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We propose a quasi-Newton algorithm for solving optimization problems with nonlinear equal-
ity constraints. It is designed for problems with few degrees of freedom and does not require the
calculation of Lagrange multipliers. It can also be extended to large-scale systems through the
use of sparse matrix factorizations. The algorithm has the same superlinear and global properties
as the reduced Hessian method developed in our previous paper (Biegler, Nocedal and Schmid,
1995). This report directly reworks the theory presented in that paper to consider the multiplier
free case.

1. Introduction.
We consider the nonlinear optimization problem

m m / ( x ) (1.1)

subject to c(x) = 0, (1.2)

where / : Rn —• R and c : Rn —> Rm are smooth functions. We assume that the first
derivatives of / and c are available, but our algorithm does not require second derivatives.
The successive quadratic programming (SQP) method for solving (1.1)-(1.2) generates,
at an iterate #*, a search direction dk by solving

min g(xk)
Td + \dTW{xk)d (1.3)

subject to c(xk) + A{xk)
Td = 0, (1.4)

where g denotes the gradient of /, W denotes the Hessian of the Lagrangian function
L(x, A) = f(x) + ATc(x), and A denotes the n x m matrix of constraint gradients

]. (1.5)



A new iterate is then computed as

xk+\ = xk + akdk, (1.6)

where ak is a steplength parameter chosen so as to reduce the value of the merit function.
In this study we will use the t\ merit function

^ ( x ) = /(x) + M||c(x)||1, (1.7)

where /i is a penalty parameter; see for example Conn (1973), Han (1977) or Fletcher
(1987). This penalty parameter is normally based on Lagrange multiplier values or
their estimates but here we consider a simpler measure that does not require Lagrange
multiplier estimates, but still maintains descent properties for (fi^x).

The solution of the quadratic program (1.3)-(1.4) can be written in a simple form if
we choose a suitable basis of Rn to represent the search direction dk. For this purpose,
we introduce a nonsingular matrix of dimension n, which we write as

[YkZk], (1.8)

where Yk e R n x m and Zk € R« x ( n - m ) , and assume that

AlZk = 0. (1.9)

(From now on we abbreviate A(xk) as Ak, g(xk) as gk, etc.) Thus Zk is a basis for the
tangent space of the constraints. We can now express dk, the solution to (1.3)-(1.4), as

dk = YkpY + ZkPz, (1.10)

for some vectors pY € Rm and pz € Rn~m. Due to (1.9) the linear constraints (1.4)
become

ck + AlYkpY = 0. (1.11)

If we assume that Ak has full column rank then the nonsingularity of [Yk Zk] and equation
(1.9) imply that the matrix A^Yk is nonsingular, so that pY is determined by (1.11):

Substituting this in (1.10) we have

dk = -Yk[AlYh]-lCk + ZkPz. (1.13)

The SQP sub-problem can now be expressed exclusively in terms of the variables pz.
Substituting (1.10) into (1.3), considering YkpY as constant, and ignoring constant terms,
we obtain the unconstrained quadratic problem

\ ( 1 . 1 4 )
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Assuming that Z%WkZk is positive definite, the solution of (1.14) is

l l [ Z l g k + ZlWkYkpY). (1.15)

This determines the search direction of the SQP method.
In our previous paper (Biegler, Nocedal and Schmid, 1995) the cross term [Zr

kWkYk\pY

is approximated by a vector it;*,

[ZlWkYk]pY*wk, (1.16)

without computing the matrix Z%WkYk. This allows the rate of convergence of the algo-
rithm to be 1-step Q-superlinear, as opposed to the 2-step superlinear rate for methods
that ignore the cross term (Byrd (1985) and Yuan (1985)). The null space step (1.15) of
our algorithm will be given by

pz = -{ZlWkZk)-
l[Zlgk + (kwk), (1.17)

where 0 < (k < 1 is a damping factor described in our previous paper.
Here the cross term is approximated either by a finite difference estimate along YkpY

or by a quasi-Newton method in which the rectangular matrix Z^Wk is approximated
by a matrix Sk, using Broyden's method. We then obtain wk by multiplying this matrix
by YkpY, i.e.,

wk = SkYkpY.

In this study, we update Sk+\ so that it satisfies the following secant relation:

Sk+i(xM - xk) = Zl+l9(xk+i) - Zlg{xk). (1.18)

Let us now consider how to approximate the reduced Hessian matrix Z^WkZk. Prom
(1.6), (1.10) and (1.18) we obtain

[Sk+iZk]akpz = -akSk+i(YkpY) + Z^gixk+i) - Zlg(xk).

Since Sk+\ approximates ZTW, this suggests the following secant equation for 27&+1, the
quasi-Newton approximation to the reduced Hessian ZTWZ:

yk, (1.19)

where sk and yk are defined by sk = akpz, and

Vk = ZZ+l9(xk+0 - Zlg{xk) - wk, (1.20)

with
Wk = akSM(YkpY). (1.21)

We will update Bk by the BFGS formula (cf. Fletcher (1987))

( L 2 2 )



provided s^y* is sufficiently positive. As a result, the null space step is computed from:

BkPz = -{Zk9k + OfcUfc)- (1.23)

Note as in our previous paper, that two correction terms, Wk and Wk are applied. The
first term, Wk, is used in the null space step (1.23) and makes Use of the matrix 5*. The
second term, Wk is used in (1.20) for the BFGS update of Bk and is computed using the
new Broyden matrix 5fc+i, and takes into account the steplength a*. We will see below
that it is useful to incorporate the most recent information in Wk-

Finally, as noted by Orozco (1993), an interesting relationship in the definition of
basis representations and Lagrange multipliers occurs for a particular choice of Z and Y,
If we define the Lagrange multiplier estimates by:

A(x) = -[YixfAixT'Yixfgix). • (1.24)

and partition x into m basic or dependent variables (which without loss of generality are
assumed to be the first m variables) and n — m nonbasic or control variables, we induce
the partition

A(x)T = [C(x)N(x)}, (1.25)

where the m x m basis matrix C(x) is assumed to be nonsingular. We now define Z(x)
and Y{x) to be

zw. [-*«;'*« ] y ( , , . [ j ] . (,26)
This choice is particularly advantageous when A(x) is large and sparse, because a sparse
LU decomposition of C{x) can often be computed efficiently, and this approach will be
considerably less expensive than a QR factorization of A(x). It is also straightforward
to show that for any points x, x for which C(x), C(x) are nonsingular, we have

Z(x)TVL(x,\(x)) = Z(x)Tg(x) (1.27)

This allows us to make the following equivalence in the calculation of %.

Vk = Zl+xg{xk+\)-Zlg{xk)-v5k

= ZjVL(z*+i, Afc+i) - Zj[g{xk) - Wk (1.28)

when (1.26) is chosen for Y and Z.
In the next section we discuss the revised reduced Hessian algorithm in detail. In

particular, we briefly describe the calculation of the correction terms wk and Wf^ the
conditions under which BFGS updating takes place, the choice of the damping parameter
Ok, and the procedure for updating the weight fik in the merit function. Most of these
steps are identical to the ones in our previous paper. Section 3 presents an analysis of the
local behavior of the algorithm, shows that the rate of convergence is at least R-linear
and summarizes the properties related to superlinear convergence. Numerical results



and extensions to consider variable bounds are described in a companion paper (Biegler,
Schmid and Ternet, 1995).

Regarding our notation, throughout the paper the vectors pY and pz are computed at
Zfc, and could be denoted by pY^ and pz^

k\ but we will normally omit the superscript
for simplicity. The symbol || • || denotes the I2 vector norm or the corresponding induced
matrix norm. When using the l\ or /<» norms we will indicate it explicitly by writing
II • 111 or || • Hoc. A solution of problem (1.1) is denoted by x*, and we define

ek = xk - x+ and ak = max{||e*||, ||e*+i||}. (1.29)

2. Details of the Multiplier-Free Algorithm
In this section we consider1 how to calculate approximations wk and wk to (Z%WkYk)pY

to be used in the determination of the search direction pz and in updating 2?*, respectively.
We also discuss when to skip the BFGS update of the reduced Hessian approximation,
as well as the selection of the damping factor Ck and the penalty parameter /i&.

To approximate to (ZTWY)pY we propose two approaches that have slight modi-
fications to those proposed in our earlier paper. First, we consider a finite difference
approximation to Z][Wk along the direction YkpY. The second approach defines wk and
wk in terms of a Broyden approximation to Z%Wk, as discussed in §1, and requires no
additional function or gradient evaluations. Our algorithm will normally use this second
approach, although it is sometimes necessary to use finite differences.

2.1. Calculating wk and wk Through Finite Differences.

We first calculate the range space step pY at xk through equation (1.12). Next we
compute the reduced gradient of the Lagrangian at xk + YkpY and define

wk = Z(xk + YkpYfg(xk + YkpY) - Zlgk. (2.1)

After the step to the new iterate xk+\ has been taken, we define

wk = akwk (2.2)

which requires a new evaluation of gradients if ak ^ 1. These correction terms are
substituted for the ones used in our previous paper:

wk = Zl[VL{xk + YkPYy Xk) - VL(xk,\k)]. (2.3)

wk = Zl\VL{xk + akYkpY, XM) - VL{xk, A*+1)] (2.4)

2.2. Using Broyden's Method to Compute wk and wk.

We can approximate the rectangular matrix Z^Wk by a matrix 5* updated by Broy-
den's method, and then compute wk and wk by post-multiplying this matrix by YkpY



or by a multiple of this vector. As discussed in §1 it is reasonable to impose the secant
equation (1.18) on this Broyden approximation, which can therefore be updated by the
formula (cf. Fletcher (1987))

S W ^ g f c + ( f e " i ! f t ) ^ (2.5)
sksk

where
Vk = Zjf+i0(s*+i) - Zlg(xk) (2.6)

Sk = Zifc+i - xk. (2.7)

thus, defining
wk = SkYkpY and wk = akSk+iYkpY. (2.8)

As in our previous paper, we apply a safeguard on these updates to make sure that
wk and wk remain bounded. At the beginning of the algorithm we choose a positive
constant T and define

otherwise.

On the other hand, the correction wk will be safeguarded by choosing a sequence of
positive numbers {7*} such that E -g l^ < 00, and set

wk if \\wk\\ < c(

As the iterates converge to the solution, pY —• 0, we see from (2.8) and from the bounded-
ness of Yk that these safeguards allow the Broyden updates Sk to become unbounded, but
in a controlled manner. In our previous paper, it was shown that these Broyden updates
Sk do, in fact, remain bounded, so that the safeguards become inactive asymptotically.

