
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

IASys: An Integrated Approach to Sytem-Level Synthesis

Grace McNally, Janeen Deang and Daniel P. Siewiorek

EDRC 18-55-95

IASys: An Integrated Approach to
System-Level Synthesis

Grace McNally, Janeen Deang, Dan Siewiorek

Departement of Electrical and Computer Engineering
and EDRC

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

October 5, 1995

This work has been supported in part by the Engineering Design Research Center,
an NSF Engineering Research Center.

IASys: An Integrated Approach for System-Level Synthesis

Abstract

IASys is an integrated approach to system-level synthesis which allows a complete computer sys-

tem to be specified using a set of high-level building blocks rather than behavioral level specifica-

tions. By reusing domain-specific design knowledge, alternative hardware and software

configurations can be rapidly specified and synthesized. Thirty-two different embedded computer

systems were synthesized generating a design space with variations of 45% in cost, 20% in power,

120% in area, 50% in program size, and 2000% in performance.

1 Introduction

The task of designing a complete computer system, which includes not only the application soft-

ware, but the underlying operating system, hardware platform, as well as the interconnects

between different components, has become increasingly challenging in recent years. To deal with

the increased complexity and shortened design cycle, various synthesis systems have been devel-

oped to aid the synthesis of cost-effective systems. Automated synthesis attempts to map a set of

input specifications to a hardware or software implementation. The specification can be at the sys-

tem level, the behavioral level, or the implementation level. System level specification is the most

abstract of these, which is a description that contains expert knowledge about the intended use of

a system, its components, and their interconnections from input to output. This is followed by

behavioral level specification, which details the intended behavior of a system, such as VHDL

code for hardware and high-level programming languages for software. Implementation level

specification is the least abstract and is concerned with the physical implementation of the final

system, whether in logic components and circuits for hardware, or executable code for software.

Depending on the level of specification, synthesis systems can be classified as performing system-

level, behavioral level, or implementation level synthesis.

This paper presents IASys, which performs system-level synthesis of both hardware and software

within a single environment. Through a combination of design reuse, abstraction, and integration

of design tools, IASys shortens the design cycle, reduces the complexity of the design task, and

eases the creation of cost-effective systems. To specify a complete system the designer only needs

to answer a series of queries from IASys regarding the functionalities and performance of the sys-

tem. By incorporating low-level hardware and software design knowledge into its framework,

IASys frees the system designer from having to generate the implementation details of the final

system. Instead, the IASys user can concentrate on defining requirements for the system and

exploring different design tradeoffs. Designs can be synthesized on the order of minutes which

allows the system designer to rapidly explore the design space to select a cost effective design.

Section 2 summarizes existing approaches to hardware and software synthesis, followed by Sec-

tion 3 which presents the IASys architecture, including the user specification format, knowledge

representation, synthesis engine, and the code generation stage for software. The design space of a

small computer system is presented in Section 4, and finally Section 5 concludes the paper with

results from the thirty two different configurations of the computer system which were synthe-

sized using IASys

2 Background

Design automation systems can be classified by the level of synthesis they perform, as shown in

Table 1.

System Level

Behavioral Level

Implementation Level

Hardware Synthesis

• Configurers
• System-Level Synthesis

• Algorithmic-Level Synthesis

• Logic-Level Synthesis

Software Synthesis

• Application Generators
• Program synthesizers

•VHLL

• Compilers
• Assemblers

Table 1 Classification of synthesis systems

The higher the level of specification, the more intuitive and less detailed the user specification,

and more of the design process is performed by the synthesis system, corresponding to a higher

degree of automation. However, high levels of automation is often accomplished by codifying

domain-specific design knowledge, which unfortunately limits the degree of generality of the syn-

thesis system. Often design automation tools represent a tradeoff between the degree of automa-

tion and degree of generality.

Systems which perform system-level synthesis correspond to the highest level of automation and

are often based on sets of rules which codify expert design knowledge, but at the same time the

type of systems they can synthesize is limited. Examples of such hardware synthesis systems

include the Rl/XCON [7] computer configuration management system, and COSMOS [9], Fidel-

ity [10], and MICON [8] which perform system level synthesis based on a set of rules about the

structural and constraint information about components and interconnects. Program synthesiz-

ers[13],[14] and application generators[15] are examples of software synthesis systems which

automate system level design, capable of generating a software program from a user specification

which indicates the functions the resulting system has to perform, rather than a detailed code

specification for the resulting system.

Synthesis tools which perform behavioral-level synthesis are less domain-specific, but requires

the user to input a more detailed behavioral specification. Algorithmic-level hardware synthesis

systems such as CAMAD [4], MIMOLA [5], and the System Architect's Workbench [6] trans-

forms a behavioral level specifications written in a procedural language into a register-transfer

level specification, which can then be implemented in hardware at a later stage. VHLL (very high-

level language) systems such as SETL[12] and database query languages automates the behav-

ioral specification stage for software programs. Though the process of writing code for behav-

ioral-level tools is time-consuming, the tradeoff is that these tools can be used to generate a wide

variety of applications and are not restricted to narrow application domains.

At the lowest level are systems which perform synthesis at the implementation level. Logic level

synthesis tools discussed in [1], [2], and [3] assist the expert designer by automating the selection

of components. Using one-to-one mapping of boolean equations to an interconnected gate net-

work, these synthesis tools refine each specification to a component in the target technology.

Assemblers and compilers automate the implementation of a software program from source code

to assembly code and represent the first generation of automatic programming systems docu-

mented in the ACM in 1958[11].

IASys is a unified approach to system level synthesis which combines both the properties of a

program synthesizer and hardware system level synthesis tool. Though both hardware and soft-

ware synthesis systems which synthesize from system level specifications exist, IASys represents

the first system-level synthesis tool which can generate both hardware and software systems from

system-level specification. Currently IASys has design knowledge for the domain of wearable

computers, which are small, embedded systems that are used as mobile personal assistants for

such tasks as document browsing and navigation. Because its knowledge representation is declar-

ative, IASys can be easily tailored to other domains.

3 IASys Architecture

Figure 1 shows the IASys architecture, with a common synthesis engine FIDELITY [10] shared

between the hardware and software synthesis process.

Hardware Design
Specifications

tw are Program
Specifications

Synthesis
Engine

Hardware
Knowledge

Base .

Intermediate
Program

Soecincations
Part list and
Schematics

ToU>gic
Synthesis Tools

Software
Objects
library

Hardware Synthesis Software Synthesis
Process Process
Figure 1: Overview of IASys Architecture

FIDELITY is based on MICON[8], a knowledge-based system which was designed to generate

hardware. During design the synthesis engine alternates through a series of searches to select the

appropriate hardware or software objects from its design libraries which make up the final system.

To design hardware the IASys synthesis engine accesses domain-specific knowledge stored in its

hardware knowledge base to guide the search and generate a partslist, netlist, and other require-

ments to be used with logic synthesis tools at a later stage. To design software, the synthesis

engine accesses its software knowledge base to generate an intermediate program specification,

which is used by the code generator to assemble the appropriate software modules from its soft-

ware object library to produce the final software program.

The hardware synthesis process of IASys closely follows the MICON design paradigm, as

detailed in [8]. The rest of this paper will highlight how the hardware design paradigms can be

extended to software so that the single synthesis engine can be used to design both hardware and

software. Table 2 lists by section the original hardware terminologies used in MICON, and the

corresponding terminology adapted for software synthesis using IASys.

