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1. Introduction. In his nominal paper [1] FRANK proposed a model to describe
the equilibrium of nematic liquid crystals that is now regarded as a classic. In FRANK'S
model the local microstructure of nematic liquid crystals is described by a unit vector n
that represents the optical axis: only one vector is needed, for these materials are uniaxial.

Generally, the optical axis changes in 6pace; it can exhibit singularities, which are
called defects. Disclinations are those defects located along lines.

FRANK proved in fl] (for work of Oseen see [15]) that disclinations actually occur in
some solutions of his model. Here we devote special attention to one of FRANK'S disclinations:
We examine its role within the classical model and discuss a puzzle it provided; we also recall
the resolution of that puzzle by CLADIS & KLEMAN in [2]. Finally, we show how FRANK'S
disclination also arises in a model proposed by ERICKSEN in [3] to accommodate all defects in
a unified theory.

To illustrate this subject we employ neither FRANK'S model nor ERICKSEN's in their
full generality. In particular, we employ the one constant approximation of FRANK'S en-
ergy functional (see e.g. [4] for both the general expression of the energy and its approxi-

mation). Accordingly, when we come to ERICKSEN's energy functional, we employ an
approximation which somehow parallels the aforesaid approximation to FRANK'S functional
(cf. MADDOCKS [14] for a different approach.

Let 2 be the open region of the three-dimensional Euclidean space occupied by a
nematic liquid crystal. The orientation of the crystal is a vector field n of class Cl that
maps the whole of 25, except possibly a closed set 8 C 2 , into the unit sphere S2. An
orientation delivers the optical axis of the crystal at all points of £ where it is defined.
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The energy associated to an orientation in the simplified setting of FRANK'S model
that we employ here is

(1.1)

3

where Kp is a positive constant. We subject S'p to the boundary condition

(1.2) n|8o = n0 ,

where So is a given part of #B, possibly all of it, and no : So —> S2 is a prescribed map
of class C1. Equation (2) differs from the strong anchoring condition in that So need not
coincide with the whole of &B.

Now we turn our attention to disclinations.

Suppose that 2$ is a circular cylinder of radius R and height H: in cylindrical co-
ordinates it has the form

(1.3) S : = { p = 0 + re r + *e*|r G]0,i2[, z e]0,H[} ,

where 0 is the center of one base of the cylinder. Furthermore, suppose that So is the
lateral surface of 2J and that no coincides with the outward unit normal to So. Of course,
the radial field

(1.4) n = e r

obeys the boundary condition (2); it possesses a line of discontinuity along the axis of
2$, namely it possesses a disclination. FRANK proved that (4) indeed solves the Euler
equation associated with (1). Moreover, (4) looks likes the orientation often observed by
physicists in capillary tubes filled with nematic liquid crystals.

What is wrong with (4) is that its energy, as given by (1), is not finite. This presents
the previously announced puzzle: Why does the orientation one would guess to be the
minimizer of the energy not even make it finite?

The answer was found by CLADIS and KLEMAN in [2]. They sought for minimizers
of (1) in the class of all axisymmetric fields

(1.5) n = cos tper + sin <pez ,

where <p is a real-valued function of class C1 that depends only on the radial co-ordinate
r and obeys the boundary condition

(1.6) <p(R) = 0 .
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In this class of orientations the energy functional (1) reads

(1.7) 3>[n] =

where

(1.8)

a prime denoting differentiation with respect to r. CLADIS and KLEMAN proved that
the minimizer of t subject to (6) is

(1.9)

an easy computation shows that

(1.10) F[<PCK]=2.

The function y>cK decreases from y to 0 as r ranges from 0 to R. The orientation that
corresponds to <pcK through equation (5) is a field of class C1 in the whole of 3 , it coincides
with the planar field e r only on So: this is the reason why CLADIS and KLEMAN's solution
is sometimes referred to as the solution "escaping to the third dimension".

Recently, a new model for the mathematical theory of liquid crystals came on the scene;
it is ERICKSEN's [3]. Besides n, a scalar now describes the local microstructure of liquid
crystals: it is $, the degree of orientation, which specifies the degree of microscopic order
that legitimizes the definition of n .as a s t a t i s t i ca l average of the axis of the molecules.

In ERICKSEN's model s ranges in the interval [— §,l] . The values — \ and 1 corre-
spond to the extreme situations in which all molecules in a macroscopic site lie parallel
to a plane or along a direction, respectively. Where s vanishes the liquid crystal becomes
isotropic: the molecules do not lie in any preferred direction and n is undefined. Defects
may possibly coincide with the regions, of any space dimension, where s vanishes.

