
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Cooperation Schemes for Autonomous Agents

Sarosh Talukdar, Lars Baerentzen,
Andrew Gove and Pedro de Souza

EDRC 18-56-96

COOPERATION SCHEMES FOR AUTONOMOUS
AGENTS

Sarosh Talukdar

Lars Baerentzen

Andrew Gove

Pedro de Souza

Carnegie Mellon University
Pittsburgh, PA 15213

Copyright 1996 by Talukdar

Talukdar

COOPERATION SCHEMES FOR AUTONOMOUS
AGENTS

Sarosh Talukdar Lars Baerentzen Andrew Gove Pedro de Souza

Engineering Design Research Center
Carnegie Mellon University

Pittsburgh, PA 15213

ABSTRACT

Experiments over a variety of optimization problems have shown that convergence to

good solutions is an emergent behavior of certain mixes of autonomous (unsupervised)

agents in certain cooperative arrangements. What mixes and arrangements? What are

the underlying mechanisms? What are the implications for organization design? This

article provides some answers.

I. INTRODUCTION

None of the known algorithms for optimization and constraint satisfaction is without

weaknesses-the rigorous algorithms tend to be too slow and cumbersome, the heuris-

tics, too unreliable. Rather than seeking a new and better algorithm, we have been

experimenting with ways by which available algorithms and other computer-based oper-

ators can cooperate, so together they can do what separately they might not. The result

is a type of organization, called an asynchronous team (A-Team), that combines features

from a number of systems, particularly, insect societies [1], cellular communities [2],

genetic algorithms [3], blackboards [4], simulated annealing [5] and tabu search [6].

Definition: an A-Team is an evolving sequence of strongly cyclic data flows. A

data flow is a directed hypergraph like those shown in Fig. 1. Nodes in a data

flow are Venn diagrams representing complexes of overlapping memories, or

more precisely, the objects these memories could contain. Arcs in a data flow

represent agents that read from the memories at their tails and write to the

memories at their heads. A data flow is strongly cyclic if all, or almost all, its arcs

are in closed loops.

Taiukdar

A-Teams are obtained by forming operators into autonomous agents and agents into

strongly cyclic data flows that are implemented in networks of computers. Each A-Team

is dedicated to one problem. Each data flow is a distinct scheme for solving instances of

this problem. Results (trial-solutions) accumulate in the memories of the data flow (just

as they do in blackboards) to form populations (like those in genetic algorithms). These

populations are continually modified by two types of agents: construction agents that add

members to the populations and destruction agents that eliminate members from the

populations. The latter work from lists of solutions to be avoided (like the lists used in

tabu searches).

The numbers of construction and destruction agents can be arbitrarily large and each

agent, whatever its type, can be arbitrarily complex. Consequently, the problem-solving

skills of a data flow can be arbitrarily apportioned between construction and destruction.

(Other synthetic problem-solving systems invariably concentrate on one or the other. Hill

climbing, for instance, concentrates on how to construct new and better solutions while

simulated annealing, genetic algorithms and tabu search concentrate on how to destroy

or reject weak solutions. Natural systems, however, often benefit from a more symmetric

use of construction and destruction. The process of Lamelar bone growth [9], for

instance, relies as much for its efficacy on cells that add bone material to surfaces where

the stress is high, as it does on cells that remove bone material from surfaces where the

stress is low.)

All the agents in every data flow of an A-Team are autonomous. An autonomous agent

decides for itself what it is going to do and when (like the adult members of insect societ-

ies). Consequently, there can be no centralized control. But new autonomous agents can

be easily added (there is no centralized control system to get in the way).

Agents cooperate by working on one another's results. Because the agents are autono-

mous, this cooperation is asynchronous (no agent can be forced to wait for results from

another). Rather, all the agents can, if they so choose, work in parallel all the time. (Other

Talukdar

synthetic problem-solving systems often include precedence constraints to force at least

a partial order on the activities of their computational modules. Traditional genetic algo-

rithms, for instance, require destruction to cease while construction is in progress, and

vice-versa.)

Since every agent decides for itself what, if anything, to do and when, if ever, to do it, and

since every agent is unaware of its colleagues except for the results they produce, one

might think that the agents would work at cross purposes. Surprisingly, this not always

the case. Useful A-Teams have been developed for a wide variety of optimization and

constraint satisfaction problems, including, nonlinear equation solving [7], [24], traveling

salesman problems [14], high-rise building design [8], reconfigurable robot design [9],

diagnosis of faults in electric networks [10], control of electric networks [11], [25] job-

shop-scheduling [16], steel mill scheduling [17], paper mill scheduling [25], [26], train-

scheduling [15], and constraint satisfaction [18]. Not only do the data flows of these A-

Teams produce very good solutions, but they appear to be scale-effective, that is, the

data flows can always be made to produce even better solutions by the addition of cer-

tain agents and memories.

Scale-effectiveness is rare in synthetic organizations. Hence the proverb, "too many

cooks spoil the broth." In a scale-effective organization there can never be too many

cooks, at least not from the perspective of broth-quality. More precisely, the problem of

obtaining better solutions in a scale-effective organization reduces to one of finding

which components to add. A non-scale-effective organization usually faces the much

more difficult problem of finding which of its parts to eliminate or modify before additions

can be of benefit.

II. A DESIGN PROTOCOL

For several years, we have been experimenting with a protocol for designing A-Teams.

The steps of this protocol together with some experience-based guidelines for their

implementation are given below and illustrated with an A-Team for the traveling sales-

man problem (TSP).

Talukdar

Step /. Choose a problem.

The TSP is a prototypical combinatorial-optimization-problem with a variety of practical

applications. In its most basic form, the TSP is: given m cities and their separations, find

the shortest tour of the cities. (A tour is a closed path that goes through every city). The

number of distinct tours grows so rapidly with m that it is impossible to conduct an

exhaustive search for the shortest tour, even when there are as few as 30 cities. Practi-

cal instances the TSP often have hundreds and sometimes thousands of cities.

Step 2. Decompose the problem into subproblems.

