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Abstract

This paper considers the coupled design problems of task allocation and processor

specification for embedded multi-computer systems. Two unique problem represen-

tations are proposed. The first representation involves multi-dimensional bin pack-

ing while the second is based on graph partitioning. Automated solution strategies

are developed and evaluated for both representations. The paper concludes with a

discussion of the results, pending research, and areas of future work.
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1 Problem Definition

* 1.1 Overview

The research reported in this document is aimed at automating a portion of the design

process for a specific class of computers, namely embedded, multi-computer systems.

Such systems have several distinguishing features. First, they are embedded. This implies a

stand-alone system that is dedicated to a single function and that executes a single set of

software routines. This is opposed to general purpose systems that can be programmed

to solve a wide variety of problems. Second, as the term multi-computer implies, they con-

sist of a network of loosely-coupled, autonomous processors. The processors communi-

cate with each other at a high level via message passing over a communication network.

The communication network could be arbitrary, but this research only considers broad-

cast bus-based systems.

When designing such systems, the software application must first be decomposed or par-

titioned into a set of communicating software tasks. The tasks ate then statically allocated

to processors in the system. At the same time, the hardware requirements of the proces-

sors must be determined and specified.

Each software task has a demand for the resources available on the processor to which it

is assigned. The demand imposed by a software task can occur across many dimensions,

such as throughput, memory and I/O channels. Accordingly, each processor must be

specified and designed to meet the cumulative demand of the software tasks assigned to

it. A set of processor specifications and an assignment of tasks to processors that satisfy

all task requirements without over-utilizing any of the hardware components are said to

befeasible.

Often, the specification of processors is complicated by the desire to optimize an objective

function. An objective function could be any measurable system parameter, such as cumu-
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lative cost or power consumption. If an objective function is given, then the design goal is

to find a set of processor specifications and an assignment of tasks to processors that are

feasible and that optimize the objective function.

The task allocation and processor specification problems are coupled, since their solutions

are mutually constrained. Because of feasibility considerations, the assignment of tasks to

processors constrains the specification of each processor. Likewise, the specification of a

processor constrains task allocation, since it limits the subset of tasks that can be assigned

to it. The research described in this report investigates automated ways of solving these

coupled problems. Again, the goal is to obtain a set of processor specifications and an

assignment of tasks to processors that axe feasible and that optimize a stated objective func-

tion.

The rest of this section is organized as follows: Sections 1.2 and 1.3 describe in detail the

software and hardware models and assumptions. Section 1.4 describes how task assign-

ment is modeled. Section 1.5 discusses feasibility. Section 1.6 considers objective func-

tions. Section 1.7 concludes with a concise restatement of the problem.

1.2 Software Model

The software model that is used is a Data Flow Graph (DFG). The nodes in the graph cor-

respond to tasks and the arcs represent inter-task communication. This type of model is

frequently used to represent signal processing applications [4], but is not limited to that

domain. An example DFG (taken from [4]) is shown in Figure 1.
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Figure 1
Example DFG

There are some hidden caveats associated with the model. First, only software applica-

tions that have statically predictable task sequences are supported. This excludes things

like recursion, for example. Second, the tasks themselves are assumed to have statically

predictable resource and communication requirements. This is required for static task

allocation. If this was not true, the effectiveness of a static assignment of tasks to proces-

sors would be workload-dependent.

1.2.1 Task Model

The resource demand imposed by a task can occur across many dimensions, such as

throughput, memory and I/O. The task model must capture the resource requirements

that are pertinent to the design problem at hand. Such requirements will be application

specific. For example, computationally intensive signal processing applications are pri-

marily concerned with throughput, while demand for all other resources is secondary.

Conversely, automotive applications have modest throughput requirements while sys-
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tern cost, which is sensitive to the mix of memory and I/O in each processor, is a domi-

nant concern.

In general, the task model will contain a vector of resource requirements. Each vector ele-

ment corresponds to a global resource available in the processor. The design automation

techniques that have been developed are compatible with any such well-formed task

model.

During the development and verification of the design automation algorithms, the task

model shown in Figure 2 was used.

a = Period
(3 = Xput Requirement
X = Code Size
5 = Data Size

e = Digital I/O Channels
$ = Analog I/O Channels
y * PWM Output Channels

Figure 2
Task Model

The a-value represents the task's invocation period. The other parameters constitute its

demand vector. Specifically, the p-value is the CPU throughput requirement, the %- and 8-

values are memory requirements and the £-, <|>- and y-values are I/O channel require-

ments.

122 Communication Model

Likewise, a model is needed for inter-task communication. Unlike the task model, the

communication model is one-dimensional. It merely specifies the exchange of data
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between tasks. The communication model used during the development of the design

automation algorithms is shown in Figure 3.

Communication = (q, i)

r\» Period
i = Data Size

Figure 3
Communication Model

1.3 Hardware Model

The hardware model consists of an arbitrary number of heterogeneous processors com-

municating via message passing over a broadcast bus.

1.3.1 Processor Model

like the task model, the processor model is multi-dimensional. When specified, a proces-

sor contains a vector of resource capacities. The processor model, therefore, consists of all

sets of valid capacities that can be selected for each vector element. The union over all sets

of valid capacities represents all possible processor specifications, and hence the hard-

ware design space for a processor. Again, the processor model should be chosen based on

the design problem at hand, and it should be compatible with the task model.

The processor model used during the development and verification of the design auto-

mation algorithms is shown in Figure 4.
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Processor = (a, b, c, d, e, f)

a = Xput(MHz)

b = ROM (bytes)

c = RAM (bytes)

d = Digital I/O Channels

e = Analog I/O Channels

f = PWM Output Channels

Figure 4
Processor Model

1.3.2 Broadcast Bus Model

like the communication model, the broadcast bus model is one-dimensional. The model

used during algorithm development was based on a Controller Area Network (CAN)

link [5]. It is shown in Figure 5.

Bus = (g/h)

type

BW(MHz)

Figure 5
Broadcast Bus Model
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1.4 Assignment Model

The set of tasks assigned to a given processor constitutes the task set for that processor. A

set of constraints is needed to determine whether the execution of the task set on the pro-

cessor is feasible; this is discussed in detail in Section 1.5.

Assigning communicating tasks (i.e. tasks joined by an arc in the DFG) to the same pro-

cessor results in intra-processor communication. Similarly, assigning tasks to different

processors generates inter-processor communication. Intra-processor communication is

free, since it involves sharing data within the same, local data space. Inter-processor com-

munication, however, requires message passing over the broadcast bus, as illustrated in

Figure 6.

Figure 6
Inter-Processor Communication results in Message Traffic

The set of all inter-processor communications forms the task set for the broadcast bus. The

amount of time (i.e. bus cycles) needed to carry out any given transfer will depend on the

bus being used. Again, a set of constraints is needed to determine whether the bus can

handle the transmission needs of the task set; this is also discussed in Section 1.5. Regard-
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less, the broadcast bus has a finite capacity for message traffic which, alpng with the com-

munication requirements specified in the DFG, place additional constraints on feasibility

1.5 Feasibility

A set of processor specifications and an assignment of tasks to processors that satisfy all

task requirements without over-utilizing any of the hardware components are said to be

feasible. A set of constraints is needed to define the feasibility condition. Such constraints

will be specific to the hardware components and operating systems used in the design. To

preserve generality, the design automation techniques can accommodate any set of con-

cise, computationally tractable constraints. The set of constraints that were used when

developing the design automation algorithms are presented in the subsections that fol-

low.

1.5.1 Processor Utilization Constraint

The processor utilization constraint insures that the throughput of each processor is not

over-utilized. It is shown in Figure 7.

i € DFG Graph Nodes
k 6 Processors
B| = Xput required for task i
a; = Period for task i
ak = Xput capacity of processor k
(i =>k) = task i assigned to processor k

Figure 7
Processor Utilization Constraint

8
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1.5.2 RAM and ROM Utilization Constraint

Processor memory is distinguished as being either RAM or ROM. Constraints are needed

to ensure that the amount of RAM and ROM available in each processor is not over-uti-

lized. These are shown in Figure 8.

i € DFG Graph Nodes
k 6 Processors
Xi = ROM required for task i

$i = RAM required for task i

bfc = ROM capacity of processor k

ck = RAM capacity of processor k

(i =>k) s task i assigned to processor k

Figure 8
RAM and ROM Utilization Constraints

1.5.3 I/O Channel Utilization Constraints

I/O channels are distinguished as being either digital, analog or pulse. Simple con-

straints are needed to ensure that the availability of each I/O channel type is not over-uti-

lized. These are shown in Figure 9.
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i=>

i 6 DFG Graph Nodes
ke Processors
q = Digital I/O required for task i
<fc = Analog I/O required for task i
Yi = PWM Outputs required for task i
dfc = Digital I/O on processor k
e^ = Analog I/O on processor k
fk = PWM outputs on processor k
(i =>k) = task i assigned to processor k

Figure 9
I/O Channel Constraints

1.5.4 Bus Bandwidth Utilization Constraint

A constraint is needed to ensure that message transfers over the bus do not over-utilize

the available bandwidth. Before this can be done, however, a model is needed that pre-

dicts transmission time for data transfers of arbitrary size. Such a model was derived for

the CAN bus in [2] and is reproduced in Figure 10.

10
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[?!<!>•(?)
C = Transmission Time (seconds)
D = Data Transfer Size (bytes)
h = CAN link Bandwidth (Hz)

Figure 10
Transmission Time Model for CAN Bus

The bus bandwidth utilization constraint is shown in Figure 11.

V(i,y,k,z)

yz
k.z

i,y € DFG Graph Nodes
k,ze Processors
i(i y) = IPC Transmission time from task i to task y
T|(iy) = Transfer period from task i to task y

Figure 11
Bus Bandwidth Constraint

1.6 Objective Functions

Solution of the processor specification problem is often complicated by the desire to opti-

mize an objective function. An objective function can be any easily computed figure of

merit that is relevant to the design. The design automation techniques that were devel-

11
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oped can accept any concise, computationally tractable objective function stated in terms

of the processor specifications.

The objective function that was used when developing the design automation algorithms

was based on cumulative system cost. The system was assumed to consist of a network of

heterogeneous, custom, single-chip microprocessors. The cost of each microprocessor

was based on a non-linear function of its die size, and die size was specification-depen-

dent. The die size contribution for each variable in an example processor model is shown

in Figure 12. The cumulative system cost function that was used is shown in Figure 13.