Sections

User Specification
(Section 3.1)

Knowledge Representation
(Section 3.2)

Design Synthesis
(Section 3.3)

Implementation
(Section 3.4)

Hardware

• Design Specification

• Hardware Knowledge
Base
• Hardware Components
• Hardware Design Tem-
plates
• Wire Connections

• Search for Function
• Search for Structure

• Logic Synthesis
• Logic Design Library
• Netlist and Schematics

• Schematics

Software

• Program Specification

• Software Knowledge
Base
• Software Objects
• Software Design Tem-
plates
• Object Messages

• Search for Function
• Search for Structure

• Code Generation
• Software Objects Library
• Intermediate Program
Specifications
•Program Flow File

Table 2 Hardware and Software terms in IASys

A running example will be used in the following sections to illustrate the flow of each of the hard-

ware and software design processes. For the hardware synthesis process, the knowledge base is

assumed to contain information about various off-the-shelf microprocessors, and the appropriate

processor meeting the specified speed requirements will be incorporated into a hardware design.

For the software design process, an application will be synthesized which performs simple docu-

ment browsing tasks. Figure 2 shows a series of frames which are displayed by the application

during a typical browsing sequence.

(1,0,0),

j

Main Menu

miiiiililiiliiH
[Turret] \

Start Trouble-Shooting

[Flow Charts]

(2.0,0)

(1,0,2).

Assault Amphibious Vehide

AAV P7 A1

Outside of Vehide

1

2 [Aft & starboard]

3 [Topside]
(1A3)

Assault Amphibious Vehide

AAV R7 A1

Outside of Vehide

1

2 [Aft & starboard]

3 [Topside]

(2,0.3)

Appendix E

AAVP7A1 Technical Insp

[TAC No]

[USMC No.]

[Miles]

[Hours]

[Date Inspected]

Section I: Outside of Vehide

(Forward and port)

I.Hull forward end
Check for damage

[Status]

2 Towing Eyes
a. Port
[Status]

b. Starboard
[Status]

Figure 2 : Application User Interface

From the end-user's point of view, the document consists of a set of sections, which in turn con-

sists of a set of pages, and these pages are further subdivided into a collection of frames. Within

each frame are static text and active fields, which are the text enclosed in brackets in Figure 2.

Each document subsection may be viewed one frame at a time, and the end-user interacts with the

system by clicking on a mouse to select the available fields to navigate from frame to frame. In

Figure 2 the end user has clicked on the highlighted fields and the frames which correspond to the

Frame ID, which are links embedded in the fields are subsequently displayed.

To implement such a system, the system designer configures the document browser application by

answering queries from the design synthesis engine. The software knowledge base is assumed to

contain information about a set of data managers which retrieves text and bitmaps to display from

a document database. The data managers are categorized in the software knowledge base by the

way they access document information. Depending on whether they manage the fields, frames, or

the multi-level tables which store the location to the frames to be displayed on the screen, the data

managers are called FocusMgr, FrameMgr, or DocSysMgr (Document System Manager), respec-

tively.

There are two kinds of DocSysMgr's which the system designer can choose from during design,

depending on how extensive the document browsing system is to be. A DocTableDirMgr can han-

dle more extensive document systems, using Frame ID's consisting of 3 indexes to access multi-

level tables that store the frame locations, where a DocTableMgr use Frame ID's consisting of

only 2 indexes to access location tables. The first entry in a 3-index Frame ID consists of a Section

Number, followed by its Page Number, followed by its Frame Number, while a 2-index Frame ID

omits the Section Number and can only be used to index frames located in the same section. Fig-

ure 2 displays a sequence of frames with 3-index Frame ID's, divided into sections 1 and 2 reach-

able from the Main Menu frame. Within each section the frames can be further broken down by

their page numbers, though in this example no frames only 1 page is used. Within the same page

frames can have different frame numbers. For example, Appendix E with Frame ID (1,0,2) in Fig-

ure 2 resides in Section 1, Page 0, Frame 2 of the document system. A design with Doc-

TableDirMgr implemented would be able to handle all of the Frame ID's as shown in Figure 2,

while a design with DocTableMgr can only handle Frame ID's with two lower indexes in the

Frame ID valid, fixing the section number in the Frame ID, and would only be able to reference

the frames in either the top subtree with Frame ID's (l,x, x), or the bottom subtree with Frame

ID's (2,x,x) in Figure 2.

3.1 User Specification

IASys acquires the user specification interactively through a series of queries. A sample input

specification for the document browser application is shown in Figure 3.

IASys Query User Selection

Select template for design

Enter dimensions for Window

Enter base of Window

Select Frame ID Format

Select input device

Select Output Device

Document
Browser

Navigation
Assistant

2 8 0 x 3 6 0 - * -

0,0

(a,b,c)

Mouse

VGA

(a,b)

Keyboard

Private Eye

Software
> Object
Parameters

Selection
Criterion

Figure 3 : IASys input specification

At the start of the specification session, the user is prompted to select a design template. In Figure

3 the user selects the Document Browser design template. The user is then prompted with increas-

ingly detailed questions regarding the design, such as the size and location of the text window

which will be used in the application, the format of the Frame ID, with (a,b,c) corresponding to a

3-index format, and (a,b) the 2-index format, and the type of input and output devices. IASys uses

this information to refine the abstract design template into an implementation.

As Figure 3 shows, there are two types of user queries. Selection criterions such as the type of

input and output devices are used by the synthesis engine to select the appropriate hardware com-

ponents or software objects which make up the final design, while software object parameters are

used only by the IASys software synthesis process to set values for software object initialization

parameters.

3.2 Knowledge Representation

IASys uses knowledge stored in its knowledge base to decide which and how to assemble the

components for a particular software or hardware design. Each component is represented in the

knowledge base as a set of facts, which specify the properties that describe the component, and a

set of rules, which states how the facts about a component are to be used during design. Figure 4

shows the facts and rules representation in the IASys knowledge base for the Intel 188 13Mhz pro-

cessor component on the left, and the software components DocTableDirMgr (Document Table

Directory Manager) on the right, which is a specialization of the DocSysMgr.

Hardware Knowledge Base

f Clock_Speed = 13Mhz \

Processor

Intel 188.13 Intel 188_8I

r

^ Gnd-zt- 80cl88

—ty

EB
Logic
13)

IF (Selecting child for
Processor)

AND (Processor_Speed <=
Clock_Speed of child)
THEN select child j

FACTS

Component
Attributes

Functional
Hierarchy

Design
Templates

RULES

Selection
Rule

Knowledge Base

C FramelD Format= (a,b,c)

DocSysMgr

DqcTable DocTable
DirMgr Mgr

Sectionaecuon page Frame
TableMgr TableMgr TableMgr/

IF (Selecting child for
DocSysMgr node)

AND (DocIndexScheme =
Frame ID Format of child)
THEN select child

Figure 4 : IASys Knowledge Representation

As Figure 4 shows, the facts regarding a component consist of its component attributes, which are

attribute-value pairs that contain the name of a particular attribute and its corresponding value,

how it is organized in the functional hierarchy, and how it should be connected with other compo-

nents as specified by design templates. A component's representation also include the selection

rules which specify the conditions under which a component or a particular template should be

selected, based on the facts about a component. The knowledge organization is discussed in detail

in [8].

Functional hierarchies are central to reducing the size and complexity of the design space. As

mentioned previously, components are grouped by function and organized into a directed acyclic

graph (DAG) called the functional hierarchy. The nodes in the functional hierarchy represent

hardware or software components which are abstractions of their leaf or child nodes and are char-

acterized by their functions and constraints. Components which have similar functions are

grouped into the same functional block, which correspond to higher level nodes. Actual hardware

off-the-shelf parts or software objects are represented by nodes at the very bottom of the hierar-

chy. For example, in Figure 4, the Intel 188_13 and Intel 188_8 components are functionally equiv-

alent and are grouped into the same processor functional block, while the software components

DocTableDirMgr and DocTableMgr are grouped as DocSysMgr functional block.