The decomposition need not be hierarchic. The subproblems need not be disjoint, nor

even distinct; they may have only small overlaps with the original problem and may even

be more complex than it. But subproblems should be chosen so they can be connected

by agents into closed loops, so the solutions of each subproblem can be used to con-

struct solutions to the next subproblem in the loop.

For the TSP, we choose four subproblems: find an optimal tour, find good tours, find

good partial tours, and find good 1-trees; where "good" means "containing many of the

arcs of an optimal tour" and a 1-tree connects all the cities but does not always form a

tour (the 1 -trees form a superset of the tours).

Step 3. Assign one or more memories to each subproblem.

The purpose of each memory is to hold a population of trial-solutions to its subproblem.

As in the case of genetic algorithms, larger populations lead to better solutions. But the

marginal benefits fall off rapidly. Therefore, moderately sized populations can be

expected to work as well as very large ones.

Even moderate populations can occupy a great deal of storage space, especially when

each trial -solution is a complex object, such as a building-design. In such cases, the rep-

resentation should be a carefully chosen compromise between compactness and clarity.

Talukdar

For the TSP, we choose m as the population size (m/2 and 2m seem to work equally

well) and ordered lists of cities as the representation for complete and partial tours. With

this representation, {Atlanta, Boston, Raleigh, Pittsburgh} means a tour that goes from

Atlanta to Boston to Raleigh to Pittsburgh, and then back to Atlanta. The representation

chosen for 1-trees is more complicated. Interested readers can find it in [14].

Step 4. Select a set of algorithms or operators for each subproblem.

The greater the range of skills of these algorithms, the better the solutions that will be

found. The algorithms do not have to be uniform in size or coverage. Rather, some can

be large, others small, some can be general, others specialized. From their experiences

in developing commercial A-Teams for industrial clients, Murthy and his colleagues [26],

[27]f recommend using all the best and most powerful algorithms that are available.

Weak algorithms, such as crossover and mutation, when used exclusively, or powerful

algorithms, such as a state-of-the-art-branch-and-bound-algorithm, when used alone, or

any mix of low variety, will invariably do less well than a mix of greater variety and

range.

For the TSP, rigorous algorithms that finish in reasonable (polynomial) amounts of time

are unknown. However, there are hundreds of faster heuristics for generating and refin-

ing sub-optimal tours. We chose the sample shown in Fig. 2.

Step 5. Form each algorithm into an autonomous agent.

Think of an agent as having three components: an operator, a communication system

and a control system, the communication system connects the agent to its designated

input and output memories. The control system consists of selectors and schedulers.

The former choose objects from the input memory for the operator to work on; the latter

determine when the operator will work and which of the available computers it will use.

Definition: an agent is autonomous if its control system is completely self-con-

tained, that is, if it accepts no selection or scheduling instructions from other

agents.

Talukdar

The key to effective cooperation among autonomous agents is in the design of their

selection strategies. Where the quality of the solution can be measured by a single

attribute (such as tour length for the TSP), a very simple selection strategy seems to

work quite well. This strategy is a mirror image of the solution- rejection-strategy used in

simulated annealing, specifically: select solutions randomly with a bias towards the bet-

ter solutions. Murthy [9] has devised a variant of this strategy for cases where solution-

quality is best measured by a vector of conflicting attributes. Specifically: compare a vec-

tor representing the estimated needs of the solution to a vector representing the esti-

mated capabilities of the agent; arrange for the probability of selection to increase as the

magnitude of the angle between these vectors decreases.'

While scheduling strategies are undoubtedly important, we have yet to investigate their

effects. For the TSP and all the other cases we have studied, we have used only one

very simple strategy: allow each agent to run continuously, or as close to continuously as

the available computers will permit.

Step 6. Form autonomous destroyers.

Agents can be of two types: constructors (that add trial-solutions to their output-memo-

ries) and destroyers (that erase trial-solutions from their output-memories). The agents

produced in the previous step are constructors. Their actions must be balanced by

destroyers or the memories would soon become clogged with trial-solutions.

Destroyers can serve two additional functions. First, by erasing any solutions that fall in

parts of their output spaces (the sets of all the solutions that can be stored in their output-

memories) destroyers can make those parts almost inaccessible to the constructors.

(For a region to be truly inaccessible, results would have to be prevented from falling in

it, not merely erased after falling in it.) Second, destroyers can terminate undesirable pat-

terns of constructor behavior, such as (repeating sequences of solutions, by recognizing

and erasing them.

Talukdar

For the TSP, we used destroyers to erase tours selected randomly with a strong bias for

the longest tours (just as in the solution-rejection-strategy of simulated annealing).

Destroyers scheduled their activities so there were always a few open slots for the con-

structors to fill.

Step 7. Form the agents and memories into a strongly cyclic data flow.

Some of the data flows developed for the TSP are shown in Fig. 1.

Step 8. Test and modify the data flow by implementing it in a network of computers.

Seed the memories with initial populations of trial-solutions, activate the agents and

monitor the changes in the solution-populations. If these changes are overly slow in con-

verging, that is, if at least one complete solution of acceptable quality is overly slow in

appearing, then repeat from step 4. If convergence is still too slow, repeat from step 2.

Thus, a sequence of data flows is produced by iterating through two nested loops. The

outer loop, consisting of steps 2-8, changes the decomposition (the set of memories).

The inner loop, consisting of steps 4-8, stocks the data flow with algorithms. When the

supply of these algorithms is exhausted, or when the marginal benefit of adding new

algorithms grows small, the outer loop is reinvoked in the quest for a new and more pow-

erful decomposition. In iterating through these loops, proceed under the assumption that

strongly cyclic data flows can easily be made scale-effective; it is best to begin with a

small data flow, then add agents and memories until a data flow with adequate perfor-

mance is obtained.