Module
Core

ROM (bytes)

RAM (bytes)

Digital I/O

Analog I/O

PWM Outputs

CAN Interface
Routing

Size

Ik
2k
4k
8k

16k
24k
32k
64k
256
512
Ik
2k
4k
8k

16k
0

32
0
8
0
2
-
-

Area (mils2)

7000
1800
2400
3200
4400
6800
9600

11000
20000
1100
1900
3400
6600

11800
22000
38500

0
550

0
2200

0
2000
2900

30% of Total Area

Figure 12
Die Size Contributions far Processor Model Variables

12
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Cost = Log
f n \

v i » 1 J

n = # of processors
Area; = Die Size of Processor i

Figure 13
Cost Function

The area and cost functions were adapted from models for an existing family of dedicated

processors. They were chosen simply because they provided a realistic set of design

trade-offs. Other functions can be substituted into the optimization algorithms.

1.7 Summary

This section has introduced and described the problem being considered, along with the

models and assumptions that were used. A concise statement of the problem is shown in

Figure 14.

13
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Given:
1). A software application represented by a DFG

a). Task Model
b). Communication Model

2). A hardware architecture
a). Processor Model
b). Broadcast Bus Model

3). A set of Feasibility Constraints
4). An Objective Function

Do:
1). Determine the number of processors
2). Specify all processors
3). Assign each node in the DFG to a processor

Such That:
1). All feasibility constraints are satisfied
2). The objective function is optimized

Figure 14
Problem Definition

2 Representation One: Packing-Based

2.1 Problem Representation

Once a processor has been specified, only a subset of the DFG nodes can be assigned to it

without violating any feasibility constraints. This leads naturally to a packing-based repre-

sentation of the problem defined in Section 1.

Each processor can be viewed as a bin having a vector of resource capacities. Similarly,

each task is an object with a vector of resource requirements. Likewise, the communica-

tion bus can be treated as a scalar bin with a capacity equal to its bandwidth. The task allo-

cation problem becomes a matter of packing the multi-dimensional objects into the multi-

dimensional bins. Feasibility requires that none of the bins, including the scalar bus bin,

overflow. Solution of the coupled design problems amounts to developing a method of

14
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successively or incrementally specifying the processors and invoking a packing algo-

rithm to perform task allocation. The processor specification that optimizes the objective

function and that can be successfully packed is chosen as the solution.

Based on this problem representation, an algorithm for finding the optimum solution to

the coupled design problems is shown in Figure 15. This algorithm is clearly exponential

and computationally intractable. Thus, heuristic techniques will be investigated that are

tractable and that return near-optimal solutions.

Fori = 1 to#Graph Nodes [
For All Specification Combinations for i Processors I

U(Packable){
If (Cost < Best) [

Update Best

Return Best

Figure 15
Optimum Algorithm

The rest of this section is organized as follows. Section 2.2 investigates multi-dimensional

bin packing and task allocation. Section 2.3 introduces and evaluates four distinct solu-

tion techniques based on the packing paradigm. Section 2.4 concludes with a discussion

of the results.

15
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2.2 Multi-Dimensional Bin Packing

2.2.1 Goal

The goal of this section is to state the task allocation problem as a multi-dimensional bin

packing problem. Solution techniques are then proposed and investigated. The major result

of this section is a heuristic algorithm that performs task allocation.

2.2.2 Background and Problem Definitions

Bin packing is a well understood and investigated NP-complete problem [7], [10]. It has

been previously used to model the task allocation problem for global and distributed

memory multiprocessors [4]. The work reported in [4], however, only considered bins

with scalar, uniform capacities. Thus, task allocation decisions were one-dimensional, based

solely on throughput requirements.

The task allocation problem now being considered must balance the demand for

resources across many dimensions. This requires a multi-dimensional extension to the bin

packing problem, as well as algorithms that solve this new problem.

To understand the connection between bin packing and task allocation, first consider the

task allocation problem that results when communication between tasks is ignored. This

problem is isomorphic to the packing problem defined in Figure 16. As the figure indi-

cates, the decision problem amounts to whether or not a set of vector objects can be

packed into a set of vector bins without overflowing any bin. Clearly, this packing prob-

lem is just a multi-dimensional extension to the bin packing decision problem. Before, bins

were characterized by a single, scalar capacity. Now, however, a vector of resource capacities

is needed to represent a bin.

16
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Given:
A set of objects with finite requirement vectors.
A set of bins with finite capacity vectors.

Decision Problem:
Can the objects be assigned to bins such that the requirements
of all objects are satisfied without exceeding the capacities
of any bin?

Bin
Capacity * (a,b,c)

Assign

f Object 1
\demandM(oj,P

Bin
Capacity s

b

a 1n Ess

(a,b,c)

c

Object n

Figure 16
Multi-Dimensional Bin Packing Problem (without Communication)

Next, assume that communication between tasks is not ignored. Now, the task allocation

problem is isomorphic to the packing problem defined in Figure 17. In this case, an addi-

tional scalar bin is used to model the bandwidth capacity of the bus. Whenever commu-

nicating tasks (objects) are assigned to different processors (bins) then a portion of the bus

bandwidth (scalar bin) is consumed. The decision problem amounts to whether or not a

set of vector objects can be packed into a set of vector bins without overflowing any bin,

17
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including the scalar one. Note, of course, that demand for the scalar bin is actually a func-

tion of the assignment of vector objects to bins.

Given:
A set of objects with finite requirement vectors.
A set of bins with finite capacity vectors.
A scalar bin with finite capacity.
A function f: (Assignment Decisions) -> (Scalar bin capacity)

Decision Problem:
Can the objects be assigned to bins such that the requirements
of all objects are satisfied without exceeding the capacities
of any bin?

Bin
Capacity «(a,b,c)

Bin

Assign

o
/ O b j e c t 1
\demand «iaifi

Capacity = (a,b,c)

b

a

Scalar Bin

f Obj
\demand

Object n

fO

Figure 17
Multi-Dimensional Bin Packing Problem (with Communication)

18
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The multi-dimensional bin packing problems defined in Figures 16 and 17 are unique,

meaning that no similar extensions to the bin packing problem have been found in the lit-

erature. The Figure 17 problem will be used to represent task allocation. Solution tech-

niques for this problem will be proposed and investigated.

2.2.3 Heuristic Algorithms

Algorithms for finding the optimum solution to the packing problem defined in Figure 17

are intractable. Thus, effective heuristic algorithms were needed. A set of candidate algo-

rithms was created. They were inspired by the classic first- and best-fit heuristic solutions

to the bin packing problem, as well as the techniques reported in [4]. All of the algorithms

are one-pass, greedy algorithms. Each one chooses an object, one by one, and assigns it to

a bin. This continues until all objects are assigned to bins and the packing is complete, or

else a set is left of objects that will not fit into any of the remaining bins. In this case, the

algorithm fails. Each algorithm is defined by a five character acronym, as defined in Fig-

ure 18.

19
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DDDD

Node Size

A: Average of all vector elements
X: Maximum over all vector elements

Node Order

R- Random
N: Decreasing based on Node Size
A: Decreasing based on Arc Size
B: Decreasing based on Node and Arc Sizes

Tie Breaking

R: Random
X: May*mntT? Bin Utilization
N: Minimum Bin Utilization
Nb: Minimum Bus Utilization

Bin Level

A: Average of all vector elements
X: Maximum over all vector elements

Bin Selection

F: First Fit
X: Maximum Bin Utilization
N: Minimum Bin Utilization
Nb: Minimum Bus Utilization

Figure 18
Candidate Heuristic Algorithms

The first character of the acronym specifies the method of bin selection. Four possibilities

were considered: choosing the first bin into which the object fits, the bin with the mini-

mum utilization level, the bin with the maximum level, or the bin that minimizes the

level of the scalar bin (i.e. bus bandwidth). The second character specifies the method

used for determining the utilization level of a bin. Two possibilities were considered:

either the average or the maximum level over all vector elements.

20
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If two or more bins are found to be equally good according to the bin selection policy,

then tie breaking is invoked. The third character indicates the tie breaking strategy. Four

strategies were considered: random tie breaking, tie breaking based on the maximum or

minimum bin utilization levels or tie breaking based on the level of the scalar bin (i.e. bus

bandwidth).

The order in which the nodes are selected to be assigned to bins has a pronounced effect

on the solution. The fourth character indicates the node ordering scheme. Four ordering

schemes were considered: random ordering, decreasing order based on node size, decreas-

ing order based on arc size and decreasing order based on node and arc sizes. Node size was

based on the resource requirements of the node (task). Arc size was based on the cumula-

tive scalar bin (i.e. bus bandwidth) requirements of the arcs connected to the node in

question. Decreasing on node and arc sizes chooses the node with the maximum size, node

or arc, at each point in the ordering process.

The fifth and last character specified how node size was determined. Two possibilities

were considered: the average or the maximum utilization requirement across all vector

elements.

2.2.4 Experimentation Strategy

A set of experiments was undertaken to gauge the effectiveness of the heuristic algo-

rithms. The packing problem shown in Figure 19 was used for all experimentation. Note

that this problem is just a specific instance of the problem type defined in Figure 17. Basi-

cally, the problem amounts to packing an input DFG into an arbitrary number of "unit-

PEs", which communication over a 1 Mbps CAN bus. Intra-PE communication is free,

while inter-PE communication consumes bus bandwidth, based on the CAN bus trans-

mission time model presented previously in Figure 10.

21
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DFG

Xput ROM RAM DIO AIO PIO

Unit-PEn

Figure 19
Packing Problem Instance used for Experimentation

Experimentation consisted of four phases. The goal of each phase is summarized in Fig-

ure 20.

22
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Phase One:
Investigate the effect of node ordering.

Phase Two:

Investigate the effect of the bin selection policy.

Phase Three:

Investigate the effect of tie breaking.

Phase Four:

Compare the best heuristic algorithm against
the optimum algorithms.

Figure 20
Four Experimentation Phases

2.2.5 Inputs

Sixteen DFGs were used as inputs for the experiments. Eleven were randomly generated,

three were real and two were contrived. The randomly generated DFGs were produced in

an automated way, based on user-supplied probability distributions for the graph vari-

ables. The real DFGs were adapted from data obtained from the characterization of an

automotive powertrain controller, reported in [1]. They were used without modification,

except that the ROM requirement for each task was scaled by (1/10). This was done to

allow certain large tasks to fit into the "unit-PEs." The contrived DFGs were hand-

crafted.

The graph values for all DFGs, stated as utilization percentages of Munit-FE" capacities,

are summarized in Appendix A.

