
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

A Multiplier-Free, Reduced Hessian
Method for Process Optimization

Lorenz T. Biegler, Claudia Schmid, and David Ternet

EDRC 06-204-94

A MULTIPLIER-FREE, REDUCED HESSIAN METHOD FOR
PROCESS OPTIMIZATION

Loreriz T. Biegler, Claudia Schmid, and David Ternetl

Process optimization problems typically consist of large systems of algebraic
equations with relatively few degrees of freedom. For these problems the equation
system is generally constructed by linking smaller submodels and solution of these
models is frequently effected by calculation procedures that exploit their equa-
tion structure. In this paper we describe a tailored optimization strategy based
on reduced Hessian Successive Quadratic Programming (SQP). In particular, this
approach only requires Newton steps and their 'sensitivities' from structured pro-
cess submodels and does not require the calculation of Lagrange multipliers for the
equality constraints. It can also be extended to large-scale systems through the
use of sparse matrix factorizations. The algorithm has the same superlinear and
global properties as the reduced Hessian method developed in [4]. Here we summa-
rize these properties and demonstrate the performance of the multiplier-free SQP
method through numerical experiments.

1 Introduction.

Process optimization problems are encountered in design applications as well
as in real time operations. These typically consist of large sets of nonlinear
algebraic equations and represent the steady state operation of a chemical
process. For optimization, these problems have relatively few degrees of free-
dom, as the number of design or control decision variables generally remains
independent of the assumptions of the detailed phenomena in the process
model. An example of a process optimization application is illustrated by
the HDA process presented in Figure 1.

Solution of these nonlinear equations is generally covered by two types
of simulation modes. In the equation oriented mode the model equations are

1 Chemical Engineering Department, Carnegie Mellon University, Pittsburgh, PA
15213, email: biegler@cmu.edu

collected within a single set and solved together by a general purpose solver,
generally a large-scale Newton method. This approach tends to converge
quickly but requires good initialization procedures and does not exploit the
specific equation structure (e.g., block tridiagonal in distillation columns) of
the process model. Several modeling systems have been developed that are
based on this approach, including the SPEEDUP and ASCEND systems.

The second approach is a modular mode where equations for each pro-
cess unit (cf. Figure 1) are solved separately and passed on to the next unit.
As a result specialized solution procedures that exploit the unit structure
can be used along with tailored initialization strategies. However, this ap-
proach converges slowly as the convergence of recycle streams requires an
outer iteration loop and repeated solution of the unit models. For recy-
cle convergence, a variety of fixed point algorithms have been applied and
strategies that apply Newton or quasi-Newton methods to this problem are
termed simultaneous modular. Despite its inefficiency, the modular mode
remains the dominant process simulation mode in industry, as the simula-
tion programs are easier to construct, convergence problems are localized
within the individual submodels and these can often be corrected by phys-
ical intuition. ASPEN, PRO/II and HYSIM are the dominant commercial
simulation packages in this class.

Process optimization problems take the form:

subject to c(x) = 0, x € [xL,xv] (2)

where / : Rn -* R and c : Rn -» Rm are generally assumed to be smooth
functions. Here n,m » n - m and the first derivatives of / and c are
available, but their evaluation can be expensive in the modular mode. In
this paper we consider algorithms that do not require second derivatives.

For both modes, the method of choice is Successive Quadratic Program-
ming, although the NLP method is applied in different ways for each mode.
The successive quadratic programming (SQP) method for solving (l)-(2)
generates, at an iterate a;*, a search direction cfe by solving

Tmng(xk)d+dW(xk)d (3)

subject to c(xk) + A(xk)
Td = 0, (4)

where g denotes the gradient of fyW denotes tike Hessian of the Lagrangian
function L(x, A) = f(x) + ATc(z), ^nd this can be -approximated by a quasi-
Newton update. A denotes the n x TO matrix of constraint gradients

]. (5)

A new iterate is then computed as

(6)

where ak is a steplength parameter chosen so as to reduce the value of the
merit function. In this study we will use the l\ merit function

M*) = f(*)+?M*)\\u (7)
where p is a penalty parameter; see for example [10], [16] or [13]. This
penalty parameter is normally based on Lagrange multiplier values or their
estimates. However, in this study, we consider a simpler measure that does
not require Lagrange multiplier estimates, but still maintains descent prop-
erties for 4>n{x).

For the modular mode, the NLP algorithm is applied to only a small
part of the problem variables and most of the equations and variables are
eliminated implicitly through solution of the models. As a result, the size of
the optimization problem remains small (say, less than 100 variables) and
no large scale extensions are required for SQP. On the other hand, because
of nested solution of the process models and the need for reduced gradient
information from these models (typically by finite difference), process opti-
mization with this approach is less efficient than with the equation oriented
mode.

For the equation oriented mode, on the other hand, a large NLP is con-
sidered directly by the SQP algorithm. All equations and variables are
accessible and gradient calculations are straightforward. Nevertheless, care
must be taken to solve these problems with a large-scale implementation
of SQP. For this purpose, both sparse full-space methods [21] and reduced
Hessian variations [22] of SQP have been proposed and demonstrated for
process applications.

This study considers a variation of reduced Hessian SQP for a new for-
mulation of process simulation problems. Here we seek to combine the best
features of both simulation modes into a tailored mode. With this approach,
we retain the modular structure for process model, along with any spe-
cialized safeguards and initialization features, but do not converge these

Newton-based process models in an inner loop. Instead a single Newton
iteration is taken within each model. By collecting the Newton steps from
each of the submodels and by obtaining additional projected gradient in-
formation from them, the overall effort for optimization can be made to be
about the same as the work required for the equation oriented formulation.