2.3. Update Criterion.

It is well known that the BFGS update (1.22) is well defined only if the curvature
condition s^yk > 0 is satisfied. This condition can always be enforced in the uncon-
strained case by performing an appropriate line search; see for example Fletcher (1987).
However when constraints are present the curvature condition s%yk > 0 can be difficult
to obtain, even near the solution.

To show this we first note from (1.20), (1.10) and from the Mean Value Theorem that

yk = Z%+ xgfc+i ~ Zkgk - wk

Zl \J V2
xxL{xk + rakdk, \*)dr\ akdk + (Zfc+i - Zk)

TVL(xk+u K) - wk

ZlWkakdk + (Z*+i - Zib)rVL(xfc+i, A*) - wk

F O ( a ^ (2.11)
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where we have defined

= Zl f V2
xxL{xk + Takdk, X.)dr. (2.12)

Jo
Thus

slyk = sT
k{ZlWkZk)sk + O(ak)\\Skf + [aksj (ZjWkYk)pY - #57*] + O(ok)\\ak\\ \\py ||.

(2-13)
Near the solution, the two O(a&) terms will vanish, while the first term on the right

hand side will be positive since Z^W^Zk can be assumed positive definite. Nevertheless
the bracketed terms in (2.13) are of uncertain sign and can make s^yk negative. To avoid
this problem and also ensure that the quasi-Newton approximation remains boimded, we
apply the same updating criterion developed in our previous paper.

Update Criterion I.
Choose a constant y{d > 0 and a sequence of positive numbers {jk} such that Ej^^fc < oo
(this is the same sequence {7*} that was used in (2.10)).

IfWk is computed by Broyden's method, and if both s^yk > 0 and

Ibvll < 7*2IM (2.14)

hold at iteration k, then update the matrix Bk by means of the BFGS formula (1.22)
with Sk and y* given by (1.20). Otherwise, set

// Wk is computed by finite differences, and if both s£yk > 0 and

i / 2 (2.15)

hold at iteration k, then update the matrix Bk by means of the BFGS formula (1.22)
with Sk and yk given by (1.20). Otherwise, set Bk+i = Bk.

Here Ok is replaced by any quantity which is of the same order as the error e*, and, as in
our previous paper, we use the optimality condition (IIZjjTitell + ||cfc||). Moreover, define

Prom Byrd and Nocedal (1989), the behavior of cos0* for BFGS updates can be described
by the following theorem.

T h e o r e m 2 . 1 Let {Bk} be generated by the BFGS formula (1.22) where, for all k>\,
Sk ^0 and

T
% ^ > m > 0 (2.17)

< M. (2.18)



Then, there exist constants /3\, 02,03 > 0 such that, for any k > 1, the relations

cos Oj > fa (2.19)

(2.20)

hold for at least f^fc] values of j € [l,fc].

This theorem refers to the iterates for which BFGS updating takes place, but since for
the other iterates Bk+\ = £*, the theorem characterizes the whole sequence of matrices
{£fc}. Theorem 2.1 states that, if s^y* is always sufficiently positive, in the sense that
conditions (2.17) and (2.18) are satisfied, then at least half of the iterates at which
updating takes place are such that cosOj is bounded away from zero and BjSj = O( | |SJ| | ) .

Since it will be useful to refer easily to these iterates, we make the following definition.

Definition 2,1 We define J to be the set of iterates for which BFGS updating takes
place and for which (2.19) and (2.20) hold. We call J the set of "good iterates'7, and
define Jk = Jf l {1,2,...,A;}.

Note that if the matrices Bk are updated only a finite number of times, their condition
number is bounded, and (2.19)-(2.20) are satisfied for all fc. Thus in this case all iterates
are good iterates.

For the case when BFGS updating takes place an infinite number of times, we assume
that all functions under consideration are smooth and bounded. If at a solution point
x* the reduced Hessian ZjW+Zm is positive definite, then for all xk in a neighborhood
of x* the smallest eigenvalue of Z^W^Zk is bounded away from zero (W^ is defined in
(2.12)). We now show that in such a neighborhood with a* sufficiently small that Update
Criterion I implies (2.17)-(2.18). For the case when w^ is computed by Broyden's method.
Using (2.13), (2.14) and (2.10), and since 7* converges to zero, we have

> C\\skf - O(y2
k\\skf) -

> m\\sk\\
2, (2.21)

for some positive constants C,m. Also, from (2.11), (2.14) and (2.10) we have that

< 0{\\sk\\). (2.22)

We thus see from (2.21)-(2.22) that there is a constant M such that for all k for which
updating takes place

which together- with (2.21) shows that (2.17)-(2.18) hold when Broyden's method is used.

8



For wk computed by the finite difference formula (2.2), from (1.20) and the Mean
Value theorem there is a matrix Wk such that

L(xk, At) - ak[Z{xk + YkPY)TVL{xk + YkpY, A.) - 2%VL(xk, A.)]

= (Zfc+i - Zk)
TVL(xk+1, A.) + Zl (VL(xfc+i, A,) - VL(s*, A,))

- Zk)
TVL(xk + YkpY, A.)

) A.) - VX(xfc, A.))]

= ZlWkZksk + akZl(Wk - Wk)YkPy + O(ak) \\sk ||

O{ak)\\sk\\.

assuming Ykpy = 0{ak). Reasoning as before we see that (2.21) and (2.22) also hold
in this case, and that (2.17)-(2.18) are satisfied in the case when finite differences are
used. These arguments show that, in a neighborhood of the solution and whenever BFGS
updating of Bk takes place, s\yk is sufficiently positive, as stipulated by (2.17)-(2.18).

2.4. A Multiplier-free Approach for Choosing nk.

We will choose \i so that for some p > 0,

MH*)||>|A(*)M*)|+p||c(*)|| (2.23)

and show that this approach ensures a descent direction for the merit function. Moreover,
for the good iterates J, it is a direction of strong descent.

Since d^ satisfies the linearized constraint (1.11) it is easy to show (see eq. (2.24) of
Byrd and Nocedal (1991)) that the directional derivative of the l\ merit function in the
direction d* is given by

D^k(xk;dk) = gldk - WfclMlx. (2.24)

Also, the fact that the same right inverse of A(x)T is used in (1.12) and (1.24) implies
that

g(x)TY(x)pY = \(x)Tc(x). (2.25)

We now show the following relation between Kuhn-Tucker points and merit functions
with /i chosen by (2.23).

Theorem 2,1 Assume that A(x) is of full column rank for all x € D and that Z(x) is
norm bounded. If (p^x) is defined by (1.7) and fx satisfies (2.23) for all x G D, then
D<t>^{x\d) > 0 for all d satisfying c(x) + A(x)Td = 0 if and only if x is a Kuhn-Tucker
point.



Proof. The proof is similar to the one in Fletcher (1987) for <£M(x) with /i >
The if part follows from:

x;d) = g(xfd-n\\c(x)\\i
= g{x)TZ(x)pz-fx\\c(x)\\1 + X{x)Tc(x)

< g(x)TZ(x)pz-p\\c(x)\\i
< g(x)TZ(x)pz (2.26)

for all pz € Hn~m. This implies Z(x)Tg{x) = 0. Now if, in addition, c(x) = 0 then x is
a Kuhn-Tucker point. If we assume c(x) ^ 0 then we can show the contradiction:

0 < Z%(x;d) = \{x)Tc(x) - /i||c(2)||i

< -p||c(S)||i-

< 0.

The only if part follows from substitution of the Kuhn-Tucker conditions:

Z(x)Tg(x) = 0

c(x) = 0

into the directional derivative:

D^(x;<f) = g(x)TZ(x)Pz-fjL\\c(x)\\iHx)Tc(x)

= 0.

To show strong descent directions for good iterates, we recall the decomposition
and use (2.25) to obtain

Now from (1.23) we have that

BkSk = —OLk(Zk gk + Cifĉ A:)-

As shown in our previous paper,

_ -(ZZgk + {kWk)TPz
k \\2%gk + tkWk\\\\Pz\\'

If we satisfy the following property for fik:

Hk\\ck\\>\Xlck\ + 2p\\ck\\

10
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(2.28)

(2.29)

D
(1.23)

(2.30)

(2.31)

(2.32)

(2.33)
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or, equivalently, from (2.25):

Wfellc*ll > igjYkPvl + 2p\\ck\\ (2.34)

then substituting in (2.30), leads to:

Note also from (2.31) that

11**11 = lift 11 ,2 3gx

We now concentrate on the good iterates J, as given in Definition 2.1. If j G J, we have

from (2.36) and (2.20) that

, - ir\\Zi 9j + CjWjll (2.37)

Using this and (2.19) in (2.35) we obtain, for j 6 J,

i d ) < \\Zj + C\

< -^\\zj9jf - 2Si^i{gTZjWj) _ CjWjpu) _ mej

where we have dropped the non-positive term — tf cosQJ\\WJ\\2/fa. Since we can assume
that /% > 1 (it is defined as an upper bound in (2.20)), we have

fy ^ ] - 2p\\ci\\1.
It is now clear that if

2Cj cos 6j\gjZjWj| - CjwjpV* < p\\cj ||i, (2.38)

then for all j G J,

H(xy,dj) < - ^ l l ^ l l 2 - pWcjh. (2.39)

This means that if (2.38) holds, then for the good iterates, j € J, the search direction dj
is a strong direction of descent for the t\ merit function in the sense that the first order
reduction is proportional to the KKT error.

We will choose £* so that (2.38) holds for all iterations. To see how to do this we
note from (1.23) that

l
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so that for j = k (2.38) can be written as

Ck[2cos6k\glZkwk\ + wT
kBlxZlgk + CkwlB^lwk] < p||cfc||i. (2.40)

It is clear that this condition is satisfied for a sufficiently small and positive value of £*.
Specifically, at the beginning of the algorithm we choose a constant p > 0 and, at every
iteration fc, define

Cfc = min{l,Cfc} (2.41)

where 0t is the largest value that satisfies (2.40) as an equality.
The penalty parameter /z* must satisfy (2.23), so we define it at every iteration of

the algorithm by

otherwise.

Note that for ck = 0,jjLk = /Zfc_i and thus fxk is only updated when ck ^ 0.
The damping factor £* and the updating formula for the penalty parameter fik have

been defined so as to give strong descent for the good iterates J. We now show that
they ensure that the search direction is also a direction of descent (but not necessarily of
strong descent) for the other iterates, k & J. Since (2.38) holds for all iterations by our
choice of 0fc> we have in particular

Using this and (2.42) in (2.35), we have

Jf (2.43)

The directional derivative is thus non-positive. Furthermore, since wk = 0 whenever
ck = 0 (regardless of whether wk is obtained by finite differences or through Broyden's
method), it is easy to show that this directional derivative can only be zero at a stationary
point of problem (1.1)-(1.2).