The results for the TSP are shown in Figs. 3 and 4. Notice the effects of scale on solu-

tion-quality, especially, how quality improves as agents and memories are added. Notice

also that the speed with which the results were produced often increased with increases

in scale, even though all the agents and memories were made to share a single com-

puter (Fig.3). When more computers were made available (Fig. 4), the larger data flows

invariably finished faster than the smaller ones. Specifically, when four or more comput-

ers were made available to each data-flow, 2 (d), the largest data flow, not only produced

Talukdar

the best solutions but produced them faster than any other data flow. Thus, for the A-

Team for TSPst solution-quality and speed appear to be commensurate--both improve

as certain agents and memories are added.

Observed Behavior

The protocol has been tested over a wide variety of optimization problems [7-11, 14-18,

24-27]. The results display similarities along six dimensions. These dimensions and the

associated problem-independent behaviors are:

1. Diversity: solution-quality increases with the range of skills of the construction agents.

2. Scale: there is little, if any, penalty for an excess of construction skills. Rather, scale-

effectiveness seems to be commonplace; solution quality'can invariably be improved

by the addition of construction and destruction agents.

3. Expansion: adding autonomous agents to strongly cyclic data flows is relatively easy,

regardless of whether the agents are large or small, general or specialized.

4. Duality: adept destruction can compensate for inept construction, and vice-versa.

5. Population size: solution-quality benefits from increasing the sizes of solution-popula-

tions, but these benefits are prone to saturation.

6. Parallelism: solution-speed improves as computers are added until there are enough

computers for all the agents to work in parallel all the time. Often, the speed-up is

near-linear.

III. COOPERATION IN STRONGLY CYCLIC DATA FLOWS

What mechanisms are responsible for the problem-independent behaviors of A-Teams?

What are the underlying phenomena and causal relations? We will tackle these ques-

tions with the aid of a device, called a CDM (constant drift memory) which, it can be

argued, is a good model of A-Teams. The argument in outline is:

all forms of cooperation can be modeled by data flows;

• in any data flow, all the behaviors of interest occur in only one memory;
this, and all the other memories in any strongly cyclic data flow, can be accurately
modeled by devices called cyclic memories;

• most, if not all, cyclic memories can be modeled by a particularly simple type of cyclic

Talukdar

memory called a CDM.;
The technical apparatus needed to make this argument is outlined below and detailed in

the Appendix.

Definitions

Define cooperation as any exchange of data among agents, regardless of whether the

exchange is productive or not. If the agents are computer-based, then all the different

ways in which they can exchange data can be represented by data-flows [19].

Consider the data flow of a problem-solving organization. Each memory in this data flow

is dedicated to some subproblem of the overall problem to be solved, and contains a

population of trial-solutions to this subproblem. The dynamics of these populations are

determined by their initial values and by the agents that act on them.

Define:

• the effectiveness of a memory to be the double: (5m, vm), where 5m is the highest qual-

ity solution that will appear in the memory, and vm is the expected speed of this

appearance.

• a memory to be a primary memory if its subproblem is the same as the overall problem.

• a memory to be a cyclic memory if all the agents that write to it also read from it. (Note:

any memory in a strongly cyclic data flow is well approximated by a cyclic memory.

After all, no memory can see any more of its containing data flow than the agents that

read from or write to it. If the data flow is strongly cyclic, then most, if not all, the agents

that do one of these things can also be thought of as doing the other. For instance, the

entire subgraph that begins with agent-AI and ends with agent Dec in Fig 2 (d), can,

from the perspective of the partial tour memory, be replaced by a single super-agent

that both reads from, and writes to, the partial tour memory.)

• a memory to be scale-effective if it is cyclic and there are agents that cause 6m to

improve monotonically when these agents are added to the memory;

• a data flow to be scale-effective if at least one of its primary memories is so.

• a cyclic memory to be a constant drift memory (CDM) if the dynamics of each of its trial-

10
Talukdar

solutions are described by a Markov chain of the sort shown in Fig. 5.

Some of the more important structural features of a CDM are:

• The members of the initial population of solutions in a CDM are chosen randomly from

the space of all possible solutions that can be stored in the memory. The size of this

population is small in comparison to the size of the space of all possible solutions.

• A path (a connected sequence of solutions) is developed from each of the members of

the initial population by the combined actions of constructors and destroyers. A con-

structor, when it chooses to act on a path, lengthens it by adding a point to its end; this

point is a modification of its immediate predecessor. A destroyer, when it chooses to act

on a path, shortens it by removing a point from its end. '

• The paths are developed concurrently. The total time required for the development of

each path is the sum of the time that agents spend actually working on the path (adding

or erasing points) plus the time by which they are delayed in their work. These delays

are of three types: synchronization delays that occur when an agent must pause in

order to satisfy a synchronization or precedence constraint in the organization's control

structure, communication delays that occur when an agent must wait for the delivery of

the data it needs, and resource contention delays that occur when an agent must wait

for the computers it requires.

• The CDM and its agents are implemented in a distributed network of computers. Each

agent is assigned a computer for its exclusive use, so there are no resource contention

delays. Moreover, this computer is sized so that each agent requires the same amount

of time for an action as every other agent.

Consider any CDM. Let:

C be the set of construction agents that acts on the CDM.

Qc be the set of operators contained in C.

D be the set of destruction agents that acts on the memory

S be the space (set) of all possible solutions, good and bad, that can be stored in the

memory.

5 be an indicator of solution-quality, such that 6 increases as solution-quality

n
Talukdar

increases.

G§ be the subset of S that contains all the solutions of quality 8 and better.

N be the size of the initial population of solutions stored in the CDM. Assume that the

members of this population are chosen randomly from S and that N is always small in

comparison with the size of S.

T5 be the expected amount of time for the population of solutions to evolve at least one

solution of quality 5 or better. G5 is said to be reachable if T5 is finite.

5m be the greatest value of 5 such that G6 is reachable,

vm = 1/T5m be the expected speed with which G$m is reached.

d(y) be the distance of y from G5, where y is any solution in Sf and d(y) is the minimum

number of operations needed to convert y into a member of Gg.

P(S) be a partition of S into regions So, S1f...f S^, such that Sn contains all the solutions

that are at a distance of n from G5, as in Fig. 6.