However, as we assume the model equations, variables and their deriva-
tives are not accessible directly, we find it necessary to develop a nonlinear
programming method that requires neither second derivatives nor calculates
Lagrange multiplier estimates for the model equations. In the next section
we derive the 'multiplier free' reduced Hessian algorithm and present it for-
mally for problem (1). Section 3 summarizes the convergence properties of
the multiplier free method. In particular, the algorithm retains the global
properties and the 1-step superlinear convergence properties derived for the
reduced Hessian SQP method described in [4]. Section 4 describes two sets of
numerical experiments. First, a comparison is given between the multiplier-
free method and the reduced Hessian method described in [4]. Second, the
results of a recent process optimization study [23] are summarized in order
to demonstrate the tailored optimization strategy. Because of the multiplier-
free method, a simple construction df the tailored approach is realized and
it is demonstrated to perform as efficiently as the equation-oriented mode.
The last section summarizes the paper and ties together some related work.

2 Derivation of Multiplier Free Algorithm

This section develops the expressions for the multiplier-free algorithm, which
is a minor modification of the method developed in [4]. A key point in this
method is that the multiplier estimates A need not be calculated explicitly
and this property is useful for the tailored approach where direct access to
the constraint normals (i.e., the Jacobians of the process models) may be
difficult. The derivation is first developed for the equality constrained prob-
lem alone and convergence properties are summarized in the next section
for this case. The addition of variable bounds is also considered briefly at
the end of this section.

If we remove the variable bounds on (1), the solution of the quadratic
program (3)-(4) can be written in a simple reduced form. We introduce a
nonsingular matrix of dimension n, which we write as

[YkZk], (8)

where Yk 6 R n x m an<i Zk 6 Rnx(n~fn\ and assume that

4 0. 19)

(Prom now on we denote A(xk) as Ak, g(xk) as #*, etc.) Thus Zk is a basis
for the tangent space of the constraints. We express <£&, the solution to
(3)-(4),as

dk = YkpY + Zkpz, (10)

for some vectors py € Rm
tand pz € R*""*™. Due to (9) the linear constraints

(4) become
ck + AlYkpY = Q. (11)

If we assume that Ak has full column rank then the nonsingularity of [Yk Zk]
and equation (9) imply that the matrix A^Yk is nonsingular, so that pY is
determined by (11):

pY = ~[AlYk]-lck. (12)

The quadratic programming (QP) problem can be expressed exclusively
in terms of the variables pz- Substituting (10) into (3) with YkpY determined,
we obtain the unconstrained QP:

pz + \Pl
T{ZlWkZk)pz. (13)

In this study, we approximate Z][WkZk by the positive definite BFGS for-
mula and the solution of (13) is

pz = -(ZlWkZk)^[Zlgk + ZlWkYkPY). (14)

For this study, we partition x into m basic or dependent variables (which
we reorder to be the first m variables) and n—m decision variables, we induce
the partition

A(x)T = lC(x)N(x))t (15)

where the mxm basis matrix C(x) is assumed to be nonsingular. We now
define Z(x) and Y(x) to be

W-[-°f^W]yw..[{]. (.6,
This choice is particularly popular [19], [13] and advantageous when A(x) is
large and sparse, because a sparse LU decomposition of C{x) can often be

computed efficiently. Also, as shown in [23] an efficient partitioned decom-
position can also be derived from the projected gradients in the modular
mode in order to obtain the basis matrices in (16).

In [4] the cross term [ZkWkYk]pY is approximated by a vector wk,

[ZRWtYkipvHWk, (17)

without computing the matrix Z%WkYk. This allows the rate of convergence
of the algorithm to be 1-step Q-superlinear. Thus, the null space step (14)
of our algorithm will be given by

p* = ~(2([WkZkr
l[2Zgk +CkWk], (18)

where 0< C* < 1 is a damping factor described in [4].
Here the cross term is approximated either by a finite difference estimate

along YkPv or by a quasi-Newton method. The finite difference estimate
yields more accurate correction terms but also requires an additional gra-
dient calculation. In [4] it was shown that such steps are needed whenever
PY = O(dk) and pz = O(dk). Here we define

wk = Z{xk + YkPY)Tg(xk + YkpY) - Z\gk. (19)

After the step to the new iterate xk+\ has been taken, we define

wk = akwk (20)

These correction terms are substituted for the ones defined in [4].

w* = Zl[VL{xk + YkpYy Xk) - VL(s*, A*)]. (21)

wk = Zl[VL{xk + akYkpY, AJH-I) - VL(xfc, Afc+1)] (22)

where the (first order) multiplier estimates were calculated from:

xk = -pf iUl-^y*. (23)

For the quasi-Newton approximation to wk and wk, the rectangular matrix
Z%Wk is approximated by a matrix 5&, using Broyden's method. We then
obtain wk by multiplying this matrix by Ykpy, i.e., wk = Skfapy. Sk+\ is
updated so that it satisfies the following secant relation:

- xk) = zZ+tffa+x) - Z%g(xk) (24)

and this leads to the Broyden update formula:

« t (9k-Sk3k)3l (25)
°k*k

where
yk = Zj+tffofc+i) - Zlg{xk) (26)

s* = Zfc+i - a*. (27)

thus defining

wk = SkYkpY and tiff* = <xkSk+iYkpY. (28)

Similarly, for £*+!, the quasi-Newton approximation to the reduced Hes-
sian ZTWZ, satisfies the secant relation:

(29)

where sk and yk are defined by sk = a*pz, and

Vk = Zf+1»(a:fc+i) - Z^(a?ik) - wki (30)

with B/k updated by the BFGS formula (cf. [13])

BkskslBk , yfcfrg1

£*+! = Bfc oTp o + - f -) (31)
j^ k sk

provided s£yk is sufficiently positive. As a result, the null space step is
computed from:

BibPz = -(Z^fc + CkWk). (32)

As in [4], we apply a safeguard to make sure that the Broyden corrections
wk and Wk remain bounded. At the beginning of the algorithm we choose a
positive constant F and define

otherwise.