If a liquid crystal occupies the region 2$, the degree of orientation s is delivered by a
map of 3 into [—£, l] that is continuous on 2J and of class C1 away from the singular set

(1.11) B(s) := {p € 2 | s(p) = 0} .

If S(s) is not empty, defects may arise there. Thus, the orientation n is a map of class C1

defined on 2$\S(6).



The energy per unit volume depends on s and Va, besides n and Vn. We refer to
Section 5 of [3] for the general form of the energy functional. Here we employ a special
form of it that resembles (1):

(1.12) Ss[*,n] := KEJ{k\Vs\2+s2\Vn\2+*0(s)} ,
3

where KE and k are positive constants and a$ is a smooth function whose main features
are illustrated e.g. in Section 2 of [5]. When s is taken as constant in (12), 7E reduces to
S'FI modulo inessential constants.

Together with (2), we impose on SE the boundary condition

(1.13) *ls0 = *o ,

where SQ : So —• [—•§, l] is a continuous function.

When SQ is constant and different from zero, a heuristic argument discussed in [6] leads
us to neglect Go in (12). Apart from this argument, the strongest reason in favour of such
an approximation that we are aware of is its simplicity. Thus, we write 7E as

(1.14) 3[s,n] = KE J{k\Vs\2 + s2\Vn\2}
3

and we subject it to (2) and (13), with s0 a positive constant.

Although the region B may in general be arbitrary, here it is to be the cylinder (3). If,
as above, we take So as the lateral surface of 2$ and n0 as the outward unit normal to So,
in the new setting the field (4) becomes a legitimate candidate to minimize 3", as soon as
it is associated with a suitable field s that vanishes along the axis of 2$.

Thus, it is conceivable that the singularity of (4) can be tamed so as to make it the
minimizer of the energy functional. As mentioned above, we will prove that this is indeed the
case. In fact, the critical value will be shown to be k = 1, so that the orientation field (4)

together with a suitable field s minimizes & when k < 1, while when k > l the orientation
that minimizes & shares many features of CLADIS and KLEMAN's solution, but is not quite
the same.

The plan of the paper is as follows. In Section 2 we recall a few theorems, proven
elsewhere, that are relevant to our development and we state the variational problem we
solve in this paper.

In Section 3 we deduce those qualitative features of minimizers that follow by direct
arguments. In particular, we pay attention to the admissible shapes of the singular set.

In Section 4 we derive the Euler equations. From them we deduce both a dichotomy
concerning the singular set and the du Bois-Reymond equation. The latter leads to a first

integral whose role will be made clear later in Section 5.



In Section 5 we apply the Hamilton-Jacobi method, also known as dynamic program-
ming in the theory of optimal control. We also derive the Hamilton-Jacobi equation
suitable to our problem and we state in precise terms the main theorem of the paper. A
crucial role is played there by two special properties of 7, both of which fail to hold if we
do not neglect Co in (12).

Finally, Section 6 is devoted to the proof of a key ingredient of the main theorem,
which relies on a phase plane analysis of the Hamilton-Jacobi equation.

2. Variational problem. The energy functional 7E *n (1-12) has been extensively
examined in recent times.

For k = 2, LIN proved in [7] that a unique minimizer (s,n) of 7E subject to (1.2)
and (1.13) exists in a suitable class of mappings. Later AMBROSIO proved in [8] that
minimizers of 7E actually exist for all values of k.

The regularity of minimizers has been addressed from different perspectives by both
AMBROSIO [9] and LIN [10]. Bringing together the results of their analyses, we learn
that for all k > 0 any pair (6, n) that minimizes 7E subject to (1.2) and (1.13) is such that
s is continuous on the whole of 2 and, if ao is of class C1, both s and n are of class C1>Qr,
for all a < 1, away from the singular set $(s) where s vanishes. Furthermore, both s and
u := sn are Holder continuous on the whole of 2$ for all k > 0, while they are Lipschitz
continuous when 0 < k < 1.

Of course, these results apply also to the functional 7 in (1.14). Moreover, since there
CJQ = 0, a recursive argument shows that the minimizers of 7 are at least of class C°° away
from the singular set; actually, they are even analytic (cf. again [9] and [10]).

Here the region 2J is the circular cylinder defined by (1.3) and 7 is subject to (1.2)
and (1.13), where we take So as the lateral surface of 2$, n0 as the outward normal to So,
and SQ as a positive constant. Thus, the boundary conditions imposed on 7 share the
axisymmetry of 2J. Hence, as is proven in [11], the minimizers of 7 are axisymmetric too:
specifically, s depends only on r, Die radial co-ordinate, and n takes the form (1.5).

