

set of feagibility constraints presented in Section 1 were also used.

Once again, the goal of the algorithmswasto arrive at a set of processor specifications
and an assignment of tasksto processorsthat arefeasible and that optimize the objective
function. Accordingly, two metricswer e used to gauge algorithm performance:

1. Objective Function value of thereturned solution.
2. Run-time of thealgorithm.

Since two of the algorithms dynamically deter mine die number of processorswhilethe
other two requirethisasastaticinput, afair way of comparing their performance was
needed. A method for comparing the static ENUM and SA algorithmswith the dynamic
SW algorithm was developed that hinged on the following two properties of the SW
algorithm:

1. SWismorerobust than the satic algorithms, ENUM or SA.

2. A solution returned by SW will alwaysrequireno more processor sthan a solution that can befound
using either gtatic algorithm, ENUM or SA. _
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Based on this, the SW algorithm wasfirst applied to each DFG. Then the static algo-
rithms, ENUM and SA wer e applied using the same number of processors found in the
SW solutions. Thisallowed direct and fair comparisonsto be made.

S’milarly, amethod was needed for comparing the performance of the design advisor.
Thus, a static version of the DA algorithm, called DA_STAT, was created. A comparison
between the design advisor approach and the other three algorithms was obtained by
applying the DA_STAT algorithm to the DFGs using the same number of processors.
Next, by comparing theresultsof DAJJTAT with the original, dynamic DA algorithm,
the effects of the processor creation portion of the design advisor wereisolated so that its
performance could bejudged in relation to the baseline (static) approach.

238 Results

Resultsfor the algorithms are summarized in Appendix E. Thediscussion that followsis
based on theseresults.

The ENUM and SA algorithmswer e substantially slower than SV, DAJSTAT and DA.
Because ENUM and SA areboth search algorithms (exhaustive and probabilistic, respec-
tively), they have greater time complexitiesthan thesmpler, heuristic-based approaches.
Accordingly, they had substantially longer run timesfor all of theinputs.

For small problems (number of processors < 3), SA was slower than ENUM but for larger
problems SA outstripped ENUM by many orders of magnitude. This was because time
complexity grows exponentially with problem size for ENUM but not for SA. In fact',_this
is the primary motivation for using a simulated annealing algorithm over exhaustive

search.

When solutionswer e obtained for both SA and ENUM theresultswereidentical. This,
coupled with therun time findings above, verifiesthat the smulated annealing algorithm
was properly designed and performs good optimization.
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The performance of the DA and DA _STAT algorithmswas interesting. First, both algo-
rithms alwaysretur ned solutions that wer e at least as good (defined by the objective
function) asthose found with SWV. Thisimplies some degree of optimization, validating
the underlying design advisor heuristics. In some cases, however, these algorithms actu-
ally retur ned better solutionsthan ENUM and SA. Thiswassurprisng. Snce ENUM per -
forms an exhaustive search over all processor specifications, it seemed unlikely that a
better solution could be obtained by an algorithm using the same task allocation (pack-
ing) technique. Thereason that thishappened, however, isbecause DA and DA_STAT
usean incremental design technique. Thismeansthat processor specificationsare refined
while packing isdone. Because packing decisions areinfluenced by the current set of pro-
cessor specifications, refining the har dwar e on the fly can change task assignment deci-
sions. Thus, a solution can evolveincrementally that, once completed, isfeasible but not
packable. Thistype of solution can be found by the incremental approaches (DA and

DA _STAT), but sinceit isnot packable, it would be skipped over by a search algorithm
that was mistakenly led to believe the solution wasinfeasible.

Comparing the DA and DA _STAT results, the performance of the processor creation heu-
ristic can be determined. Astheresultsindicate, in most instances DA finds a solution
that isat least asgood as DA_STAT's, with adight increasein run time. In three cases,
however, theresultsfound with DA_STAT were marginally better. In all of these cases,
however, the number of processorsused by DA _STAT and DA wereidentical. Asa
whole, thisindicates that the processor creation heuristic generally actsto optimizethe
obj ective function. But, since itsdecisions are only locally optimum, they are not always
perfect.

A summary of the experimentation resultsisgiven in Figure 39.
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QObservations;
1. ENUM and SA havelonger run-timesthan SW and DA.
2. ENUM run-times grow exponentially with problem size.
3. Cost of ENUM, SA and DA solutions are at | east as good as SW solution.

4. ENUM and SA returnidentical solutions.

5. Cost of DA solutions arecomparableto ENUM and SA solutions.

1. DA and SA are both effective solution techniques.
2. A trade-off between run-time and solution quality exists for DA and SA.