The specification of how a functional block may be refined to its less abstract components, and

how these components need to be connected with one another are stored in templates. Templates

capture fragments of design information and allow hardware and software reuse at the design

level. For hardware design templates the lines between components represent wire connections

between hardware components, as shown by the hardware design template for the Intel 188

13Mhz processor in Figure 4. In IASys software components communicate with one another

using a message-passing paradigm, and lines connecting the software components in a software

design template correspond to messages being sent from one object to another. The software

design template which corresponds to the refinement from DocSysMgr to DocTableDirMgr is

shown in Figure 4, which specifies how the different document table mangers need to interact to

process a document browsing task. Note that in this template there is a table manager correspond-

ing to a particular index in a 3-index Frame ID. The FrameTableMgr object sends messages to the

10

PageTableMgr object, which in turn sends messages to the SectionTableMgr object.

3.3 Design Synthesis

During design the synthesis engine performs a top-down traversal of the functional hierarchy. At

each node IASys attempts to select a child node which satisfies the requirements of the design,

called search-for-function (SFF), and then integrates the child node into the design by selecting

the appropriate template, called search-for-structure (SFS). By alternating between these two

searches, IASys gradually refines abstract components into actual hardware or software objects to

be used. Figure 5 shows one iteration through SFF and SFS for integrating an Intel 188 13Mhz

processor into a hardware design on the left hand side, and for integrating the software objects

composing the DocTableDirMgr functional block into a program on the right hand side.

Step 1: Specifications

Processor Speed = 13Mhz^

Hardware User Specification

Document Indexing Scheme = (a,b,c))

Software User Specification

Step 2: Search-for-function

Functional Hierarchy for Intel 188.13

SFF
I DocSysMgr!

•DbcTa'bfe;
Mgr :

Functional Hierarchy for DocTableDirMgr

Step 3: Search-for-structure

P LOglC
80cl88EB_13

Template for Intel 188_13

Section Page FrameTable-
TableMgrTableMgr Mgr

v y
Template for DocTableDirMgr

Hardware design Process Software Design Process
Figure 5 : Partial Design Synthesis Step

11

After a series of iterations, the synthesis engine generates a set of parts list and schematics, which

can then be used as input into logic synthesis tools if designing hardware, or they can be used as a

set of intermediate program files for the code-generation stage to generate a software program.

Because the synthesis engine was designed to produce hardware, it interfaces with standard logic

synthesis tools such as the Design Architect from Mentor Graphics at this stage to generate the

final hardware implementation. However, to produce an executable software program, the output

of the synthesis stage needs to be further processed by the code generation stage.

3.4 Code Generation Stage

The output of the design synthesis stage consists of a user specification file, and a set of schemat-

ics which the code generator uses as a program control flow diagram. The user specification file

records all the user responses to queries during the IASys design stage, and the program control

flow diagram specifies how the software objects interact with each other in terms of the messages

sent to one another. The code generator produces code for the final program by accessing its

library of software objects, as shown in Figure 1. Each software object in the code generator

library consists of an object specification file, which the code generator fills in with parameter

values as required by the design, and a code skeleton which uses the values from the object speci-

fication file. The code generator may tailor the software object to different designs by manipulat-

ing the object specification files, thereby reusing source code. To generate the final program, the

code generator links in the information from the intermediate program specification provided by

the synthesis stage to select the appropriate set of software objects from its library, and to fill in

parameters values for these software objects.

4 Case Study

To gauge the effectiveness of IASys for rapidly synthesizing complete computer systems so that

design tradeoffs can be easily evaluated, thirty-two different designs of a highly configurable

embedded computer system were generated. The designs were based on VuMan 2[16], a small,

embedded computer system which displays maps, pictures, or textual information to the user. The

VuMan 2 hardware is shown on the left side of Figure 6, while the application interface is shown

12

on the right side. Designed for ease of use for the maintenance and repair worker, who often needs

access to manuals and checklists, the entire VuMan 2 system is light enough to be worn on the

belt

1

Assault Amphibious Vehide (AAV)
AAV P7 A1

II Inspection InfoH

Outside of Vehide

1 1 Forward & port 1

2 |A ft & starboard I

Engine Compartment

4 | Forward 1

VuMan 2 Software User Interface

Figure 6 : VuMan 2 Computer System

The application which runs on VuMan 2 is similar to the document browsing program used in the

running example, with a DocTableDirMgr implemented which can handle three levels of Frame

ID indexes. The user inputs commands by clicking a button mouse on different parts of a frame

which is viewed on a heads-up display. For flexibility VuMan 2 applications and document data-

bases reside on removable PCMCIA flash memory cards so different applications can be easily

swapped into the VuMan 2 system.

5 Results and Conclusions

As Figure 7 shows, several features on VuMan 2 can be varied to generate different system con-

figurations.

13

Feature Level

• Application

• Architecture

Feature

• Levels of Indexes
Handled by Document
Managers

•Logic
Implementation

Option

• 3 , 2

• Present, Not Present
• Present, Not Present

• Flash Card, ROM

EPLD, Random Logic
• Implementation

Figure 7 : VuMan 2 Configurable Features

These features span the spectrum from software to hardware, and can be grouped into application

level, which is independent of the hardware platform, architecture level which impact both hard-

ware and software, and implementation level which impact mostly hardware design parameters,

and is transparent to software. At the application level the system can consist of document manag-

ers that handle two or three indexes for the Frame ID. At the architecture level the system can

consist of an input device such as a mouse, an output device such as a heads-up display; and the

document database may be placed on removable PCMCIA flash cards, or permanently installed

ROM's. At the implementation level, the logic circuitry may be implemented in EPLD's (Erasable

Programmable Logic Devices) or as random logic. To assess the impact of each of these features,

thirty-two different systems were synthesized using IASys. The cost, power, and area information

for the base hardware systems were generated. The synthesized software was ran on an Intel 486/

33 PC based simulator to acquire program size and performance data. Both the hardware and soft-

ware design information, as shown in Appendix A, were used to evaluate design tradeoffs. Each

design is distinguished by the feature vector as shown in Figure 81.

1. Though designs without input or output devices are not fully functional, they are generated for this study
to fully explore the design space.

14

Features Vector (X-X-X-X-X)

3 = DocTableDirMgr, 2 = DocTableMgr
I = Input Present, X = Input Not Present
O= Output Present, X = Output Not Present
M= Flash Card Present, X = ROM only Present
E = EPLD Present, X = Random Logic Present

Figure 8 : Design Features Vector

To assess the impact of the system features on design parameters of cost, power, area, program

size, and performance, the designs were partitioned according to different system features.The

Manager Levels group partitioned designs into those which can handle only two Frame ID

indexes, and those which can handle three; the Memory group partitioned designs into those

which stored the document system on ROM's and those which stored them on a flash card, and

the Input, Output, and EPLD groups partitioned the designs into those with and without input

devices, with and without output devices, and those designed with EPLD or random logic, respec-

tively. All of the designs were synthesized in under 10 minutes on a Sparc 10 Workstation. The

average difference between the partitions for each group were then calculated for each design

parameter, and converted to a percentage of the total difference resulting from varying all of the

system features, as shown in Table 3. Cost, power, and area take into account the hardware por-

tions of the system only, while program size and performance measurements are taken by running

the programs on an Intel 486/33 PC-based simulator platform. The performance is based on the

average number of clock ticks elapsed after running a typical user workload on the application.