H be the set of all the paths in S.

F(H) be a fuzzy partition of H into regions of desirable and undesirable paths, as in Fig. 7

Ho be the subset of H that the destroyers can recognize and erase.

p be the amount of time required for each agent to take one action.

Tsyn and Tcom be the expected synchronization and communication delays experienced

by agents in developing a successful path (one that reaches G5m).

Consider s, and s i+1, the two latest points in any developing path. Let:

p, q and r be the probabilities that s i+1 is closer, further and at the same distance, respec-

tively as Sj from G5.

pc, qc and rc be the values of p,q and r when the destroyers are disabled.

Pd» 3d a n d rd be t h e conditional probabilities that Sj^will be destroyed, if it is considered

for destruction and if it is further, closer and at the same distance, respectively, as Sj

from G5.

\{S\) = p - q be the overall drift of the CDM at sx\ X^Sj) = pc - qc, be the component of drift

contributed by the constructors; and X^Sj) = pd - qd be the component of drift contrib-

12
Talukdar

uted by the destroyers. (In a CDM, X is constant, but in other types of memories, X

could vary over S.)

A(S) be the space of all the A,(Sj). Note: in a CDM, X, Xc and Xd are constants for all points

at finite and non-zero distances from the goal.

Convergence Conditions And Causal Relations

For any CDM, it can be shown (see the Appendix) that if:

• X is positive, and

• there exists a finite K such that Sk = 0 or Sk c HD for all k > Kf

then G5 is reachable.

In other words, any mix of agents that makes the outer regions of S either empty or inac-

cessible, and makes the drift at all accessible points positive, will produce a solution of

quality 5 or better.

It can also be shown that the causal relations among the variables of a CDM are as

depicted in Fig. 8.

CDM Behavior

The succeeding material applies the convergence conditions and causal relations of

CDMs to determine and explain their behaviors along the six dimensions used earlier in

describing observed behaviors of A-Teams.

1. Diversity

P(S), the partition of the solution space (Fig. 6), can be reconfigured in two ways: by

increasing 6 which causes a migration of points to the outer regions, and by increasing

the number of construction operators which causes a migration in the opposite direction.

The latter migration is strongest when the new construction operators contain new and

powerful skills, in other words, the solution space contracts about a goal set as the range

of skills of the construction operators increases. Notice that the addition of certain

13
Talukdar

destroyers has a similar effect. Of course, destroyers cannot influence the individual dis-

tances of solutions from a goal set. But they can make the outer regions of the solution

space essentially inaccessible by quickly erasing any solutions that happen to fall there.

In effect, they can truncate the solution space, reducing the average distance of the

remaining solutions from any goal set, and thereby, causing the accessible part of the

solution space to contract about that goal set.

2. Scale

For a CDM to be scale-effective and for solutions of arbitrarily high quality to be reach-

able, there must be agents that: a) can be added to the CDM, b) make S^ empty or inac-

cessible, and c) leave the overall drift, X, positive for all points that are accessible and not

in the goal.

The value of X depends on the values of 7^ and X ,̂ the drifts of the individual construc-

tors and destroyers. These individual drifts are measures of selection acuity. A construc-

tor has a positive value for Xc when the solutions it selects to work on, are moved closer

to the goal more often than further away. A destroyer has a positive value of 7^ when the

its decisions to erase solutions are correct more often than wrong.

Expressions for the dependence of X on Xc and X^ can be found in the Appendix and

visualized with the aid of curves of the sort shown in Rg. 8. This dependence is such that

destruction has little effect on overall drift when the construction agents make relatively

few selection errors (Xc > 0.2). But when construction agents are likely to make numer-

ous selection errors, then destroyers can be used to erase the results of these errors,

yielding a high overall drift.

Thus, finding solutions of arbitrarily high quality in a CDM requires neither strategic plan-

ning nor coordination. Rather, agents acting independently, without central control, can

find these solutions provided only that there is the right mix of agents. One way to

achieve such a mix is to: a) include as wide a range of construction knowledge (compiled

14
Talukdar

into operators) as is available, in order to shrink the outer regions of the solution space,

b) design and add destroyers to make whatever remains of the outer regions inaccessi-

ble, and c) add destroyers to erase the results of mistaken patterns of construction activ-

ity, and thereby make the overall drift positive.

3. Expansion

If agents are non-autonomous, some of their controls are packaged separately in a

supervisory system. In such cases, the addition of a new type of agent usually requires a

long and painful reengineering of this system. However, when each agent comes with its

own complete control system, as is the case with autonomous agents, then no reengi-

neering is necessary. Furthermore, the control system can be customized for the agent's

operator: large, complex operators can be paired with appropriately large and complex

controls, small operators, with simple controls.

Since the conditions for finding solutions of arbitrarily high quality in a CDM place no

restrictions on agent type or granularity large agents can be mixed with small, and gen-

eral agents with specialists.

4. Duality

In a CDM, construction and destruction are dual processes in the sense that strengths in

one can compensate for weaknesses in the other. The evidence is as follows. First, the

solution space can be made to contract about any goal set by adding constructors or

destroyers. Second, the overall drift is sensitive to both (Fig 8). And third, the subgraphs

connecting C and D to 5m and vm in the causal diagram (Fig. 7) are almost symmetric.

5. Population Size

The causal diagram (Fig. 7) indicates that increases in the size of the solution-population

do not affect solution-quality but do benefit solution-speed. A more detailed analysis of

these benefits (Appendix) shows that they are prone to saturation and affect only the

early stages of path-development.

15
Talukdar

6. Parallelism

In a CDM, the addition of agents improves solution-quality provided these additions

leave the overall drift positive. The causal diagram of Fig. 7 indicates that such additions

will also improve solution-speed making quality and speed commensurate instead of

conflicting attributes, if the completely solid paths from C and D to quality and speed

dominate the paths containing broken arcs.