Figure 39
Summary of Experimentation Results

239 Conclusion

Four algorithms were devel oped, based on the packing paradigm, to solve the coupled
design problems: ENUM, SA, DA and SW. All of these algorithms use the heuristic pack-
ing algorithm, (Nb-RBX), for task allocation.

Astheresultsindicate, both the SA and DA a gorithms perform well. The DA algorithm
has a significant run time advantage over SA. The SA algorithm, however, may return a
marginally better solution in some, but not all cases. Thus, a trade-off must be considered

by the designer when choosing from these two approaches.
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2.4 Summary

This section hasintroduced a packing-based representation of the coupled design prob-
lems. Furthermore, a multi-dimensional extension to the bin packing problem was
defined that isisomor phic to the task allocation problem. Next, heuristic methods of solv-
ing this packing problem wer e investigated. Thisresulted in the discovery of an effective
algorithm, (Nb-RBX), that can be used to solvethetask allocation problem.

Four approaches for solving the coupled design problemswer e proposed that utilizethe
(Nb-RBX) algorithm. Two of these, SA and DA, wer e found to be effective solution tech-
niques. Furthermore, a trade-off between run time and solution quality was found to

exists between the two approaches.

3 Representation Two: Graph Partitioning-Based
31 Problen Representation

An arbitrary assgnment of tasks to processor s dictates the minimum complexity proces-
sor specificationsthat are needed tofeasibly support the assgnment. Thisleads naturally
toagraph partitioning-basedr epr esentation of the problem defined in Section 1.

Firg, realizethat thereis not a one-to-one cor respondence between n-way partitions of
the DFG and n-processor assignments. Consider the DFG and 2-processor assignment
shown in Figure40. The assignment shown in the graph doesnot correspond to any 2-
way partition of the DFG.
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@ Assign p_—"‘il .
XN
Q2 OO0

Figure40 |
A DFG and a 2-processor assignment

Thus, for agraph partitioning-based representation, amodification is needed to obtainthis
one-to-one correspondence. Thisis achieved by inserting zero-wei ghted arcs between
every pair of non-communicating tasks in the DFG. Figure 41 shows the example of Fig-
ure 40 after the zero-weighted arcs were added. Now, the 2-processor assignment corre-
sponds to a specific 2-way partition of the DFG, asindicated in the figure.
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c/

Add

O-Wel fht Arcsd/i

Partition

M o~

l-to-l
r — =] ~
uP UP
0]0)

Figure 41

A modified DF G and 2-processor assignment

Any n-way partition of the modified DFG defines an n-processor task assignment. After

partitioning, the cumulative requirements of the nodes in each digjoint sub-graph specify
the minimum complexity, feasible processor needed to implement them. In fact/the pro-

cessor specifications can be obtained by creating n new processors, assigning tasks to the
processors based on the DFG partition, and then shrink-wrapping them. Similarly, after
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partitioning, the cumulative weights of the cut-arcs deter mine the utilization level of the

communication bus.

Any arbitrary partition of the modified DFG will be feasible or infeasible, based on the
feasbility congtraints defined for the problem. Furthermore, each feasible partition will
have a cost associated with it that corresponds to the value returned by the objective
function applied to the shrink-wrapped hardware.

Based on this problem representation, an algorithm for finding the optimum solution to
the coupled design problemsisshown in Figure 15. Thisalgorithm is clearly exponential
and computationally intractable. Thus, heuristic techniqueswill beinvestigated that are

tractable and that return near-optimal solutions.

For All Graph Partitions {
Assign Tasks to Processors
Shrink-Wrap Processors

If(Feasible)[
If (Cost < Best) [
Update Best
}
]

]
ReturnBest

Figure 42
OptimumAlgorithm

Thered of this section is organized as follows. Section 3.2 summarizes pending work in
thisarea.
3.2 Pending Work

An Outline of pending work is shown in Figure 43.
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Develop Algorithms:
Enumeration
Simulated Annealing
Heurigtic Partitioning

Experiment

Analyze Results

Compare / Contrast with Representation Ondg

Figure43
Outline of Pending Work

4 Summary and Future Directions

This paper has focused on two coupled design problems relevant to multi-computer sys-
tems: task allocation and processor specification. Two distinct problem representations
were presented. One was based on a packing paradigm and the other on graph partition-

ing.

Automated solution strategies based on the packing representation were conceived,
implemented and evaluated. Two algorithms, SA and DA, were found to be effective
automated solution strategies. Furthermore, a trade-off between run-time and solution
quality was found to exist for these two algorithms.

The graph-partitioning representation remains unexplored. An outline of pending work
was presented. Thiswork will be undertaken and subsequently reported by the authors.