Cost

Power

Area

Program
Size

Perfor-
mance

EPLD

34.38

32.26

16.28

0.00

0.00

Input

3.47

16.24

8.08

0.40

1.80

Output

0.99

39.17

8.32

98.38

14.95

Memory

61.16

12.33

67.32

0.38

80.15

Mgr Levels

0.00

0.00

0.00

0.85

3.09

Table 3 : Relative Impact of Features on Design Parameters

15

Figure 9 shows the impact of each of these features on the embedded system in a bar graph,

grouping features based on whether they are implementation, architecture, or application level

features.

Impact of system features on design parameters

[Application I

Design Parameters

Figure 9 tlmpact of System Features

The implementation level feature impacted only the hardware design parameters, the architecture

level features appear to have the most impact in both the hardware and software design parame-

ters, dominated by memory and/or output options, while the application level feature only mini-

mally impacted software design parameters, though they also impact the functionality of the

system which is a parameter not evaluated in this study. The dominating system features for each

design parameter implies the primary areas to focus design efforts for minimizing that particular

design parameter. The cost, area, and performance design parameters are dominated by the mem-

ory configuration, impacted 61%, 67%, and 80%, respectively. In the case of using of flash mem-

ory the system cost was lowered by 20% to 30% and the area by 50% to 100%, but accounted for

a factor of 5 to 15 in decreasing performance. Because the performance data was taken on a simu-

lator platform, the effects of whether the logic circuitry was implemented using and EPLD instead

16

NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

IASys: An Integrated Approach to Sytem-Level Synthesis

Grace McNally, Janeen Deang and Daniel P. Siewiorek

EDRC 18-55-95

IASys: An Integrated Approach to
System-Level Synthesis

Grace McNally, Janeen Deang, Dan Siewiorek

Departement of Electrical and Computer Engineering
and EDRC

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

October 5, 1995

This work has been supported in part by the Engineering Design Research Center,
an NSF Engineering Research Center.

IASys: An Integrated Approach for System-Level Synthesis

Abstract

IASys is an integrated approach to system-level synthesis which allows a complete computer sys-

tem to be specified using a set of high-level building blocks rather than behavioral level specifica-

tions. By reusing domain-specific design knowledge, alternative hardware and software

configurations can be rapidly specified and synthesized. Thirty-two different embedded computer

systems were synthesized generating a design space with variations of 45% in cost, 20% in power,

120% in area, 50% in program size, and 2000% in performance.

1 Introduction

The task of designing a complete computer system, which includes not only the application soft-

ware, but the underlying operating system, hardware platform, as well as the interconnects

between different components, has become increasingly challenging in recent years. To deal with

the increased complexity and shortened design cycle, various synthesis systems have been devel-

oped to aid the synthesis of cost-effective systems. Automated synthesis attempts to map a set of

input specifications to a hardware or software implementation. The specification can be at the sys-

tem level, the behavioral level, or the implementation level. System level specification is the most

abstract of these, which is a description that contains expert knowledge about the intended use of

a system, its components, and their interconnections from input to output. This is followed by

behavioral level specification, which details the intended behavior of a system, such as VHDL

code for hardware and high-level programming languages for software. Implementation level

specification is the least abstract and is concerned with the physical implementation of the final

system, whether in logic components and circuits for hardware, or executable code for software.

Depending on the level of specification, synthesis systems can be classified as performing system-

level, behavioral level, or implementation level synthesis.

This paper presents IASys, which performs system-level synthesis of both hardware and software

within a single environment. Through a combination of design reuse, abstraction, and integration

of design tools, IASys shortens the design cycle, reduces the complexity of the design task, and

eases the creation of cost-effective systems. To specify a complete system the designer only needs

to answer a series of queries from IASys regarding the functionalities and performance of the sys-

tem. By incorporating low-level hardware and software design knowledge into its framework,

IASys frees the system designer from having to generate the implementation details of the final

system. Instead, the IASys user can concentrate on defining requirements for the system and

exploring different design tradeoffs. Designs can be synthesized on the order of minutes which

allows the system designer to rapidly explore the design space to select a cost effective design.

Section 2 summarizes existing approaches to hardware and software synthesis, followed by Sec-

tion 3 which presents the IASys architecture, including the user specification format, knowledge

representation, synthesis engine, and the code generation stage for software. The design space of a

small computer system is presented in Section 4, and finally Section 5 concludes the paper with

results from the thirty two different configurations of the computer system which were synthe-

sized using IASys

2 Background

Design automation systems can be classified by the level of synthesis they perform, as shown in

Table 1.

System Level

Behavioral Level

Implementation Level

Hardware Synthesis

• Configurers
• System-Level Synthesis

• Algorithmic-Level Synthesis

• Logic-Level Synthesis

Software Synthesis

• Application Generators
• Program synthesizers

•VHLL

• Compilers
• Assemblers

Table 1 Classification of synthesis systems

The higher the level of specification, the more intuitive and less detailed the user specification,

and more of the design process is performed by the synthesis system, corresponding to a higher

degree of automation. However, high levels of automation is often accomplished by codifying

domain-specific design knowledge, which unfortunately limits the degree of generality of the syn-

thesis system. Often design automation tools represent a tradeoff between the degree of automa-

tion and degree of generality.

Systems which perform system-level synthesis correspond to the highest level of automation and

are often based on sets of rules which codify expert design knowledge, but at the same time the

type of systems they can synthesize is limited. Examples of such hardware synthesis systems

include the Rl/XCON [7] computer configuration management system, and COSMOS [9], Fidel-

ity [10], and MICON [8] which perform system level synthesis based on a set of rules about the

structural and constraint information about components and interconnects. Program synthesiz-

ers[13],[14] and application generators[15] are examples of software synthesis systems which

automate system level design, capable of generating a software program from a user specification

which indicates the functions the resulting system has to perform, rather than a detailed code

specification for the resulting system.

Synthesis tools which perform behavioral-level synthesis are less domain-specific, but requires

the user to input a more detailed behavioral specification. Algorithmic-level hardware synthesis

systems such as CAMAD [4], MIMOLA [5], and the System Architect's Workbench [6] trans-

forms a behavioral level specifications written in a procedural language into a register-transfer

level specification, which can then be implemented in hardware at a later stage. VHLL (very high-

level language) systems such as SETL[12] and database query languages automates the behav-

ioral specification stage for software programs. Though the process of writing code for behav-

ioral-level tools is time-consuming, the tradeoff is that these tools can be used to generate a wide

variety of applications and are not restricted to narrow application domains.

At the lowest level are systems which perform synthesis at the implementation level. Logic level

synthesis tools discussed in [1], [2], and [3] assist the expert designer by automating the selection

of components. Using one-to-one mapping of boolean equations to an interconnected gate net-

work, these synthesis tools refine each specification to a component in the target technology.

Assemblers and compilers automate the implementation of a software program from source code

to assembly code and represent the first generation of automatic programming systems docu-

mented in the ACM in 1958[11].

IASys is a unified approach to system level synthesis which combines both the properties of a

program synthesizer and hardware system level synthesis tool. Though both hardware and soft-

ware synthesis systems which synthesize from system level specifications exist, IASys represents

the first system-level synthesis tool which can generate both hardware and software systems from

system-level specification. Currently IASys has design knowledge for the domain of wearable

computers, which are small, embedded systems that are used as mobile personal assistants for

such tasks as document browsing and navigation. Because its knowledge representation is declar-

ative, IASys can be easily tailored to other domains.

3 IASys Architecture

Figure 1 shows the IASys architecture, with a common synthesis engine FIDELITY [10] shared

between the hardware and software synthesis process.

Hardware Design
Specifications

tw are Program
Specifications

Synthesis
Engine

Hardware
Knowledge

Base .