In the class of pairs with the same symmetry as the minimizers, 7 can be reduced to
a simpler functional:

(2.1) 5\s,n]

where

R

(2.2) F[s, <p] := j {*5'
2 + *2 (v« + SZty } rdr

0

When s is a constant different from zero, F is proportional to the functional in (1.8). As in
(1.8), a Drime denotes differentiation with respect to r and <p is a real—valued function defined



in [0,R]. Like the functional in (1.8), here F is subject to (1.6), but also to

(2.3) s(R) = s0 .

The singular set defined in (1.11) is generated here by a subset of [0, R]:

(2.4) $(s) = {p = 0 + re r + zez\r G S(s) , z G [0,#]} ,

where

(2.5) 5(5) :={rG[0 , i J ] | 5 ( r ) = 0 } .

With a slight abuse of language, we also call S(s) the singular set.

The regularity result for the minimizers of 3 can easily be reformulated for the mini-
mizers of F. Thus s will be Lipschitz continuous on [0, R] for 0 < k < 1 and just Holder
continuous for k > 1, while both 5 and <p are analytic away from the singular set S(s).

Keeping these features in mind, we state the following

Variational Problem (VP). Find the minimizers of F in the class

(2.6) e := {(s,<p)\s G AC(0,R),<p£ ACioc]0,R[: s(R) = so > O^(R) = 0}.

3. Qualitative features of minimizers. In this section we derive, by direct inspec-
tion of the functional F, a few qualitative features of the pairs that solve (VP).

REMARK. If (s,y>) is a solution of (VP) (s,—<̂ >) is one also. Henceforth we resolve
this ambiguity by restricting the range of (p to the positive real line.

LEMMA 3.1. If the pair (5,9) solves (VP) then

(a) s(r)>0 , (b) tfr)<! for all r€ [0 ,J* ] ;

(c) s'(r) > 0 , (d) <p'(r) < 0 for almost all r G [0, R] .

Proof, To prove (a) we simply show that a function 5 which is negative somewhere
cannot minimize F. In fact, if we replace such an s by a function that vanishes wherever
5 is negative, we lower the value of F. To prove (c), we employ a similar argument. If
s is a decreasing function of r somewhere, we replace it by a continuous function that is
constant wherever s decreases. In so doing we again lower the value of F.

The proof of (b) and (d) parallels closely that of (a) and (c), respectively. Q



LEMMA 3.2. If(s,(p) solves (VP) then either S(s) = 0 or S(s) = [0,r0] with r0 > 0.

Proof. If S(s) ^ 0 and r0 := max{r 6 [0,i?]|.s(r) = 0}, then on replacing s by a
function that vanishes in [0,r0], we lower the value of F. Q

In the next section, building upon the Euler equations of F , we derive other features
of the singular set.

4. Euler equations. The regularity of minimizers recalled in Section 2 guarantees
that all the pairs that solve (VP) obey the Euler equations away from the singular set.
The Euler equations for F in [0,/2]\S(5) are

(4.D Hrsy—
S

(4.2) (rs2<pfy = cos (p simp ,r

subject to (1.6) and (2.3).

From equation (1) we arrive at a sharp dichotomy for the singular set.

LEMMA 4.1. If(s,<p) solves (VP) then either S(s) = 0 or S(s) = {0}.

Proof. First, we recall that the initial value-problem s(ri) = si, «s'(f*i) = s[, for
equation (1) (with cp treated as known) possesses exactly one solution. Second, we recall
that whenever S(s) is not empty for a minimizer, it is an interval [O,ro] with ro > 0
(cf. Lemma 3.2 above). Thus, we assume that ro > 0 and we prove that this leads to a
contradiction.

Let r : [0, R] —> R+ be any function of class C1 such that

(4.3) r(0) = T(R) = 0 .

For a given e G R , let pe be the function defined by

(4.4) Pe(r)~r + er(r) , r €[<),«].

For every function r there is eT > 0 such that p€ is a C^-diffeomorphism of [0,/?] onto
[0,R] for all e € [—er,er]. Once a function r has been selected, if the pair (s,<p) belongs
to C, then the pair (se,<p>€), whose members are defined by

(4.5) se(r) := s(pe(r)) , ^ e ( r ) : = <p(pe(r)) , r € [ O , J Z J ,

also belongs to C for all e € [—eT, er].
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If (s, v?) is a minimizer of F, then the first variation

(4.6) j

must vanish for all r of class C1 that obey (3). When s vanishes on [0,r0] with r0 > 0, a
tedious but easy computation shows that

R

(4.7) 6F(s,<p)[r] = j(rr9 - r) j ks'2 + s2 (<p'2 - S21Jt J I dr .