Since synchronization delays are nonexistent for autonomous agents, the exclusive use

of such agents causes the Tsyn node to disappear from the causal diagram along with all

the broken paths that go through it. In other words, the exclusive use of autonomous

agents makes the conditions for commensuration much easier to meet. (In contrast, the

performance of organizations with centralized control systems is often dominated by syn-

chronization delays, making it necessary to pay for increases in solution-quality with

decreases in solution-speed.)

CDMs As Models of More Complex Cyclic Memories

The observed behaviors of A-Teams are similar to the derived behaviors of CDMs. Are

the mechanisms that produce these behaviors also the same? In other words, can CDMs

be used to understand the internal workings of A-Team memories? We believe so.

Ofcourse, there are structural differences between A-Team memories and CDMs. Specif-

ically, in an A-Team memory: a) an agent may use several old solutions to produce a new

one, b) the overall drift, or rate of diffusion of solutions towards the goal, is unlikely to be

constant, and c) the agents may have quite different computational times. We believe

these differences are unimportant to solution-quality and can be made unimportant to

solution-speed by scheduling strategies such as assigning larger computers to the larger

agents. Empirical evidence in support of this belief is emerging in the form of devices,

designed on the basis of insights obtained from CDMs, that work in real A-Teams. We

feel that it is only a matter of time before theoretical evidence appears in the form of a

dilation of the set of CDMs that preserves their behavior but eliminates the structural dif-

16
Talukdar

ferences with A-Teams.

IV SUMMARY

An A-Team is a sequence of increasingly complex data flows. Each of these data flows

consists of sets of memories and agents connected into a strongly cyclic network. The

memories represent a non-hierarchic decomposition of the problem to be solved-each

memory is dedicated to one subproblem; some of these subproblems may have only a

small overlap with the original problem or even be more complex than it.

The later data flows in an A-Team are usually obtained by adding loops to earlier ones,

that is, by expanding earlier decompositions and agent-sets. *

In the operation of a data flow, trial-solutions to subproblems are produced by agents

and accumulate in memories to form populations. Agents cooperate by working on one

another's solutions. This cooperation can take two forms: construction agents add solu-

tions to populations; destruction agents eliminate solutions from populations. In effect,

the destroyers can make parts of a solution space inaccessible to constructors by elimi-

nating any solutions that happen to fall in those parts.

Each autonomous agent consists of an operator, a selector and a scheduler. The skills of

the agent to create or modify solutions are contained in its operators, the intelligence

with which it applies these skills is contained in its selector and scheduler.

The above features in combination-non-hierarchic problem decompositions, populations

of solutions, autonomous constructors and destroyers, and strongly cyclic data flows-

make A-Teams unusual, perhaps unique, among synthetic problem-solving systems.

How can they be understood and made to work?

The observed properties of A-Teams are similar to the derived properties of CDMs (con-

stant drift memories). There is reason to believe that their causal mechanisms are also

similar. This being so, the conceptual aids and analytical results for CDMs can be applied

n
Taiukdar

to understand and better design the strongly cyclic data flows that constitute A-Teams.

The most useful of the conceptual aids are P(S), F(H), A(S) and the diagram of Fig.8.

P(S) partitions all solutions by their distances from the goal; F(H) partitions all possible

patterns of construction activity by their desirability; A(S) is a field of the net rates at

which solutions will drift or diffuse towards the goal; and the diagram distinguishes mono-

tonic causal relations from non-monotonic ones. As such, P(S) provides a view of what

the set of construction-operators in a data flow can do, if they are controlled perfectly;

F(H) provides a view of the mistakes the construction-operators can make, if they are

controlled imperfectly; A(S) shows how well the constructors and destroyers will actually

do when they are working together; and the causal diagram provides insights into how to

improve performance.

The task of reaching the goal (finding a solution of quality 5 or better in a reasonable

amount of time), can be broken into two sub-tasks: a) make the outer regions of P(S)

empty or inaccessible, and b) make X(s), the net drift at point s, positive and as large as

possible for all accessible values of s. Any mix of construction and destruction agents

that covers these tasks will, if the agents are allowed to work on one another's results,

reach the goal. That such mixes exist has been amply demonstrated, at least for optimi-

zation. Finding new mixes, however, remains something of a problem. There are, as yet,

no automatic procedures, only guidelines. Perhaps the most important of these are:

• use autonomous agents. They have no synchronization delays, and therefore, can pro-

vide dramatic speed-ups when allowed to work in parallel. In addition, are easier to add

to data flows than non-autonomous agents.

• design agents to encapsulate the relevent knowledge in its naturally occurring chunks.

Put knowledge on what to do and where to search into construction agents; knowledge

on what to undo and where not to continue to search, into destruction agents; large

chunks of knowledge into large agents; small chunks into small agents.

• Include all the best and most powerful construction operators available. The resulting

contractions in P(S) invariably exceed those produced by mixes that include only weak

construction operators, such as crossover, or a single powerful operator, such as a

18
Talukdar

state-of-the-art-branch-and-bound.

• use destroyers to increase the net drift by making poor solutions inaccessible and by

erasing ineffective patterns of construction over the remaining solutions. In other words,

arrange for the destroyers to know or learn about poor solutions and ineffective pat-

terns. This is perhaps the most difficult guideline to implement.

V REFERENCES

[1] G.F. Oster and E.O. Wilson, "Caste and Ecology in the Social Insects," Princeton

University Press, Princeton, NJ, 1978.

[2] A. Kerr, Jr., "Subacute Bacterial Endocardites," Charles C. Thomas, Springfield, IL,

1955.

[3] "Handbook of Genetic Algorithms," edited by L Davis, Van Nostrand Reinhold, 1991

[4] H. P. Nii, "Blackboard Systems: The Blackboard Model of Problem Solving and the

Evolution of Blackboard Architectures, Parts I and II, At Magazine, 7:2 and 7:3,1986.

[5] S. Kirkpatrick, CD. Gelatt, and M.P. Cecchi, "Optimization by Simulated Annealing,"

Science, Vol. 220, Number 4598, May, 1983.