Intermediate
Program

Soecincations
Part list and
Schematics

ToU>gic
Synthesis Tools

Software
Objects
library

Hardware Synthesis Software Synthesis
Process Process
Figure 1: Overview of IASys Architecture

FIDELITY is based on MICON[8], a knowledge-based system which was designed to generate

hardware. During design the synthesis engine alternates through a series of searches to select the

appropriate hardware or software objects from its design libraries which make up the final system.

To design hardware the IASys synthesis engine accesses domain-specific knowledge stored in its

hardware knowledge base to guide the search and generate a partslist, netlist, and other require-

ments to be used with logic synthesis tools at a later stage. To design software, the synthesis

engine accesses its software knowledge base to generate an intermediate program specification,

which is used by the code generator to assemble the appropriate software modules from its soft-

ware object library to produce the final software program.

The hardware synthesis process of IASys closely follows the MICON design paradigm, as

detailed in [8]. The rest of this paper will highlight how the hardware design paradigms can be

extended to software so that the single synthesis engine can be used to design both hardware and

software. Table 2 lists by section the original hardware terminologies used in MICON, and the

corresponding terminology adapted for software synthesis using IASys.

Sections

User Specification
(Section 3.1)

Knowledge Representation
(Section 3.2)

Design Synthesis
(Section 3.3)

Implementation
(Section 3.4)

Hardware

• Design Specification

• Hardware Knowledge
Base
• Hardware Components
• Hardware Design Tem-
plates
• Wire Connections

• Search for Function
• Search for Structure

• Logic Synthesis
• Logic Design Library
• Netlist and Schematics

• Schematics

Software

• Program Specification

• Software Knowledge
Base
• Software Objects
• Software Design Tem-
plates
• Object Messages

• Search for Function
• Search for Structure

• Code Generation
• Software Objects Library
• Intermediate Program
Specifications
•Program Flow File

Table 2 Hardware and Software terms in IASys

A running example will be used in the following sections to illustrate the flow of each of the hard-

ware and software design processes. For the hardware synthesis process, the knowledge base is

assumed to contain information about various off-the-shelf microprocessors, and the appropriate

processor meeting the specified speed requirements will be incorporated into a hardware design.

For the software design process, an application will be synthesized which performs simple docu-

ment browsing tasks. Figure 2 shows a series of frames which are displayed by the application

during a typical browsing sequence.

(1,0,0),

j

Main Menu

miiiiililiiliiH
[Turret] \

Start Trouble-Shooting

[Flow Charts]

(2.0,0)

(1,0,2).

Assault Amphibious Vehide

AAV P7 A1

Outside of Vehide

1

2 [Aft & starboard]

3 [Topside]
(1A3)

Assault Amphibious Vehide

AAV R7 A1

Outside of Vehide

1

2 [Aft & starboard]

3 [Topside]

(2,0.3)

Appendix E

AAVP7A1 Technical Insp

[TAC No]

[USMC No.]

[Miles]

[Hours]

[Date Inspected]

Section I: Outside of Vehide

(Forward and port)

I.Hull forward end
Check for damage

[Status]

2 Towing Eyes
a. Port
[Status]

b. Starboard
[Status]

Figure 2 : Application User Interface

From the end-user's point of view, the document consists of a set of sections, which in turn con-

sists of a set of pages, and these pages are further subdivided into a collection of frames. Within

each frame are static text and active fields, which are the text enclosed in brackets in Figure 2.

Each document subsection may be viewed one frame at a time, and the end-user interacts with the

system by clicking on a mouse to select the available fields to navigate from frame to frame. In

Figure 2 the end user has clicked on the highlighted fields and the frames which correspond to the

Frame ID, which are links embedded in the fields are subsequently displayed.

To implement such a system, the system designer configures the document browser application by

answering queries from the design synthesis engine. The software knowledge base is assumed to

contain information about a set of data managers which retrieves text and bitmaps to display from

a document database. The data managers are categorized in the software knowledge base by the

way they access document information. Depending on whether they manage the fields, frames, or

the multi-level tables which store the location to the frames to be displayed on the screen, the data

managers are called FocusMgr, FrameMgr, or DocSysMgr (Document System Manager), respec-

tively.

There are two kinds of DocSysMgr's which the system designer can choose from during design,

depending on how extensive the document browsing system is to be. A DocTableDirMgr can han-

dle more extensive document systems, using Frame ID's consisting of 3 indexes to access multi-

level tables that store the frame locations, where a DocTableMgr use Frame ID's consisting of

only 2 indexes to access location tables. The first entry in a 3-index Frame ID consists of a Section

Number, followed by its Page Number, followed by its Frame Number, while a 2-index Frame ID

omits the Section Number and can only be used to index frames located in the same section. Fig-

ure 2 displays a sequence of frames with 3-index Frame ID's, divided into sections 1 and 2 reach-

able from the Main Menu frame. Within each section the frames can be further broken down by

their page numbers, though in this example no frames only 1 page is used. Within the same page

frames can have different frame numbers. For example, Appendix E with Frame ID (1,0,2) in Fig-

ure 2 resides in Section 1, Page 0, Frame 2 of the document system. A design with Doc-

TableDirMgr implemented would be able to handle all of the Frame ID's as shown in Figure 2,

while a design with DocTableMgr can only handle Frame ID's with two lower indexes in the

Frame ID valid, fixing the section number in the Frame ID, and would only be able to reference

the frames in either the top subtree with Frame ID's (l,x, x), or the bottom subtree with Frame

ID's (2,x,x) in Figure 2.

3.1 User Specification

IASys acquires the user specification interactively through a series of queries. A sample input

specification for the document browser application is shown in Figure 3.

IASys Query User Selection

Select template for design

Enter dimensions for Window

Enter base of Window

Select Frame ID Format

Select input device

Select Output Device

Document
Browser

Navigation
Assistant

2 8 0 x 3 6 0 - * -

0,0

(a,b,c)

Mouse

VGA

(a,b)

Keyboard

Private Eye

Software
> Object
Parameters

Selection
Criterion

Figure 3 : IASys input specification

At the start of the specification session, the user is prompted to select a design template. In Figure

3 the user selects the Document Browser design template. The user is then prompted with increas-

ingly detailed questions regarding the design, such as the size and location of the text window

which will be used in the application, the format of the Frame ID, with (a,b,c) corresponding to a

3-index format, and (a,b) the 2-index format, and the type of input and output devices. IASys uses

this information to refine the abstract design template into an implementation.

As Figure 3 shows, there are two types of user queries. Selection criterions such as the type of

input and output devices are used by the synthesis engine to select the appropriate hardware com-

ponents or software objects which make up the final design, while software object parameters are

used only by the IASys software synthesis process to set values for software object initialization

parameters.

3.2 Knowledge Representation

IASys uses knowledge stored in its knowledge base to decide which and how to assemble the

components for a particular software or hardware design. Each component is represented in the

knowledge base as a set of facts, which specify the properties that describe the component, and a

set of rules, which states how the facts about a component are to be used during design. Figure 4

shows the facts and rules representation in the IASys knowledge base for the Intel 188 13Mhz pro-

cessor component on the left, and the software components DocTableDirMgr (Document Table

Directory Manager) on the right, which is a specialization of the DocSysMgr.

Hardware Knowledge Base

f Clock_Speed = 13Mhz \

Processor

Intel 188.13 Intel 188_8I

r

^ Gnd-zt- 80cl88

—ty

EB
Logic
13)

IF (Selecting child for
Processor)

AND (Processor_Speed <=
Clock_Speed of child)
THEN select child j

FACTS

Component
Attributes

Functional
Hierarchy

Design
Templates

RULES

Selection
Rule

Knowledge Base

C FramelD Format= (a,b,c)

DocSysMgr

DqcTable DocTable
DirMgr Mgr

Sectionaecuon page Frame
TableMgr TableMgr TableMgr/

IF (Selecting child for
DocSysMgr node)

AND (DocIndexScheme =
Frame ID Format of child)
THEN select child

Figure 4 : IASys Knowledge Representation

As Figure 4 shows, the facts regarding a component consist of its component attributes, which are

attribute-value pairs that contain the name of a particular attribute and its corresponding value,

how it is organized in the functional hierarchy, and how it should be connected with other compo-

nents as specified by design templates. A component's representation also include the selection

rules which specify the conditions under which a component or a particular template should be

selected, based on the facts about a component. The knowledge organization is discussed in detail

in [8].