On the other hand, the correction wk is safeguarded by choosing a sequence
of positive numbers {7*} such that 2g^17fc < 90, and requiring:

«* := < ». Diesel otherwise. (3 4)

Similarly, to maintain a bounded positive definite BFQS update for Bk

we use the same update criterion from [4]:
Choose a constant j{6 > 0 and a sequence of positive numbers {7*} such

that Egl17it < 00 (this is the same sequence {7*} as in (34)). We represent
Ok by any quantity which is of the same order as the error \\xk — xm\\, and,
as in [4], we use the optimality condition (WZ^gkW + J|cfc||̂ .

is computed by Broyden's method, and if both s[yk > 0 and

H I I ^ l l l l (3 5)
hold at iteration k, then update the matrix Bk by means of the BFGS
formula (31) with Sk and y* given by (30). Otherwise, set Bk+i = Bk*

IfWkis computed by finite differences, and if both s£yk > 0 and

I/2 (36)
hold at iteration k, then update the matrix Bk by means of the BFGS
formula (31) with 8k and yk given by (30). Otherwise, set

Now for the BFGS updates, we know from [7], that if s£y* is always
sufficiently positive and the following conditions are satisfied:

> rn>0 (37)

< M. (38)
Vksk

for all k > 1, sk # 0, then at least half of the iterates at which updating
takes place satisfy:

sjBjSj

& ~ "' < 3 9)

and therefore remain bounded and uniformly positive definite. Since we need
to refer to well-defined BFGS updates, we make the following definition.

Definition 2.1 Let J be the set of iterates for which BFGS updating takes
place and for which (39) arid (40) hold. We call J the set of ugood iterates",
and define J* = J D {1,2,..., k}.

8

2,1 A Muitiplier-frfce Approach for Choosing jjLk.

For the exact penalty line search, we choose \x so that for some p > 0,

/i||c(a:)||>|A(x)Tc(a:)|+p||c(x)|i (41)

and show that this approach ensures a descent direction for the merit func-
tion. Moreover, for the good iterates J, it is a direction of strong descent.

Since dk satisfies the linearized constraint (11) it is easy to show (see eq.
(2.24) of [8]) that the directional derivative of the t\ merit function in the
direction dk is given by

(xk\dk) = gldk - WbllCfclli. (42)

Also, the fact that the same right inverse of A(x)T is used in (12) and (23)
implies that

g(x)Tnx)py = X(xfc(x). (43)

As a result of this relation, we show the following property:

Theorem 2.1 Assume that A(x) is of full column rank for all x € D and
that Z(x) is norm bounded. If <f>n(x) is defined by (7) and n satisfies (41)
for all x € D, then Z?<̂ M(x; d) > 0 for all d satisfying c{x) + A(x)Td = 0 if
and only if x is a Kuhn- Tucker point

Proof. The proof is similar to the one in [13] for <^(x) with \i > ||A(x)||oo-
The if part follows from:

< g(x)TZ(x)pz-p\\c(x)\\i
< g(x)TZ(x)pz (44)

for all pz € nn~m. This implies Z(x)Tg(x) = 0. Now if, in addition,
c(x) = 0 then x is a Kuhn-Tucker point. If we assume c(x) ^ 0 then we can
show the contradiction:

0 < D^&d) = X(x)Tc(x) - /xl|o(̂)|U •

< -P\\c(x)\\i
< 0. (45)

The only i/ part follows from substitution of the Kuhn-Tucker conditions:

Z(x)Tg(x)= 0
c(x) = 0 (46)

into the directional derivative:

x,d) = g(x)TZ(x)pz-fi\\c(x)\\i
= 0. (47)

To show strong descent directions for good iterates, we recall the decom-
position (32) and use (43) to obtain

D<t>vk{xk\dk) = glZkPz - nk\\ck\\i +
= {Zlgk + Cwkfpz - Ckwjpz - /xjfcllcfeHi + Aj[cfc. (48)

Now from (32) we have that

Bksk = -ak(Zk
rgk + <;kwk). (49)

If we satisfy the following property for nk:

/x*l|c*||> ^ ^ 1 + 2̂ 11̂ 11 (50)

or, equivalently, from (43):

/i*l|c*| |>|^rkpy| + 2p||cfc|| (51)

then following the analysis on pp. 326-327 of [4] leads to;

(^;di)<-^U^il l 2 -plki l l i (52)

for all j e J.
Now the penalty parameter /i* must satisfy (41), so we define it at every

iteration of the algorithm by

= I ^ + 3, otherwise." ' = I ^ + 3, otherwise. . <«*>

Note that for ck = 0,fik = /ifc-i and thus /ik is only updated when ck ^ 0.

10

Finally, the damping parameter (* is chosen so that the merit function
retains the descent property even for large values of it;*. This is detailed in
the algorithm presented next. In [4] it is shown that this damping parameter
goes to unity in a neighborhood of the solution. As a. result, the choice of
/i* and Ob ensure that strong descent properties hold for the good iterates J.
For the other iterates, descent directions (though not necessarily of strong
descent) can also be shown [4].

2.2 The Algorithm

Using the modifications of the reduced Hessian algorithm for the multiplier-
free method, we now give a complete description of the algorithm. As in [5],
the algorithm includes an approximation for the cross term using Broyden's
method and finite differences, and is based on the relative sizes.of pY and j?z.
Calculation of the cross term and updating of the reduced Hessian proteed
in a similar manner as in [5].

1. Set k := 1 and choose a starting point x\. Also, partition the variables
into independent variables and dependent variables. Initialize the line
search penalty parameter as /ii = 1. Initialize the Broyden matrix
as S\ = [0 /] . Postmultiplying this matrix by [Z Y] shows that
this initialization is in agreement with the initialization of the reduced
Hessian matrix to B\ = I.