Integrating by parts in (7), we arrive at
R

(4.8) 6F(s,<p)[r] = - lim (r(r)rw(r)) - I r(rw' + 2w)dr ,
r-+r0 J

where we have set

(4.9) w := ks'2 + s

Since ro > 0, the left-side of (8) vanishes for all functions r if, and only if,

(4.10) lim rw(r) = 0

and

(4.11) rw' + 2w = 0 in ]ro,R[.

By (11) tu has the form

(4.12) w(r) = ±

whence (10) requires that it; = 0 on ]ro,12[. Since continuity of s yields s(r0) = 0, the
boundedness of S2LJE leads to lim s'(r) = 0. Since s' = 0 on ]0,r0[ we are thus led to

s(r0) = s'(ro) = 0. Equation (1) subject to these conditions has only the solution 5 = 0
in [ro,i2], for each function tp of class W1*2. Since s must satisfy s(R) = so > 0, we get a
contradiction that can be avoided only by setting r0 = 0. D

8



REMARK. Notice that since r0 = 0, (12) yields

(4.13) w = 0 on all of ]0,J?] .

It is easy to show that (13) is the du Bois-Reymond equation associated to (1) and (2).

5, The Hamilton-Jacobi Method."1" We consider the problem (Pi,i,o) of minimiz-

ing

(5.1a)

I

iUM := (f{r,s{r)Mr),s\r),<p\r))dr
J
o

over A(\; 1,0) := {(t, V>) 6 Wg x W^ \t(l) = 1, V(l) = 0} ,

where Wjo'c denotes W^^jO, 1] and where
(5.1b)

2

/(r , s,<£>,p, q) = krp2 + s2rq2 + s2 , r e]0, oof, (5,9?) 6 [0, oo[x[0,7r/2], (p, q) G R2 .

[It will be seen later that the special choice R = 1 loses us nothing in the generality of our
conclusions.] In order to facilitate the search for a minimizing pair (s*, <p*) £ A(l; 1,0) we
introduce the value function V :]0,oo[x[0,oo[x[0,7r/2] —» R for the full class (Pro,3o,(po) of
variational problems defined by

(5.2) V(ro;so,<po) := inf Fro r0 6]0,oo[,(60,v>o) € [0,oo[x[0,TT/2] ,
A(ro.tsOi<po)

where Fro denotes an integration of the integrand / over [0, ro] and A(TQ\ SQ^Q) is defined
analogously to A{\\ 1,0).

Under the assumption that the positive function V is smooth, the following formal
scheme leads us to a Hamilton-Jacobi partial differential equation for V, and the latter
will then be shown to serve as the basis for a rigorous verification theorem leading to the
identification of (s*,y>*).

Now by (1) and the smoothness assumption, we have for each (s,<p) € A(ro]so, <fo)
(5.3)

ro

> V(ro;3O,<po) = J(V,r + «% + / ^ ) ( r ;

+ liranF(r1;5(r1),v?(r1)),

+ I n control theory this is usually referred to as the "dynamic programming" method.

9



where the validity of the last equation rests on the existence of the quantity lim V(ri; s(ri), <p(ri)).

Now if Fro[s,(f] < oo, then the inequality in (3) when examined for all values r0 G]O,ro[
implies

Jim V(ro;s(ro),y>(ro)) = 0 ,

so that (3) leads to the integral inequality
(5.4)

r)V,v-f(r^r)MrU\r)1ip'(r)]dr < 0 , V (s,<p)
0

Notice that by the form (lb) of / it follows that

Fro[s,<p] < oo =» ( ^ H ) , ^ ) ) - [0,OO[X{TT/2} U {0} x [0,TT/2] =: Bo , a s r ^ 0.

Furthermore, since for any fixed ri G]0,ro[, 5'(ri),<r^
/(ri) can be substantially modified

with only a small perturbation in (s,<p) near rl9 we are led to consider the following
inequality for V = V(r;s(r),ip(r))

(5.4') Vtr+pir)V9M + q(r)Vt^f(rXr)Mr),p{r)Mr))<0, r€]O,ro[, p,q € X^Rrof,

for all (5,< )̂ G ̂ (roJ^o^o)- We shall actually study the corresponding Hamilton-Jacobi
equation for V = V(r, s,y>),

f ,r + sup {pVf, + gy,^ - /(r, 6, ̂ ,p,«)} = 0
(5.5) (HJ) { R

[ + ; a , 6 ) = 0 for all (a,

REMARK 1. Steve Shreve has pointed out that with the substitution r = e f the above
argument leads to an autonomous partial differential equation in i, as opposed to (HJ)
which is nonautonomous.