2.2.6 Output Format

When a heuristic algorithm was applied to an input DFG, three metrics were used to

gauge its effectiveness:

23
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1. Number of Bins ("unit-PEs") in the Solution.
2. Scalar Bin (bus BW) Utilization Level for the Solution.
3. Run Time for the Algorithm.

Metrics 1 and 2 were plotted on x-y graphs, as shown in Figure 21. The method used to

calculate upper and lower bounds on the number of bins is described in Appendix B. The

number of bins required for a packing was normalized to the lower bound. All run times

were measured on a DECstation 3100 engineering workstation.

i
Upper Bound

Lower Bound

Region of \

Feasible Packings •

Scalar Bin Utilization 10

Figure 21
Output Format

2.2.7 Results

Results for all four experimentation phases are summarized in Appendix C. The discus-

sion that follows is based on those results.

24



Automated Task Allocation and Processor Specification Strategies for Multi-Computer Systems

The goal of the first phase of experimentation was to determine the effect of node order-

ing on the heuristic algorithms. This was done by comparing first-fit algorithms with dif-

ferent ordering schemes. Specifically, the following six algorithms were compared:

1. F-R- (Baseline)1

2. F-NX
3. F-NA
4. F-A-
5. F-BX
6. F-BA

The results revealed several tilings. First ordering based on node size tended to decrease

the number of bins that were needed. Unfortunately, this did not lead to wise utilization

of the scalar bin, which in several instances, prevented a feasible solution from being

found. Second, ordering based on arc size tended to decrease the scalar bin utilization

level. This allowed a feasible solution to be found for all DFGs, however the solutions

often required slightly more bins. This was due to poor packing caused by excessive frag-

mentation. Ordering based on node and arc sizes, however, worked quite well. This

scheme appeared to exploit the benefits of the other two (i.e. fewer bins and effective use

of the scalar bin) without suffering from their weaknesses (i.e. not finding a solution).

The effect of basing node size on the average or maximum vector element was found to

be marginal and inconclusive. Furthermore, there was no significant run time variation

across algorithms. This is intuitive, since node ordering only requires the nodes to be

sorted once before packing begins.

Summarizing, the results from phase one indicated that node ordering based on decreas-

ing node and arc sizes was the most effective technique, and nodes size based on the

maximum vector element was preferred for simplicity. This scheme was used for all sub-

sequent experimentation phases.

1. As defined previously: (F-R-) = First-fit bin selection and random node ordering.
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The results of phase one are summarized in Figure 22.

Observations:

1. Ordering on node size requires fewer bins but results in poor scalar bin utilization.

2. Ordering on arc size uses the scalar bin wisely but requires more bins.

3. Ordering on node and arc sizes balances 1 and 2.

4. The effect of whether node size is based on the maximum or average vector
element is marginal and inconclusive.

5. There is no significant run-time variation across algorithms.

Conclusion:

1. Only (???BX) algorithms will be considered in subsequent phases.

Figure 22
Summary of Phase One Results

The goal of the second phase of experimentation was to investigate the effect of the bin

selection policy. This was done by comparing the effectiveness of the following seven

algorithms:

1. F-BX (baseline)2

2. XXRBX
3. XARBX
4. XNRBX
5. NXRBX
6. NARBX
7. Nb-RBX

2. As defined previously: (F-BX) = First-fit bin selection, decreasing order based on node and arc sizes and node size based on the maxi-
mum vector element.
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The results revealed several things. First, selecting the least utilized bin performed worse

than the baseline, first-fit. This is intuitive. Selecting the least utilized bin is a poor pack-

ing heuristic, since it never tries to completely fill a started bin. This leads to excessive

fragmentation and thus more bins compared to first-fit. Second, selecting the most uti-

lized bin performed no better than first-fit. This was a surprising result. The implication

is that there is no analog to the best-fit decreasing algorithm, which has been shown to be

so effective for the classic bin packing problem. The reason for this is also intuitive: there

is no notion of what constitutes a best fit for a multi-dimensional object being placed in a

multi-dimensional bin. A bin assignment that is the best fit for a particular dimension may

actually impair the packing across other dimensions. To understand this, consider apply-

ing the (XXRBX) algorithm to the 1- and 2-dimensional examples shown in Figure 23.
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...Consider a 1-dimensional problem for which XXRBXis effective.

Nodes:
a
b
c
d
e
f

0.7
0.4
0.35
0.25
0.15
0.15

0.95
F-BX:

0.90 0.15
XXRBX:

1.00 1.00

a,d b,c,e f a,e,f b,c,d

...Consider another 1-dimensional problem for which XXRBX is effective.

Nodes;
a
b
c
d
e
f

e
h

0.87
0.35
0.33
0.22
0.10
0.06
0.06
0.01

0.98

F-BX:

0.96

a,e,h b,c,d,f

0.06

g

XXRBX:

1.00 1.00

a,f,g,h b,c,d,e

...Combine the two 1-D problems into a single 2-Dproblem - see what happens?

Nodes:
a
b
c
d
e
f
g
h

0.70
0.40
0.35
0.25
0.15
0.15
0.00
0.00

0.87
0.35
0.33
0.22
0.10
0.06
0.06
0.01

F-BX:
(0.85,0.98)(1.00,0.96)(0.15,0.06)

a,e,h b,c,d,g

XXRBX:
(0.85,0.98)(1.00,0.96)(0.15,0.06)

a,e,h b,c,d,g f

Figure 23
Example showing the ineffectiveness of multi-dimensional best-fit algorithms
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As the example indicates, interactions across dimensions nullify the effectiveness of best-

fit packing heuristics.

Selecting the bin that minimizes utilization of the scalar bin (i.e. bus) was found to be

superior to first-fit. On average, this technique required no more or less bins than first-fit

(for the reason given above), but it did return packings with significantly lower scalar bin

utilization levels. In fact, this method is a wise choice for task allocation since, coupled

with the node ordering scheme found in phase one, it leads to a natural and dynamic

clustering of heavily communicating tasks which conserves bus bandwidth.

As in phase one, basing node size on the average or maximum vector element had a mar-

ginal and inconclusive effect. Therefore the maximum vector element was preferred for

simplicity.

The baseline algorithm, first-fit, did have a measurable run time advantage over the other

algorithms. However, based on its superior performance, selecting the bin that minimizes

usage of the scalar bin was preferred and this was the technique that was used in all sub-

sequent experimentation phases.

The results of phase two are summarized in Figure 24.
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Observations:

1. On Average, selecting the least-utilized bin requires more bins than
first fit with a comparable scalar bin utilization level.

2. On Average, selecting the most-utilized bin requires no fewer bins
than first fit with a comparable scalar bin utilization level.

3. On Average, selecting the bin that minimizes scalar bin utilization produces
lower scalar bin levels than first-fit with a comparable number of bins.

4. The effect of whether bin level is based on the maximum or average
vector element is marginal and inconclusive.

5. (F-BX) has a run-time advantage over all other algorithms.

6. The run-times of all other algorithms are comparable.

Conclusion:

1. Only (Nb??BX) algorithms will be considered in subsequent phases.

Figure 24
Summary of Phase Two Results

The goal of phase three was to determine the effect of employing a tie breaking strategy.

To accomplish this, the following two algorithms were compared:

1. Nb-RBX (baseline)3

2. NbXXBX

As the results indicate, there was no measurable benefit for tie breaking. Again, the rea-

son that the tie-breaking schemes were ineffective is due to inter-dimensional interactions

that render node utilization-based bin selections no better than random selection.

3. As Defined Previously: (Nb-RBX) = Selection of bin that minimizes scalar bin utilization, decreasing order based on node and arc sizes,
node size based on the maximum vector element and random tie breaking.
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The goal of the fourth and final phase of experimentation was to provide a consistency

check, by comparing the solution returned by the best heuristic algorithm (Nb-RBX)

against the optimum solutions. The solution requiring the fewest bins was found by an

algorithm named QPT-BINS. This algorithm did an exhaustive search over all possible

assignments of objects to bins, beginning with one and incrementing the number of bins

until a solution was found. Likewise, another exhaustive search algorithm, OPT-BUS,

was used to find the solution that least utilized the scalar bin. Thus, three algorithms

were compared:

1. Nb-RBX (heuristic)

2. OPT-BINS

3. OPT-BUS

As the results indicate, the heuristic algorithm, (Nb-RBX), perfonns well compared to the

optimum algorithms. It also has a significant run time advantage. In general, note that

OPT-BINS and OPT-BUS are both exponential algorithms. They have time complexities

of O(ProcessorsNodes) and 0(2^^) respectively, making them computationally intracta-

ble for the vast majority of the problem space.

The results of phases three and four are summarized in Figure 25.
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Observations:

1. Tie-breaking has no measurable effect.

2. (Nb-RBX) returns near-optimal solutions.

Conclusion:

1. (Nb-RBX) is the most effective heuristic algorithm.

Figure 25
Summary of Phase Three and Four Results

2,2.8 Conclusion

A unique extension to the bin packing problem, multi-dimensional bin packing, was

derived which is isomorphic to the task allocation problem. Heuristic algorithms were

proposed to solve this problem. The performance of the algorithms was compared on six-

teen input DFGs with respect to three figures of merit. The (Nb-RBX) heuristic algorithm

was found to be the most effective. Furthermore, this algorithm was shown to produce

near-optimal results with a significant run time advantage over the optimal search algo-

rithms. The (Nb-RBX) algorithm will therefore be used as a fast and efficient technique

for performing task allocation.

2.3 Solution Techniques

2.3.1 Goal

The goal of this section is to develop and evaluate solution techniques, based on the (Nb-

RBX) packing algorithm, for the coupled design problems defined in Section 1. Recall that

solution of the coupled design problems amounts to finding a set of processor specifica-

tions and an assignment of tasks to processors that satisfy the feasibility constraints and
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optimize the objective function described in Section 1. The major results of this section are

the algorithms that are developed.

2.3.2 Overview of Solution Techniques

The previous section developed an efficient heuristic packing algorithm for performing

task allocation. Solutions to the coupled design problems were obtained by combining

this algorithm with incremental or successive processor specification strategies. Specifi-

cally, four solution techniques have been developed. They are listed in Figure 26.