4.1 Maximum Software Delay Paths

One area of future research involves a problem extension for supporting the specification
of maximum software delay paths.
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An important class of DFGéarethosethat have real-time latency requirements. This
meansthat the time needed to execute a specified sequence of tasks along a path through
the DFG iscongtrained by a maximum value. I n effect, thisamountsto specifying maxi-
mum path delays through the DFG. This represents an important class of problems since
latency requirements often arisein control applications, which isa dominant sector of the
embedded system market.

An extension to the existing approaches is needed to handle this type of problem. Specif-
ically, the software model must be modified to accept path delay specifications. Next, the
two problem representations, packing-based and graph partitioning-based, would have
to beextended to handle a new class of constraints.

Specifically, a congtraint would be needed to deter mine whether a sequence of DFG tasks ‘
completesbefore an arbitrary deadline. Note, however, that when the task sequenceis
implemented, bustraffic due to inter processor communication may contribute to comple-
tion time. Furthermore, inter processor communication is a function of task allocation
decisions. Therefore, constraint satisfaction isa function of task allocation and the proces-
sor specifications of all processorsinvolved with tasks along the path. Thistype of con-
graint does not fit the present paradigm, since feasibility constraints are presently

defined in the context of a single task set assigned to a single processor. Thus, extensions
to the problem representationswould be needed, aswell asextensionsto the derived

solution techniques. ‘

4.2 Model Development | ,

Another area of futurework isin the area of model development. The set of design vari-
ables, feasbility congtraints and the objective function introduced in Section 1 were ade-
guate for developing the design strategies. However, if these strategies areto be used on
real designs, then models will be needed that match the characteristics of the problem |
classbeing designed. Specifically, models would be needed for the following items.
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Processor Design Variables

Bus Transmission Char acteristics
Bus Scheduling Char acteristics
Processor Scheduling Characteristics
I /O Device Interface Characteristics
Objective Function

Feasibility Constraints

N o oD
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Appendix A: Input DFGs

NODES
name nodes 1Deriod CPU ROM RAM DIO AlO PO |
(ms) frremmnsersesraen =2, b of UNit-PE CapacCity)--e=mrmmrmsmssscssso oo -

RANI 100 (3(100,5) GKO.707) CK29.3342) CK29,09  GK3.1,32) GKO0,5.6) GK0,17.5)
RAN2 100  (3(80,5) GK0.4,04) GK3.9,3.9) CK54,3.9) GK3.1,32) (3(0,5.6) GKO0,17.5)
RAN3 10 (3(1000,300) (3(3.1,1.3) GK12517) CK51.29)  (3(4.763) CK12525) GKO.200)
RAN4 120 GK50050) G(0.5,0.6)) GK50.0,244) (GK88,195) CK6.29.3) (3(12.512.5) GK0,20.0)
RAN5 50  (3(400,10) CKO0.2,0.1) GK2.9,1.5) GK3.4,15)  (3(3.1,0.6) GKO0,1.3) GKO0,5.0)
RAN6 200  (3(70,3) GKO.2003) GK4889.7)  (3(1.9,05) GK4747) GKI12525) GKO0,15.0)
RAN7 50 GK20,1) GK0.4,0.2) GK6.8,3.9) CK2519)  GK9.46.3) (3(0,2.5) GK0,20.0)
RAN8 75 (CK1500,50) GK25,1.3) GKI.2,05)  CK39.09.8) (3(9.4,3.1) GKO.859) GK0,5.0)
RAN9 90 (K1700,80) GKO.30.1) GK12,05)  CK39.0,14.6) GK3.1,31) €K0,8.8) GK0,5.0)
RAN10 25  (3(150,8) GKO0.01,0.01) (3(19.5,3.9) (3(5.7,9.8) GK6.2,62) GK946.2) GK050)
RAN11 100  G(100,) (3(4.02.0) (3(39.1,19.5) (3(39.1,19.5) GK46.921.9) (3(45.0,26.3) GK50.0,15.0)

ARCS

name__arcs | source  dest Derjod IMC!
- (ms) (%BW)

RANI 200 U(1,100) U(1,100) G(100,5  CKO.012,0.011)
RAN2 200 U(1,100) U(1,100)  GK805)  GKO.(»5,0.076) . KEY:

RAN3 uU(l,10 U(l,10) CK1000,300) CK40.9.0.82 . - C
10 (.10) (.10 ) ) 6(a,b) = Gaussian Probability Distribution:

RAN4 0 - - G(500,50) - means a

RAN5 50 UUSB0) U(1,50) GK40010)  CK25,12) standard deviation = b

RAN6 25  U(,200) U(l,200)  (K70.3)  G(0.036,0.011) U(a,b) = Uniform Probability Distribution: .
RAN7 110 U(,50) U(1,50)  GK20l)  G(0.011,0.055) Range = [a,b]