2. Evaluate / i , #i, c\ and A\ at a?i, and compute Y\ and Z\ as defined
by (16).

3. Set findiff = false and compute pY by solving the system

{A^Yk)pY = —Cjfc. (range space step) (54)

4. Calculate wk using Broyden's method, from equations (28) and (33).

5. Choose the damping parameter & from

f 1
= min

f %^ wk>0
C* = m i n / - 0 1 l Z ^ l Z ^ l) otherwise (55)

and compute pz from

* — [Z^gie + CkWk] (56)

11

6. Calculate ak = ||Zjg*|| + ||c*|| and ak = max[||Zj0*||oo,||c^|oo]. If

„ „ ^ 7/dllPzll ,~x
IIPYII S —j/2— ^°7'

is satisfied and
(58)

is not satisfied, set findiff = true and recompute wk from

wk = ZT(xk + Ykpy)g{xk + YkPY) - Z£g{xk) (59)

(Note that we apply the finite difference update in a neighborhood of
the solution, in order to avoid excessive gradient evaluations. We use
dk in this test, as it is less dependent on the problem dimension.)

7. If findiff = true use this new value of wk to choose the damping pa-
rameter xk from equation (55) and recompute pz from equation (56).

8. Define the search direction by

dk = Ykpy + ZkPz (^0)

and set ak = 1.

9. Test the line search condition

/̂xfcî ife + otkdk) < <t>iik(xk) 4-O.lafcD^j^Xfcjdfc). (61)

10. If (61) is not satisfied, choose a new a* from

[-O.5D0M. (xk\ dk)al \
ak = max < -— • J - T — - — - — =——; —, 0.1 >

and go to 9; otherwise set

= xk + akdk (63)

11. Evaluate /*+i, gk+x, Cjt+i, Ak+X at z*+i, and compute Yk+i and

12. Update /xfc to satisfy (53).

12

13. Update Sk+i using equations (25) to (27). If findiff = false calculate
Wk by Broyden's method through equations (28) and (34). Otherwise
calculate Wk by

Wk = <*kWk (64)

and

-{-. <65)

Here, an upper bound on the finite difference correction term (weaker
than the bound on the Broyden correction) is included (see Table 1.)

14. If s%yk < 0 or if (57) is not satisfied, set J3*+i = £*. Else, compute

Sk = OLkPz (66)

Vk = Zl+tfk+i-Zlgk-Wk (67)

and update Bk+\ by the BFGS formula.

^ ^ (68)

15. Set A: := k + 1, and go to 3.

The numerical values for the parameters used to obtain the results in
Section 4 are given in Table 1 and are the same ones used for the numerical
comparison in [5]. Here nind is the number of independent variables of the
problem and k is the iteration count. Numerical testing suggests that the
values in Table 1 are reasonable for the examples considered in this paper.

Parameter

r
7/rf
7*
_

7*

Reference
33
57
58

65

Suggested Value
20
10

O.lnind0-25

O.Olmnd0-25

Table 1: Suggested value for parameters in Algorithm.

Finally, the algorithm terminates when the Kuhn-Tucker error falls below
the user-specified tolerance. Again, we prefer a* to Ok for this value as it is
less dependent on problem size.

13

2.3 Extension to Bound Constrained Problems

To handle the bound constrained problem (1) we consider the decomposition
in (10) and (11), and compute the nullspace step pz through the solution
of a low dimensional quadratic programming problem. Because n — m is
small, solution of the QP problem is inexpensive and the modification is
relatively easy to implement. For this problem we have adapted a version of
the Goldfarb and Idnani QP algorithm [14}. A Complete description of the
QP algorithm and its integration with the reduced Hessian SQP method is
given in [22].

To solve for pz the reduced dimension QP problem is given by:

mm_m {ZT
k9k + (kwkfpz + \Pz

T(Bk)pz + Mft + £2/2) (69)

subject to xk + (1 - OYkPy + Z&z € [zL, zu], £ > 0 (70)

The scalar variable £ is added to ensure that the QP always has a solution
and the resulting search direction dk keeps Xfc+i between bounds. This vari-
able remains zero except for inconsistent constraint linearizations, normally
at the initial stages of the optimization. Note that the QP algorithm re-
quires a positive definite Hessian and this accounts for the quadratic term
for£.

The QP (69) is substituted for the calculation of pz in step 5 of the above
algorithm.

In addition, the solution of the inequality constrained QP also leads to
a minor modification in the calculation of \ik by adding the multipliers, vk,
calculated from the bound constraints in the QP. From the exact penalty
function and the KKT conditions for the QP, we require that the penalty
parameter in step 12 of the algorithm be chosen differently. Defining

9* = (1 -

we require:

instead of (53). To see this, we have for the directional derivative:

14

= g(xk)
Td-

^

< 0

where the third relation follows from the KKT conditions of the QP, the
fourth relation follows from (10), and the fifth relation follows from the sign
of the multipliers Vk and the fact that z* is always between bounds. As
a result, we still preserve the descent property and from (52) we have the
strong descent property for all j € J.

The bound constraint modifications for this algorithm will be illustrated
in the process optimization study in section 4.2

3 Summary of Convergence Properties

In this section we summarize several convergence results for equality con-
strained problems solved by the above algorithm. The proofs of these results
will be sketched below and the interested reader is referred to [3] for a de-
tailed analysis. Moreover, many of the results of [4] carry over directly or
with only minor modifications.

We first show that the merit function <\>^ decreases significantly at the
good iterates J, and that this gives the algorithms weak convergence prop-
erty. To establish the main results we restate the following assumptions
from [4].

Assumptions 3.1 The sequence {xk} generated by the algorithm is con-
tained in a convex set D with the following properties.

(I) The functions / : Rn -> R and c : Rn -• Rm and their first and
second derivatives are uniformly bounded in norm over D.

(II) The matrix A(x) has full column rank for all x € £>, and there exist
constants, 70 and fa such that

\\Y(x)[A(x)TY(x))-l\\ < 70, ||Z(*)|| < /3b, (72)

15

for all x € D.

(III) For all k > 1 for which Bk is updated, (37) and (38) hold.

(IV) The correction term wk is chosen so that there is a constant K > 0
such that for all k,

«w*ll < «W 1 / a . (73)

The following theorem shows that the penalty parameter settles down
and that the set of iterates is not bounded away from stationary points of
the problem.

Theorem 3.1 If Assumptions 3.1 hold, then the weights {/i*} are constant
for all sufficiently large k and \imirdk^oo{§Z% 9k\\ + ||cfc||) = 0.