Algorithm

SW

ENUM

SA

DA

#ofPEs

Dynamic

Static

Static

Dynamic

Processor
Specification

Constraint-Driven

Search

Simulated Annealing

Incremental Refinement

Ifeflk
Allocation

Nb-RBX

Nb-RBX

NUIBX

Nb-RBX

Description

Shrink-Wrapping

Exhaustive Search

Simulated Annealing

Design Advisor

Figure 26
Four Solution Techniques for Problem Representation One

As the figure indicates, all techniques use the same packing algorithm (Nb-RBX) to per-

form task allocation. Two of the techniques, SW and DA, dynamically determine how

many processors to use; the others, ENUM and SA, require this as an input. SW and

ENUM were developed as strawman approaches while the SA and DA algorithms are the

main results of this section. All of the algorithms were implemented in C++ using AT&T

compiler version 3.0.
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2.3.3 Shrink-Wrapping Algorithm (SW)

A strawman algorithm was created based on the notion of shrink-wrappitig. It works as

follows. First, an upper bound on the number of processors is obtained using the method

derived in Appendix B. Next, the processors are specified by choosing the maximum pos-

sible value for each hardware design variable. The (Nb-RBX) algorithm is then invoked

which attempts to pack the DFG graph into the processors.

If the packing algorithm returns no solution, then one of two situations has occurred.

Either no solution exists for the given DFG and hardware architecture, or else a solution

exists that the heuristic packing algorithm failed to find. Note, however, that if the latter

case occurs, it is due entirely to the inefficiencies of the packing algorithm since the hard-

ware architecture was set to the maximum number of maximally-specified processors.

If the packing algorithm does return a valid solution, the hardware is then shrink-wrapped

to match the task allocation that was found. Shrink-wrapping of the hardware implies two

things. First, any unused processors in the design are removed. Second, all of the design

variables in the used processors are set to the smallest values that do not violate any of

the feasibility constraints. In order for shrink-wrapping to be computationally tractable,

the hardware design variables and the feasibility constraints based on them must be

mutually independent. This is true for the variables and constraints that were presented

in Section 1. In general, this is a reasonable assumption.

The solution obtained with the SW algorithm is driven by the task allocation returned by

(Nb-RBX). The number of processors in the design is determined dynamically as a by-

product of the task assignment decisions that were made. Shrink-wrapping returns the.

lowest complexity hardware architecture that will support this task allocation. As such,

no attempt is made at optimizing the objective function. This algorithm is robust, how-

ever, in the sense that its only limitations on finding a solution when one exists are those

inherent in the (Nb-RBX) packing algorithm. Also, since task allocation (i.e. packing) and
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processor specification are both performed only once, this algorithm establishes a lower

bound on run time.

A flowchart of the SW algorithm is shown in Appendix D.

2.3.4 Exhaustive Search Algorithm (ENUM)

An exhaustive search algorithm, ENUM, was created as a strawman. First, the number of

processors to be used in the design is input to the algorithm. Next, the algorithm cycles

through all possible specification combinations for the given number of processors. For

each specification combination, the (Nb-RBX) algorithm is invoked which attempts to

pack the DFG into the processors.

If the (Nb-RBX) algorithm returns no solution, then one of two situations has occurred.

' Either no solution actually exists for the given DFG and processor specifications, or else a

solution exists that the packing algorithm failed to find. Once again, if the latter case

occurs, it is due entirely to the inefficiencies of the packing algorithm.

If the (Nb-RBX) algorithm returns a solution, die objective function is invoked to deter-

mine its relative merit. At each step, a copy is maintained of the best, feasible solution

seen thus far. Upon completion, the best observed solution is returned by the algorithm.

Unlike the SW algorithm, ENUM actually attempts to optimize the objective function.

Because of the exhaustive search, however, it has exponential time complexity. This

results in long run times, even for problems of modest size, like the SW algorithm,

ENUM is also robust, in the sense that its only limitations on finding an existing solution

are those inherent in the packing algorithm. Furthermore, since all feasible processor

combinations are compared, this algorithm establishes an upper bound on the degree of

optimization obtainable with a (Nb-RBX)-based solution technique.

A flowchart of the ENUM algorithm is shown in Appendix D.
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2.3.5 Simulated Annealing Algorithm (SA)

An algorithm, SA, was created that uses simulated annealing ([9],[11]) to optimize proces-

sor specifications and the (Nb-RBX) algorithm to perform task allocation. The execution

of these two algorithms is interlaced.

As the simulated annealing algorithm progresses, a move function is executed that ran-

domly perturbs the processor specifications. After a random move is attempted, the (Nb-

RBX) algorithm is invoked which tries to pack the new processors. If a feasible packing

was found, the processors are shrink-wrapped. The simulated annealing cost function is

then used to rate the new solution attempt. This cost function consists of two terms. The

first term represents the design objective function. The second term represents a penalty

that is incurred if the (Nb-RBX) algorithm failed to return a solution. The magnitude of

the penalty is a function of how far the (Nb-RBX) algorithm progressed before failing. By

trying to optimize its cost function, the simulated annealing algorithm actually tries to

return a solution that is feasible (i.e. packable) and that optimizes the design objective

function.

Since simulated annealing is a general solution strategy, three portions of the annealing

algorithm were tailored to the problem: the move function, the cost function and the

annealing schedule, as described below.

2.3.5.2 Move Function

A move function was needed that creates a new set of processor specifications by ran-

domly perturbing the current ones. The neighborhood of the current state is defined as the

set of states that are reachable within one move. A requirement of the move function is

that it must be able to traverse the entire design space through an arbitrary sequence of

moves begun from any starting state. Furthermore, the neighborhood generated by a
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move function should be large enough to allow large hops through the design space in

relatively few moves.

Two candidates for the move function were investigated, as shown in Figure 27.

Function 1:

1. Randomly pick (pe P).
2. Randomly pick (ve DV).
3. Randomly increment or

decrement v in p.

Function 2:

1. Randomly pick (pe P).
2. Randomly pick (ve DV).
3. Randomly pick (ce
4. Set v in p to c.

P = {Set of Processors}
DV = (Set of Design Variables}
VS i = {Value Set for Design Variable i|

Figure 27
Move Functions

The first function takes a randomly selected design variable from a randomly selected

processor and randomly increments or decrements it The second function takes a ran-

domly selected design variable from a randomly selected processor and sets it to a ran-

domly selected element from the set of all possible values.

The premise behind the first function was that it forced incremental change which was

thought to improve optimization. The second function, however, had a larger neighbor-

hood. Initial experimentation was conducted and the second function was fouiul to uni-

versally outperform the first. Accordingly, it was adopted as the move function.

2.3.5.2 Cost Function

The cost function rates the worth of each candidate solution. The function that was devel-

oped is shown in Figure 28.
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n
Cost = Log £ Area? -r (15 x UT)

n = # of processors
UT = # of unassigned tasks
Area; = Die Size of Processor i

Figure 28
Cost Function

The cost function consists of two terms. The first term is identical to the design objective

function being optimized. The second term represents a penalty that is incurred if the

(Nb-RBX) algorithm fails to find a feasible packing. The magnitude of the penalty

depends on how far the (Nb-RBX) algorithm progressed before failing. Each task that has

not yet been assigned to a bin when the packing algorithm fails contributes a fixed

amount to the total penalty. Thus, if the (Nb-RBX) algorithm can pack most of the DFG

into the processors, less of a penalty is incurred, resulting in a lower cost. The fixed

amount incurred by each unpacked task was determined empirically through experimen-

tation. It was found that the penalty term must be large enough to distinguish an infeasi-

ble solution from potentially costly feasible ones. The idea of incorporating penalty terms

into the cost function was adapted from [12].

2.3.5.3 Annealing Schedule

The annealing schedule determines when and how the algorithm begins, accepts ran-

domly generated solutions and terminates. As such, it is crucial to the operation of the

algorithm. An improperly designed annealing schedule can result in poor optimization

and/or excessive run times. Four specific issues must be solved by the annealing sched-

ule:

1. Starting Temperature
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2. Equilibrium Detection

3. Temperature Decrement Function

4. Termination Condition

Each of these items is discussed in detail. The approaches used were adapted from [6],

[8], [9] and [11].

The starting temperature must be hot enough to melt the system. When the system is

melted, a randomly generated solution with higher cost is accepted as often, on average,

as one with lower cost. This implies that the starting temperature should be reasonably

higher than the standard deviation of the cost function. Accordingly, the starting temper-

ature defined in Figure 29 was used [8].

T°«20xa

a = Standard Deviation of Cost Function

Figure 29
Starting Temperature

Before the starting temperature can be calculated, an estimation of the standard deviation

of the cost function is needed. This is obtained by collecting cost statistics during a ran-

dom walk through the design space. The length of this random walk should be depen-

dent on problem size. Since the actual problem sizes are exponential, however, a heuristic
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was needed that increases with problem size in a bounded way. The heuristic that was

used is shown in Figure 30.

size = 3xnx fJCARD(VS.)
VI

n = number of processors
VS| = Value set for Design Variable i

CARD(j) = Cardinality of Set j

Figure 30
Problem Size Heuristic

When the simulated annealing algorithm is running, transition to a lower temperature is

allowed once equilibrium is established at the current temperature. Therefore, a method

of detecting equilibrium is necessary. The method used was adapted from [8]. It is based

on the observation that once equilibrium is established, the ratio of the number of

accepted states with costs that fall within a defined probability interval of the average to

all accepted states approaches a constant value. If the probability distribution for cost is

assumed to be normal, which is a fair assumption at high temperatures, then a target

ratio can be established as shown in Figure 31.
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Area = ERF(0.5) = 0.38

(x-0.5o) X (x + 0.5o)

Probability Interval = (x - 0.5a, x + 0.5a)

Equilibrium Target Ratio = 0.38

Figure 31
Equilibrium Target Ratio

Before transition to a lower temperature is allowed, the target ratio must be met over a

sample size equal to the heuristic problem size defined in Figure 30. Algorithmically, this

is equivalent to requiring an inside-interval threshold to be met before an outside-interval tol-

erance is exceeded. The values for the inside-interval threshold and outside-interval tolerance,

based on the target ratio defined in Figure 31, are given in Figure 32.

Inside-Interval Threshold = (0.38) x size

Outside-interval Tolerance = (1 - 0.38) x size

Figure 32
Inside-Interval Threshold and Outside-interval Tolerance Values
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To determine whether or not the inside-interval threshold has been met or the outside-inter-

val tolerance has been exceeded, it is necessary to know whether or not the cost of each

randomly generated solution falls within the defined probability interval around the

average cost. Furthermore, this implies that a running calculation of cost statistics must

be maintained. These statistics are calculated over a window of the most recently accepted

costs. The size of the window was determined empirically and set to ten.