RANS 100 U(,75) U(I,75) G(150050) (X0.82,0.087)
RAN9 50  U(1,90) U(,90) G<1700,80) GK0.82,0.087)
RANIO 50 U(I,25) UU.25  G(150,8)  G(0.16,0.66)
RAN11 10 U(,100) U(,100) GK1001)  G<0.92,0.021)

Random DFGs (Specified)
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NODES

uame e colifnion SR SR B

Random DFGs (Actual)

....................................... 4% of unit-PE capaﬂty) 1
RANI 100 8.70 31.44 293 3.09 1.13 3.50
RAN2 100 545 4.06 5.67 3.09 113 3.50
RAN3 10 7.05 12.27 6.10 4.06 125 0
RAN4 120 121 50.07 5.85 7.68 13.65 5.00
RANS 50 0.51 267 157 0 0 0
RANG 200 2.86 48.52 198 523 12.44 1.00
RAN7 50 18.78 6.19 5.45 8.56 0 6.00
RANS8 75 163 122 40.09 8.79 2.83 0
RAN9 90 0.15 243 39.29 313 2.92 0
RAN10 25 0.11 1831 10.48 5.88 10.00 0
RAN11 100 41.25 39.40 39.87 44.75 45.37 48.50
ARCS
| name _ apes i (1M C%.er iod) :
(% BW)

RANI 200 0.14

RAN2 200 0.55

RAN3 10 48.45

RAN4 0 -

RANS 50 5.92

RANG6 25 0.51

RAN7 110 0.91

RAN8 100 0.55

RAN9 50 0.48

RANIO 50 2.60

RAN11 10 9.29
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NODES
Ay - Avag. Avo, ) ) Avg. |
pame. . nodes ! (CPUV(8eriod) R gk RAM III as P]_a
l L ‘(00 Of unit-PE capacity s l
SUPERCH 154 0.165 3.95 553 0 0 033
TRACTION 160 0.161 384 9.33 0 0 0.63
IAC 78 0.244 4.34 5.85 0 0 0
ARCS
AVR. i
name ___arcs (MCVtoeciod) 1
(% BW)
SUPERCH 316 0.348
TRACTION 282 0.359
IAC 95 0.416
RedDF Gs(Scal ed)
NODES
! : [ . Ava. \
name __ nodes 1 (CFUAVW)eriod) Rbfa 'QKS] Aﬂ: tO PIO |
[ *s(% ofuhit-PE capacity)....... :
SUPERCH 154 0.331 39.72 553 0 0 0.33
TRACTION 160 0.322 38.67 9.33 0 0 0.63
IAC 78 0.488 43.64 5.85 0 0 - 0
ARCS
name __arcs | (IM(ﬁmferiod) !
(%BW)
SUPERCH 316 0.696
TRACTION 282 0.719
IAC 95 0.833
Real DF Gs(Unseal ed)

62




Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

NODES
Aric AU -I- :
JavNibg I Tl J | ﬁ& L
L afF st_DI nanamiel ¥
M UL LU A D Canacityv/ -
CONI 8 9.56 28.02 36.26 1211 18.75 25.0
CON2 12 18.03 21.30 20.65 10.67 15.62 25.0
ARCS

Avg.
name arcs (IMCVioeriod)

(%BW)
CONI 7 (tree) 10.40
CON2  12(loop) 5.86

ContrivedDFGs
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Appendix B : Upper and Lower Packing Bounds

Upper and Lower bounds on the number of bins needed to pack a DFG are calculated as
follows:

Let the DFG bedefined by a set of Nodes and Edges:

DFG - {NE}

Thenumber of nodes equals the cardinality of the node set.
NODES = CARD(N)

Consder anode: « eN. From Figure 2:
n, = «X,px6e<PY)

Define the demand vector for a node as follows:

* ]
d=(ZLxdedy
- (Y |
Define capacity vector for the unit-PE; from Figure 4:

= (ab,cd,ef)
Now, define cumulative demand vector to be the vector sum of all demand vectors;

um = £*-
Vi

Last, define maximum demand vector to be the vector whose elements are the
max value for that dimension over all demand vectors.