Functional hierarchies are central to reducing the size and complexity of the design space. As

mentioned previously, components are grouped by function and organized into a directed acyclic

graph (DAG) called the functional hierarchy. The nodes in the functional hierarchy represent

hardware or software components which are abstractions of their leaf or child nodes and are char-

acterized by their functions and constraints. Components which have similar functions are

grouped into the same functional block, which correspond to higher level nodes. Actual hardware

off-the-shelf parts or software objects are represented by nodes at the very bottom of the hierar-

chy. For example, in Figure 4, the Intel 188_13 and Intel 188_8 components are functionally equiv-

alent and are grouped into the same processor functional block, while the software components

DocTableDirMgr and DocTableMgr are grouped as DocSysMgr functional block.

The specification of how a functional block may be refined to its less abstract components, and

how these components need to be connected with one another are stored in templates. Templates

capture fragments of design information and allow hardware and software reuse at the design

level. For hardware design templates the lines between components represent wire connections

between hardware components, as shown by the hardware design template for the Intel 188

13Mhz processor in Figure 4. In IASys software components communicate with one another

using a message-passing paradigm, and lines connecting the software components in a software

design template correspond to messages being sent from one object to another. The software

design template which corresponds to the refinement from DocSysMgr to DocTableDirMgr is

shown in Figure 4, which specifies how the different document table mangers need to interact to

process a document browsing task. Note that in this template there is a table manager correspond-

ing to a particular index in a 3-index Frame ID. The FrameTableMgr object sends messages to the

10

PageTableMgr object, which in turn sends messages to the SectionTableMgr object.

3.3 Design Synthesis

During design the synthesis engine performs a top-down traversal of the functional hierarchy. At

each node IASys attempts to select a child node which satisfies the requirements of the design,

called search-for-function (SFF), and then integrates the child node into the design by selecting

the appropriate template, called search-for-structure (SFS). By alternating between these two

searches, IASys gradually refines abstract components into actual hardware or software objects to

be used. Figure 5 shows one iteration through SFF and SFS for integrating an Intel 188 13Mhz

processor into a hardware design on the left hand side, and for integrating the software objects

composing the DocTableDirMgr functional block into a program on the right hand side.

Step 1: Specifications

Processor Speed = 13Mhz^

Hardware User Specification

Document Indexing Scheme = (a,b,c))

Software User Specification

Step 2: Search-for-function

Functional Hierarchy for Intel 188.13

SFF
I DocSysMgr!

•DbcTa'bfe;
Mgr :

Functional Hierarchy for DocTableDirMgr

Step 3: Search-for-structure

P LOglC
80cl88EB_13

Template for Intel 188_13

Section Page FrameTable-
TableMgrTableMgr Mgr

v y
Template for DocTableDirMgr

Hardware design Process Software Design Process
Figure 5 : Partial Design Synthesis Step

11

After a series of iterations, the synthesis engine generates a set of parts list and schematics, which

can then be used as input into logic synthesis tools if designing hardware, or they can be used as a

set of intermediate program files for the code-generation stage to generate a software program.

Because the synthesis engine was designed to produce hardware, it interfaces with standard logic

synthesis tools such as the Design Architect from Mentor Graphics at this stage to generate the

final hardware implementation. However, to produce an executable software program, the output

of the synthesis stage needs to be further processed by the code generation stage.

3.4 Code Generation Stage

The output of the design synthesis stage consists of a user specification file, and a set of schemat-

ics which the code generator uses as a program control flow diagram. The user specification file

records all the user responses to queries during the IASys design stage, and the program control

flow diagram specifies how the software objects interact with each other in terms of the messages

sent to one another. The code generator produces code for the final program by accessing its

library of software objects, as shown in Figure 1. Each software object in the code generator

library consists of an object specification file, which the code generator fills in with parameter

values as required by the design, and a code skeleton which uses the values from the object speci-

fication file. The code generator may tailor the software object to different designs by manipulat-

ing the object specification files, thereby reusing source code. To generate the final program, the

code generator links in the information from the intermediate program specification provided by

the synthesis stage to select the appropriate set of software objects from its library, and to fill in

parameters values for these software objects.

4 Case Study

To gauge the effectiveness of IASys for rapidly synthesizing complete computer systems so that

design tradeoffs can be easily evaluated, thirty-two different designs of a highly configurable

embedded computer system were generated. The designs were based on VuMan 2[16], a small,

embedded computer system which displays maps, pictures, or textual information to the user. The

VuMan 2 hardware is shown on the left side of Figure 6, while the application interface is shown

12

on the right side. Designed for ease of use for the maintenance and repair worker, who often needs

access to manuals and checklists, the entire VuMan 2 system is light enough to be worn on the

belt

1

Assault Amphibious Vehide (AAV)
AAV P7 A1

II Inspection InfoH

Outside of Vehide

1 1 Forward & port 1

2 |A ft & starboard I

Engine Compartment

4 | Forward 1

VuMan 2 Software User Interface

Figure 6 : VuMan 2 Computer System

The application which runs on VuMan 2 is similar to the document browsing program used in the

running example, with a DocTableDirMgr implemented which can handle three levels of Frame

ID indexes. The user inputs commands by clicking a button mouse on different parts of a frame

which is viewed on a heads-up display. For flexibility VuMan 2 applications and document data-

bases reside on removable PCMCIA flash memory cards so different applications can be easily

swapped into the VuMan 2 system.

5 Results and Conclusions

As Figure 7 shows, several features on VuMan 2 can be varied to generate different system con-

figurations.

13

Feature Level

• Application

• Architecture

Feature

• Levels of Indexes
Handled by Document
Managers

•Logic
Implementation

Option

• 3 , 2

• Present, Not Present
• Present, Not Present

• Flash Card, ROM

EPLD, Random Logic
• Implementation

Figure 7 : VuMan 2 Configurable Features

These features span the spectrum from software to hardware, and can be grouped into application

level, which is independent of the hardware platform, architecture level which impact both hard-

ware and software, and implementation level which impact mostly hardware design parameters,

and is transparent to software. At the application level the system can consist of document manag-

ers that handle two or three indexes for the Frame ID. At the architecture level the system can

consist of an input device such as a mouse, an output device such as a heads-up display; and the

document database may be placed on removable PCMCIA flash cards, or permanently installed

ROM's. At the implementation level, the logic circuitry may be implemented in EPLD's (Erasable

Programmable Logic Devices) or as random logic. To assess the impact of each of these features,

thirty-two different systems were synthesized using IASys. The cost, power, and area information

for the base hardware systems were generated. The synthesized software was ran on an Intel 486/

33 PC based simulator to acquire program size and performance data. Both the hardware and soft-

ware design information, as shown in Appendix A, were used to evaluate design tradeoffs. Each

design is distinguished by the feature vector as shown in Figure 81.

1. Though designs without input or output devices are not fully functional, they are generated for this study
to fully explore the design space.