As temperature decreases, the number of states accepted at any given temperature also

decreases. Thus, the target inside-interval threshold may never be reached at low tempera-

tures, trapping the algorithm at an above freezing temperature. To avoid this situation, a

maximiun niunber of moves at any given temperature was established. If this number is

reached before equilibrium is detected, then the temperature is automatically decre-

mented. The maximum number of moves was set to an empirically determined function

of heuristic problem size; it is defined in Figure 33.

Max Moves = 7 x (Outside-Interval Tolerance)

Figure 33
Maximum Move Criterion

When the annealing temperature is decreased, the temperature decrement function is

invoked to determine what the new temperature should be. The temperature decrement

function that was used is shown in Figure 34 [8].
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r =

EXP = T x e X P ( _ _ )

0.1T (TEXp<0.lT)
TEXP (MT<TBXp<0JT)

0.5T (TEXp>05T)

Figure 34
Temperature Decrement Function

This function performs exponential temperature reductions. Reductions were bounded,

however, to fall within 10% and 50% of the current temperature. This was done to avoid

quenching when little cost variation is encountered, and extremely long run times when

cost fluctuates wildly.

The last aspect of the annealing schedule to be considered is the termination condition.

The algorithm should terminate when no lower cost solutions are found and the temper-

ature has dropped to a level where no higher cost solutions are accepted. A simple

method was used to detect this; the algorithm terminates when no solution has been

accepted for four consecutive temperatures.

A flowchart of the SA algorithm is shown in Appendix D.

2.3.6 Incremental Design Advisor Algorithm (DA)

An algorithm, DA, was created that is driven by an incremental design advisor. The algo-

rithm works as follows. First, a lower bound on the number of processors is obtained using

the method derived in Appendix B. Next, the processors are specified by choosing the

minimum possible value for each hardware design variable. The (Nb-RBX) algorithm is

then invoked which attempts to pack the DFG into the processors.
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If the (Nb-RBX) algorithm should happen to fail, meaning a task is encountered that will

not fit into any of the existing bins, then the incremental design advisor is invoked. The

design advisor examines the current hardware configuration and partial packing state,

and then makes a hardware specification change. When the advisor completes, the (Nb-

RBX) algorithm is re-invoked and continues from where it left off. In this way, the algo-

rithm returns a solution that is obtained incrementally from a series of packing attempts

and specification refinements.

The success of this approach hinges on two assumptions. First/note that when the design

advisor is invoked, it suggests the best possible hardware modification based on an

incomplete, local view of the design. Thus, like MICON [3], the solution is based on a

series of locally optimum design decisions. Therefore, like MICON, the algorithm assumes

that a solution obtained in this manner is a fair approximation of the optimum solution.

Second, note that the starting place for this algorithm is the minimum complexity hardware

configuration. Each time the design advisor is invoked, the complexity of the hardware

specification is incrementally increased. Since the design objective function given in Figure

13 increases monotonically with hardware complexity, the algorithm essentially begins

with the most desirable hardware configuration and then moves to an incrementally less

desirable configuration every time the design advisor is invoked. Thus, for optimization

to occur, the algorithm assumes that a monotonic relationship exists between the design

objective function and hardware complexity. This is a fair assumption for most, but not

all objective functions.

The operation of the design advisor is described next. When the design advisor is

invoked, it is given a set of specified, partially packed processors and a task that will not

fit into any of them. Based on this information, a set of candidate hardware changes is

created. This is done by sequentially forcing the task into each existing processor and

then shrink-wrapping the hardware to meet the feasibility constraints of the new partial
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packing. Additionally, another candidate hardware change is created by adding a new

processor, assigning the task to it, and then shrink-wrapping this new configuration. This is

illustrated in

Figure 35
Candidate Hardware Changes

Once this set of candidate hardware changes has been created, the relative merit of the

alternatives must be computed and compared. Relative merit was based on two things:

1. Relative change in the objective function.
2. Relative change in the bus utilization level.

For the candidate hardware changes involving the existing processors, the objective func-

tion change was defined as the percentage difference between the old and new configura-

tions. However, for the candidate change containing the new processor, things were

handled differently. In general, adding a new processor tends to be more costly than

modifying an existing one. Thus, if only relative cost differences were considered, modifi-

cation of an existing processor would almost universally be preferred to adding a new

one. Note, however, that this situation is pessimistic. It assumes that the task being

assigned to the new processor must bear the entire overhead burden associated with it.
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This is generally not true, however, because if the new processor is subsequently used by

the packing algorithm its overhead will be amortized across additional tasks. To account

for this, an attempt was made to amortize the overhead burden of the new processor

when computing the objective function change. This was done by multiplying the proces-

sor overhead by the maximum of the reciprocal of the unpacked tasks and the maximum

utilization level across all dimensions for the task being assigned to it. The method used

to calculate objective function changes is summarized in Figure 36.
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For a solution using an existing processor:

AOF =
OF (NEW)-OF (OLD)

OF (OLD)

OF() = Objective Function
OLD = old processor specs
NEW = new shrink-wrapped processor specs

For a solution using a new processor

OV = OF (BASE) -OF (OLD)

TC(J) = OF (NEW) -OF(BASE)

AOF
TC (j) + OV x MAX < JL. MAXv.U (i))

OF (OLD)

OFO = Objective Function OV = Processor Overhead
UT = Number of unassigned tasks TC(j) = Cost of implementing Task j
OLD = old processor specs U(i) = Utilization Level for Resource i

NEW ss OLD + specs for new shrink-wrapped processor
BASE = OLD + specs for new, empty processor

Figure 36

Calculating the objective function change for candidate solutions

To quantify the relative change in bus utilization, the notion o£penalty points (from

MICON, [3]) was used. This is shown in Figure 37.
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u <O L D> u < N E W > ~ u < O L D >

BW = Bus Bandwidth
U(i) = Bus Bandwidth Utilization for solution i
OLD = Old processor specs
NEW = New processor specs

Figure 37
Bandwidth Change for Candidate Solutions

When computing the relative merit of a hardware change, the changes in objective func-

tion and bus utilization must be properly balanced. Favoring the objective function leads

to greater optimization. However, if bus bandwidth is not managed wisely, then the algo-

rithm may fail after several invocations of the design advisor. Therefore, a method was

needed to quantitatively weight these terms. After several candidate weighting schemes

were tried, the penalty function defined in Figure 38 was found to work very well.

Penalty » (1+ABW) [l+exp(k(l+AOF))]

DOF = Objective Function Change
DOF = Bus Bandwidth Change

Figure 38
DA Penalty Function

Essentially, the penalty function weights the objective function and bus bandwidth

changes. The weighting is controlled by a unit-less parameter, k. When (k<l), the expo-

nential term vanishes and the penalty function is dominated by bus bandwidth. Con-

versely, when (k>l), the exponential term increases and the objective function dominates.
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Conceivably, any value of k in the range (-1 < k < 1) could have been used. Experimenta-

tion showed, however, that communication-intensive inputs required small values of k

for robustness, while non-communication-intensive inputs needed higher k values for

good optimization. To solve this dilemma, an iterative approach was taken. Internally, the

DA algorithm is invoked four times, with k=[-3,-l,l,3]. The best solution from the four

iterations is returned.

Flowcharts for the DA algorithm and die design advisor are shown in Appendix D.

2.3.7 Experimentation

Experimentation was undertaken to determine the effectiveness of the algorithms. The

same DFGs, summarized in Appendix A, were used as inputs. The objective function and

set of feasibility constraints presented in Section 1 were also used.

Once again, the goal of the algorithms was to arrive at a set of processor specifications

and an assignment of tasks to processors that are feasible and that optimize the objective

function. Accordingly, two metrics were used to gauge algorithm performance:

1. Objective Function value of the returned solution.
2. Run-time of the algorithm.

Since two of the algorithms dynamically determine die number of processors while the

other two require this as a static input, a fair way of comparing their performance was

needed. A method for comparing the static ENUM and SA algorithms with the dynamic

SW algorithm was developed that hinged on the following two properties of the SW

algorithm:

1. SW is more robust than the static algorithms, ENUM or SA.
2. A solution returned by SW will always require no more processors than a solution that can be found

using either static algorithm, ENUM or SA.
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Based on this, the SW algorithm was first applied to each DFG. Then the static algo-

rithms, ENUM and SA were applied using the same number of processors found in the

SW solutions. This allowed direct and fair comparisons to be made.

Similarly, a method was needed for comparing the performance of the design advisor.

Thus, a static version of the DA algorithm, called DA_STAT, was created. A comparison

between the design advisor approach and the other three algorithms was obtained by

applying the DA_STAT algorithm to the DFGs using the same number of processors.

Next, by comparing the results of DAJJTAT with the original, dynamic DA algorithm,

the effects of the processor creation portion of the design advisor were isolated so that its

performance could be judged in relation to the baseline (static) approach.

2.3.8 Results

Results for the algorithms are summarized in Appendix E. The discussion that follows is

based on these results.

The ENUM and SA algorithms were substantially slower than SW, DAJ5TAT and DA.

Because ENUM and SA are both search algorithms (exhaustive and probabilistic, respec-

tively), they have greater time complexities than the simpler, heuristic-based approaches.

Accordingly, they had substantially longer run times for all of the inputs.

For small problems (number of processors < 3), SA was slower than ENUM but for larger

problems SA outstripped ENUM by many orders of magnitude. This was because time

complexity grows exponentially with problem size for ENUM but not for SA. In fact, this

is the primary motivation for using a simulated annealing algorithm over exhaustive

search.

When solutions were obtained for both SA and ENUM the results were identical. This,

coupled with the run time findings above, verifies that the simulated annealing algorithm

was properly designed and performs good optimization.
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The performance of the DA and DA_STAT algorithms was interesting. First, both algo-

rithms always returned solutions that were at least as good (defined by the objective

function) as those found with SW. This implies some degree of optimization, validating

the underlying design advisor heuristics. In some cases, however, these algorithms actu-

ally returned better solutions than ENUM and SA. This was surprising. Since ENUM per-

forms an exhaustive search over all processor specifications, it seemed unlikely that a

better solution could be obtained by an algorithm using the same task allocation (pack-

ing) technique. The reason that this happened, however, is because DA and DA_STAT

use an incremental design technique. This means that processor specifications are refined

while packing is done. Because packing decisions are influenced by the current set of pro-

cessor specifications, refining the hardware on the fly can change task assignment deci-

sions. Thus, a solution can evolve incrementally that, once completed, is feasible but not

packable. This type of solution can be found by the incremental approaches (DA and

DA_STAT), but since it is not packable, it would be skipped over by a search algorithm

that was mistakenly led to believe the solution was infeasible.