2.5. The Algorithm

- Using the modifications of the reduced Hessian algorithm for the multiplier-free
method, we now give a complete description of the algorithm. As with the previous pa-
per, the algorithm includes an approximation for the cross term using Broyden's method
and finite differences, and based on the relative sizes of pY and pz. Calculation of the
cross term and updating of the reduced Hessian proceed in the same manner as in our
previous paper.

Algorithm I

12



1. Choose constants 77 E (0,1/2), p > 0 and r,rf with 0 < r < r' < 1, and positive
constants F and j i d for conditions (2.9) and (2.15), respectively. For conditions
(2.10) and (2.14), select a summable sequence of positive numbers {7*}. Set k := 1
and choose a starting point xi, an initial value .(JL\ > 0 for the penalty parameter,
an (n — m) x (n — m) symmetric and positive definite starting matrix B\ and an
(n — m) x n starting matrix S\.

2. Evaluate /*,</*, c* and Ak, and compute % and Z*.

3. Set findiff = false and compute pY by solving the system

(AlYk)pY = -c*. (range space step) (2.44)

4. Calculate tu* using Broyden's method, from equations (2.8) and (2.9).

5. Choose the damping parameter C,k from equations (2.40) and (2.41) and compute
pz from

= -\zk9k + CkWk]- (null space step) (2.45)

6. If (2.15) is satisfied and (2.14) is not satisfied, set findiff = true and recompute Wk
from equation (2.1).

7. If findiff = true use this new value of w^ to choose the damping parameter £* from
equations (2.40) and (2.41) and recompute pz from equation (2.45).

8. Define the search direction by

dk = YkpY + Zfcpz, (2.46)

and set a& = 1.

9. Test the line search condition

<t>nk(xk + <*kdk) < <l>nk{xk) + vakDcfr^ixkidk). (2.47)

10. If (2.47) is not satisfied, choose a new a* E [rak,rrak] and go to 9; otherwise set

Xfc+i^fc + afcd*. (2.48)

11. Evaluate /*+i,0*4.1,c*+i, A*+i, and compute Yjk4i and Z*+i.

12. Update /x* so as to satisfy (2.42).

13. Update £*+! using equations (2.5) to (2.7). If findiff = false calculate t/J* by
Broyden's method through equations (2.8) and (2.10); otherwise calculate Wk by
(2.2).

13



14. If s%yk < 0 or if (2.15) is not satisfied, set -B^+i = Bk. Else, compute

s* = <**Pz, (2.49)

Vk = Zl+ig{xk+i) - Zlg{xk) - wk, (2.50)

and compute Bk+X by the BFGS formula (1.22).

15. Set A; := k + 1, and go to 3.

3. Convergence Results

In this section we summarize several convergence results for Algorithm I. Many of the
results of the our previous paper carry over directly and are thus stated without proof.
Nevertheless, there are some important departures which are noted as well.

3.1. Semi-Local Behavior of the Algorithm.

We first show that the merit function <f>^ decreases significantly at the good iterates J,
and that this gives the algorithm a weak convergence property. To establish the results
of this section we restate the following assumptions from our previous paper.

Assumptions 3.1 The sequence {xk} generated by Algorithm I is contained in a convex
set D with the following properties.

(I) The functions / : Rn -> R and c : Rn -* Rm and their first and second derivatives
are uniformly bounded in norm over D.

(II) The matrix A(x) has full column rank for all x € D, and there exist constants 70
and fa such that

WYixnAixfYix)}-1^^, ||Z(s)||<iflb, (3.1)

for all x € D.

(III) For all k > 1 for which Bk is updated, (2.17) and (2.18) hold.

(IV) The correction term to* is chosen so that there is a constant K > 0 such that for all

< KllcfeU1/2. (3.2)

The following result from our previous paper concerns the good iterates J, as given
in Definition 2.1.

14



Lemma 3.1 If Assumptions 3.1 hold and if fij = fj, is constant for all sufficiently large
j, then there is a positive constant 7^ such that for all large j G J,

> 7M [ll^jll2 + IMh] • (3.3)

It is now easy to show that the penalty parameter settles down, and that the set of
iterates is not bounded away from stationary points of the problem.

Theorem 3.2 If Assumptions 3.1 hold, then the weights {/x/k} are constant for all suffi-
ciently large k and ]imMk->oo(\\Zk 9k\\ + l|c*ll) = 0.

Proof. First note that by Assumptions 3.1 (I)-(II) and (2.25) that {Iffjf l*pY|/||c*||i} =
{|^jfcfcl/llc*lli} ^ {11̂ *11} is bounded. Therefore, since the procedure (2.42) increases /U*
by at least p whenever it changes the penalty parameter, it follows that there is an index
fco and a value /i such that for all k > fco, Wb = A4 s u ch *kat Ml|c/k||i > |A£cfc| + 2p||c*|ji. If
BFGS updating is performed an infinite number of times, by Assumptions 3.1-(III) and
Theorem 2.1 there is an infinite set J of good iterates, and by Lemma 3.1 and the fact
that <f>n(xk) decreases at each iterate, we have that for k > &o,

j6Jn[ko,k]

jeJn[ko,k]

By Assumption 3.1-(I) ^M(x) is bounded below for all x E D , so the last sum is finite,
and thus the term inside the square brackets converges to zero. Therefore

( | | j ^ +1̂ 110=0. (3.4)

If BFGS updating is performed a finite number of times then, as discussed after
Definition 2.1, all iterates are good iterates, and in this case we obtain the stronger
result

lim (H^ffjtH + Hcfclli) = 0.

3.2. Local Convergence

In this section we show that if x+ is a local minimizer that satisfies the second order
optimality conditions, and if the penalty parameter /x* is chosen large enough, then x*

15



is a point of attraction for the sequence of iterates {xk} generated by Algorithm I. To
prove this result we will make the following assumptions. In what follows G denotes the
reduced Hessian of the Lagrangian function, i.e.

Assumptions 3.2 The point z* is a local minimizer for problem (1.1)-(1.2) at which
the following conditions hold.

(1) The functions / : Rn -> R and c : Rn -» Rm axe twice continuously differentiable in
a neighborhood of x*, and their Hessians are Lipschitz continuous in a neighborhood

(2) The matrix A(x+) has full column rank. This implies that there exists a vector
A* G Rm such that

VL(z*, A,) = g(xm) + A{x*)\* = 0.

(3) For all q e Rn~m, q ^ 0, we have qTG*q > 0.

(4) There exist constants 70, /?o and 7C such that, for all x in a neighborhood of x*,

WYixHAixfYix^WK-to, \\Z(x)\\<f3o, (3.6)

and
\\[Y(x)Z(x)]-1\\<yc. (3.7)

(5) Z(x) and X(x) are Lipschitz continuous in a neighborhood of x«, i.e. there exist
constants jz and 7^ such that

- * I I , ( 3 . 8 )
\\Z(x) - Z(z)\\ < 7z||x-z||, (3.9)

for all x, z near x».

Note that (1), (3) and (5) imply that for all (x, X) sufficiently near (x,,A»), and for all
q € R n " m ,

m\\q\\2<qTG(x,\)q<M\\q\\2, (3.10)

for some positive constants m, M. We also note that Assumptions 3.2 ensure that the
conditions (2.17)-(2.18) required by Theorem 2.1 hold whenever BFGS updating takes
place in a neighborhood of x*. Therefore Theorem 2.1 can be applied in the convergence
analysis.

The following lemma is proved by Xie (1991) for very general choices of Y and Z.
Their result generalizes Lemma 4.1 of Byrd and Nocedal (1991); see also Powell (1978).
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Lemma 3.3 // Assumptions 3.2 hold, then for all x sufficiently near x*

Till* - x.|| < ||c(x)|| + \\Z{x)Tg{x)\\ < l2\\x - x.||, (3.11)

for some positive constants 71,72 •

This result states that, near z*, the quantities c(x) and Z(x)Tg(x) may be regarded
as a measure of the error at x. The next lemma states that, for a large enough weight,
the merit function may also be regarded as a measure of the error.

Lemma 3.4 Suppose that Assumptions 3.2 hold at x«. Then for any \x satisfying (2.23)
there exist constants 73 > 0 and 74 > 0, such that for all x sufficiently near x*

TSlI* " *.||2 < Mx) ~ Mx") < 74 [\\Z(xf9(x)\\2 + ||c(x)||ij . (3.12)

Proof. To show the left inequality holds we can write:

*„(*)-*„(*.) = / (* )+ /i | |c(z)| |1-/(*,) (3.13)
= /(*) + X(xfc(x) + |AI||C(X)||I - X(xfc(x)} - /(x.) (3.14)

> L(x, A.) + (A(x) - \(x,)fc(x) + p\\c(x)\\i - /(x.) (3.15)

> L(x,A.) + | | | c (x) | | i - / (x . ) (3.16)

(3.17)

where the last inequality follows for all x sufficiently near x*. Expanding the last in-
equality in a Taylor series leads to:

f ^ - ^||c(x)||2 + O(\\x - x.||)3 (3.18)

Now we note that

^Mx)f = U-{x - x.)TA.jg(x - x.) + O(\\x - x.\\)3. (3.19)

In Lemma 4.2 of Byrd and Nocedal (1991) it is shown that if Assumptions 3.2 are satisfied
there exist sufficiently large values of v such that:

• | ( x - x.)T(V2
xxL(xt, A.) + vA.A*)(x - x.) > 273||a; - x.f (3.20)

Now since there exists a Kc > 0 such that ||c(a;)||i < Kc\\x — xm\\ we have for ||i — x,|| <
p/(2vKc):

^ - I , | | ) 3 ( 3 . 2 1 )

> 73lk-ar.ll2 (3.22)
(3.23)
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for all x sufficiently close to x*. The right inequality follows directly from:

Ms)-</>*(*•) = /(*) + H|c(x)||i-/(x*) (3.24)
= L(x, A) - f(x.) + Mk(*)lli " Hxfc(x)} (3.25)

x42) + p\\c(x)h (3.26)
T

9(a:)||2 + ||c(x)||1] * (3.27)

D
Note that the left inequality in (3.12) implies that for a sufficiently large value of

the penalty parameter, the merit function will have a strong local minimizer at x*. We
will now use the descent property of Algorithm I to show convergence of the algorithm.
However, due to the non-convexity of the problem, the line search could generate a step
that decreases the merit function but that takes us away from the neighborhood of x*.
To rule this out we make the following assumption.