[6] F. Glover, Tabu Search-Parts I and II," ORSA Journal of Computing, Vol. 1. No. 3,

Summer 1989 and Vol. 2, No. 1, Winter 1990.

[7] P.S. de Souza and S.N. Talukdar, "Genetic Algorithms in Asynchronous Teams,"

Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan

Kaufmann, Los Altos, CA, 1991.

[8] R.W. Quadrel, "Asynchronous Design Environments: Architecture and Behavior,"

Ph. D. dissertation, Department of Architecture, Carnegie Mellon University,

Pittsburgh, PA, 1991.

[9] S. Murthy, "Synergy in cooperating agents: designing manipulators from task

specifications," Ph.D. dissertation, Department of Electrical and Computer

Engineering, Carnegie Mellon University, Pittsburgh, PA, 1992.

[10] C.L. Chen, "Bayesian Nets and A-Teams for Power System Fault Diagnosis,"

Ph. D. dissertation, Electrical and Computer Engineering Department, Carnegie

Mellon University, Pittsburgh, PA, 1992.

[11] S. N. Talukdar, V.C. Ramesh, "A parallel global optimization algorithm and its

19
Talukdar

application to the CCOPF problem/1 Proceedings of the Power Industry Computer

Applications Conference, Phoenix, May, 1993.

[12] S. Lin and B.W. Kernighan, "An Effective Heuristic Algorithm for the Traveling-

Salesman Problem," Operations Research, Vol. 21,1973, pp. 498-516.

[13] M. Held and R.M. Karp, T h e Traveling-Salesman Problem and Minimum Spanning

Trees," Operations Research, Vol. 18,1138-1162, 1970.

[14] P. de Souza, "Asynchronous Organizations for Multi-Algorithm Problems," Ph. D.

dissertation, Dept. of Electrical and Computer Engineering, Carnegie Mellon

University, Pittsburgh, PA, 1993.

[15] C. K. Tsen, "Solving Train Scheduling Problems Using A-Teams,w Ph.D. dissertation,

Electrical and Computer engineering Department, CMU, Pittsburgh, 1995.

[16] S. Y. Chen, S. N. Talukdar, N. M. Sadeh, "Job-Shop-Scheduling by a Team of

Asynchronous Agents," IJCAI-93 Workshop on Knowledge-Based Production,

Scheduling and Control, Chambery, France, 1993.

[17] J. A. Lukin, A. P. Gove, S. N. Talukdar and C. Ho, "An Automated Probabilistic

Method for Assigning Backbone Resonances of (13C, 15N)-Labelled

[18] S. R. Gorti, S Humair, R. D. Sriram, S. Talukdar, S. Murthy, "Solving Constraint

Satisfaction Problems Using A-Teams," to appear in AI-EDAM.

[19] S. N. Talukdar and P. S. de Souza "Insects, Fish and Computer-Based

Super-Agents," Systems and Control Theory for Power Systems, edited by

Chow, Kokotovic and Thomas, Vol. 64 of the Institute of Mathematics and its

Applications, Springer-Verlag, 1994.

[20] J. H. Kao, J. S. Hemmerie, R P. Prinz, "Asynchronous-Teams Based Collision

Avoidance in PAWS," EDRC Report, Carnegie Mellon University, June 1995.

[21] P. Krolak and W. Felts, "A Man-Machine Approach Toward Solving the Traveling

Salesman Problem," Communications of the ACM, Vol. 14, No. 5, May 1971.

[22] M. Grotschel, "Polyedrische Kombinatorik and Schnittebenverfahren," Preprint

No. 38, Universitat Augsburg, 1984.

[23] M. Padberg and G. Rinald, "Optimization of a 532-city Symmetric Traveling

Salesman Problem," Operations Research Letters, Vol. 6, No. 1, March 1987.

[24] S. N. Talukdar, S. S. Pyo and T Giras, "Asynchronous Procedures for Parallel

20
Talukdar

Processing," IEEE Trans, on PAS. Vol. PAS-102. NO 11, Nov. 1983.

[25]P. Avila-Abascal and S. N. Talukdar, "Cooperative Algorithms and Abductive Causal

Networks for the Automatic Generation of Intelligent Substation Alarm Processors",

Proceedings of ISCAS-96

[26] J. Rachlin, F. Wu, S. Murthy, S. Talukdar, M. Sturzenbecker, R. Akkiraju, R. Fuhrer,

A. Aggarwal, J. Yeh, R. Henry, R. Jayaraman, "Forest View: A System For Integrated

Scheduling In Complex Manufacturing Domains," IBM report, 1996.

[27] H. Lee, S. Murthy, W. Haider, D. Morse, "Primary Production Scheduling at Steel

making Industries," IBM Journal of Research and Development, vol. 40, no. 2, pp231-

252, 1996

21
Talukdar

(a)

LK

ri
OR (

I
•

Tours

pL
i

K

D1

LK OR CLK

Tours

(b) Dec

OR LK CLK HK

(c)

Al

Fig. 1. Four data-flows from an A-Team for the traveling salesman problem. D1-

D4 are destruction agents (they eliminate members from solution populations).

The other agents are constructive (they add members to solution populations

22
Talukdar

LK

CLK

OR

Al

HK

Dec

Ml

TM

Lin-Kernighan, one of the longest and most powerful
algorithms available [12]

a shorter and simpler version of LK [14]

Or-Optf a moderately complicated algorithm [14]

Arbitrary Insertion, a very short and simple algorithm [14]

Held-Karp, an algorithm for converting tours into 1-Trees [13]

a deconstructor that produces a partial tour from the
common edges of two complete tours [14]

a mixing algorithm that combines two tours to get one [14]

a mixing algorithm that combines a tour with a 1-tree
to give a new tour [14].

Fig. 2. A sample of algorithms for the traveling salesman problem.

23
Talukdar

DATA
FLOW
(See
Fig. 1
for
details)

(a)

(b)

(c)

(d)

PERFORMANCE

A: the difference in length between the best tour that could be found and
the optimum tour.