Comparing the DA and DA_STAT results, the performance of the processor creation heu-

ristic can be determined. As the results indicate, in most instances DA finds a solution

that is at least as good as DA_STAT's, with a slight increase in run time. In three cases,

however, the results found with DA_STAT were marginally better. In all of these cases,

however, the number of processors used by DA_STAT and DA were identical. As a

whole, this indicates that the processor creation heuristic generally acts to optimize the

objective function. But, since its decisions are only locally optimum, they are not always

perfect.

A summary of the experimentation results is given in Figure 39.

51



Automated Task Allocation and Processor Specification Strategies for Multi-Computer Systems

Observations;

1. ENUM and SA have longer run-times than SW and DA.

2. ENUM run-times grow exponentially with problem size.

3. Cost of ENUM, SA and DA solutions are at least as good as SW solution.

4. ENUM and SA return identical solutions.

5. Cost of DA solutions are comparable to ENUM and SA solutions.

Conclusion;

1. DA and SA are both effective solution techniques.

2. A trade-off between run-time and solution quality exists for DA and SA.

Figure 39
Summary of Experimentation Results

2.3.9 Conclusion

Four algorithms were developed, based on the packing paradigm, to solve the coupled

design problems: ENUM, SA, DA and SW. All of these algorithms use the heuristic pack-

ing algorithm, (Nb-RBX), for task allocation.

As the results indicate, both the SA and DA algorithms perform well. The DA algorithm

has a significant run time advantage over SA. The SA algorithm, however, may return a

marginally better solution in some, but not all cases. Thus, a trade-off must be considered

by the designer when choosing from these two approaches.
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2.4 Summary

This section has introduced a packing-based representation of the coupled design prob-

lems. Furthermore, a multi-dimensional extension to the bin packing problem was

defined that is isomorphic to the task allocation problem. Next, heuristic methods of solv-

ing this packing problem were investigated. This resulted in the discovery of an effective

algorithm, (Nb-RBX), that can be used to solve the task allocation problem.

Four approaches for solving the coupled design problems were proposed that utilize the

(Nb-RBX) algorithm. Two of these, SA and DA, were found to be effective solution tech-

niques. Furthermore, a trade-off between run time and solution quality was found to

exists between the two approaches.

3 Representation Two: Graph Partitioning-Based

3.1 Problem Representation

An arbitrary assignment of tasks to processors dictates the minimum complexity proces-

sor specifications that are needed to feasibly support the assignment. This leads naturally

to a graph partitioning-based representation of the problem defined in Section 1.

First, realize that there is not a one-to-one correspondence between n-way partitions of

the DFG and n-processor assignments. Consider the DFG and 2-processor assignment

shown in Figure 40. The assignment shown in the graph does not correspond to any 2-

way partition of the DFG.
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Figure 40
A DFG and a 2-processor assignment

Thus, for a graph partitioning-based representation, a modification is needed to obtain this

one-to-one correspondence. This is achieved by inserting zero-weighted arcs between

every pair of non-communicating tasks in the DFG. Figure 41 shows the example of Fig-

ure 40 after the zero-weighted arcs were added. Now, the 2-processor assignment corre-

sponds to a specific 2-way partition of the DFG, as indicated in the figure.
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Add
0-Weight Arcs

Partition

= O—I ••-•*O

UP UP

OO

Figure 41
A modified DFG and 2-processor assignment

Any n-way partition of the modified DFG defines an n-processor task assignment. After

partitioning, the cumulative requirements of the nodes in each disjoint sub-graph specify

the minimum complexity, feasible processor needed to implement them. In fact/the pro-

cessor specifications can be obtained by creating n new processors, assigning tasks to the

processors based on the DFG partition, and then shrink-wrapping them. Similarly, after
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partitioning, the cumulative weights of the cut-arcs determine the utilization level of the

communication bus.

Any arbitrary partition of the modified DFG will be feasible or infeasible, based on the

feasibility constraints defined for the problem. Furthermore, each feasible partition will

have a cost associated with it that corresponds to the value returned by the objective

function applied to the shrink-wrapped hardware.

Based on this problem representation, an algorithm for finding the optimum solution to

the coupled design problems is shown in Figure 15. This algorithm is clearly exponential

and computationally intractable. Thus, heuristic techniques will be investigated that are

tractable and that return near-optimal solutions.

For All Graph Partitions {
Assign Tasks to Processors
Shrink-Wrap Processors

If (Feasible) [
If (Cost < Best) [

Update Best

Return Best

Figure 42
Optimum Algorithm

The rest of this section is organized as follows. Section 3.2 summarizes pending work in

this area.

3.2 Pending Work

An Outline of pending work is shown in Figure 43.
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Develop Algorithms:
Enumeration
Simulated Annealing
Heuristic Partitioning

Experiment
Analyze Results
Compare / Contrast with Representation One

Figure 43
Outline of Pending Work

4 Summary and Future Directions

This paper has focused on two coupled design problems relevant to multi-computer sys-

tems: task allocation and processor specification. Two distinct problem representations

were presented. One was based on a packing paradigm and the other on graph partition-

ing.

Automated solution strategies based on the packing representation were conceived,

implemented and evaluated. Two algorithms, SA and DA, were found to be effective

automated solution strategies. Furthermore, a trade-off between run-time and solution

quality was found to exist for these two algorithms.

The graph-partitioning representation remains unexplored. An outline of pending work

was presented. This work will be undertaken and subsequently reported by the authors.

4.1 Maximum Software Delay Paths

One area of future research involves a problem extension for supporting the specification

of maximum software delay paths.
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An important class of DFGs are those that have real-time latency requirements. This

means that the time needed to execute a specified sequence of tasks along a path through

the DFG is constrained by a maximum value. In effect, this amounts to specifying maxi-

mum path delays through the DFG. This represents an important class of problems since

latency requirements often arise in control applications, which is a dominant sector of the

embedded system market.

An extension to the existing approaches is needed to handle this type of problem. Specif-

ically, the software model must be modified to accept path delay specifications. Next, the

two problem representations, packing-based and graph partitioning-based, would have

to be extended to handle a new class of constraints.

Specifically, a constraint would be needed to determine whether a sequence of DFG tasks

completes before an arbitrary deadline. Note, however, that when the task sequence is

implemented, bus traffic due to interprocessor communication may contribute to comple-

tion time. Furthermore, interprocessor communication is a function of task allocation

decisions. Therefore, constraint satisfaction is a function of task allocation and the proces-

sor specifications of all processors involved with tasks along the path. This type of con-

straint does not fit the present paradigm, since feasibility constraints are presently

defined in the context of a single task set assigned to a single processor. Thus, extensions

to the problem representations would be needed, as well as extensions to the derived

solution techniques.

4.2 Model Development

Another area of future work is in the area of model development. The set of design vari-

ables, feasibility constraints and the objective function introduced in Section 1 were ade-

quate for developing the design strategies. However, if these strategies are to be used on

real designs, then models will be needed that match the characteristics of the problem

class being designed. Specifically, models would be needed for the following items:
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1. Processor Design Variables

2. Bus Transmission Characteristics

3. Bus Scheduling Characteristics

4. Processor Scheduling Characteristics

5. I/O Device Interface Characteristics

6. Objective Function

7. Feasibility Constraints
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Appendix A: Input DFGs

name

RANI

RAN2

RAN3

RAN4

RAN5

RAN6

RAN7

RAN8

RAN9

RAN10

RAN11

nodes

100

100

10

120

50

200

50

75

90

25

100

1 Deriod
(ms)

(3(100,5)

(3(80,5)

(3(1000,300)

GK500,50)

(3(400,10)

(3(70,3)

GK2O,1)

CK 1500,50)

(K1700,80)

(3(150,8)

G(100,l)

CPU

GKO.7,0.7)

GKO.4,0.4)

(3(3.1,1.3)

G(0.5,0.6))

CKO.2,0.1)

GKO.2,0.03)

GKO.4,0.2)

GK2.5,1.3)

GKO.3,0.1)

GKO.01,0.01)

(3(4.0,2.0)

ROM
._/Q

. . . . . . . . . . . . . . . . . . . . . . . . . ^ 7

CK29.3,34.2)

GK3.9,3.9)

GK12.5,1.7)

GK50.0,24.4)

GK2.9,1.5)

GK48.8,9.7)

GK6.8,3.9)

GKl.2,0.5)

GK1.2,0.5)

(3(19.5,3.9)

(3(39.1,19.5)

NODES
RAM DIO

b of unit-PE capacity) •

CK2.9,0.9)

CK5.4,3.9)

CK5.1,2.9)

GK8.8,19.5)

GK3.4,1.5)

(3(1.9,0.5)

CK2.5,1.9)

CK39.0,9.8)

CK39.0,14.6)

(3(5.7,9.8)

(3(39.1,19.5)

GK3.1,3.2)

GK3.1,3.2)

(3(4.7,6.3)

CK6.2,9.3)

(3(3.1,0.6)

GK4.7,4.7)

GK9.4,6.3)

(3(9.4,3.1)

GK3.1,3.1)

GK6.2,6.2)

GK46.9,21.9)

AIO

GK0,5.6)

(3(0,5.6)

GK 12.5,2.5)

(3(12.5,12.5)

GK0,1.3)

GK12.5,2.5)

(3(0,2.5)

GKO.8.8)

€K0,8.8)

GK9.4,6.2)

(3(45.0,26.3)

PIO !
................ i

1

GK0,17.5)

GK0,17.5)

GKO.20.0)

GK0,20.0))

GK0,5.0)

GK0,15.0)

GK0,20.0)

GK0,5.0)

GK0,5.0)

GK0,5.0)

GK50.0,15.0)

name

RANI

RAN2

RAN3

RAN4

RAN5

RAN6

RAN7

RAN8

RAN9

RAN10

RAN11

arcs

200

200

10

0

50

25

110

100

50

50

10

i source

U(l,100)

U(l,100)

U(l,10)

-

UU.50)

U(l,200)

U(l,50)

U(l,75)

U(l,90)

U(l,25)

U(l,100)

.ARCS
dest

U(l,100)

U(l,100)

U(l,10)

-

U(l,50)

U(l,200)

U(l,50)

U(l,75)

U(l,90)

UU.25)

U(l,100)

Deriod
(ms)

G(100,5)

GK80,5)

CK1000,300)

G(500,50)

GK400,10)

(K70.3)

GK20,l)

G(1500t50)

G<1700,80)

G(150,8)

GK1OO,1)

IMC !
(%BW)