= (MAXyl|. (1),..., MAXAA(6)) wher e d: (k) = ki" dlement off" demand vector

Then:

LowerBound = AMxJ SMm()

cap(i) |

UpperBound= [ Nodes

MIN... °P Oﬂ
V'J %
| max

B 2 i b it 1o g £ L
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Appendix C: Heuristic Packing Algorithm Results

DFG Rani:
Alg Bins BusUtil. Runlime Alg Bins BusUtil. RunTime
LB 32(1) m - XXRBX 33(1.03)  0.2657 237
F-R-  34(1.06) 02715 12.8 (tec) XARBX 33(1.03)  0.2710 234
F-NX  32(1) 0.2752 47 XNRBX 33(108)  0.2691 295
F-NA 33(103) 0.2687 55 NXRBX 36(1.13)  0.2792 245
F-A- 3451.06; 0.2775 - 145 NARBX 35 (1.10) 0.2760 29.4
F-BX  33(1.03 0.2763 11.5 Nb-RBX 33 (1.03) 0.2262 22.0
F-BA 33(1.03) 02681 10.1 NhXXBX 33(1.03)  0.2262 235
UB  100(3.12) - -
RAN1 RANI (ZOOM)
i 12r
............................... b mmmas -
3t : Mt-t
1 F=Nisl
1 el wll
28t E 11 E:LU",
: =
| [ O]
i " - o]
' 11 e
"
15 ]
: '
)
|| rp—— ‘-L ..................... | wof
[} . 7 >
[}
3
o5f '
" fpmmcccccscereverarasmnccnncanananea #e--
t
1
0 0z 04 [T} [T} 1 023 EE:: 525 026 027
Bus {Azaiion un UNEmiion
. mANT
a- I -y
208 -‘
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DFG Ran2:
[ ]
Alg Bins  BusUtil. RunTime Alg Bins  BusUtil. RunTime
LB 6(1) - — XXRBX 6(1 0.7609. 13
F-R- 6(1 0.9084 0.7 (sec) XARBX 6(1 0.7757 13
F-NX  6(1 0.8627 0.6 XNRBX 6(1 0.7639 16
F-NA  6(1 0.9003 0.6 NXRBX 6(1 0.9072 15
F-A- 6(1 0.7609 0.7 NARBX 6(1 0.9964 17
F-BX  6(1 0.7836 0.7 Nb-RBX 6(1 0.7430 13
F-BA 6(1 0.7609 0.8 NbXXBX 6(1 0.7430 17
uB (8.33) - -
RAN2 RAW (ZOOM)
_______________________________ |, 1.061
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFG Ran3:
Alg Bins BusUtil. RunTime Alg Bins  BusUtil. RunTime
LB 2(1) - - XXRBX  2(1) 0.8625 <01
F-R-  NoSoln . <0.1 (see) XARBX ~ 2(1 0.8626 <0.1
F-NX  NoSoln - <0.1 XNRBX  2(1 0.8625 <01
F-NA  NoSoln - <0.1 NXRBX 2(1 0.9145 <01
F-A-  2(1 0.8625 <01 NARBX 2(1 0.9145 <0.1
F-BX 21 0.8625 <0.1 Nb-RBX  2(1 0.8625 <01
F-BA  2(1 0.8625 <0.1 NhXXBX 2(1 0.8625 <0.1
uB  2(1) - -
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFG Ran4:
Alg  Bins Bus Util. RunTime Alg Bins  BusUtil. RunTime
LB 61(1) . . XXRBX . 63 51.033; 0 315
FR- 68(1.115) 0 415 (dec) XARBX 63 (1.033 0 317
F-NX 63 (1.033) 0 182 . XNRBX 63 (1.033) 0 429
F-NA 64(1.049) 0 26.7 NXRBX 65 (1.066) 0 345
F-A- 68(1.115% 0 41.0 NARBX 64(1.049% 0 43.0
F-BX 63 (1.033 0 178 - Nb-RBX 63 (1.033 0 31.6
F-BA 64(1.049) 0 32.2 NbXXBX 63 (1.033) 0 34.1
UB 120(1.967) - -
RAN4 RAN4(ZOOM)
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFGRanS:
Alg Bins  BuaUtil. RunTime Alg Bins  BuflUtil. RunTime
LB 2(2) - - XXRBX 2(1) 0.8882 0.1
EF-R- NoSoln - 1.9(MC) XARBX 2(1) 0.8882 0.1
F~NX NoSoln - 2.6 XNRBX 2(1) 0.8882 0.1
F-NA NoSoln - 18 NXRBX  2(1) 0.9898 0.1
F-A- 2(1) 0.8882 0.1 NARBX NoSoln . 126
FBX 2(1) 0.8882 0.1 Nb-RBX 2(1) . 0.8882 0.1
F-BA 2(1) 0.8882 0.1 NhXXBX 2(1) 0.8882 0.1
uUB 4(2) - -
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFG Ran6:
Alg Bins BusUtil. RunTime Alg Bins BusUtil. RunTime
LB 98(1) - m XXRBX 100(1.020) 0.1168 263.5
F-4t- 107(1.092)0.1283 293.1 (sec) XARBX 100(1.020) 0.1134 263.5
F-NX 100(1.020) 0.1244 131.6 XNRBX 101(1.031) 0.1244 336.8
F-NA 100(1.020)0.1283 162.1: NXRBX 102 (1.041) 0.1283 251.3
F-A- 105(1.071)0.1244 285.2 NARBX 102 (1.041) 0.1283 309.6
F-BX 101(1.031)0.1244 1459 Nb-RBX 101(1.031) 0.1210 267.3
F-BA- 101(1.031) 0.1244 205.9 NbXXBX 101 (1.031) 0.1210 284.6
uB 200(2.041) - -
RANG RANGB(200M)
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFG Ran7:
Alg Bins BuaUtil. RunTime Alg  Bins BusUtil. RUBIlime
LB - 10(1 m . XXRBX  10(1) 0.8487 10
FR- 101 0.9101 0.5(MC) XARBX  10(1) 0.8320 12
F-l« 10(1 0.9380 04 XNRBX  10(1) 0.8320 11
F-MA  10(1 0.9372 05 NXRBX 13(13)  0.9854 2.3
F-A-  10(1 0.8380 08 NARBX -11(11) 009531 2.0
F-BX  10(1 0.8380 06 Nb-RBX 1051; 0.7712 10
F-BA  10(T 0.8769 0.6 NhXXBX 10(1 0.7712 11
UB  25(2.5) - -
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Sy_stems