Proof. First note that by Assumptions 3.1 (I)-(II) and (43) that

< {11**11} (74)

is bounded. Therefore, since the procedure (53) increases /i* by at least p
whenever it changes the penalty parameter, it follows that there is an index
ko and a value /x such that for all A; > fco, /x* = fi such that p||cfc||i >
|A£cfc| + 2p||cjt||i. The rest of the proof follows in the same manner as in
Lemma 4.1 and Theorem 4.2 in [4].

In [4] it was shown that if x* is a local minimizer that satisfies the second
order optimality conditions, and if the penalty parameter /J* is chosen large
enough, then xm is a point of attraction for the sequence of iterates {xk}
generated by the above algorithm. These are given as Assumption 5.2 and
Lemmas 5.1, 5.2 and 5.3 in [4] and carry over to the above algorithm without
modification. To prove these results the following assumptions were made
in [4]. These assumptions are also necessary for the remaining analysis in
this section.

Assumptions 3.2 The point x* is a local minimizer for problem (l)-(2) at
which the following conditions hold.

(1) The functions / : Rn -• R and c : Rn -+ Rm axe twice continuously
differentiable in a neighborhood of x,, and their Hessians are Lipschitz
continuous in a neighborhood of z«.

16

(2) The matrix A(x+) has full column rank. This implies that there exists
a vector A*€R m such that

l = g{x.} + A(x)* = 0.

(3) For all q € Rn"m, q # 0, we have qTZ?W*Z.q > 0.

(4) There exist constants 70, Po and jc such that, for all x in a neighbor-
hood of #•,

r y(x)] - 1 | | < 70, ||Z(*)|| < A), (75)

and
| |[y(x)Z(x)]-1 | |<7c. (76)

(5) Z(x) and A(x) are Lipschitz continuous in a neighborhood of z*, i.e.
there exist constants yz and 7^ such that •

- ^ | | , (77)
\\Z(x) - Z(z)\\ < -yzWx-zU, (78)

for all x, z near x*.

We can therefore assume that the iterates generated by the above algo-
rithm converge to z«, which implies that for all large A; and some p > 0,
Hk = / i and

»\\c(x)\\>\\(x)Tc(x)\ + p\\c(x)\\ (79)

in a neighborhood of x*. To complete the analysis we also consider when the
BFGS updates are applied. We define U to be the set of iterates at which
BFGS updating takes place,

U = {* : Bk+X = BFGS(Bk, sk, yk)}, (80)

and let
Uk = UD {1,2,..., A:). (81)

The number of elements in Uk will be denoted by \Uk\. The following result
from [4] carried over directly to the multiplier-free tnethod.

17

Theorem 3.2 Suppose that the iterates {x*} generated by the multiplier
free algorithm converge to a point x+ that satisfies Assumptions 3.2. Then
for any k €lf and any j >k

\\xi-x.\\<Cr\u''\, (82)

for some constants C > 0 and 0 < r < 1.

This result implies that if {|t/*|/fc} is bounded away from zero, then the
multiplier free algorithm is R-linearly convergent. However, BFGS updating
could take place only a finite number of times, in which case this ratio
would converge to zero. It is also possible for BFGS updating to take place
an infinite number of times, but every time less often, in such a way that
\Uk\/k -> 0. Therefore the next result shows that the condition number
of the matrices Bk is bounded, and that at the iterates U at which BFGS
updating takes place the matrices Bk are accurate approximations of the
reduced Hessian of the Lagrangian.

Theorem 3.3 Suppose that the iterates {xk} generated by the above algo-
rithm converge to a solution point x+ that satisfies Assumptions 3.2. Then
{\\Bk\\} and {\\B^l\\} are bounded, and for allkeU

MBk-Z?W.Z.)pz\\=o(\\dk\\). (83)

The proof follows along the same lines as the proofs of Lemma 5.5 and
Theorem 5.6 in [4] with only slight modifications relating to differences in
the definitions of yk in (30). The entire proof is also redeveloped in [3] for
the multiplier free case.

This result immediately implies that the iterates are R-linearly conver-
gent, regardless of how often updating takes place.

Theorem 3.4 Suppose that the iterates {xk} generated by the multiplier
free algorithm converge to a solution point x+ that satisfies Assumptions
3.2. Then the rate of convergence is at least R-linear.

Proof. Theorem 3.3 implies that the condition number of the matrices {2?*}
is bounded. Therefore all the iterates are good iterates, and reasoning as in
the proof of Theorem 5.4 we conclude that for all j

\\xj-x.\\<Cr>,

for some constants C > 0 and 0 < r < 1.

18

We note that, as in Lemma 5.8 in [4], the Broyden matrices 5* also
remain bounded and this follows directly from R-linear convergence and
the well-known bounded deterioration property for Broyden's method (cf.
Lemma 8.2.1 in [11]).

Finally, to establish 1-step superlinear convergence we need to assume
that the steplengths a* have the value 1 for all large k. However the non-
differentiable l\ merit function (7) used in this paper may reject steplengths
of one, even though the lower bound on /i is weaker than ||A||oo-1 Thus
the multiplier-free method can still suffer from the Maratos effect and the
algorithm must be modified to allow unit steplengths and to achieve a fast
rate of convergence. (In the numerical experiments described in the next
section, we employ a non-monotone line search (or watchdog technique) of
[9] that allows unit steplengths to be accepted for all large k. The analysis
of the modified algorithm would be similar to that presented in §5.5 of [8])

Nevertheless, if we assume that the iterates generated by the above algo-
rithm converge R-linearly to a solution and that unit steplengths are taken
for all large k, then the performance of the method is no longer influenced
by the merit function and the analysis is identical to that of [4]. The con-
vergence result can therefore be summarized by:

Theorem 3.5 Suppose that the iterates generated by the multiplier free al-
gorithm converge R-linearly to a point x^ that satisfies Assumptions 3.2,
and that a* = 1 for all large k. Then the rate of convergence is 1-step
Q-superlinear.