Now it is easily verified by using the explicit form (lb) of / that under the change of
variables

r = ar , TpCr) = <p(r/ot),'sCr) = s(7/a).!p'(7) = —o?f(F/a),¥'(F) = — sfCr/a). a > 0,

one obtains

oro

,!,<?,?,•?)<&= jf(r,s,<p,s',<p')dr = Fro[s,<p] .

o
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It follows from this that the value function V must be a solution of (4') which is independent
of r. Furthermore, since it is evident that

FrAPs,<p) = p2Fro[sM , V / ? e R , V ( s , ^ ) e > i ( r o ; s o , ^ o ) ,

we see that
V(r\8,V>) = s2B((p) for some smooth function B .

[This provides the justification of the claim that the choice R = 1 in (1) came without loss
of generality. We see that in general tp and s will depend on the ratio r/R.) By substituting
the above expression into (5) we see that the above formula for V necessarily involves a
solution B of the following ordinary differential equation:

(5.6) sup {2psB{tp) + qs2B'(<p) - krp2 - rs2q2} = £-£2fJ£ (HJ') .

On carrying out the indicated maximization in (6) we are led to three ordinary dif-
ferential equations for determination of the value function V = s2B(<p) as well as of the
optimal trajectories (s*,<p*) (at points where s*(r) ^ 0):

(5.7)
2r

s'(r) =
kr

REMARK 2. Substituting into (7a) from (7b) and (7c) leads to the du Bois-Reymond
equation (4.13) (cf. also (4.9)).

Since it follows from the form of / that for (f = n/2 and all constant functions s = SQ
Fro[

so>*/2] = 0? one also concludes that

V(r;so,7r/2) = *jj B(n/2) = 0 for all sQ €]0,oo[,

whence B{TT/2) = 0. Furthermore, by utilizing the monotonicity properties of s and ip (cf.
Lemma 3.1) we can write all differential equations in (7) in standard form. Thus we obtain
the system of equations

(B'(ip) = -i

(5.8) 2r

s'(r) =
kr

- , y>(r0) = v?o ,

s(r) , s(r0) = s0 , Vr€]0,ro] such that s*(r) ^ 0 .

It remains of course to ascertain whether for a given <po € [0, ff/2[ (8) possesses solutions
B,"<p~,s~, with

B 6 C2]<p0, */2[ D C[p0, TT/2] , s, if e CJ[0, r0] .

We proceed to show that (8) leads to a rigorous verification theorem for determining
optimal trajectories.

11



LEMMA 5.1. Let B denote a nonnegative continuously differentiate solution to (8a)
over the interval [0,TT/2]. Then the function W defined by

W(r; j , <p) := s2B(<p) , s € [0, oo[, <p G [0, TT/2[ ,

provides a iower bound to the value function for each (Pro Jo ̂ 0):
(5.9)

2 < V(rQ\so,<Po) = inf Fro , V(ro,so,V>o) € ([0,OO[)2X[0,TT/2]

Proof. Given any (3, (/?) 6 */l(ro; 3o, y>o) and any ri G]0, ro[ we make use of the smooth-
ness of W to write
(5.10)

W(r0; ,(r0), v»(r0)) - W(rl5 -(n), ̂ r,)) = / ( ^ + s'(r)W,. + f'(

= J[2a(r)s'(r)'B(V(r)) +

Expressing this last integrand as an inner product of vectors in R2 and utilizing (7a) yields,
via the Schwarz and arithmetic-geometric mean inequalities:

= /(r,

Inserting this into (10) now yields
(5.12)

/(r, «(r), < (̂r), /(r))cfr V («, v») € A(r0; s0,

Since the inequality W(rO]So,<po) < Fro[s,(p] is trivial when Fro[s,(p] = +00, we need only
show that in (12) Fro[s,<p] < 00 implies

(5.13) liminf WCrij^rj ) ,^! ) ) ==Kxninf «2(ri)B(v>(ri)) = 0
n—•() ri—»>o

12



2/ \ 2 / \

By the form of / , finiteness of Fro[s,<p] requires in particular that r »-* * w c ° s fw is in
L2(0, ro), whence

liminf s(r)cos<^>(r) = 0 .

For cases in which liminf s(r) > 0, this implies

liminf cos < (̂r) = 0 ,
r—•O

so that liminf |TT/2 — <p(r)\ = 0- Thus the boundary condition J9(TT/2) = 0 is clearly needed
for (13) to hold in these circumstances.