14

Features Vector (X-X-X-X-X)

3 = DocTableDirMgr, 2 = DocTableMgr
I = Input Present, X = Input Not Present
O= Output Present, X = Output Not Present
M= Flash Card Present, X = ROM only Present
E = EPLD Present, X = Random Logic Present

Figure 8 : Design Features Vector

To assess the impact of the system features on design parameters of cost, power, area, program

size, and performance, the designs were partitioned according to different system features.The

Manager Levels group partitioned designs into those which can handle only two Frame ID

indexes, and those which can handle three; the Memory group partitioned designs into those

which stored the document system on ROM's and those which stored them on a flash card, and

the Input, Output, and EPLD groups partitioned the designs into those with and without input

devices, with and without output devices, and those designed with EPLD or random logic, respec-

tively. All of the designs were synthesized in under 10 minutes on a Sparc 10 Workstation. The

average difference between the partitions for each group were then calculated for each design

parameter, and converted to a percentage of the total difference resulting from varying all of the

system features, as shown in Table 3. Cost, power, and area take into account the hardware por-

tions of the system only, while program size and performance measurements are taken by running

the programs on an Intel 486/33 PC-based simulator platform. The performance is based on the

average number of clock ticks elapsed after running a typical user workload on the application.

Cost

Power

Area

Program
Size

Perfor-
mance

EPLD

34.38

32.26

16.28

0.00

0.00

Input

3.47

16.24

8.08

0.40

1.80

Output

0.99

39.17

8.32

98.38

14.95

Memory

61.16

12.33

67.32

0.38

80.15

Mgr Levels

0.00

0.00

0.00

0.85

3.09

Table 3 : Relative Impact of Features on Design Parameters

15

Figure 9 shows the impact of each of these features on the embedded system in a bar graph,

grouping features based on whether they are implementation, architecture, or application level

features.

Impact of system features on design parameters

[Application I

Design Parameters

Figure 9 tlmpact of System Features

The implementation level feature impacted only the hardware design parameters, the architecture

level features appear to have the most impact in both the hardware and software design parame-

ters, dominated by memory and/or output options, while the application level feature only mini-

mally impacted software design parameters, though they also impact the functionality of the

system which is a parameter not evaluated in this study. The dominating system features for each

design parameter implies the primary areas to focus design efforts for minimizing that particular

design parameter. The cost, area, and performance design parameters are dominated by the mem-

ory configuration, impacted 61%, 67%, and 80%, respectively. In the case of using of flash mem-

ory the system cost was lowered by 20% to 30% and the area by 50% to 100%, but accounted for

a factor of 5 to 15 in decreasing performance. Because the performance data was taken on a simu-

lator platform, the effects of whether the logic circuitry was implemented using and EPLD instead

16

of random logic cannot be determined1. The impacts on power consumption are equally shared

between output and logic implementation features, at 39% and 32%, respectively. Thus to mini-

mize power consumption the system designer should carefully choose the output device and min-

imize the amount of random logic gates. The impact on program size is dominated over 98% by

the software output device drivers. Therefore the system designer may consider implementing

graphics routines using hardware.

6 Acknowledgments

The research reported in this paper is supported by the ARPA/Tri-Series-sponsored Rapid Proto-

typing of Application-Specific Signal Processors (RASSP) program, as executed by the Martin

Marietta Corporation.

1. Because all the logic circuitry is used as glue logic between the CPU and other devices, the performance
is independent of the logic circuit implementation as long as the delay of the logic circuitry does not exceed
the CPU clock at 13Mhz.

17

7 References

[I] D. Brand, R.F Damiano, L.P. van Ginneken, and A.D. Drumm. In the Driver's Seat of Boole-
Dozer. In Proc. of 1994 IEEE International Conference on Computer Design, Oct. 1994, pp
518-521.

[2] B. Mitra, L. Ramachnadran, S.Rajam, and G. Rajagopalas. CLSS- A Workfiench for Control
Logic Synthesis. In Proc. of 4th CSI/IEEE International Symposium on VLSI Design, Jan.
1991, pp 219-224.

[3] H. Sato, M. Yamazaki, and M. Fugita. ZEPHCAD and FLORA: Logic Synthesis for Control
and Datapath. In Proc. of 1994 IEEE International Conference on Computer Design, Oct.
1994, pp 527-530.

[4] Z. Peng and K. Kuchcinski. Automated transformations of algorithms into register-transfer
level implementation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 13, No. 2, Feb. 1994, pp 150-166.

[5] N. Hendrich, J. Lohse, and R. Rauscher. Silicon Compilation and Rapid Prototyping of
Microprogrammed VLSI-Circuits with MIMOLA and SOLO 1400. 18th EUROMICRO Sym-
posium on Microprocessing and Microprogramming, Microprocessing and Microprogram-
ming, Vol. 35, No. 1-5, Sept. 1992, pp 287-294.

[6] D. E. Thomas, et. al. Algorithmic and Register-Transfer Level Synthesis: The System Archi-
tect's Workbench. Kluwer Academic Publishers, 1990.

[7] J. McDermott. Rl f XCON') at age 12: Lessons from an elementary school achiever. Artifi-
cial Intelligence, Vol. 59, No. 1-2, Feb. 1993, pp 241-247.

[8] W.P. Birmingham, A.P. Gupta, and D.P. Siewiorek. Automating the Design of Computer Sys-
tems The MCON Project, Jones and Bartlett Publishers, 1992.

[9] T.B. Ismail,M. Abid, and A. Jerraya. COSMOS: a codesign approach for communication sys-
tems. In Proc. of the 3rd International Workshop on Hardware!Software Codesign, Sept.
1994, pp 17-24.

[10] The FIDELITY Design Synthesis System User's Manual. Version 0.9 (alpha). Omniview,
Inc., Pittsburgh, PA. Jan 1994.

[II] Rich and Waters. "Automatic Programming: Myths and Prospects." In IEEE Computer,

18

August 1988. pp. 4-51.

[12] J.T. Schwartz et al., Programming with Sets: An Introduction to SETL, Springer Verlag, New
York, 1986.

[13] Charles Rich and Richard C. Waters. Artificial Intelligence and Software Engineering. Mor-
gan Kaufmann Publishers, Inc. CA, 1986.

[14] Michael R. Lowry and Robert D. McCartney. Automating Software Design. AAAI Press.
Menlo Park, CA, 1991.

[15] Ellis Horowitz et al., "A Survey of Application Generators." In IEEE Software, Jan. 1985.
pp. 40-53.

[16] A. Smailagic, D.P. Siewiorek. 'The VuMan 2 Wearable Computer". IEEE Design and Test of
Computers, September 1993.

19

Appendix A

Cost($)
Power(W)
Area (in2)
Program Size(Bytes)
Performance(Clocks)

Cost($)
Power(W)
Area (in2)
Program Size(Bytes)
Performance(Clocks)

Cost($)
Power(W)
Area (in2)
Program Size(Bytes)
Performance(Clocks)

Cost($)
Power(W)
Area (in2)
Program Size(Bytes)
Performance(Clocks)