DFG Ran8: , )
Alg.  Bins BusUtil. RunTime Alg . Bins  BusUtil. "RunTime
LB - 31(1) . : XXRBX 33(L065) 05042 148
F-R* 34 (1.097) 0.5326 8.4 (sec) XARBX 33(1.065) 0.5092 15.3
F-NX 32(1.032) 0.5109 6.0 XNRBX 33(1.065) 0.5109 151
F-NA  33(1.065) 0.5213 7.0 NXRBX 35(1.129) 0.5323 14.6
F-A- 34(1.097) 0.5109 129 NARBX 35(1.129) 0.5274 22.1
F-BX 33(1.065) 0.5109 8.3 Nb-RBX 33(1.065) 0.5042 15.0
F-BA 34(1.097) 0.5215 85 NbXXBX 33 (1.065) 0.5042 16.2
uB 75 (2.419) - -
RANS RAW (ZOOM)
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFG Ran9:
Alg Bins  BusUtil. RunTime Alg Bins  BusUtil. RunTime
LB 36(1) m - XXRBX 38(1055) 0.2390 162
F-RP 39(1.083) 0.2341 101(s®) XARBX 38(1.055) 0.2338 16.2
F-NX  36(1) 0.2390 57 XNRBX 38(1.0 0.2341 161
F-NA  37(1.028) 0.2349 7.0 NXRBX 41(1.139) 0.2390 176
F-A- 39(1.083) 0.2341 15.2 NARBX 41(1.139) 0.2342 238
F-BX  38(1.056) 0.2341 8.3 Nb-RBX 38(1.055) 0.2205 159
F-BA  38(10 0.2350 9.0 NNQCBX 38(1.055) 0.2205 173
uB 90(2.500 - -
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFG RanlO: .
Alg  Bins  BusUtil. RunTime Alg Bins  BusUtil. RunTime
LB 5(2) . m XXRBX  5(1) 0.6978 0.1
F-R- NoSoln - 0.7 (sec) XARBX  5(1 0.6978 0.1
FNX  NoSoln - 0.8 XNRBX 5(1 0.6978 0.1
F-NA  NoSoln - 0.8 NXRBX 7(1.4 0.9993 0.3
F-A- 5(1 0.6978 0.1 NARBX 7(14 0.9958 0.3 ‘
F-BX 5(1 0.6978. 0.1 Nb-RBX 5 0.6978 0.1 |
F-BA 51 0.6978 0.1 NbXXBX 5(1 0.6978 0.1
uB 9(1.8) - - i
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Automated Task Allocation and Processor Specification Strategiesfar Multi-Computer Systems

DFG Ranll:
Alg Bins  BuflUtil. RunTime Alg Bins  BuaUtiL RunTime
LB 49(1) - - XXRBX 61(1.245) 0.9288 34.7
F-R-  68(1.387) 0.9288 34.3 (s20) XARBX 60(1.224) 0.8367 34.9
F-NX  60(1.224) 0.9288 173 XNRBX 60(1.224) -0.9288 333
F-NA  58(1.184) 0.9288 156 NXRBX 74(1.510) 0.9288 62.1
F-A- 64(1.306) 0.9288 44.2 NARBX 76(1.551) 0.9288 814
F-BX  61(1.245) 0.9288 17.3 Nb-RBX 60(1.224) 0.8367 335
F-BA 60(1.224) 0.9288 18.2 NbXXBX 60(1.224) 0.8367 36.3
UB  100(2.04) - -