To show sufficiency, note that Fro[s,<p] < oo implies

,x,^ 7 / // ^ 2 J , 7 s2(r) cos2
 ip(r)J 7 52(r)cos2 <p(r)ln J

(5.14) / r(6/(r))2dr < oc and / — ^ ^ -^d r = / —— V ^ c?r
7 J r J rln-t
o o o

< oc .

o o

From the first relation we obtain

whence

r0

y
\

ro

J r(s'(
\

- r f r ,

s(r) < const Win - , r e]0, r0] .(5.15a)

Furthermore, since r f-» ^ x is not in 1^(0, r0), we deduce from the second relation that

liminf s(r)cos<p(r)Jln-= 0(5.15b)

Now (7a) ensures that

(5.16)

Estimating the first factor on the right by use of (15a) and applying (15b) to the result
leads to

= 0 ,limmf

so that (9) follows from (10).

13



LEMMA 5.2. For each k > 0 there is exactly one solution B = B(k; •) G
C2]0, ?r/2[ n C[0, TT/2] to the problem

(5.8') B'(^) = - 2 y cos* tp - ^ M f B(TT/2) = 0 , 0 < <p < TT/2

Moreover,

{ £(£;<?) < >/fc cos^ , 0 < <̂> < TT/2 ,

2?(Jfc;O) = Vfc , 0 < fc < 1

< \/£ , 1 < k < oo .

This result will be proved in Section 6.

We can now state our main verification theorem.

THEOREM 5.3. For each k > 0 the value function for the class of problems (PrOjao^o)
is given by the nonnegative C1 function

V(ro;so,(po) = slB(<p0) , ro ,6O 6 [0,oo[, y?o G [0,TT/2],

with B = B{k\ •) as in Lemma 5.2. Fbrtiermore the optimal trajectories (5*,^*) for
(-Pi,1,0) s*1"6 solutions on [0,1] to

(5.18) ^ f l

possessing the cost V(l; 1,0) = \/^, for each fc G]0,1]. In particu/ar for each k G]0,1] (but
for no k > 1), the optimal trajectory is given by

<^(r) = 0 , 5*(r) = r^T , r € [0,1] .

Proof. In view of equation (9) in Lemma 5.1, in order to prove that the value function is
as claimed it suffices to produce for each (r0, s0, <po) a pair (5*, (pm) G A(ro;so, (f0) satisfying

(5.19) F r o [ A v * ] = ^ B ( V o ) ,

with B as in Lemma 5.2. Now by reference to the inequalities in (11) it follows that
equality will hold in (12) and in (19) if and only if
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Equivalently, equality holds in (19) if and only if

&] = 0 , a.e.re]0,l[

\ / ( r ) = £-&*=!! , a . c . r G ] 0 , l[ \ < (̂r0) = *>o •

Since B is bounded it follows from (20a) that s0 ^ 0 implies s(r) ^ 0 for all r G]0, r0].
Hence (20) simplifies to

(5 20')

Now (20'b) clearly requires that to = y>(0+) be a zero of B in order for <p to satisfy
<£>(r) < 7r/2 on all of [0, r0]; that is,

~B(k;t0) = Vkcosto , where <0 = v(0+) •

Thus by (17a) existence of a <p € Wioc]0jro] satisfying (20'b) requires

(5.21) v?(0+)€ {0,^/2} , 0 < A r < l ,<p(0+) = ?r/2 , k > 1 .

Consider first the case to = v(0+) = 0. Here the monotonicity properties of minimizers
(cf. Lemma 3.1) imply

(5.22a) tpm(r) = <p0 = 0 V r 6 [0,1] .

Inserting this into (20'a) we obtain

(5.22b) s*(r) = s0 — , V r G [0, r0] .
\ r o /

Clearly this pair satisfies (20'), and we can verify that

'2(r)l ? *o / r \^*~1
\dr=l 2 — I — 1 dr = Vk s2

0 =

Next consider those cases with to = <^(0+) = TT/2, SO that by (8a) B(to) = B (t0) = 0.
Since 5 is smooth and bounded on ]0, TT/2[, the solution (p* to (20'b) can be continued to
all of [0,ro], so long as <p*(r) < TT/2, while if for some ri > 0 <p*(ri) = TT/2 then if* can
be (uniquely) continued to [0, r\ [ as the constant tp* = 7r/2. Correspondingly the solution
6* to the linear equation (20'a) can be continued to all of ]0, ro], as a C°° function in the
former case or as a positive constant s* = s*(ri) over [0,ri[ in the latter case. Obviously
6*, <p* € Wfo* in either of these situations. Moreover by the relation of equality in (12) for
(s*,<p*) and the boundedness of W = ($*)2i?(^*) it follows that Fro[s*,<p*] < oo, so that
(19) is a consequence of (13). This completes the proof that V is the value function as well
as the proof that the designated trajectories (s*, <p*) € A(ro] «so5 <̂ o) are indeed minimizers.
Clearly (18) follows as a special case. We will complete the argument in Section 6 by
proving that for k < 1 y>(0+) = 0 (cf. Lemma 6.5). D
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REMARK 3. Note that the issue of whether the minimizers s*,y>* happen to be con-
stant on some interval near r = 0, which is a question of regularity, is not essential for
the above verification result. It is not resolved by standard uniqueness results for differ-
ential equations in the real domain since in the present context S is not defined on a full
neighborhood of r = ri , <p = n/2. However an analysis utilizing the analytic nature of the
differential equation does lead to a uniqueness result for each r2 > 0, so that the case in
which (p* and s* are constant on a proper subinterval of ]0,ro[ cannot arise, [cf. 12, Ch.
13].