2-x-x-x-x
882.28

11.61
45.26

37212.00
5.00

2-x-x-m-x
692.68

12.03
26.14

37260.00
80.00

2-x-x-x-e
999.78

12.11
46.59

37212.00
5.00

2-x-x-m-e
809.08

12.01
24.79

37260.00
80.00

3-x-x-x-x
882.28

11.61
45.26

37356.00
5.00

3-x-x-m-x
692.68

12.03
26.14

37420.00
86.00

3-x-x-x-e
999.78

12.11
46.59

37356.00
5.00

3-x-x-x-e
809.08

12.01
24.79

37420.00
86.00

2-i-x-x-x
901.99

12.29
50.12

37116.00
5.00

2-i-x-m-x
712.39

12.72
30.99

37196.00
78.00

2-i-x-x-e
1002.88

12.11
46.79

37116.00
5.00

2-i-x-m-e
812.18

12.01
24.99

37196.00
78.00

lASys Designs Generated

3-i-x-x-x
901.99

12.29
50.12

37276.00
5.00

3-i-x-m-x
712.39

12.72
30.99

37356.00
82.00

3-i-x-x-e
1002.88

12.11
46.79

37276.00
5.00

3-i-x-m-e
812.18

12.01
24.99

37356.00
82.00

2-x-o-x-x
887.73

12.89
50.11

55500.00
17.00

2-x-o-m-x
698.13

13.31
30.99

55580.00
96.00

2-x-o-x-e
1001.71

12.48
46.94

55500.00
17.00

2-x-o-m-e
811.01

12.38
25.14

55580.00
96.00

3-x-o-x-x
887.73

12.89
50.11

55660.00
18.00

3-x-o-m-x
698.13

13.31
30.99

55740.00
100.00

3-x-o-x-e
1001.71

12.48
46.94

55660.00
18.00

3-x-o-m-e
811.01

12.38
25.14

55740.00
100.00

2-i-o-x-x
906.14

13.58
54.88

55436.00
19.00

2-i-o-m-x
716.54

14.00
35.76

55500.00
92.00

2-i-o-x-e
1003.81

12.48
46.94

55436.00
19.00

2-i-o-m-e
812.81

12.38
25.14

55500.00
92.00

3-i-o-x-x
906.14

13.58
54.88

55596.00
19.00

3-i-o-m-x
716.54

14.00
35.76

55660.00
101.00

3-i-o-x-e
1003.81

12.48
46.94

55596.00
19.00

3-i-o-m-e
812.81

12.38
25.14

55660.00
101.00

7 References

[I] D. Brand, R.F Damiano, L.P. van Ginneken, and A.D. Drumm. In the Driver's Seat of Boole-
Dozer. In Proc. of 1994 IEEE International Conference on Computer Design, Oct. 1994, pp
518-521.

[2] B. Mitra, L. Ramachnadran, S.Rajam, and G. Rajagopalas. CLSS- A Workfiench for Control
Logic Synthesis. In Proc. of 4th CSI/IEEE International Symposium on VLSI Design, Jan.
1991, pp 219-224.

[3] H. Sato, M. Yamazaki, and M. Fugita. ZEPHCAD and FLORA: Logic Synthesis for Control
and Datapath. In Proc. of 1994 IEEE International Conference on Computer Design, Oct.
1994, pp 527-530.

[4] Z. Peng and K. Kuchcinski. Automated transformations of algorithms into register-transfer
level implementation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol. 13, No. 2, Feb. 1994, pp 150-166.

[5] N. Hendrich, J. Lohse, and R. Rauscher. Silicon Compilation and Rapid Prototyping of
Microprogrammed VLSI-Circuits with MIMOLA and SOLO 1400. 18th EUROMICRO Sym-
posium on Microprocessing and Microprogramming, Microprocessing and Microprogram-
ming, Vol. 35, No. 1-5, Sept. 1992, pp 287-294.

[6] D. E. Thomas, et. al. Algorithmic and Register-Transfer Level Synthesis: The System Archi-
tect's Workbench. Kluwer Academic Publishers, 1990.

[7] J. McDermott. Rl f XCON') at age 12: Lessons from an elementary school achiever. Artifi-
cial Intelligence, Vol. 59, No. 1-2, Feb. 1993, pp 241-247.

[8] W.P. Birmingham, A.P. Gupta, and D.P. Siewiorek. Automating the Design of Computer Sys-
tems The MCON Project, Jones and Bartlett Publishers, 1992.

[9] T.B. Ismail,M. Abid, and A. Jerraya. COSMOS: a codesign approach for communication sys-
tems. In Proc. of the 3rd International Workshop on Hardware!Software Codesign, Sept.
1994, pp 17-24.

[10] The FIDELITY Design Synthesis System User's Manual. Version 0.9 (alpha). Omniview,
Inc., Pittsburgh, PA. Jan 1994.

[II] Rich and Waters. "Automatic Programming: Myths and Prospects." In IEEE Computer,

18

August 1988. pp. 4-51.

[12] J.T. Schwartz et al., Programming with Sets: An Introduction to SETL, Springer Verlag, New
York, 1986.

[13] Charles Rich and Richard C. Waters. Artificial Intelligence and Software Engineering. Mor-
gan Kaufmann Publishers, Inc. CA, 1986.

[14] Michael R. Lowry and Robert D. McCartney. Automating Software Design. AAAI Press.
Menlo Park, CA, 1991.

[15] Ellis Horowitz et al., "A Survey of Application Generators." In IEEE Software, Jan. 1985.
pp. 40-53.

[16] A. Smailagic, D.P. Siewiorek. 'The VuMan 2 Wearable Computer". IEEE Design and Test of
Computers, September 1993.

19

Appendix A

Cost($)
Power(W)
Area (in2)
Program Size(Bytes)
Performance(Clocks)

Cost($)
Power(W)
Area (in2)
Program Size(Bytes)
Performance(Clocks)

Cost($)
Power(W)
Area (in2)
Program Size(Bytes)
Performance(Clocks)

Cost($)
Power(W)
Area (in2)
Program Size(Bytes)
Performance(Clocks)

2-x-x-x-x
882.28

11.61
45.26

37212.00
5.00

2-x-x-m-x
692.68

12.03
26.14

37260.00
80.00

2-x-x-x-e
999.78

12.11
46.59

37212.00
5.00

2-x-x-m-e
809.08

12.01
24.79

37260.00
80.00

3-x-x-x-x
882.28

11.61
45.26

37356.00
5.00

3-x-x-m-x
692.68

12.03
26.14

37420.00
86.00

3-x-x-x-e
999.78

12.11
46.59

37356.00
5.00

3-x-x-x-e
809.08

12.01
24.79

37420.00
86.00

2-i-x-x-x
901.99

12.29
50.12

37116.00
5.00

2-i-x-m-x
712.39

12.72
30.99

37196.00
78.00

2-i-x-x-e
1002.88

12.11
46.79

37116.00
5.00

2-i-x-m-e
812.18

12.01
24.99

37196.00
78.00

lASys Designs Generated

3-i-x-x-x
901.99

12.29
50.12

37276.00
5.00

3-i-x-m-x
712.39

12.72
30.99

37356.00
82.00

3-i-x-x-e
1002.88

12.11
46.79

37276.00
5.00

3-i-x-m-e
812.18

12.01
24.99

37356.00
82.00

2-x-o-x-x
887.73

12.89
50.11

55500.00
17.00

2-x-o-m-x
698.13

13.31
30.99

55580.00
96.00

2-x-o-x-e
1001.71

12.48
46.94

55500.00
17.00

2-x-o-m-e
811.01

12.38
25.14

55580.00
96.00

3-x-o-x-x
887.73

12.89
50.11

55660.00
18.00

3-x-o-m-x
698.13

13.31
30.99

55740.00
100.00

3-x-o-x-e
1001.71

12.48
46.94

55660.00
18.00

3-x-o-m-e
811.01

12.38
25.14

55740.00
100.00

2-i-o-x-x
906.14

13.58
54.88

55436.00
19.00

2-i-o-m-x
716.54

14.00
35.76

55500.00
92.00

2-i-o-x-e
1003.81

12.48
46.94

55436.00
19.00

2-i-o-m-e
812.81

12.38
25.14

55500.00
92.00

3-i-o-x-x
906.14

13.58
54.88

55596.00
19.00

3-i-o-m-x
716.54

14.00
35.76

55660.00
101.00

3-i-o-x-e
1003.81

12.48
46.94

55596.00
19.00

3-i-o-m-e
812.81

12.38
25.14

55660.00
101.00