4 Numerical Experiments

The numerical experiments described in this section are divided into two
parts. In the first part the multiplier free algorithm is compared with the
algorithm analyzed and implemented in [4], [5] on a standard set of equality
constrained test problems. It is shown that the multiplier free modifications
perform well and generally lead to no loss of efficiency or reliability on these
test problems. In the second part we summarize a process optimization case
study presented in [23] for which the multiplier free method was developed.
As in the first part, the multiplier free method performs well and therefore
allows the use of existing process models, along with their own solution
procedures, and without extensive reformulation of the model equations.

19

4.1 Equal i ty Constrained Prob lems

In this subsection we consider a general collection of test problems; we in-
clude some smaller examples from Hodc and Schittkowski [17] as well as
some scaleable problems from the GUTE set [6]. These test problems were
also considered m [5] and the same tuning parameters (see Table 1) were
used. In contrast to an extensive study of the correction terms in [5] we
consider here only the complete algorithm and evaluate the effect of the
multiplier free modifications. Also, as in [5] we also found it useful to scale
the objective function; we arbitrarily choose an upper bound of 10 on / (x 0) .

Table 2 presents the results fin: problems taken from Hock and Schit-
tkowski. MA28 was used to select the dependent variables using a thresh-
hold tolerance of 1.0 in order to find a good pivot sequence, rather than
minimize fill-in. Unless indicated otherwise and the convergence tolerance
was set to 10~5.

Problem N/M Multiplier
Rree

With
Multipliers

HS80
HS81
HS99
HS100
HS101
HS102
HS103
HS104
HS111
HSH2
HS113

5/3
5/3
7/2
7/4
7/2
7/3
7/4
8/4
10/3
10/4
10/6

9(9/ 15/0.82)
9(9/ 15/0.82)

16(28/ 19/1.13)
28(43/39/0.94)
43(69/ 47/1.12)

128(217/137/2.04)
117(218/129/2.07)
29(70/ 39/1.25)
57(73/ 76/1.52)
31 (55/ 31/0.98)
29(36/ 41/0.99)

10(10/ 15/0.81)
1Q(10/ 15/0.81)
16{ 19/ 17/6.84)
28(43/ 39/0.95)
53(85/ 56/1.16)
44(70/ 49/1.11)
57< 89/ 64/1.50)
24(44/35/1.22)
77(124/128/1,82)
31(55/ 31/0.99)
27(32/ 38/0.94)

Table 2: Number of iterations (No. functions/No. gradients/CPU sees.) for
convergence of several Hock and Schittkowski problems.

Note that the multipler free method performs well with respect to the
original reduced Hessian method. It requires only half the iterations on
problems HS 102 and HS 103, although it requires significantly more itera-
tions for problems HS 101 and HS 111* Otherwise the performance of both
algorithms is quite similar.

Table 3 presents the results for somewhat larger examples from the

20

CUTE collection. The comments made prior to the Hock and Schittkowski
problems also apply here. The problems are again'solved within a tolerance
of 10"5 and, in addition to the number of iterations required for convergence
the CPU times on a DEC ALPHA 3000-400 are also reported.

The first two problem sets in Table 3, EIGENC2 and EIGENCCO, are
problems with quadratic objective functions and quadratic constraints that
solve symmetric eigenvalue problems as a system of nonlinear equations.
Many of the cases reported in Table 3 require a change of basis to avoid
poorly conditioned bases. The problems are initialized at a point which
satisfies the equality constraints. The ORTHREGA, ORTHREGC and OR-
THREGD problems are orthogonal regressions where the objective is to fit
orthogonally a cardioid to a set of point in the plane [15]. These problems
are initialized at a point where the objective function and its gradients are
uniquely zero. This causes the initial null space move and Lagrange mul-
tipliers to be zero, and the initial value of the penalty parameter is set to
one.

In comparing both algorithms, each has its advantages on selected prob-
lems and the overall performance of both methods is similar. One advantage
of the multiplier free method is that the lower bound on the penalty parame-
ter leads to less severe penalties on the constraint violations and often allows
larger steps to be taken in the linesearch. This can be seen, for instance, in
the larger ORTHREGA problems and in some of the ORTHREGC problems.

4.2 Process Optimization Case Study

In order to illustrate the tailored reduced Hessian method described above,
we summarize the study reported in [23] for the optimization of the operating
conditions of a typical chemical process. Here we consider the Hydrodealky-
lation (HDA) process illustrated in Figure 1 which is used to manufacture
nitration-grade toluene by the thermal dealkylation of nitration-grade ben-
zene. This high temperature, noncatalytic process converts toluene to ben-
zene in the presence of excess hydrogen; the only byproducts produced in
any significant quantity are methane and diphenyl. Once the reactor efflu-
ent has been cooled, and the bulk of the light components separated via a
flash unit, the liquid stream is sent to the distillation train. Both unreacted
hydrogen and unreacted toluene are recycled. Further details on this process
may be found in [18] and in [12]. While these authors discuss the grass-roots
design of the plant, we focus on the real-time optimization of the operating
conditions of the process given an existing design; the calculations are based

21

Hydrogen

ft* Oil

Figure 1: Simplified flowsheet of HDA process.

on a fixed feed rate of toluene.
The equation-based model for the HDA process includes both mass and

energy balances for each of the units. The design equation for the reac-
tor, which is modeled as a PFR, can be integrated to give a closed form
expression if an average reactor temperature is used. The stablilizer col-
umn is approximated by a sharp split into light components (hydrogen and
methane) and heavy components (benzene, toluene and diphenyl). The ben-
zene and toluene columns, on the other hand, are treated as "special" units.
Here, the distillation equations are obtained from the Naphthali-Sandholm
model, UNIDIST, which is part of the SEPSIM process simulator [2]. This
existing package incorporates an efficient Thomas algorithm which exploits
the block tridiagonal structure of the distillation equations. Design con-
straints include the purity of the benzene product (> 99.7%) as well as
upper bounds on the amount of fresh hydrogen available and the reactor ef-
fluent temperature. The reduced Hessian SQP algorithm also requires first
order derivatives of the model with respect to all the variables. The deriva-
tives of the distillation equations with respect to the internal variables are
available analytically within UNIDIST; the derivatives with respect to the
independent variables (distillate rate and reflux ratio) and the input streams
involved in the distillation equations were calculated using finite differences.