CKO.012,0.011)

GK0.(»5,0.076)

CK40.9.0.82)

-

CK2.5,1.2)

G(0.036,0.011)

G(0.011,0.055)

(XO.82,0.087)

GKO.82,0.087)

G(0.16,0.66)

G<0.92,0.021)

KEY:

6(a,b) = Gaussian Probability Distribution:
means a
standard deviation = b

U(a,b) = Uniform Probability Distribution:
Range = [a,b]

Random DFGs (Specified)
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RANI

RAN2

RAN3

RAN4

RAN5

RAN6

RAN7

RAN8

RAN9

RAN10

RAN11

p
nodes i

100

100

10

120

50

200

50

75

90

25

100

(CPlMoeriod)
y

8.70

5.45

7.05

1.21

0.51

2.86

18.78

1.63

0.15

0.11

41.25

31.44

4.06

12.27

50.07

2.67

48.52

6.19

1.22

2.43

18.31

39.40

NODES

4% of unit-PE cap

2.93

5.67

6.10

5.85

1.57

1.98

5.45

40.09

39.29

10.48

39.87

3.09

3.09

4.06

7.68

0

5.23

8.56

8.79

3.13

5.88

44.75

1.13

1.13

12.5

13.65

0

12.44

0

2.83

2.92

10.00

45.37

1

3.50

3.50

0

5.00

0

1.00

6.00

0

0

0

48.50

RANI

RAN2

RAN3

RAN4

RAN5

RAN6

RAN7

RAN8

RAN9

RANIO

RAN11

200

200

10

0

50

25

110

100

50

50

10

ARCS

(IMCV(Deriod) i

(%BW)

0.14

0.55

48.45

-

5.92

0.51

0.91

0.55

0.48

2.60

9.29

Random DFGs (Actual)
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name nodes (CPUV(§eriod) R
Avg.

ok.

NODES

_RA]
Ave.m as Avg. I

••(% of unit-PE capacity) •

SUPERCH 154

TRACTION 160

IAC 78

0.165

0.161

0.244

3.95

3.84

4.34

5.53

9.33

5.85

0

0

0

0.33

0.63

0

name

SUPERCH

TRACTION

IAC

arcs

316

282

95

ARCS
AVR. j

(IMCVtoeriod) 1
(%BW)

0.348

0.359

0.416

Red DFGs (Scaled)

name

SUPERCH

TRACTION

IAC

nodes

154

160

78

1 (CFUWoeriod)

0.331

0.322

0.488

Rofa

39.72

38.67

43.64

NODES

RASI
••(%ofuhit-PE

5.53

9.33

5.85

Aft
capacity)

0

0

0

to.
0

0

0

Avg. \
PIO i

j

1

0.33

0.63

0

name

SUPERCH

TRACTION

IAC

arcs

316

282

95

ARCS

! (IMCWtferiod) !
(%BW)

0.696

0.719

0.833

Real DFGs (Unsealed)
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name

CONl

CON2

nodes

8

12

:: Avg.
(CPUVCoeriod)

,
•

9.56

18.03

28.02

21.30

NODES

ATK« «wfK«
O AT1JT T^Tfl

V vV UI U U U " A D Capacity/—

36.26 12.11

20.65 10.67

tut
18.75

15.62

PI& i

•
25.0

25.0

name

CONl

CON2

arcs

7 (tree)

12 (loop)

ARCS

Avg.
(IMCVfoeriod)

(%BW)

10.40

5.86

Contrived DFGs
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Appendix B : Upper and Lower Packing Bounds

Upper and Lower bounds on the number of bins needed to pack a DFG are calculated as

follows:

Let the DFG be defined by a set of Nodes and Edges:

DFG - {NtE}

The number of nodes equals the cardinality of the node set.

NODES = CARD(N)

Consider a node: «. e N. From Figure 2:

n. = «x,p,x,6,e,<|>,Y)

Define the demand vector for a node as follows:

a
Define capacity vector for the unit-PE; from Figure 4:

cap = (a, b, c, d, e,f)

Now, define cumulative demand vector to be the vector sum of all demand vectors:

sum = £*•
Vi

Last, define maximum demand vector to be the vector whose elements are the
max value for that dimension over all demand vectors.

max = (MAXVll. (1),. . . , MAX^A (6)) w h e r e d; (k) = kfh element offh demand vector

Then:

LowerBound = A M x J SMm(t)

I cap(i) |

UpperBound = Nodes

MTN\ ciP
Vij %

I max

in 1
<oJ
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Appendix C: Heuristic Packing Algorithm Results

DFG Rani:

Alg

LB
F-R-
F-NX
F-NA
F-A-
F-BX
F-BA

Bins

32(1)
34(1.06)
32(1)
33 (1.03)
34(1.06)
33(1.03)
33(1.03)

BusUtil.

m
0.2715
0.2752
0.2687
0.2775
0.2763
0.2681

Run lime

12.8 (tec)
4.7
5.5
14.5
11.5
10.1

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NhXXBX

UB

Bins

33 (1.03)
33 (1.03)
33 (1.08)
36(1.13)
35 (1.10)
33 (1.03)
33 (1.03)
100(3.12)

BusUtil.

0.2657
0.2710
0.2691
0.2792
0.2760
0.2262
0.2262

-

RunTime

23.7
23.4
29.5
24.5
29.4
22.0
23.5

-

1.2

1.15'

1.1

1.06

Mt-t

F-llUt

RANI (ZOOM)

7 • > • S

023 0.24 0.25 026 027

i s
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DFG Ran2:

Alg

LB
F-R-
F-NX
F-NA
F-A-
F-BX
F-BA

Bins

6(1)
6(1)
6(1)
6(1)
6(1)
6(1)
6(1)

Bus Util.

0.9084
0.8627
0.9003
0.7609
0.7836
0.7609

RunTime
_

0.7 (sec)
0.6
0.6
0.7
0.7
0.8

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NbXXBX

UB

Bins

6(1)
6(1)
6(1)
6(1)
6(1)
6(1)
6(1)
50(8.33)

Bus Util.

0.7609
0.7757
0.7639
0.9072
0.9964
0.7430
0.7430

-

RunTime

1.3
1.3
1.6
1.5
1.7
1.3
1.7
-

8

7

6

Is

t
2

1

RAN2

) 02 0.4 0.6 0.8 1
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DFG Ran3:

Alg

LB
F-R-
F-NX
F-NA
F-A-
F~BX
F-BA

Bins

2(1)
NoSoln
NoSoln
NoSoln
2(1)
2(1)
2(1)

BusUtil. RunTime

< 0.1 (see)
<0.1
<0.1

0.8625 < 0.1
0.8625 < 0.1
0.8625 <0.1

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NhXXBX

UB

Bins

2(1)
2(1)
2(1)
2(1)
2(1)
2(1)
2(1)
2(1)

Bus Util. Run Time

0.8625 < 0.1
0.8626 <0.1
0.8625 < 0.1
0.9145 < 0.1
0.9145 <0.1
0.8625 < 0.1
0.8625 < 0.1

-

1.05r

1.04

RAN3

MXB-

1.01

0.99,

(•Ik

•1

0.4 0.6
BuUNafen

OJ
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DFG Ran4:

Alg

LB
F~R-
F-NX
F-NA
F-A-
F-BX
F-BA

Bins

61(1)
68(1.115)
63 (1.033)
64(1.049)
68(1.115)
63 (1.033)
64(1.049)

Bus Util.

0
0
0
0
0
0

RunTime

41.5 (dec)
18.2
26.7
41.0
17.8
32.2

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NbXXBX

UB

Bins

63 (1.033)
63 (1.033)
63 (1.033)
65 (1.066)
64(1.049)
63 (1.033)
63 (1.033)
120(1.967)

Bus Util.

0
0
0
0
0
0
0
-

RunTime

31.5
31.7
42.9
34.5
43.0
31.6
34.1

-

2

1.9

1.8

1.7

B
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s
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1
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I
0 02
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0.4 0.6 0.8
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DFGRanS:

Alg

LB
F-R-
F~NX
F-NA
F-A-
F~BX
F-BA

Bins

2(1)
NoSoln
NoSoln
NoSoln
2(1)
2(1)
2(1)

BuaUtil.

0.8882
0.8882
0.8882

RunTime

1.9 (MC)
2.6
1.8
0.1
0.1
0.1

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NhXXBX

UB

Bins

2(1)
2(1)
2(1)
2(1)
NoSoln
2(1)
2(1)
4(2)

BuflUtil.

0.8882
0.8882
0.8882
0.9898

.
0.8882
0.8882

-

RunTime

0.1
0.1
0.1
0.1
12.6
0.1
0.1

-

2

1.9

1.8

1.7

1.3

12

1.1

l .

0.1 02 0.3 0.4 0.5 0.6 0.7 0J OS

Algoftthm
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DFG Ran6:

Alg

LB
F-4t-
F-NX
F-NA
F-A-
F-BX
F-BA

Bins Bus Util.

98(1)
107(1.092)0.1283
100(1.020) 0.1244
100(1.020)0.1283
105(1.071)0.1244
101(1.031)0.1244
101 (1.031) 0.1244

RunTime

m

293.1 (sec)
131.6
162.1
285.2
145.9
205.9

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NbXXBX

UB

Bins

100(1.020)
100(1.020)
101 (1.031)
102 (1.041)
102 (1.041)
101 (1.031)
101 (1.031)
200(2.041)

Bus Util.

0.1168
0.1134
0.1244
0.1283
0.1283
0.1210
0.1210

-

RunTime

263.5
263.5
336.8
251.3
309.6
267.3
284.6

-

2

1.8

lu

81.4

1.2
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i
4

> 0.2

RAN6
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0.8

1

1

1.1

1.08

1.06

1.04

1.02

1

0.98

KEY:
F-R-.l

F-fttaS
F-A-4
F-M. l

JOMKat
XMMU?
XMW. i

NAWUf

feXNKat

7

RAN6(2OOM)

•

•

4

s

2

t

I

a

0.11 0.112 0.114 0.116 0.118 0.12 0.122 0.124 0.126 0.128 0.13
Bus Utilization

so

o

70

;wt i,:Ltu-l.iri;--'«».



Automated Task Allocation and Processor Specification Strategies for Multi-Computer Systems

DFG Ran7:

Alg

LB
F-R-
F-l«
F-MA
F-A-
F-BX
F-BA

Bins

10(1)
10(1)
10(1)
10(1)
10(1)
10(1)
10(1)

BuaUtil.

m

0.9101
0.9380
0.9372
0.8380
0.8380
0.8769

RunTime

0.5 (MC)
0.4
0.5
0.8
0.6
0.6

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NhXXBX

UB

Bins

10(1)
10(1)
10(1)
13 (1.3)
11 (1.1)
10(1)
10(1)
25(2.5)

BusUtil.