Assumption 3.3 The line search has the property that, for all large A:, <^((1 — 9)xk +
Oxk+i) < 0/x(#fc) f°r all 6 E [0,1]. In other words, x/t+i is in the connected component of
the level set {x : </>M(x) < 4>p{xk)} that contains x*.

There is no practical line search algorithm that can guarantee this condition, but it
is likely to hold close to x*. Assumption 3.3 is made by Byrd, Nocedal and Yuan (1987)
when analyzing the convergence of variable metric methods for unconstrained problems,
as well as by Byrd and Nocedal (1991) in the analysis of Coleman-Conn (1984) updates
for equality constrained optimization.

Lemma 3.5 Suppose that the iterates generated by Algorithm I are contained in a convex
region D satisfying Assumptions 3.1. If an iterate XkQ is sufficiently close to a solution
point x* that satisfies Assumptions 3.2, and if the weight /i^0 is large enough, then the
sequence of iterates converges to x*.

Proof. The proof is virtually identical to the one given in our previous paper. By
Assumptions 3.1 (I)-(II) and (1.24) we know that {||Afc||} is bounded. Therefore the
procedure (2.42) ensures that the weights /x* are constant, say /ijb = /i for all large
fc. Moreover, if an iterate gets sufficiently close to x*, we know by (2.42) and by the
continuity of A that (2.23) is satisfied. For such a value of /i, Lemma 3.2 implies that
the merit function has a strict local minimizer at x*. Now suppose that once the penalty
parameter has settled, and for a given e > 0, there is an iterate Xk0 such that

where 70 is such that || • ||i < 70II • II- Assumption 3.3 shows that for any k > k0, x*
is in the connected component of the level set of x*0 that contains Xfc0, and we can
assume that c is small enough that Lemmas 3.3 and 3.4 hold in this level set. Thus since

18



4>iiixk) < <j>n(xko) for A; > /to, and since we can assume that ||£ĵ <feoll — 1> we have from
Lemmas 3.3 and 3.4, for any k > ko

< 73

(^

This implies that the whole sequence of iterates remains in a neighborhood of radius e
of x+. If e is small enough we conclude by (3.12), by the monotonicity of {(f>n{xk)} and
Theorem 4.2 that the iterates converge to x».

D

3.3. R-Linear Convergence.

For the rest of the paper we assume that the iterates generated by Algorithm I
converge to x«, which implies that for all large k and some p > 0, /x* = /x and

»\\c(x)\]>\\(xfc(x)\+pMx)\\ (3.28)

The analysis that follows depends on how often BFGS updating is applied, and to make
this concept precise we define U to be the set of iterates at which BFGS updating takes
place,

U = {k : BM = BFGS(Bk, sk, yk)}, (3.29)

and let
Uk = UD {1,2, ..,&}. (3.30)

The number of elements in Uk will be denoted by \Uk\. The following result from our
previous paper carries over directly to the multiplier-free method.

Theorem 3.6 Suppose that the iterates {xk} generated by Algorithm I converge to a
point x* that satisfies Assumptions 3.2. Then for any k £U and any j > k

(3.31)

for some constants C > 0 and 0 < r < 1.
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This result implies that if {\Uk\/k} is bounded away from zero, then Algorithm I is
R-lineaxly convergent. However, BFGS updating could take place only a finite number
of times, in which case this ratio would converge to zero. It is also possible for BFGS
updating to take place an infinite number of times, but every time less often, in such a
way that \Uk\/k —¥ 0. We therefore need to examine the iteration more closely.

We make use of the matrix function ip defined by

= tr{B) - ln(cfct(B)), (3.32)

where tr denotes the trace, and det the determinant. It can be shown that

lncond(B)<V>(£), (3.33)

for any positive definite matrix B (Byrd and Nocedal (1989)). We also make use of the
weighted quantities

Vk = G7l/2yk, sk = GlJ2sk, (3.34)

Bk = G;1 / 2B f cG;1 / 2 , (3.35)

(3.36)
l|£*«*llll**ll

and

2g^ (3.37)
One can show (see eq. (3.22) of Byrd and Nocedal (1989)) that if Bk is updated by

the BFGS formula then

This expression characterizes the behavior of the BFGS matrices Bky and will be
crucial to the analysis of this section. However before we can make use of this relation
we need to consider the accuracy of the correction terms. We begin by showing that when
finite differences axe used to estimate wk and TÛ , these axe accurate to second order.

Lemma 3.7 // at the iterate xk, the corrections wk and wk are computed by the finite
difference formulae (2.1)-(2.2), and if xk is sufficiently close to a solution point z* that
satisfies Assumptions 3.2, then

«»* = O(lbvll), (3-39)
IK - Z,rW.yfepY|| = O{ak\\pY\\) • (3.40)

and
T \). (3.41)
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Proof. The proof requires only a minor modification of the same property proved in the
previous paper. Recalling that VL(z, A) = g(x) + A(x)A, we have from (2.1) that

wk = Z(xk + YkpY)Tg{xk + YkpY)-Z(xk)
Tg(xk)

= Z(xk + YkpY)TVL(xk + YkpY, A,) - Z(xk)
TVL(xk, A,)

= (Z(xk + YkpY) - Z(xk))
TVL(xk + YkpY,\*)

V2
xxL{xk + rYkpY, A,)rfr] YkpY

(Z(xk + npy) - Z(x*))rVL(a* + YkpY, A,)
(3.42)

The above result follows for xk in the neighborhood of £* where (3.6)-(3.9) hold because:

VL(xk + YkpY, A.) = O(||x - xm\\) + O(|bY||) = O(afc) (3.43)

where ak is defined by (1.29). Also a simple computation shows that

[ZlWk - Z?W.]YkPY = OVibllPvll).) (3.44)

Using these facts in (3.42) yields the desired result (3.40). To prove (3.41), we only note
that ak < 1, and reason in the same manner. D

Next we show that the condition number of the matrices Bk is bounded, and that
at the iterates U at which BFGS updating takes place the matrices Bk are accurate
approximations of the reduced Hessian of the Lagrangian.

Theorem 3.8 Suppose that the iterates {xk} generated by Algorithm I converge to a
solution point x* that satisfies Assumptions 3.2. Then {||B |̂|} and {\\B^l\\} are bounded,
and for allkeU

^ (3.45)

Proof. Again, the proof follows along the same lines as the one in our previous paper,
but with slight modification. Consider only iterates k for which BFGS updating of Bk
takes place. We have from (2.50), (2.48), (2.46), (2.12) and (2.49)

j Zlgk - wk

,X,) - Z][VL(xk,X,)-wk

- ZkfVL(xk+1, A.) + ZftVLfo+i, A.) - VL(xk, A.)) - wk

- Zk)
TVL{xk+u A,) + [ z j jf V2

xxL(xk + Takdk, A,)rfr] akdk - wk

= ctkZlWk{ZkPz + YkpY) -wk + O(<7fc)(||afc|| + a
= ZlWkZksk + ak{ZlWk - ZT\V.)YkpY + (akZjW.YkpY - wk)

+O(ak)(\\sk\\ + ak\\pY\\). (3.46)'
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Since wk can be computed by Broyden's method or by finite differences, we consider
these two cases separately.

Part I. We first assume that wk is determined by Broyden's method. A simple com-
putation shows that \\Z][Wk - ZjW«\\ = 0{ok), and from (2.10) we have that wk =
O(||pY||/7fc)- Using this and Assumptions 3.2 in (3.46) we have

yk = ZlWkZksk + {ak + l + l/7*)O(a*||pY||) + O{ak)\\sk\\

= (Z%WkZk - G.)sk + G.sk + (a* + 1

Recalling (3.34) and noting that yi^Sk = y%sk we have

yUk = sl(Z?WkZk - G.)sk + pfc||
2 + (orfc + 1

since ||5fc|| and \\sk\\ are of the same order. Therefore

VJ-h _ sT
k{ZlWkZk-G.)sk

\\sk\\2 \\h\\2

(^jy (3.48)

Similarly from (3.47) and (3.34) we have

<

+2(1 + 0{ak))\\{ZlWkZk - G,)sk\\ \\G71/2\\ \\sk\\ + (l + O(afc))
2||S*||2

:* | | ((1 + O(fffc))l|5*ll + \\(2%WkZk - G.

(3.49)

and thus

j . (3.50)

At this point we invoke the update criterion, and note from (2.14) that if BFGS
updating of Bk takes place at iteration fc, then ||afcpY|| < 7fc||sfc|| where {7*} is summable.
Using this, the assumption that ok converges to zero, and (3.48) we see that for large k

(3.51)
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and using (3.50)

Therefore
lly.ll2 lly^ll21!5^||2 _ -
~ r - = .,- i l2 ~T~ = 1 + CJ(a* + 7*)- (3.52)
yksk \\*k\r yk

sk

We now consider x/>(Bk+i) given by (3.38). A simple expansion shows that for large
fc, ln(l + O(ak + 7fc)) = O(CTA: + 7*). Using this, (3.51) and (3.52) we have

4>(BM) = 1>(Bk) + O{ok + lk) + In cos2 §k + [l - _» H - l n - ^ - l . (3.53)
L COS20 COS20J

Note that for x > 0 the function 1 — x + In x is non-positive, implying that the term in
square brackets is non-positive, and that In cos2 0k is also non-positive. We can therefore
delete these terms to obtain

iKBM) < *l*{Bk) + O(ak + 7.). (3.54)

Before proceeding further we show that a similar expression holds when finite differences
are used.