22

For the remainder of the model, analytic expressions for all the derivatives
were generated.

Here, we consider three cases for the optimization of the HDA process:

1. the toluene column modeled using UNIDIST and the benzene column
modeled as a sharp split,

2. the benzene column modeled using UNIDIST and the toluene column
modeled as a sharp split and

3. two benzene columns in parallel modeled using UNIDIST and the
toluene column modeled as a sharp split.

In addition, we use three solution strategies:

1. a simultaneous modular approach; here only the reflux ratio and the
distillate rate are included in the optimization problem and the distilla-
tion equations are fully converged at every iteration using the Thomas
algorithm within UNIDIST,

2. an equation oriented approach where the UNIDIST package has been
significantly modified so that the Jacobian elements for the distillation
equations can be passed to a sparse linear equation solver (we use
MA28 from the Harwell library) at every iteration and

3. the tailored integrated approach where UNIDIST is only slightly modi-
fied such that the Newton step and the projected gradients (C~lN) for
the distillation equations are calculated via the Thomas algorithm and
then collected and passed to the reduced Hessian method. A complete
description of the tailored decomposition strategy is given in [23].

The last case is of practical interest when, for example, benzene products
of different purity are required. The main reason for solving this case though
is to have a large number of internal or 'hidden' variables and equations. For
all three strategies, the problem is initialized at the same starting point. The
objective function to be minimized is <f> = (reflux ratio) - (distillate note).
The results in Table 4 give the number of iterations and CPU time on a DEC
5000/200 for convergence (Kuhn-Tucker error < 10~4). For each problem,
all the methods were initialized at the same point and converged to the same
solution.

The results in Table 4 show that for this larger system, the difference
in performance between the simultaneous modular and the integrated ap-
proaches is significant; while the number of SQP iterations is approximately

23

the same, the CPU time differs by almost an order of magnitude. Also, the
number of iterations required by the equation oriented and the tailored ap-
proaches is identical and the tailored method is slightly more efficient than
the equation oriented approach. More importantly, though, using special-
ized solution procedures to generate the Newton step for individual units
also predetermines the pivot sequence for these units. For existing unit
models which have been tested on a wide range of problems, these pivot
sequences are often known to be very robust with few failures due to badly
conditioned or singular Jacobian matrices.

5 Conclusions

Process optimization problems frequently incorporate nonlinear models that
can be solved reliably and efficiently by specialized, Newton-based proce-
dures. These procedures take advantage of the equation structure and allow
for specialized matrix decomposition algorithms. The aim of this paper is
to study an optimization strategy that uses existing process models in a si-
multaneous convergence scheme. The SQP algorithm developed in section 2
requires only a Newton step (pY) from the model equations and 'sensitivity'
of this step with respect to the decision variables (C~lN). This information
is relatively easy to obtain without modification of the model solution pro-
cedure or its data structures. Moreover, if the degrees of freedom are small,
only a few additional backsolves are required for (C~lN).

One restriction to the use of existing procedures is that the matrix C
or its LU factors may be difficult to access. As a result, a multiplier free
SQP approach was developed with relatively few modifications of the re-
duced Hessian method analyzed in [4]. The main differences are due to the
estimates for the penalty parameter for the line search function and in the
calculation of quasi-Newton updates for the reduced Hessian and the cross
term approximations. In section 3 we summarize the convergence proper-
ties of this method and show that the desired global and 1-step superlinear
convergence properties are retained from those in [4]. Simple QP exten-
sions are also derived in section 2 to deal with bound constrained problems.
Moreover, with the addition of the QP step the multiplier free algorithm can
easily be extended to include trust region concepts. This will be the focus
of our future work.

Finally, numerical experiments for this approach indicate no loss of effi-
ciency or reliability over the method described in [4]. On the other hand, the

24

multiplier free approach allows an easy integration with specialized Newton-
based equation solvers, in order to extend them to deal with optimization
problems. This was demonstrated for flowsheet optimization through the
use of block tridiagonal distillation models. Recent studies [24], [25] also
describe the integration of the multiplier free approach to the optimization
of systems described by boundary value problems (BVPs). In this case, the
BVP solver COLDAE [l] was combined with the multiplier free method to
solve problems in parameter estimation, optimal control and reactor design.
Implementation was relatively straightforward as all of the data structures,
linear algebra and solution procedures were preserved. Moreover, the model
specification routines within COLDAE could be used directly to set up the
optimization poblems.

As a result of these efforts, we believe that the multiplier free method has
good potential for solving large optimization problems with few degrees of
freedom. The additional benefit of this approach is that existing structured
solution procedures can be exploited for these problems.

References .
[1] Ascher, U. and R. Spiteri, Collocation software for boundary value

differential-algebraic equations, SIAM J. Scient. Stat. Comput., to ap-
pear (1995)

[2] Andersen, P.M., F. Genovese and J. Perregard Manual for Steady State
Simulator, SEPSIM. Institut for Kemiteknik, DTH, Lyngby, Denmark
(1991).

[3] Biegler, L. T. Convergence analysis for the multiplier free reduced Hes-
sian method, EDRC Report (1995)

[4] Biegler, L. T., J. Nocedal and C¥ Schmid, A reduced Hessian method
for large-scale constrained optimization, SIAM J. Opt., 5, 2, (1995), pp.
314-347

[5] Biegler, L. T., J. Nocedal and C. Schmid, Numerical experience with a
reduced Hessian method for optimization, in preparation, (1995).