0.8487
0.8320
0.8320
0.9854
0.9531
0.7712
0.7712

-

RUB lime

1.0
1.2
1.1
2.3
2.0
1.0
1.1
-
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DFG Ran8:

Alg

LB
F-R*
F-NX
F-NA
F-A-
F-BX
F-BA

Bins

31 (1)
34 (1.097)
32 (1.032)
33 (1.065)
34(1.097)
33(1.065)
34(1.097)

Bus Util.

0.5326
0.5109
0.5213
0.5109
0.5109
0.5215

RunTime

8.4 (sec)
6.0
7.0
12.9
8.3
8.5

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NbXXBX

UB

Bins

33 (1.065)
33 (1.065)
33 (1.065)
35 (1.129)
35 (1.129)
33 (1.065)
33 (1.065)
75 (2.419)

Bus Util.

0.5042
0.5092
0.5109
0.5323
0.5274
0.5042
0.5042

-

Run Time

14.8
15.3
15.1
14.6
22.1
15.0
16.2

-

1.14

1.12

1.1

1.06

1.06

1.04

1.02

1
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DFG Ran9:

Alg

LB
F-RP
F-NX
F-NA
F-A-
F-BX
F-BA

Bins

36(1)
39(1.083)
36(1)
37(1.028)
39(1.083)
38(1.056)
38(1.055)

BusUtil.

m
0.2341
0.2390
0.2349
0.2341
0.2341
0.2350

Run Time

—

10.1 (see)
5.7
7.0
15.2
8.3
9.0

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NNQCBX

UB

Bins

38 (1.055)
38(1.055)
38(1.055)
41 (1.139)
41 (1.139)
38(1.055)
38(1.055)
90(2.500)

BusUtil.

0.2390
0.2338
0.2341
0.2390
0.2342
0.2205
0.2205

-

RunTime

16.2
16.2
16.1
17.6
23.8
15.9
17.3

-

1

1
•

1.14

1.12

1.1

1.06

1.06

1.04

1.02

1

. * *

MBUt

. F-A-.1
P-HU4ill!
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IMMK.A

A
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RAW (ZOOM)
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DFG RanlO:

Alg

LB
F-R-
F~NX
F-NA
F-A-
F-BX
F-BA

Bins

5(1)
NoSoln
NoSoln
NoSoln
5(1)
5(1)
5(1)

BusUtil.

-
0.6978
0.6978
0.6978

RunTime

m

0.7 (sec)
0.8
0.8
0.1
0.1
0.1

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NbXXBX

UB

Bins

5(1)
5(1)
5(1)
7 (1.4)
7 (1.4)
5(1)
5(1)
9(1.8)

Bus Util.

0.6978
0.6978
0.6978
0.9993
0.9958
0.6978
0.6978

-

RunTime

0.1
0.1
0.1
0.3
0.3
0.1
0.1
-

0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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DFG Ranll:

Alg

LB
F-R-
F-NX
F-NA
F-A-
F-BX
F-BA

Bins

49(1)
68(1.387)
60(1.224)
58(1.184)
64(1.306)
61(1.245)
60(1.224)

BuflUtil.

0.9288
0.9288
0.9288
0.9288
0.9288
0.9288

RunTime

34.3 (sec)
17.3
15.6
44.2
17.3
18.2

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NbXXBX

UB

Bins

61(1.245)
60(1.224)
60(1.224)
74(1.510)
76(1.551)
60(1.224)
60(1.224)
100(2.04)

BuaUtiL

0.9288
0.8367
0.9288
0.9288
0.9288
0.8367
0.8367

-

RunTime

34.7
34.9
33.3
62.1
81.4
33.5
36.3

-
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DFG Superch (Scaled):

Alg

LB
F-R-
F-NX
F-NA
F-A-
F-BX
F-BA

Bins

9(1)
9(1)
9(1)
NoSoln
9(1)
9(1)
9(1)

Bus Util.

0.8760
0.9550

.
0.6641
0.6641
0.6123

RunTime

2.3 (see)
1.4

206.8
3.7
2.9
2.8

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NbXXBX

UB

Bins

9(1)
9(1)
9 (1)
9(1)
9(1)
9(1)
9(1)
154 (17.11)

Bus Util.

0.6856
0.6588
0.6641
0.9845
0.9981
0.6550
0.6550

-

RunTime

5.3
5.3
5.2
5.8
6.8
5.7
5.5
-

SUPEflCH

16-

14

12-

u
8

6

4

0.2 0.4 0.6 0.8
Bus Utizition

0.65 0.7 0.75 0.8 0.85 0.9 0.95
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DFG Traction (Scaled):

Alg

LB
F-4t-
F-NX
F-NA
F-A-
F-BX
F-BA

Bins

15(1)
15(1)
15(1)
16(1.067)
16(1.067)
16(1.067)
15(1)

BusUtil.

m

0.8503
0.9461
0.9821
0.6287
0.6287
0.5972

RunTime

3.5 (we)
2.4
4.6
8.1
5.1
4.1

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NhXXBX

UB

Bins

16(1.067)
16(1.067)
16(1.067)
16(1.067)
16(1.067)
16(1.067)
16(1.067)
160(10.67)

BusUtil.

0.6287
0.6290
0.6287
0.9648
0.9696
0.6090
0.6090

-

Run lime

12.4
12.0
12.9
13.9
17.6
12.2
12.9

-

0.7 0.7S 0.8 0.85 0.9 0.95

TRACTION
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DFG IAC (Scaled):

Alg

LB
F~R-
F-NX
F-NA
F-A-
F-BX
F-BA

Bins

5(1)
5(1)
5(1)
5(1)
5(1)
5(1)
5(1)

Bus Util.

0.2341
0.3291
0.3347
0.1378
0.1378
0.1831

RunTime

0.3 (sec)
0.3
0.2
0.4
0.3
0.3

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NbXXBX

UB

Bins

5(1)
5(1)
5(1)
5(1)
5(1)
5(1)
5(1)
39(7.8)

Bus Util.

0.1378
0.1378
0.1378
0.3368
0.3298
0.1377
0.1377

-

RunTime

0.5
0.6
0.5
0.7
1.0
0.6
0.5
-

1.1

1.08-

,1.06-

!i.O4

1.02

IAC (ZOOM)

F-H..1
MIX- I
F-NA.I
F-A-.4
F-IX-4

0.15 02 025
ButUizalion

Algortthm
12 14
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DFG Conl:

Alg

LB
F~R-
F-NX
F-NA
F-A-
F-BX
F-BA

Bins

3(1)
4(1.333)
4(1.333)
4(1.333)
4(1.333)
4(1.333)
4(1.333)

Bus Util. Run Time

0.4153 < 0.1 (sec)
0.6318 <0.1
0.7280 < 0.1
0.4153 <0.1
0.4153 < 0.1
0.4153 < 0.1

Alg

XXRBX
XARBX
XNRBX
NXRBX
NARBX
Nb-RBX
NhXXBX

UB

Bins

4 (1.333)
4(1.333)
4(1.333)
4(1.333)
5 (1.667)
4 (1.333)
4(1.333)
8(2.667)

Bus Util. Run Time

0.4153 < 0.1
0.4153 < 0.1
0.4153 < 0.1
0.7280 < 0.1
0.6318 < 0.1
0.2863 < 0.1
0.2863 < 0.1

-
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DFG Conl:

Alg Bins Bua Utih Run Time

LB 3(1)
OPT-BINS 4(1.333) 0.3129 4.5 (sec)
OPT-BUS 5(1.667) 0.2863 0.1
Nb-RBX 4(1.333) 0.2863 <0.1

UB 8(2.667)

f

4 •

3 •

f i 1
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DFG Con2:

Alg

LB
F-R-
F-NX
F-NA
F-A-
F~BX
F-BA

Bins

3(1)
4(1.333)
3(1)
4(1.333)
4(1.333)
4(1.333)
3(1)

Bus Util. Run Time

— —

0.7010 < 0.1 (sec)
0.4000 <0.1
0.3754 <0.1
0.4079 < 0.1
0.4071 < 0.1
0.3797 < 0.1

Alg

XXRBX
XARBX
XNRBX
NXRBX
NABBX
Nb-RBX
NhXXBX

UB

Bins

4(1.333)
4(1.333)
4(1.333)
4(1.333)
5(1.667)
4(1.333)
4(1.333)
12(4.00)

Bus Util. RunTime

0.2321 <0.1
0.4006 < 0.1
0.4018 <0.1
0.5246 < 0.1
0.5549 <0.1
0.4007 <0.1
0.4007 < 0.1

-
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DFGCon2:

Alg Bins BusUtil. RunTime

LB 3(1)
OPT-BINS 3 (1) 0.4000 69.4 (sec)
OPT-BUS 5(1.667) 0.2247 5.6
Nb-RBX 4(1.333) 0.4007 <0.1

UB 12(4) -
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Appendix D: Flowcharts for Packing-Based Algorithms
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ENUM Algorithm
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SA Algorithm

f Solution J
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DA Algorithm

Calculate LB
for#ofPEs
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k

Set Procs to
Min Specs

Fail
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Design Advisor
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Appendix E: Results for Packing-Based Algorithms

DFG Rani:
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DFGRan3:

Processors
Cost

Run Time (Sec)

34

39

3*
31

30

!

BNUM
2

30.7247
113.7

1

mm

1
1

SAJSW

2
30.7247
219.8

i

DAJSTAT
2

30.5733
<0.1

»

I'
i-

SO

I
0 1

5

SW
2

30.7247
<0.1

MM

I i
H P -

2
30.5733

0.1

DFGRan4:

Coat
Run Time (Sec)

ENUM SAJSW DAJSTAT SW
17

33.8509
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f I
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DFG Ran5:

Processors
Cost

Run Time (Sec)

ENUM

1
29.9745

0.6

SA_SW DAJSTAT SW

1
29.9745
1,304.0

1
29.9745

0.2
29.9745

0.6

u

§ I

DA

29.9745
1.0

DFG Ran6:

ENUM
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Cost

Run Time (Sec)

•
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I*
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O
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A
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1
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t 
I 

1

2
S 6 1

DAJSTAT SW

25 25
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DFG Ran9:
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DFG Ranll:
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DFG Traction:
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DFG Conl:
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