6. Phase plane analysis. We have learned in Section 5 that all the solutions of
(VP) solve also the following problem:

(6.1) B\V) = -2jm.'V-2?M Jj(f)=O ,f
(6.2) / ( r ) . . 2M22

It is worth noting that since (5.7a), from which (la) follows, is an analytic differential
equation, one can refer to well known results concerning initial value problems for equations
of this type. These will serve to justify our use of various formal expansions that occur
below in the analysis of solutions of (la) in the vicinity of its singular points. We refer
the reader to INCE [12], Chapters 12 and 13 (especially §13.4) for this material* In this
section we complete the analysis of equations (l)-(3).

THEOREM 6.1. For k > 1 the minimizer of F is such that S(s*) = 0 and <£>*'(r) < 0
for all re [0,J?].

The proof of Theorem 6.1 rests upon a phase plane analysis of equation (1). We outline
in a few Lemmata the main steps of this analysis, especially those involving qualitative
features of the minimizers. The proof of Lemma 5.2 will also follow from the Lemmata
below.

First we set the terminology we employ throughout this section. The integral tra-
jectories are the curves that represent the solutions of (la) in the (i?,B') plane. They
are confined within the region bounded by the co-ordinate axes and the quarter-ellipse
described by

(6.4) B' = -2dl-— , B>0 .

^ We are indebted to David Kinderlehrer for supplying this reference.
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This curve, which we call the outer ellipse for short, intersects the coordinate axes at
(\/fc, 0) and (0, —2), respectively. The former of these intercepts, as we shall see later,
plays a special role in our analysis. An integral trajectory hits the outer ellipse when
(f = 0. For each <po G ]0, -j [ there is an ellipse inside the outer ellipse, described by

/ B2

(6.5) B' = -2Jcos2<p0~— , B>0 ;

we call each of these curves an inner ellipse. For a given <po, the corresponding inner ellipse
intersects the 5-axis at (\/&o, 0), where

(6.6) v^o = v £ cos<po •

We employ ko € [0, k[ to label the inner ellipses. When &o = 0 the inner ellipse shrinks to
the origin of the (B,B*) plane. When ko = k the inner ellipse reduces to the outer ellipse.

LEMMA 6.2. There is exactly one solution to the initial value problem

(6.7) B(V>o) = Boe}0,y/ro] , <Po € [o, | ]

for equation (la), except for the case <po = 0 , Bo = y/ko with k ^ 1. Moreover for
Bo = \/k^, (fo € ]0, -| [ t ie domain of B is given by [0, y?0]-

Proof. Standard theorems ensure that the initial value problem (7) for (la) possesses
exactly one solution (which is analytic) except when B(<p0) = y/k^ (cf. [12], Ch. 12). To
complete the proof we need to analyze the behavior of the solutions of (la) in the vicinity
of the l?-axis when B(<po) = y/ko-

Three cases arise: (a) ko = 0 , (b) 0 < ko < k , (c) ko = A\ The corresponding
asymptotic formulae (cf. [12], Ch. 13) for the solution to (la) are given by

(6.8a)

(6.8b)

(6.8c)
B(v?) = Vk- av?2 + o(v?2) <p > 0 ,

where a is a positive root of

(6.9) a 2 - ^ + 1 = 0 .
Vk

Equation (9) has two positive solutions for k < 1, it has one for k = 1, and none for k > 1.
Notice that when B((p0) = \ /^?0 < &o < k, then by (8b) the solution to the initial value
problem for (la) has maximal domain [0, (po] and it is only of class C1 on this interval. Q
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LEMMA 6.3. Let B(k;<p) be the solution of (1). Then

Proof. For all k €]0, oo[ and all <p € [0, f ] we define

(6.11) K t ; v )

By (1), b satisfies the following equations

(612) £ ^ ^
Differentiating in (12) with respect to fc, we get

, , „ - 5 / 5 6 \ 1 J—= rr 1 26 d6 36 / , TT

Equation (1.3a) is known to be valid by Theorem 3.1 of [13], Ch. V. The solution of (13)
satisfies

X

(in / iC I

This completes the proof of the Lemma. Q

LEMMA 6.4. The solution B of (1) satisfies

( 6 ' 1 5 ) v ' ' ' " for all ib6]l,oc[.