Part II. Let us now consider the iterates k for which updating takes place and for which
wk is computed by finite differences. In this case (2.15) holds. Again we begin by
considering (3.46),

yk = Z j l ^ Z ^ + a f c ^ ^

Using (3.41) the second and third terms are of order a*(a*||pY||)- Thus

yk = Z

= {ZlWkZk - G.)sk + G.sk + O(ak)(\\sk\\ + a*||pY||). (3.55)

Noting once more that y%sk = y^Sk and recalling the definition (3.34) we have

ylh = s\{ZlWkZk - G.)8k + \\h\\2 + O(ak)(\\sk\\
2 +

since ||i^|| and ||s*|| are of the same order. Therefore

yjsk _ sT
k{ZlWkZk-G.)sk /

P̂ F - 1 +—P^P—+ 0 { a k ) \ l + i^r)
. (3.56)
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Similarly from (3.55) and (3.34) we have

ylyk < \\(ZjWkZk-Gt)sk\\
2\\G:l\\

+2(1 + O(ak))\\{ZjWkZk - G.)sk\\ ||G:1/2|| p*|| + (1 + 0{ak))\\sk\\
2

[(1 + O(ak))\\sk\\

+4O(\\akPY\\)2,

and thus

"'"•'" "2 < 1 + O{ak) + ak0 (tgf\ + o\0 I ^f^- ) . (3.57)

The rest of the proof is identical to the one in our previous paper. We note from
(2.15) that if BFGS updating of Bk takes place at iteration *;, then ||pY|| < 7fd||Pzll/crfc/2.
Using this, (3.56) and the fact that Gk converges to zero, we see that for large k

and using (3.57)

Therefore

llrf n(n rtW

We now consider ip(Bk+i) given by (3.38). Noting that ln(l + 0(aj/2)) = 0{a\12) for all
large A;, we see that if updating takes place at iteration k

= *P(Bk) + O(al
k
/2) + In cos 2 § k + f l - - ^ + In — ^ - 1 . (3.59)

L cos2^ cos20j
Since both In cos2 Ok as well as the term inside the square brackets are non-positive, we
can delete them to obtain

rP(BM)<^(Bk) + O(al
k
/2). (3.60)

We now combine the results of Parts I and II of this proof. Let us subdivide the set of
iterates U for which BFGS updating takes place into two subsets: U1 corresponds to the
iterates in which wk is computed by Broyden's method, and Un to the iterates in which
finite differences are used. We also define U'k = U' n {1,2, ...A:} and U'£ = U" n {1,2, ...fc}.

Summing over the set of iterates in £/*, using (3.54) and (3.60), and noting that
Bj+\ = Bj for j £ J7fc, we have

a)12 + C2 Y, °i + C3 £.7ii (3.61)
jeu'k jeu'k
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for some constants CUC2,C3. By (3.31) and since \U"\ < \Uj\,

E a)'2 ̂  E

jeu"
\u"\

t=i

< 00.

Similarly

E °i

and since {7*} is summable we conclude from (3.61) that {xp(Bk)} is bounded above. By
(3.32) tl>(Bk) = SJLiCt"- ln t̂)> where Zj are the eigenvalues of i?*, and it is easy to see
that this implies that both Hi?*II and HB^1!! are bounded.

1 /9

To prove (3.45), we sum relations (3.53) and (3.59), recalling that a*, 7* and o^ are
summable, to obtain

fin cos2 ek + [ i - _ « + In

for some constant C. Since ip(Bk+\) > 0, and since both In cos2 0* and the term inside
the square brackets are non-positive we see that

lim In cos2 0* = 0,
kkeu

and

Now, for a; > 0 the function 1 —x + In x is concave and has its unique maximizer at x = 1.
Therefore the relations above imply that

lim cosfj* = lim g* = 1. (3.62)
k-*oo A:-too

Now from (3.36)-(3.37)

\\G:ll\Bk-G.)Pz\\
2 \\{Bk-I)sk\\

2

\\Bksk\\
2 - 2i^

Of.
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We propose a quasi-Newton algorithm for solving optimization problems with nonlinear equal-
ity constraints. It is designed for problems with few degrees of freedom and does not require the
calculation of Lagrange multipliers. It can also be extended to large-scale systems through the
use of sparse matrix factorizations. The algorithm has the same superlinear and global properties
as the reduced Hessian method developed in our previous paper (Biegler, Nocedal and Schmid,
1995). This report directly reworks the theory presented in that paper to consider the multiplier
free case.

1. Introduction.
We consider the nonlinear optimization problem

m m / ( x ) (1.1)

subject to c(x) = 0, (1.2)

where / : Rn —• R and c : Rn —> Rm are smooth functions. We assume that the first
derivatives of / and c are available, but our algorithm does not require second derivatives.
The successive quadratic programming (SQP) method for solving (1.1)-(1.2) generates,
at an iterate #*, a search direction dk by solving

min g(xk)
Td + \dTW{xk)d (1.3)

subject to c(xk) + A{xk)
Td = 0, (1.4)

where g denotes the gradient of /, W denotes the Hessian of the Lagrangian function
L(x, A) = f(x) + ATc(x), and A denotes the n x m matrix of constraint gradients

]. (1.5)



A new iterate is then computed as

xk+\ = xk + akdk, (1.6)

where ak is a steplength parameter chosen so as to reduce the value of the merit function.
In this study we will use the t\ merit function

^ ( x ) = /(x) + M||c(x)||1, (1.7)

where /i is a penalty parameter; see for example Conn (1973), Han (1977) or Fletcher
(1987). This penalty parameter is normally based on Lagrange multiplier values or
their estimates but here we consider a simpler measure that does not require Lagrange
multiplier estimates, but still maintains descent properties for (fi^x).

The solution of the quadratic program (1.3)-(1.4) can be written in a simple form if
we choose a suitable basis of Rn to represent the search direction dk. For this purpose,
we introduce a nonsingular matrix of dimension n, which we write as

[YkZk], (1.8)

where Yk e R n x m and Zk € R« x ( n - m ) , and assume that

AlZk = 0. (1.9)

(From now on we abbreviate A(xk) as Ak, g(xk) as gk, etc.) Thus Zk is a basis for the
tangent space of the constraints. We can now express dk, the solution to (1.3)-(1.4), as

dk = YkpY + ZkPz, (1.10)

for some vectors pY € Rm and pz € Rn~m. Due to (1.9) the linear constraints (1.4)
become

ck + AlYkpY = 0. (1.11)

If we assume that Ak has full column rank then the nonsingularity of [Yk Zk] and equation
(1.9) imply that the matrix A^Yk is nonsingular, so that pY is determined by (1.11):

Substituting this in (1.10) we have

dk = -Yk[AlYh]-lCk + ZkPz. (1.13)

The SQP sub-problem can now be expressed exclusively in terms of the variables pz.
Substituting (1.10) into (1.3), considering YkpY as constant, and ignoring constant terms,
we obtain the unconstrained quadratic problem

\ ( 1 . 1 4 )
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Assuming that Z%WkZk is positive definite, the solution of (1.14) is

l l [ Z l g k + ZlWkYkpY). (1.15)

This determines the search direction of the SQP method.
In our previous paper (Biegler, Nocedal and Schmid, 1995) the cross term [Zr

kWkYk\pY

is approximated by a vector it;*,

[ZlWkYk]pY*wk, (1.16)

without computing the matrix Z%WkYk. This allows the rate of convergence of the algo-
rithm to be 1-step Q-superlinear, as opposed to the 2-step superlinear rate for methods
that ignore the cross term (Byrd (1985) and Yuan (1985)). The null space step (1.15) of
our algorithm will be given by

pz = -{ZlWkZk)-
l[Zlgk + (kwk), (1.17)

where 0 < (k < 1 is a damping factor described in our previous paper.
Here the cross term is approximated either by a finite difference estimate along YkpY

or by a quasi-Newton method in which the rectangular matrix Z^Wk is approximated
by a matrix Sk, using Broyden's method. We then obtain wk by multiplying this matrix
by YkpY, i.e.,

wk = SkYkpY.

In this study, we update Sk+\ so that it satisfies the following secant relation:

Sk+i(xM - xk) = Zl+l9(xk+i) - Zlg{xk). (1.18)

Let us now consider how to approximate the reduced Hessian matrix Z^WkZk. Prom
(1.6), (1.10) and (1.18) we obtain

[Sk+iZk]akpz = -akSk+i(YkpY) + Z^gixk+i) - Zlg(xk).

Since Sk+\ approximates ZTW, this suggests the following secant equation for 27&+1, the
quasi-Newton approximation to the reduced Hessian ZTWZ:

yk, (1.19)

where sk and yk are defined by sk = akpz, and

Vk = ZZ+l9(xk+0 - Zlg{xk) - wk, (1.20)

with
Wk = akSM(YkpY). (1.21)

We will update Bk by the BFGS formula (cf. Fletcher (1987))

( L 2 2 )



provided s^y* is sufficiently positive. As a result, the null space step is computed from:

BkPz = -{Zk9k + OfcUfc)- (1.23)

Note as in our previous paper, that two correction terms, Wk and Wk are applied. The
first term, Wk, is used in the null space step (1.23) and makes Use of the matrix 5*. The
second term, Wk is used in (1.20) for the BFGS update of Bk and is computed using the
new Broyden matrix 5fc+i, and takes into account the steplength a*. We will see below
that it is useful to incorporate the most recent information in Wk-

Finally, as noted by Orozco (1993), an interesting relationship in the definition of
basis representations and Lagrange multipliers occurs for a particular choice of Z and Y,
If we define the Lagrange multiplier estimates by:

A(x) = -[YixfAixT'Yixfgix). • (1.24)

and partition x into m basic or dependent variables (which without loss of generality are
assumed to be the first m variables) and n — m nonbasic or control variables, we induce
the partition

A(x)T = [C(x)N(x)}, (1.25)

where the m x m basis matrix C(x) is assumed to be nonsingular. We now define Z(x)
and Y{x) to be

zw. [-*«;'*« ] y ( , , . [ j ] . (,26)
This choice is particularly advantageous when A(x) is large and sparse, because a sparse
LU decomposition of C{x) can often be computed efficiently, and this approach will be
considerably less expensive than a QR factorization of A(x). It is also straightforward
to show that for any points x, x for which C(x), C(x) are nonsingular, we have

Z(x)TVL(x,\(x)) = Z(x)Tg(x) (1.27)

This allows us to make the following equivalence in the calculation of %.

Vk = Zl+xg{xk+\)-Zlg{xk)-v5k

= ZjVL(z*+i, Afc+i) - Zj[g{xk) - Wk (1.28)

when (1.26) is chosen for Y and Z.
In the next section we discuss the revised reduced Hessian algorithm in detail. In

particular, we briefly describe the calculation of the correction terms wk and Wf^ the
conditions under which BFGS updating takes place, the choice of the damping parameter
Ok, and the procedure for updating the weight fik in the merit function. Most of these
steps are identical to the ones in our previous paper. Section 3 presents an analysis of the
local behavior of the algorithm, shows that the rate of convergence is at least R-linear
and summarizes the properties related to superlinear convergence. Numerical results



and extensions to consider variable bounds are described in a companion paper (Biegler,
Schmid and Ternet, 1995).