T5m: computation time with all the agents sharing one computer (a DEC
5000)

Krolak 24
100 cities [21]

A (%)

0

0

0

0

(sec)

35

39

39

13

LK318
318 cities [14]

A (%)

1.27

1.13

0.06

0

T8m
(hrs)

2.9

2.4

1

1.5

PCB 442
442 cities [22]

A (%)

1.20

0.89

0.26

0.01

T8m
(hrs)

4.2

3

4.8

3.5

ATT 532
532 cities [23]

A (%)

0.87

0.47

0.40

0.06

(hrs)

7.5

6.8

14

13

Fig. 3: Results from applying the data flows of figure 2 to four TSP problems. The results

are averages over 15 runs. Each run was terminated when improvements in the tours

ceased. All the agents of each A-Team were made to share a single computer- a DEC

5000.

24
Talukdar

o

<D

o

1
I
II

0.9 j

0.8 • •

0.7 ••

0 . 6 • •

0.5 •-

0.4 ••

0.3 --

0.2 --

0.1 • •

0 - -

A Maximum

" Average

V Minimum

1 2 3 4

Number of computers

Fig. 4: Plots of speed vs. number of computers for problem ATT532 and the

data flow of figure 1 (d). The average, maximum and minimum speeds

were for 15 runs.

25
Talukdar

r+q

Fig. 5. A Markov chain. Nodes represent solutions states, arcs represent transition prob-

abilities. Consider a trial solution in state Sn. The next agent to work on this solution has

a probability p of converting the solution to a solution in Sn.1t a probability q of converting

it to state Sn+1 and a probability r of leaving its state unchanged

26
Talukdar

Fig 6. The space of solutions is partitioned into regions so that all the points in Sn are n-

constructive operations from the goal space G5. These regions, particularly the outer

ones, depend on both G5 and C. As G5 contracts, the outer regions expand; as C

expands, the outer regions contract.

27 Talukdar

DESIRABLE

Points close to G5

Short paths to G5

•
— |

Path segments that head i
toward G5 i

i

i

•

! UNDESIRABLE

, Points far away from G5

r~
! Long paths

i
1 "'" •

i Path segments that head
i away from G5

i~

Orbits

Previously
explored paths

Fig 7: H, the set of all possible paths in S, can, in principle, be partitioned into desirable

paths and undesirable paths. The function of the destroyers is to recognize and erase

undesirable paths before the constructors have wasted a great deal of time on their

development.

28
Talukdar

Set of
Construction
Agents. C Q . —

Set of
Destruction - %
Agents. D Q- >r~

Initial size of the
solution
population. N

Power of the
computer network

vm

Fig. 8: Causal relations of a CDM. Each solid arc denotes a monotonically-increasing

relationship. For instance the solid arc between N and -— means that -— increases
cxp cxp

monotonically with N.

29
Talukdar

-0.8 -0.6 -0.4
X = 01001

= Pc - Pc
-0.2 0.0 0.2 0.4

•ocr

T3

a.

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

Fig. 9: Iso-drift curves for one set of values of q<j, rd and rc. Notice how X, the overall drift

depends on Xc, the construction drift, and X$, the destruction drift

30
Talukdar

APPENDIX
In this appendix we explore CDMs in greater detail.

Definitions:

Let:

C be the set of construction agents that acts on a CDM

0c be the set of algorithms contained in C.

D be the set of destruction agents that acts on a CDM

S be the space (set) of all possible solutions, good and bad, that can be stored in a

CDM.

5 be an indicator of solution-quality such that 8 increases as solution-quality

increases.

G5 be the subset of S that contains all the solutions of quality 5 and better.

N be the size of the initial population of solutions stored in a CDM. (In real problems, N

is always small in comparison to the size of S.)

Ts be the expected amount of time for the population of solutions to evolve at least one

solution of quality 5 or better. G5 is said to be reachable if T8 is finite.

5m be the greatest value of 5 such that G5 is reachable,

vm = 1/Tgm be the expected speed with which Ggm is reached.

d(y) be the distance of y from G5, where y is any solution in S, and d(y) is the minimum

number of construction-operations needed to convert y into a member of G5.

Sn be the subset of S containing all the solutions that are at a distance of n from G5, as in

Fig. 6.

H be the power set of S (the family of all the subsets of S).

HD be the subset of H that are recognized and erased y the destroyers in D.

p, q and r be the constant probabilities that the latest edge in any developing path will be

a progressive, regressive or neutral edge, respectively; where a progressive edge

moves the path's end closer to G5, a regressive edge moves it further away and a

neutral edge leaves it at the same distance.

Pc Qc a n d rc be t h e v a |ues of p,q and r when the.destroyers are disabled.

31
Talukdar

pd, qd and rd be the conditional probabilities that a regressive edge, if considered for

destruction, will be destroyed; that a progressive edge, if considered for destruction,

will be destroyed; and that a neutral edge, if considered for destruction, will be

destroyed.

X = p-q be the overall drift of the CDM; Xc = pc -qc, be the drift of the constructors; and 7^

= Pd " cid be t h e drift of t h e destroyers.

P be the amount of time required for each agent to take one action.

Tsyn and Tcom be the expected synchronization and communication delays experienced

by agents in developing a complete path (one that reaches Gsm).

Calculating the overall drift X of the system.
Consider a single path through S as it is developed by the constructors and destroyers.
We assume that in each step a constructor which will extend the path is chosen with
probability x and a destroyer which may shorten the path is chosen with probability 1 -x. X
can then be computed from x, pc, qc, rc, pd, qd and rd.

Let:
e denote the edge most recently added to the path.
kpro» kreg» kneu denote the probabilities that e is destroyed some time in the future

given that it is a progressive, regressive or neutral edge respectively.