Furthermore,

(6.16) lim S(fc;0) = 2 .

Proof. It follows from Lemma 6.3 that if k* := sup{fc e]0,oo[|"B(Jb;0) = y/k) then
B(k\0) = \ /^ for each k €]0,fc*]. Moreover (15b) is an immediate consequence of the
reasoning based on (8b) and (8c) since it ensures for k > 1 that B(k\ 0) ^ y/k. On the
other hand (8c) is consistent with the possibility that k* be any given number in ]0,1[.
Now it is easily checked that for k = 1 the function B(<p) = cos2 tp satisfies (1) as well as
B(0) = 1. [It is worth mentioning that the likelihood of k* = 1 was suggested by numerical
computations (cf. Remark 2 below) prior to the discovery of the above explicit solution.]

Equation (16) follows from the asymptotic formula for (1) when k —• oc:

which yields J5oo(0) = 2. D
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REMARK 1. Note that Lemmata 6.2, 6.3 and 6.4 complete the proof of Lemma 5.2.

REMARK 2. Figure 1 shows the integral trajectory of (1) for k = 1 along with two
other integral trajectories of (la) originating from the inner ellipse with k0 = §. (The
dashed line is the outer ellipse.)

Figure 1

Figures 2 and 3 illustrate integral trajectories of (la) for both k < 1 and k > 1.
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B

r-B' k = 0.4

Figure 2

'-B' k=2.2

Figure 3

Figure 4 shows the graph of ~B(k; 0) versus k; the dashed line is the graph of the
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function k •—> y/k.

B(k;0)

Figure 4

From Theorem 5.3 we know that

(6.19) minF =

Since so < 1, comparing (19) with (1.10) and referring to (16) we learn that

(6.20) nun F < FCKWCK) .

This inequality was already envisaged in [6], though in a special instance.

In the Lemmata below we take the last steps toward the proof of Theorem 6.1.

LEMMA 6.5. For each k < 1 the solution of equation (2) satisfies ^(0+) = 0, so that

tually <p = 0 and s(r) = SQ (^) on [0, R].ac

Proof. Recall that (5.21a) states that v?(0+) € {0, f } for fc €]0,1]. Now by the reason-
ing in Lemma 6.2 based on (8b), apart from the function <p = j which does not satisfy the
boundary condition (2b), no solution (p of equation (2a) such that y?(0+) = -| can satisfy
tp1 = 0 somewhere on ]0, R[. Hence all such solutions satisfy <pf < 0 throughout ]0, i?[. In
order for any such function to satisfy (2b) it would have to satisfy in the limit r —* R the
asymptotic approximation to (2a) near (p = 0, B = \/X, namely (cf. (8c))
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However, the solutions of this equation with <pr < 0 have the form -^j3r = (J^)Q , r €]r0, -R[
for some r0 €]0, JJ[, and hence do not vanish at R, contradicting the possibility <,p(0+) = f.
Consequently <£>(0+) = 0 = ^(i2), whence <p = 0 in [0, J?]. D

LEMMA 6.6. For k > 1 t ie solutions of (2) and (3) have the foiiowing asymptotic
behavior as r —» 0;

(6.21a)

(6.21b)

where both s£ and a* are positive constants.

Proof Recalling (5.21b) and inserting (8a) into both (2a) and (3a), we easily arrive at
the expansions in (21). If a* were to vanish then by use of (8a) the differential equation
(2a) would ensure by uniqueness that <p = TT/2, contradicting (2b). Thus since a* > 0 by
Lemma 3.1, it follows that a* > 0. Next consider what would occur if SQ were to vanish.
In view of the form of (21b) and (8a) it would follow that s* is a solution of a linear
homogeneous equation whose coefficient is smooth at r = 0. Thus s*(0) = 0 would imply
s* = 0, contradicting (3b). This completes the argument. Q

REMARK 3. Since s*(0) > 0 for all k > 1, by Lemma 4.1 we see that S(s*) = 0. We
now complete the proof of Theorem 6.1, recalling that <p* (0) < 0, by Lemma 6.6. By
uniqueness for (2) it follows that <p*'(R) < 0, as well.

We have computed both s* and <p* for different values of k. Their graphs are plotted
in Figures 5 and 6.
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1.2

r/R

Figure 5

Figure 6
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It is worth noting that while tp* look much like ipcK for all Jb > 1 , s* approaches 0
more rapidly near the axis of the cylinder as k gets closer to 1. Qualitatively, the size of
the core where the liquid crystal is nearly isotropic becomes larger as k approaches 1 from
above, while the orientation does not change dramatically.
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