Regarding our notation, throughout the paper the vectors pY and pz are computed at
Zfc, and could be denoted by pY^ and pz^

k\ but we will normally omit the superscript
for simplicity. The symbol || • || denotes the I2 vector norm or the corresponding induced
matrix norm. When using the l\ or /<» norms we will indicate it explicitly by writing
II • 111 or || • Hoc. A solution of problem (1.1) is denoted by x*, and we define

ek = xk - x+ and ak = max{||e*||, ||e*+i||}. (1.29)

2. Details of the Multiplier-Free Algorithm
In this section we consider1 how to calculate approximations wk and wk to (Z%WkYk)pY

to be used in the determination of the search direction pz and in updating 2?*, respectively.
We also discuss when to skip the BFGS update of the reduced Hessian approximation,
as well as the selection of the damping factor Ck and the penalty parameter /i&.

To approximate to (ZTWY)pY we propose two approaches that have slight modi-
fications to those proposed in our earlier paper. First, we consider a finite difference
approximation to Z][Wk along the direction YkpY. The second approach defines wk and
wk in terms of a Broyden approximation to Z%Wk, as discussed in §1, and requires no
additional function or gradient evaluations. Our algorithm will normally use this second
approach, although it is sometimes necessary to use finite differences.

2.1. Calculating wk and wk Through Finite Differences.

We first calculate the range space step pY at xk through equation (1.12). Next we
compute the reduced gradient of the Lagrangian at xk + YkpY and define

wk = Z(xk + YkpYfg(xk + YkpY) - Zlgk. (2.1)

After the step to the new iterate xk+\ has been taken, we define

wk = akwk (2.2)

which requires a new evaluation of gradients if ak ^ 1. These correction terms are
substituted for the ones used in our previous paper:

wk = Zl[VL{xk + YkPYy Xk) - VL(xk,\k)]. (2.3)

wk = Zl\VL{xk + akYkpY, XM) - VL{xk, A*+1)] (2.4)

2.2. Using Broyden's Method to Compute wk and wk.

We can approximate the rectangular matrix Z^Wk by a matrix 5* updated by Broy-
den's method, and then compute wk and wk by post-multiplying this matrix by YkpY



or by a multiple of this vector. As discussed in §1 it is reasonable to impose the secant
equation (1.18) on this Broyden approximation, which can therefore be updated by the
formula (cf. Fletcher (1987))

S W ^ g f c + ( f e " i ! f t ) ^ (2.5)
sksk

where
Vk = Zjf+i0(s*+i) - Zlg(xk) (2.6)

Sk = Zifc+i - xk. (2.7)

thus, defining
wk = SkYkpY and wk = akSk+iYkpY. (2.8)

As in our previous paper, we apply a safeguard on these updates to make sure that
wk and wk remain bounded. At the beginning of the algorithm we choose a positive
constant T and define

otherwise.

On the other hand, the correction wk will be safeguarded by choosing a sequence of
positive numbers {7*} such that E -g l^ < 00, and set

wk if \\wk\\ < c(

As the iterates converge to the solution, pY —• 0, we see from (2.8) and from the bounded-
ness of Yk that these safeguards allow the Broyden updates Sk to become unbounded, but
in a controlled manner. In our previous paper, it was shown that these Broyden updates
Sk do, in fact, remain bounded, so that the safeguards become inactive asymptotically.

2.3. Update Criterion.

It is well known that the BFGS update (1.22) is well defined only if the curvature
condition s^yk > 0 is satisfied. This condition can always be enforced in the uncon-
strained case by performing an appropriate line search; see for example Fletcher (1987).
However when constraints are present the curvature condition s%yk > 0 can be difficult
to obtain, even near the solution.

To show this we first note from (1.20), (1.10) and from the Mean Value Theorem that

yk = Z%+ xgfc+i ~ Zkgk - wk

Zl \J V2
xxL{xk + rakdk, \*)dr\ akdk + (Zfc+i - Zk)

TVL(xk+u K) - wk

ZlWkakdk + (Z*+i - Zib)rVL(xfc+i, A*) - wk

F O ( a ^ (2.11)
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where we have defined

= Zl f V2
xxL{xk + Takdk, X.)dr. (2.12)

Jo
Thus

slyk = sT
k{ZlWkZk)sk + O(ak)\\Skf + [aksj (ZjWkYk)pY - #57*] + O(ok)\\ak\\ \\py ||.

(2-13)
Near the solution, the two O(a&) terms will vanish, while the first term on the right

hand side will be positive since Z^W^Zk can be assumed positive definite. Nevertheless
the bracketed terms in (2.13) are of uncertain sign and can make s^yk negative. To avoid
this problem and also ensure that the quasi-Newton approximation remains boimded, we
apply the same updating criterion developed in our previous paper.

Update Criterion I.
Choose a constant y{d > 0 and a sequence of positive numbers {jk} such that Ej^^fc < oo
(this is the same sequence {7*} that was used in (2.10)).

IfWk is computed by Broyden's method, and if both s^yk > 0 and

Ibvll < 7*2IM (2.14)

hold at iteration k, then update the matrix Bk by means of the BFGS formula (1.22)
with Sk and y* given by (1.20). Otherwise, set

// Wk is computed by finite differences, and if both s£yk > 0 and

i / 2 (2.15)

hold at iteration k, then update the matrix Bk by means of the BFGS formula (1.22)
with Sk and yk given by (1.20). Otherwise, set Bk+i = Bk.

Here Ok is replaced by any quantity which is of the same order as the error e*, and, as in
our previous paper, we use the optimality condition (IIZjjTitell + ||cfc||). Moreover, define

Prom Byrd and Nocedal (1989), the behavior of cos0* for BFGS updates can be described
by the following theorem.

T h e o r e m 2 . 1 Let {Bk} be generated by the BFGS formula (1.22) where, for all k>\,
Sk ^0 and

T
% ^ > m > 0 (2.17)

< M. (2.18)



Then, there exist constants /3\, 02,03 > 0 such that, for any k > 1, the relations

cos Oj > fa (2.19)

(2.20)

hold for at least f^fc] values of j € [l,fc].

This theorem refers to the iterates for which BFGS updating takes place, but since for
the other iterates Bk+\ = £*, the theorem characterizes the whole sequence of matrices
{£fc}. Theorem 2.1 states that, if s^y* is always sufficiently positive, in the sense that
conditions (2.17) and (2.18) are satisfied, then at least half of the iterates at which
updating takes place are such that cosOj is bounded away from zero and BjSj = O( | |SJ| | ) .

Since it will be useful to refer easily to these iterates, we make the following definition.

Definition 2,1 We define J to be the set of iterates for which BFGS updating takes
place and for which (2.19) and (2.20) hold. We call J the set of "good iterates'7, and
define Jk = Jf l {1,2,...,A;}.

Note that if the matrices Bk are updated only a finite number of times, their condition
number is bounded, and (2.19)-(2.20) are satisfied for all fc. Thus in this case all iterates
are good iterates.

For the case when BFGS updating takes place an infinite number of times, we assume
that all functions under consideration are smooth and bounded. If at a solution point
x* the reduced Hessian ZjW+Zm is positive definite, then for all xk in a neighborhood
of x* the smallest eigenvalue of Z^W^Zk is bounded away from zero (W^ is defined in
(2.12)). We now show that in such a neighborhood with a* sufficiently small that Update
Criterion I implies (2.17)-(2.18). For the case when w^ is computed by Broyden's method.
Using (2.13), (2.14) and (2.10), and since 7* converges to zero, we have

> C\\skf - O(y2
k\\skf) -

> m\\sk\\
2, (2.21)

for some positive constants C,m. Also, from (2.11), (2.14) and (2.10) we have that

< 0{\\sk\\). (2.22)

We thus see from (2.21)-(2.22) that there is a constant M such that for all k for which
updating takes place

which together- with (2.21) shows that (2.17)-(2.18) hold when Broyden's method is used.

8



For wk computed by the finite difference formula (2.2), from (1.20) and the Mean
Value theorem there is a matrix Wk such that

L(xk, At) - ak[Z{xk + YkPY)TVL{xk + YkpY, A.) - 2%VL(xk, A.)]

= (Zfc+i - Zk)
TVL(xk+1, A.) + Zl (VL(xfc+i, A,) - VL(s*, A,))

- Zk)
TVL(xk + YkpY, A.)

) A.) - VX(xfc, A.))]

= ZlWkZksk + akZl(Wk - Wk)YkPy + O(ak) \\sk ||

O{ak)\\sk\\.

assuming Ykpy = 0{ak). Reasoning as before we see that (2.21) and (2.22) also hold
in this case, and that (2.17)-(2.18) are satisfied in the case when finite differences are
used. These arguments show that, in a neighborhood of the solution and whenever BFGS
updating of Bk takes place, s\yk is sufficiently positive, as stipulated by (2.17)-(2.18).

2.4. A Multiplier-free Approach for Choosing nk.

We will choose \i so that for some p > 0,

MH*)||>|A(*)M*)|+p||c(*)|| (2.23)

and show that this approach ensures a descent direction for the merit function. Moreover,
for the good iterates J, it is a direction of strong descent.

Since d^ satisfies the linearized constraint (1.11) it is easy to show (see eq. (2.24) of
Byrd and Nocedal (1991)) that the directional derivative of the l\ merit function in the
direction d* is given by

D^k(xk;dk) = gldk - WfclMlx. (2.24)

Also, the fact that the same right inverse of A(x)T is used in (1.12) and (1.24) implies
that

g(x)TY(x)pY = \(x)Tc(x). (2.25)

We now show the following relation between Kuhn-Tucker points and merit functions
with /i chosen by (2.23).

Theorem 2,1 Assume that A(x) is of full column rank for all x € D and that Z(x) is
norm bounded. If (p^x) is defined by (1.7) and fx satisfies (2.23) for all x G D, then
D<t>^{x\d) > 0 for all d satisfying c(x) + A(x)Td = 0 if and only if x is a Kuhn-Tucker
point.



Proof. The proof is similar to the one in Fletcher (1987) for <£M(x) with /i >
The if part follows from:

x;d) = g(xfd-n\\c(x)\\i
= g{x)TZ(x)pz-fx\\c(x)\\1 + X{x)Tc(x)

< g(x)TZ(x)pz-p\\c(x)\\i
< g(x)TZ(x)pz (2.26)

for all pz € Hn~m. This implies Z(x)Tg{x) = 0. Now if, in addition, c(x) = 0 then x is
a Kuhn-Tucker point. If we assume c(x) ^ 0 then we can show the contradiction:

0 < Z%(x;d) = \{x)Tc(x) - /i||c(2)||i

< -p||c(S)||i-

< 0.

The only if part follows from substitution of the Kuhn-Tucker conditions:

Z(x)Tg(x) = 0

c(x) = 0

into the directional derivative:

D^(x;<f) = g(x)TZ(x)Pz-fjL\\c(x)\\iHx)Tc(x)

= 0.