12 )

maMi

T
"

75




Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFG Super ch (Scaled):
)
Alg Bins BusUtil. RunTime Alg Bins BusUtil. RunTime
LB 9(1) - - XXRBX 9(1) 0.6856 53
F-R- 9(1) 0.8760 2.3(see) XARBX' 9(1) 0.6588 53
F-NX 9(1) 0.9550 14 XNRBX 9(1) 0.6641 5.2
F-NA NoSoln . 206.8 NXRBX 9(1) 0.9845 58
F-A- 9(1) 0.6641 3.7 NARBX 9(1) 0.9981 6.8
F-BX 9(1) 0.6641 29 Nb-RBX 9(1) 0.6550 5.7
F-BA 9(1) 0.6123 - 2.8 NbXXBX 9(1) 0.6550 55
uB 154 (17.11) - Lo
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Automated Task Allocation and Processor Specification Strategiestor Multi-Computer Systems

DFG Traction (Scaled):

Alg Bins  BusUtil. RunTime Alg Bins  BusUtil. Runlime
LB 15(1) m . XXRBX 16(1.067) 0.6287 124
F-4t- 15(1 0.8503 35(we) XARBX  16(1.06 0.6290 120
F-NX  15(1 0.9461 24 XNRBX  16(1.06 0.6287 129
F-NA 16(1.067) 0.9821 4.6 NXRBX  16(1.06 0.9648 139
F-A- 16(1.067) 0.6287 8.1 NARBX  16(1.06 0.9696 176
F-BX 16(1.067) 0.6287 51 Nb-RBX 16(1.06 0.6090 122
F-BA 15(1) 05972 4.1 NhXXBX 16(1.06 0.6090 129
uB 160(10.67) -
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFG IAC (Scaled):
| ]
»
Alg Bins Bus Util. RunTime Alg Bins Bus Util. RunTime
LB 5(1) - - XXRBX 5(1) 0.1378 0.5
FR- 5(1 0.2341 0.3 (sec) XARBX 5(1) - 0.1378 0.6
F-NX 5(1 0.3291 0.3 XNRBX 5(1 0.1378 0.5
F-NA 5(1 0.3347 0.2 NXRBX 5(1 0.3368 0.7
F-A- 5(1 0.1378 04 NARBX 5(1 0.3298 10
F-BX 5(1 0.1378 0.3 Nb-RBX 5(1 0.1377 0.6
F-BA 5(1 0.1831 0.3 NbXXBX 5(1 0.1377 05
UB  39(7.8) - .
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFG Conl:
Alg  Bins  BusUtil. RunTime Alg Bins  BusUtil. RunTime
LB 3(2) - - XXRBX 4 (1.333) 0.4153 <01
F~R-  4(1.333) 04153 <0.1 (se0) XARBX 4(1.333)  0.4153 <01
F-NX  4(1.333) 0.6318 <0.1 XNRBX 4(1.333).  0.4153 <0.1
F-NA 4(1.333 0.7280 <01 NXRBX  4(1.333 0.7280 <01
F-A- 4(1.333 0.4153 <0.1 NARBX 5(1.66 0.6318 <01
F-BX  4(1.333) 04153 <01 Nb-RBX 4(1.333)  0.2863 <01
F-BA 4(1.333) 0.4153 <01 NhXXBX 4(1.333) 0.2863 <01
UB  8(2.667) - .
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFG Conl:

Alg Bins- BuaUtih- RunTime
LB 3(1) . .
OPT-BINS 4(1.333) 0.3129 45 (se0)
OPT-BUS 5(1.667) 0.2863 0.1
Nb-RBX * 4(1.333) 0.2863 <0.1
uB 8(2.667) - .
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFG Con2:
Alg Bins  BusUtil. RunTime Alg Bins  BusUtil. RunTime
LB 3(1) — — XXRBX 4(1.333) . 02321 <0.1
F-R-  4(1333) 07010 <0.1 (s0) XARBX 4(1.333)  0.4006 <01
F-NX  3(1 0.4000 <0.1 XNRBX 4(1.333): 0.4018 <0.1
F-NA  4(1.333) 03754 <0.1 NXRBX 4(1,333) 05246 <01
F-A- 4&1.333; 0.4079 <01 NABBX 5(1.667) 0.5549 <0.1
FBX 4(1.333 0.4071 <01 Nb-RBX 4(1.333) 0.4007 <0.1
F-BA  3(1) 0.3797 <0.1 NhXXBX 4(1.333)  0.4007 <01
UB  12(4.00) - -
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFGCon2:

Alg Bins BusUtil. RunTime
LB 3(1) - -
OPT-BINS 3(1) 0.4000 69.4 (sec)
OPT-BUS 5(1.667) 0.2247 56
Nb-RBX  4(1.333)  0.4007 <0.1
UB  12(4) - -
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

Appendix D: Flowcharts for Packing-Based Algorithms
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SA Algorithm

Random Walk

!