[6] Bongartz, I., A. R. Conn, N. Gould, and P. L. Toint, CUTE: Con-
strained and Unconstrained Testing Environment (1993)

[7] Byrd, R. H., and J. Nocedal, A tool for the analysis of quasi-Newton
methods with application to unconstrained minimization, SIAM J. Nu-
mer. Anal., 26 (1989), pp. 727-739.

25

[8] Byrd, R. H., and J. Nocedal, An analysis of reduced Hessian methods
for constrained optimization, Math. Programming, 49 (1991), pp. 285-
323.

[9] Chamberlain, R., C. Lemarechal H. C. Pedersen and M. J. D. Pow-
ell, The watchdog technique, for forcing convergence in algorithms for
constrained optimization, Math. Programming Studies, 16 (1982), pp.
1-17.

[10] Conn, A. R., Constrained optimization using a nondifferentiable penalty
function, SIAM J. Num. Anal., 13 (1973), p£. 145-154.

-[11] Dennis, J. E., and R.B. Schnabel, Numerical methods for unconstrained
optimization and nonlinear equations, Prentice-Hall, Inc., Englewood
Cliflfc, NJ, 1983.

[12] Douglas, J.M. Conceptual Design of Chemical Processes. McGraw Hill
(1988).

[13] Fletcher, R, Practical Methods of Optimization (second edition), John
Wiley and Sons, Chichester, 1987.

[14] Goldfard, D. and A. Idnani, A numerically stable dual method for solvr
ing strictly convex quadratic programs, Math. Programming, 27, p. 1
(1983)

[15] Gulliksson, M., Algorithms for nonlinear least squares with applications
to orthogonal regression, UMINF-178.90, University of Umea, Sweden
(1990)

[16] Han, S. P.A globally convergent method for nonlinear programming,
Journal on Optimization Theory and Application, 22/3 (1977), pp. 297-
309.

[17] Hock, W., and K. Schittkowski, Test examples for nonlinear program-
ming codes, Lecture notes in economics and mathematical systems 187,
Springer-Verlag, Berlin (1981)

[18] McKetta, J.J. (ed.), Encyclopedia of Chemical Processing and Design.
vol 4, Dekker, New York, 1977, p. 182. (1977)

[19] Murtagh, B. and M. Saunders, MINOS User's Guide, Report SOL 83-
20R (1983)

[20] J. Nocedal and M. L. Overton, Projected Hessian updating algorithms
for nonlinearly constrained optimization, SIAM Journal on Numerical
Analysis, 22 (1985), pp. 821-850.

[21] Sargent, R. W. H., Survey of SQP methods, this workshop (1995)

26

[22] Schmid, C. and L.T. Biegler, Quadratic Programming Methods for
Tailored Reduced Hessian SQP. Computers and Chemical Engineering,
18/9, pp. 817-832 (1994)

[23] Schmid, C. and L.T. Biegler, A Simultaneous Approach for Flowsheet
Optimization with Existing Modeling Procedures, Turns. I. Chem.
Eng., 72A, pp. 382-388 (1994)

[24] Tanartkit, P. and L. T. Biegler, "Stable Decomposition for Dynamic
Optimization," I & EC Research, 34, p. 1253 (1995)

[25] Tanartkit, P., and L. T. Biegler, "Reformulating Hl-Conditioned DAE
Optimization Problems," submitted for publication (1995)

27

N/M

EIGENC2

30/15
56/28
90/45

EIGENCCO

30/15
56/28
90/45

ORTHREGA

13/4
37/16
133/64

517/256
ORTHREGC

205/100
405/200
505/250

ORTHREGD

23/10
103/50

203/100
303/150

With
Multipliers

Multiplier
Free

Quadratic constraints
MA28 used to select
32(59/39/1.06)
58(116/72/2.30)
67(125/84/3.92)

dependent variables, scaled
29(49/34/0.99)
44(90/56/1.99)
67(124/82/3.68)

Quadratic constraints
MA28 used to. select
33(57/ 41/ 1.13)
45(81/ 56/ 2.23)
65(122/ 88/ 4.84)

dependent variables, scaled
30(50/37/1.08)
63(125/ 84/ 2.83)
56(89/78/4.24) -

Quadratic Constraints
MA28 used to select

2(1/ 2/ 0.31)
91(189/ 97/ 3.39)

308(608/322/ 74.iO)
298(681/338/1385.73)

dependent variables, scaled
2(1/ 2/ 0.31)

104(240/113/ 3.75)
136(286/155/ 34.77)
197(419/220/971.31)

Quadratic constraints
larger of [x,y] selected ;

49(84/ 65/ 20.47)
123(181/182/ 210.44)
107(185/170/ 268.22)

as dependent variables, scaled
42(59/ 55/ 18.00)
69(97/ 91/ 125.48) .

129(257/208/ 324.08)
Quadratic constraints

MA28 used to select
25(30/40/0.73)
29(38/ 48/ 4.30)
23(27/ 37/ 11.21)
33(41/ 55/ 33.45)

dependent variables, scaled
22(27/ 39/ 0.69)
24(29/ 35/ 3.53)
25(29/38/12.13)
25(28/ 37/24.69)

Table 3: Number of iterations (No. functions/No. gradients/CPU sees.) for
several problems from the CUTE collection

28

Table 4: Results for the HDA process examples

Components
TVays
Number of variables

decisions
flowsheet
internal (methods (2) and (3))

Number of equality constraints
method (1)
methods (2) and (3)

Number of nonzero Jacobian elements
method (1)
methods (2) and (3)

(1) Simultaneous modular approach
Iterations (SQP/Newton)
CPU Time (s)

(2) Equation oriented approach
Iterations (SQP)
CPU Time (s)

(3) Tailored approach
Iterations (SQP)
CPU Time (s)

Toluene column
2
12

7
184
24

184
208

486
654

9/184
10.1

7
1.9

7
1.9

Benzene column
3
30

7
184
90

184
274

495
1431

11/1243
29.3

14
5.1

14
5.0

Two columns
3 and 3

30 and 30

9
202
180

202
382

549
2421

12/2698
62.2

12
7.8

12
7.4

29