To show strong descent directions for good iterates, we recall the decomposition
and use (2.25) to obtain

Now from (1.23) we have that

BkSk = —OLk(Zk gk + Cifĉ A:)-

As shown in our previous paper,

_ -(ZZgk + {kWk)TPz
k \\2%gk + tkWk\\\\Pz\\'

If we satisfy the following property for fik:

Hk\\ck\\>\Xlck\ + 2p\\ck\\

10

(2.27)

(2.28)

(2.29)

D
(1.23)

(2.30)

(2.31)

(2.32)

(2.33)
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or, equivalently, from (2.25):

Wfellc*ll > igjYkPvl + 2p\\ck\\ (2.34)

then substituting in (2.30), leads to:

Note also from (2.31) that

11**11 = lift 11 ,2 3gx

We now concentrate on the good iterates J, as given in Definition 2.1. If j G J, we have

from (2.36) and (2.20) that

, - ir\\Zi 9j + CjWjll (2.37)

Using this and (2.19) in (2.35) we obtain, for j 6 J,

i d ) < \\Zj + C\

< -^\\zj9jf - 2Si^i{gTZjWj) _ CjWjpu) _ mej

where we have dropped the non-positive term — tf cosQJ\\WJ\\2/fa. Since we can assume
that /% > 1 (it is defined as an upper bound in (2.20)), we have

fy ^ ] - 2p\\ci\\1.
It is now clear that if

2Cj cos 6j\gjZjWj| - CjwjpV* < p\\cj ||i, (2.38)

then for all j G J,

H(xy,dj) < - ^ l l ^ l l 2 - pWcjh. (2.39)

This means that if (2.38) holds, then for the good iterates, j € J, the search direction dj
is a strong direction of descent for the t\ merit function in the sense that the first order
reduction is proportional to the KKT error.

We will choose £* so that (2.38) holds for all iterations. To see how to do this we
note from (1.23) that

l
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so that for j = k (2.38) can be written as

Ck[2cos6k\glZkwk\ + wT
kBlxZlgk + CkwlB^lwk] < p||cfc||i. (2.40)

It is clear that this condition is satisfied for a sufficiently small and positive value of £*.
Specifically, at the beginning of the algorithm we choose a constant p > 0 and, at every
iteration fc, define

Cfc = min{l,Cfc} (2.41)

where 0t is the largest value that satisfies (2.40) as an equality.
The penalty parameter /z* must satisfy (2.23), so we define it at every iteration of

the algorithm by

otherwise.

Note that for ck = 0,jjLk = /Zfc_i and thus fxk is only updated when ck ^ 0.
The damping factor £* and the updating formula for the penalty parameter fik have

been defined so as to give strong descent for the good iterates J. We now show that
they ensure that the search direction is also a direction of descent (but not necessarily of
strong descent) for the other iterates, k & J. Since (2.38) holds for all iterations by our
choice of 0fc> we have in particular

Using this and (2.42) in (2.35), we have

Jf (2.43)

The directional derivative is thus non-positive. Furthermore, since wk = 0 whenever
ck = 0 (regardless of whether wk is obtained by finite differences or through Broyden's
method), it is easy to show that this directional derivative can only be zero at a stationary
point of problem (1.1)-(1.2).

2.5. The Algorithm

- Using the modifications of the reduced Hessian algorithm for the multiplier-free
method, we now give a complete description of the algorithm. As with the previous pa-
per, the algorithm includes an approximation for the cross term using Broyden's method
and finite differences, and based on the relative sizes of pY and pz. Calculation of the
cross term and updating of the reduced Hessian proceed in the same manner as in our
previous paper.

Algorithm I

12



1. Choose constants 77 E (0,1/2), p > 0 and r,rf with 0 < r < r' < 1, and positive
constants F and j i d for conditions (2.9) and (2.15), respectively. For conditions
(2.10) and (2.14), select a summable sequence of positive numbers {7*}. Set k := 1
and choose a starting point xi, an initial value .(JL\ > 0 for the penalty parameter,
an (n — m) x (n — m) symmetric and positive definite starting matrix B\ and an
(n — m) x n starting matrix S\.

2. Evaluate /*,</*, c* and Ak, and compute % and Z*.

3. Set findiff = false and compute pY by solving the system

(AlYk)pY = -c*. (range space step) (2.44)

4. Calculate tu* using Broyden's method, from equations (2.8) and (2.9).

5. Choose the damping parameter C,k from equations (2.40) and (2.41) and compute
pz from

= -\zk9k + CkWk]- (null space step) (2.45)

6. If (2.15) is satisfied and (2.14) is not satisfied, set findiff = true and recompute Wk
from equation (2.1).

7. If findiff = true use this new value of w^ to choose the damping parameter £* from
equations (2.40) and (2.41) and recompute pz from equation (2.45).

8. Define the search direction by

dk = YkpY + Zfcpz, (2.46)

and set a& = 1.

9. Test the line search condition

<t>nk(xk + <*kdk) < <l>nk{xk) + vakDcfr^ixkidk). (2.47)

10. If (2.47) is not satisfied, choose a new a* E [rak,rrak] and go to 9; otherwise set

Xfc+i^fc + afcd*. (2.48)

11. Evaluate /*+i,0*4.1,c*+i, A*+i, and compute Yjk4i and Z*+i.

12. Update /x* so as to satisfy (2.42).

13. Update £*+! using equations (2.5) to (2.7). If findiff = false calculate t/J* by
Broyden's method through equations (2.8) and (2.10); otherwise calculate Wk by
(2.2).
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14. If s%yk < 0 or if (2.15) is not satisfied, set -B^+i = Bk. Else, compute

s* = <**Pz, (2.49)

Vk = Zl+ig{xk+i) - Zlg{xk) - wk, (2.50)

and compute Bk+X by the BFGS formula (1.22).

15. Set A; := k + 1, and go to 3.

3. Convergence Results

In this section we summarize several convergence results for Algorithm I. Many of the
results of the our previous paper carry over directly and are thus stated without proof.
Nevertheless, there are some important departures which are noted as well.

3.1. Semi-Local Behavior of the Algorithm.

We first show that the merit function <f>^ decreases significantly at the good iterates J,
and that this gives the algorithm a weak convergence property. To establish the results
of this section we restate the following assumptions from our previous paper.

Assumptions 3.1 The sequence {xk} generated by Algorithm I is contained in a convex
set D with the following properties.

(I) The functions / : Rn -> R and c : Rn -* Rm and their first and second derivatives
are uniformly bounded in norm over D.

(II) The matrix A(x) has full column rank for all x € D, and there exist constants 70
and fa such that

WYixnAixfYix)}-1^^, ||Z(s)||<iflb, (3.1)

for all x € D.

(III) For all k > 1 for which Bk is updated, (2.17) and (2.18) hold.

(IV) The correction term to* is chosen so that there is a constant K > 0 such that for all

< KllcfeU1/2. (3.2)

The following result from our previous paper concerns the good iterates J, as given
in Definition 2.1.
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Lemma 3.1 If Assumptions 3.1 hold and if fij = fj, is constant for all sufficiently large
j, then there is a positive constant 7^ such that for all large j G J,

> 7M [ll^jll2 + IMh] • (3.3)

It is now easy to show that the penalty parameter settles down, and that the set of
iterates is not bounded away from stationary points of the problem.

Theorem 3.2 If Assumptions 3.1 hold, then the weights {/x/k} are constant for all suffi-
ciently large k and ]imMk->oo(\\Zk 9k\\ + l|c*ll) = 0.

Proof. First note that by Assumptions 3.1 (I)-(II) and (2.25) that {Iffjf l*pY|/||c*||i} =
{|^jfcfcl/llc*lli} ^ {11̂ *11} is bounded. Therefore, since the procedure (2.42) increases /U*
by at least p whenever it changes the penalty parameter, it follows that there is an index
fco and a value /i such that for all k > fco, Wb = A4 s u ch *kat Ml|c/k||i > |A£cfc| + 2p||c*|ji. If
BFGS updating is performed an infinite number of times, by Assumptions 3.1-(III) and
Theorem 2.1 there is an infinite set J of good iterates, and by Lemma 3.1 and the fact
that <f>n(xk) decreases at each iterate, we have that for k > &o,

j6Jn[ko,k]

jeJn[ko,k]

By Assumption 3.1-(I) ^M(x) is bounded below for all x E D , so the last sum is finite,
and thus the term inside the square brackets converges to zero. Therefore

( | | j ^ +1̂ 110=0. (3.4)

If BFGS updating is performed a finite number of times then, as discussed after
Definition 2.1, all iterates are good iterates, and in this case we obtain the stronger
result

lim (H^ffjtH + Hcfclli) = 0.

3.2. Local Convergence

In this section we show that if x+ is a local minimizer that satisfies the second order
optimality conditions, and if the penalty parameter /x* is chosen large enough, then x*
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is a point of attraction for the sequence of iterates {xk} generated by Algorithm I. To
prove this result we will make the following assumptions. In what follows G denotes the
reduced Hessian of the Lagrangian function, i.e.

Assumptions 3.2 The point z* is a local minimizer for problem (1.1)-(1.2) at which
the following conditions hold.

(1) The functions / : Rn -> R and c : Rn -» Rm axe twice continuously differentiable in
a neighborhood of x*, and their Hessians are Lipschitz continuous in a neighborhood

(2) The matrix A(x+) has full column rank. This implies that there exists a vector
A* G Rm such that

VL(z*, A,) = g(xm) + A{x*)\* = 0.

(3) For all q e Rn~m, q ^ 0, we have qTG*q > 0.

(4) There exist constants 70, /?o and 7C such that, for all x in a neighborhood of x*,

WYixHAixfYix^WK-to, \\Z(x)\\<f3o, (3.6)

and
\\[Y(x)Z(x)]-1\\<yc. (3.7)

(5) Z(x) and X(x) are Lipschitz continuous in a neighborhood of x«, i.e. there exist
constants jz and 7^ such that

- * I I , ( 3 . 8 )
\\Z(x) - Z(z)\\ < 7z||x-z||, (3.9)

for all x, z near x».

Note that (1), (3) and (5) imply that for all (x, X) sufficiently near (x,,A»), and for all
q € R n " m ,

m\\q\\2<qTG(x,\)q<M\\q\\2, (3.10)

for some positive constants m, M. We also note that Assumptions 3.2 ensure that the
conditions (2.17)-(2.18) required by Theorem 2.1 hold whenever BFGS updating takes
place in a neighborhood of x*. Therefore Theorem 2.1 can be applied in the convergence
analysis.