The most recently added edge e can be destroyed in two ways. Either it is destroyed
before any other edge is added to the path, or it is destroyed after some other edge has
been added. In the latter case the new edge has to be destroyed before e can be consid-
ered for destruction again. If we assume the A-team will run for a very large number of
iterations, then, once the new edge is destroyed, the system will be in exactly the same
state as when e was first added. Hence we get the following recursive formulae for
kreg ^ n d Kneu.

oo

k
Pro = O - x) q d £ (l - x) n (l - q d) n

n = 0

+ I 1 - (1 - x) qd £ (1 " *>" (1 - qd)"] (P ckp r o + qckreg + rckncu) kpro
^ n = 0 /

l - (l - x) (l - q d) J Pc P«> + qc Rrcg + rckne J

32
Talukdar

1 - x) pd [(l - x) p d "|
- X) (l - p d) + I ^ ~ 1- (1 - X) (l - p d) I (P<=kpf<> + qckreg + Fckncu) krcg

(l-x)rd ((l-x)rd ^

The overall drift of the A-team then becomes

Fig. 9 shows X as a function of pc? qc, rc, pdl qd and rd for optimal x.

Reachability of G5

If G§ is small or the set of construction agents is weak, not all solutions in S are at a finite

distance from G5. Let S« be this set of points for which there is no path to G6. Clearly we

cannot guarantee reaching G5 unless the destroyers make S^ inaccessible.

If:
• X is positive, and
• if the outermost regions of S are either empty or made inaccessible by the destroy-

ers,
that is, if there is a finite K such that for k > K, S|< = 0 or S^ c HQ

then:
• G5 is reachable.

proof:
Let j be the expected number of steps required to get one step closer to the goal.
Then

+ r (j) +q(2J) =>j = — = 1 (0)
p-q K

so when X > 0 we get a finite j. Starting with a solution in Sn the expected number of

steps required to get to G5 is £. let E[n] denote the expected distance to G5 from the ran-

33
Talukdar

domly seeded solution. Since all solutions not made inaccessible by the destroyers are
at distance at most K we have E[n] < oo. Hence then expected time to goal from the ran-

domly seeded solution is —~ < oo.
A.

Monotonic relationships. (Fig. 7)
1. Solution Speed vm.

Let:

U be the subset of S that is not in HD .

Rn be the residue of Sn, that is, the fraction of points in U that are at distances of n or

greater from G5. In other words:

If:
• the destruction agents make the portion of S that is outside U completely inaccessi-

ble, preventing paths in U from ever leaving it;
• N starting points are randomly chosen from Uf all points in U being equally likely;

• the best (closest to G5) of these points is identified and a path from it to G5 is devel-

oped by the sequential application of construction agents and destroyers;

Then:

Rn = 0 if and only if S n n U = S n + 1 n U = ... =0 (1)

R1f R2, R3,... decrease monotonically as the variety of

constructive skills in increases, that is, as the number
of agents in C increases (2)

00

"mi. = 2 Rn 0)
n = 1

Lcxp = £nmin (4)

where nmin is the expected distance of the best starting point from G5, and Lexp is the

expected length of the path from this point to G5.

Proof:

Result (1) is obvious from the definition of Rn. Result (2) follows directly from the defini-

tion of Rn and the fact that Sn decreases as the skills in Qc increases.

To see (3) note that the probability that the best of N starting points is in distance n from

34
Talukdar

the goal equals the probability that all points are at least in distance n and not all points
are at least in distance n+1 so

%.„= £•(*:->£,)-
n = 0 n = l n = 1 n = 1

(4) follows immediately from (3) and (0)

Now when N increases each term in the sum (3) decreases so the expected speed

L
v m = - with which we reach G5 increases.

min

Likewise by (2),(4) an increase in QQ or X also causes the vm to increase.

2. Solution-quality, bm.

S^ depends on 8 and QQ. Specifically S^ fills as 8 increases, and empties as 0c expands.

Suppose that an improvement of solution quality from 8 to 8-A8 causes S« to fill by the

amount AS^. Then sufficient conditions for achieving this improvement are: an expan-

sion of 0C to empty part of AS,*,, and an expansion of HD to contain the rest of AS^, all

while maintaining X > 0.

Age Based Restarting.
For small X, the expected path length to the goal LeXp becomes unmanageably large.

Faster convergence to the goal can then often be achieved by terminating all paths and

restarting with a new random population of solutions. The decision to terminate a path

should be made on the basis of information actually available. One piece of information

that can readily be used is the number of operations performed since last restart.

Let n° = (I IQ, n^ ... J be the distribution for the best member in the set of initial solu-

tions, that is nn = probf best initial solution e Sn] , and let

P =

1 0

p r q 0 ...

0 p r q 0

Then nN = n°P N is the distribution of distance to goal of the solution after it has been

worked on for N iterations. If after N iterations we haven't reached the goal state the con-

ditional distribution of the distance to the goal is given by

35
Talukdar

N T 1 n̂
Un = Pr sol in S n (8 , 5) after N iterations) sol not in G5 after N iterations! = f ^

I l " n o J
and we may say that the solution has age N.

The average remaining number of iterations to get a solution of age N into G5 is then

&n For certain values of p, q, r and n , even for some p > q this remaining
n = i

number of iterations will for some N exceed the expected time to reach the goal from the

initial solution. For these values of p, q, r and n° it is beneficial to use age based

restarting. Suppose we always reseed the memory after N iterations. Then the expected

number of iterations to reach G5 is

N(exp. # of restarts J + (e xP- # of iterations to reach GJ G5 reached in < N iterations 1

N

n 0 j t

fi-iClf
As a numerical example take p = 0.S2, r = 0, q = 0.48 and assume that the best newly

created solution will always start in S10 . Then the expected number of iterations to get to

Gs without age based restarting is 250. With age based restarting at N = 110 we get

n^ = 0.48862 and expected number of iterations to G5 equal to 171.202 < 250.

Note that the restart threshold N that minimizes the expected time to reach G5 is not nec-

essarily the first N for which the expected number of remaining iterations exceed the

expected number of iterations to G5 from the best initial solution. If the variance on the

expected remaining iterations is sufficiently high, and it normally is, it is more advanta-

geous to do a few extra iterations before restarting. The best value for N is found by cal-

culating O for a different values of N. It can be shown that (*) is concave in N for fixed p,

q, rand n u .

36
Talukdar