Initial Temp
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DA Algarithm :
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Appendix E: Results for Packing-Based Algorithms

DFG Rani:
ENUM SAISW DAJSTAT SW DA
Processors - 9 9 9 10
Cost - 32.3971 32.5906 32.6705 32.4551
Run Time (Sec) - 180,316.1L 11.2 4.7 37.3
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DFGRan2:
ENUM SAJSW DA.STAT SwW DA
Processors - 6 6 6 6
Cost - 32.0279 32.2634 32.2906 32.2906
Run Time (Sec) - 57,602.4 43 4.6 12.9
RAW ] .,!.'..';—. RAN2 ]
4 %
!“' !q_
3 é:-
30§ 1+
e ! ], .
3 H I § 1 S —_ i
9 1 2 SAIEMWMA « O N 3M90MM4 S 6 7

88

e A




Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFGRan3:
BNUM SAJSW DAJSTAT SW DA
Processors 2 2 2 2 2
Cost 30.7247 30.7247 30.5733 30.7247 30.5733
Run Time (Sec) 113.7 219.8 <0.1 <0.1 0.1
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DFGRan4:
ENUM SAJSW DAJSTAT sSw DA
Proceasors - 17 17 17 19
Coat - 33.8509 33.5252 33.8509 33.5181
Run Time(Sec) - 35,764.1 335 45 154.2
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFG Ran5:
[ ]
ENUM SA SW DAJSTAT SW DA
Processor s 1 1 1 1 1 )
Cost 29.9745 29.9745 29.9745 29.9745 29.9745 *
Run Time (Sec) 0.6 1,304.0 0.2 06 10
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DFG Ran6:
ENUM  SAJ3W  DAJSTAT sw DA
Processors . - - 25 25 25
Cost - - 33.4856 33.5701 33.4856
; Run Time (Sec) . - 130.2 178 15535
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems

DFGRan7:
ENUM SAJSW DAJSTAT SW DA
Processors 10 10 10 10
Cost - 31.7677 31.8561 31.9902 31.8706
Run Time (Sec) 91,542.6 3.9 0.9 3.6
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DFG Ran8:
ENUM SAJSW DAJSTAT SW DA
Processors - 7 7 - 7 25
Cost - 33.6797 33.8976 34.1503 33.3398
Run Time (Sec) - 12,575.5 5.0 19 43.4
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems
DFG Ran9:
[
ENUM SAJSW DAJSTAT SwW DA 5
Processors - 3 3 3 . 26 .
Cost - 34.2626 34.2626 34.2773 33.4519
Run Time (Sec) e 1,803.5 11 2.3 > 25.8
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DFGRanlO:
ENUM  SAJSW  DAJSTAT SW DA
Processors "3 3 -3 3 3
Cost 31.4815 31.4815 31.4815 31.6462 314815
Run Time (Sec) 118,252.3 6,616.4 0.3 0.1 16
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DFG Ranll:
ENUM SAJSW  DASTAT sw PA
Processors - 55 55 56
Cost - 34.6124 34.6124 34.5447
Run Time (Sec) - - 271.7 2.8 960.8
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DFG Superch:
ENUM SAJSW DA ST A'I: SW DA
Processors 3 3 3 3 3
Coat 31.4815 31.4815 31.4815 31.6462 31.4815
Run Time (Sec) 118,262.3 6,616.4 0.3 0.1 16
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Automated Task Allocation and Processor Specification Strategiesfor Multi-Computer Systems
DFG Traction: ¢
ENUM SAISW DAJSTAT - SW DA '
Processors 2 2 2 2 2
Cost 34.5848 =  34.58461 34.1649 34.5848 34.5848
Run Time (Sec) 3,222.2 3,447.2 2.3 12.8 17.9
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DFGIAC:
ENUM SAJ3W DAJSTAT SNV DA
Processors 2 2. 2 2 8
Cost 32.7756 32.7756 33.0954 33.3883 32.1806
Run Time (Sec) 1,435.3 5,735.2 0.9 17 7.0
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DFG Conl:
ENUM SAJSW DAJSTAT NV DA
Processors 2 2 2 2
Cost 31.7934 31.7934 31.7934 31.7934 31.7934
Run Time (Sec) 131.6 100.3 <@.1 <0.1 0.1
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DFGCon2:
ENUM SAJSW DAJSTAT SW DA
Processors 3 3 3 3
Cost 31.6385 31.6385 31.6385 31.706 31.706
Run Time (Sec) 75.652.4 502.4 0.1 <0.1 04
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