The following lemma is proved by Xie (1991) for very general choices of Y and Z.
Their result generalizes Lemma 4.1 of Byrd and Nocedal (1991); see also Powell (1978).
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Lemma 3.3 // Assumptions 3.2 hold, then for all x sufficiently near x*

Till* - x.|| < ||c(x)|| + \\Z{x)Tg{x)\\ < l2\\x - x.||, (3.11)

for some positive constants 71,72 •

This result states that, near z*, the quantities c(x) and Z(x)Tg(x) may be regarded
as a measure of the error at x. The next lemma states that, for a large enough weight,
the merit function may also be regarded as a measure of the error.

Lemma 3.4 Suppose that Assumptions 3.2 hold at x«. Then for any \x satisfying (2.23)
there exist constants 73 > 0 and 74 > 0, such that for all x sufficiently near x*

TSlI* " *.||2 < Mx) ~ Mx") < 74 [\\Z(xf9(x)\\2 + ||c(x)||ij . (3.12)

Proof. To show the left inequality holds we can write:

*„(*)-*„(*.) = / (* )+ /i | |c(z)| |1-/(*,) (3.13)
= /(*) + X(xfc(x) + |AI||C(X)||I - X(xfc(x)} - /(x.) (3.14)

> L(x, A.) + (A(x) - \(x,)fc(x) + p\\c(x)\\i - /(x.) (3.15)

> L(x,A.) + | | | c (x) | | i - / (x . ) (3.16)

(3.17)

where the last inequality follows for all x sufficiently near x*. Expanding the last in-
equality in a Taylor series leads to:

f ^ - ^||c(x)||2 + O(\\x - x.||)3 (3.18)

Now we note that

^Mx)f = U-{x - x.)TA.jg(x - x.) + O(\\x - x.\\)3. (3.19)

In Lemma 4.2 of Byrd and Nocedal (1991) it is shown that if Assumptions 3.2 are satisfied
there exist sufficiently large values of v such that:

• | ( x - x.)T(V2
xxL(xt, A.) + vA.A*)(x - x.) > 273||a; - x.f (3.20)

Now since there exists a Kc > 0 such that ||c(a;)||i < Kc\\x — xm\\ we have for ||i — x,|| <
p/(2vKc):

^ - I , | | ) 3 ( 3 . 2 1 )

> 73lk-ar.ll2 (3.22)
(3.23)
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for all x sufficiently close to x*. The right inequality follows directly from:

Ms)-</>*(*•) = /(*) + H|c(x)||i-/(x*) (3.24)
= L(x, A) - f(x.) + Mk(*)lli " Hxfc(x)} (3.25)

x42) + p\\c(x)h (3.26)
T

9(a:)||2 + ||c(x)||1] * (3.27)

D
Note that the left inequality in (3.12) implies that for a sufficiently large value of

the penalty parameter, the merit function will have a strong local minimizer at x*. We
will now use the descent property of Algorithm I to show convergence of the algorithm.
However, due to the non-convexity of the problem, the line search could generate a step
that decreases the merit function but that takes us away from the neighborhood of x*.
To rule this out we make the following assumption.

Assumption 3.3 The line search has the property that, for all large A:, <^((1 — 9)xk +
Oxk+i) < 0/x(#fc) f°r all 6 E [0,1]. In other words, x/t+i is in the connected component of
the level set {x : </>M(x) < 4>p{xk)} that contains x*.

There is no practical line search algorithm that can guarantee this condition, but it
is likely to hold close to x*. Assumption 3.3 is made by Byrd, Nocedal and Yuan (1987)
when analyzing the convergence of variable metric methods for unconstrained problems,
as well as by Byrd and Nocedal (1991) in the analysis of Coleman-Conn (1984) updates
for equality constrained optimization.

Lemma 3.5 Suppose that the iterates generated by Algorithm I are contained in a convex
region D satisfying Assumptions 3.1. If an iterate XkQ is sufficiently close to a solution
point x* that satisfies Assumptions 3.2, and if the weight /i^0 is large enough, then the
sequence of iterates converges to x*.

Proof. The proof is virtually identical to the one given in our previous paper. By
Assumptions 3.1 (I)-(II) and (1.24) we know that {||Afc||} is bounded. Therefore the
procedure (2.42) ensures that the weights /x* are constant, say /ijb = /i for all large
fc. Moreover, if an iterate gets sufficiently close to x*, we know by (2.42) and by the
continuity of A that (2.23) is satisfied. For such a value of /i, Lemma 3.2 implies that
the merit function has a strict local minimizer at x*. Now suppose that once the penalty
parameter has settled, and for a given e > 0, there is an iterate Xk0 such that

where 70 is such that || • ||i < 70II • II- Assumption 3.3 shows that for any k > k0, x*
is in the connected component of the level set of x*0 that contains Xfc0, and we can
assume that c is small enough that Lemmas 3.3 and 3.4 hold in this level set. Thus since
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4>iiixk) < <j>n(xko) for A; > /to, and since we can assume that ||£ĵ <feoll — 1> we have from
Lemmas 3.3 and 3.4, for any k > ko

< 73

(^

This implies that the whole sequence of iterates remains in a neighborhood of radius e
of x+. If e is small enough we conclude by (3.12), by the monotonicity of {(f>n{xk)} and
Theorem 4.2 that the iterates converge to x».

D

3.3. R-Linear Convergence.

For the rest of the paper we assume that the iterates generated by Algorithm I
converge to x«, which implies that for all large k and some p > 0, /x* = /x and

»\\c(x)\]>\\(xfc(x)\+pMx)\\ (3.28)

The analysis that follows depends on how often BFGS updating is applied, and to make
this concept precise we define U to be the set of iterates at which BFGS updating takes
place,

U = {k : BM = BFGS(Bk, sk, yk)}, (3.29)

and let
Uk = UD {1,2, ..,&}. (3.30)

The number of elements in Uk will be denoted by \Uk\. The following result from our
previous paper carries over directly to the multiplier-free method.

Theorem 3.6 Suppose that the iterates {xk} generated by Algorithm I converge to a
point x* that satisfies Assumptions 3.2. Then for any k £U and any j > k

(3.31)

for some constants C > 0 and 0 < r < 1.
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This result implies that if {\Uk\/k} is bounded away from zero, then Algorithm I is
R-lineaxly convergent. However, BFGS updating could take place only a finite number
of times, in which case this ratio would converge to zero. It is also possible for BFGS
updating to take place an infinite number of times, but every time less often, in such a
way that \Uk\/k —¥ 0. We therefore need to examine the iteration more closely.

We make use of the matrix function ip defined by

= tr{B) - ln(cfct(B)), (3.32)

where tr denotes the trace, and det the determinant. It can be shown that

lncond(B)<V>(£), (3.33)

for any positive definite matrix B (Byrd and Nocedal (1989)). We also make use of the
weighted quantities

Vk = G7l/2yk, sk = GlJ2sk, (3.34)

Bk = G;1 / 2B f cG;1 / 2 , (3.35)

(3.36)
l|£*«*llll**ll

and

2g^ (3.37)
One can show (see eq. (3.22) of Byrd and Nocedal (1989)) that if Bk is updated by

the BFGS formula then

This expression characterizes the behavior of the BFGS matrices Bky and will be
crucial to the analysis of this section. However before we can make use of this relation
we need to consider the accuracy of the correction terms. We begin by showing that when
finite differences axe used to estimate wk and TÛ , these axe accurate to second order.

Lemma 3.7 // at the iterate xk, the corrections wk and wk are computed by the finite
difference formulae (2.1)-(2.2), and if xk is sufficiently close to a solution point z* that
satisfies Assumptions 3.2, then

«»* = O(lbvll), (3-39)
IK - Z,rW.yfepY|| = O{ak\\pY\\) • (3.40)

and
T \). (3.41)
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Proof. The proof requires only a minor modification of the same property proved in the
previous paper. Recalling that VL(z, A) = g(x) + A(x)A, we have from (2.1) that

wk = Z(xk + YkpY)Tg{xk + YkpY)-Z(xk)
Tg(xk)

= Z(xk + YkpY)TVL(xk + YkpY, A,) - Z(xk)
TVL(xk, A,)

= (Z(xk + YkpY) - Z(xk))
TVL(xk + YkpY,\*)

V2
xxL{xk + rYkpY, A,)rfr] YkpY

(Z(xk + npy) - Z(x*))rVL(a* + YkpY, A,)
(3.42)

The above result follows for xk in the neighborhood of £* where (3.6)-(3.9) hold because:

VL(xk + YkpY, A.) = O(||x - xm\\) + O(|bY||) = O(afc) (3.43)

where ak is defined by (1.29). Also a simple computation shows that

[ZlWk - Z?W.]YkPY = OVibllPvll).) (3.44)

Using these facts in (3.42) yields the desired result (3.40). To prove (3.41), we only note
that ak < 1, and reason in the same manner. D

Next we show that the condition number of the matrices Bk is bounded, and that
at the iterates U at which BFGS updating takes place the matrices Bk are accurate
approximations of the reduced Hessian of the Lagrangian.

Theorem 3.8 Suppose that the iterates {xk} generated by Algorithm I converge to a
solution point x* that satisfies Assumptions 3.2. Then {||B |̂|} and {\\B^l\\} are bounded,
and for allkeU

^ (3.45)

Proof. Again, the proof follows along the same lines as the one in our previous paper,
but with slight modification. Consider only iterates k for which BFGS updating of Bk
takes place. We have from (2.50), (2.48), (2.46), (2.12) and (2.49)

j Zlgk - wk

,X,) - Z][VL(xk,X,)-wk

- ZkfVL(xk+1, A.) + ZftVLfo+i, A.) - VL(xk, A.)) - wk

- Zk)
TVL{xk+u A,) + [ z j jf V2

xxL(xk + Takdk, A,)rfr] akdk - wk

= ctkZlWk{ZkPz + YkpY) -wk + O(<7fc)(||afc|| + a
= ZlWkZksk + ak{ZlWk - ZT\V.)YkpY + (akZjW.YkpY - wk)

+O(ak)(\\sk\\ + ak\\pY\\). (3.46)'
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Since wk can be computed by Broyden's method or by finite differences, we consider
these two cases separately.

Part I. We first assume that wk is determined by Broyden's method. A simple com-
putation shows that \\Z][Wk - ZjW«\\ = 0{ok), and from (2.10) we have that wk =
O(||pY||/7fc)- Using this and Assumptions 3.2 in (3.46) we have

yk = ZlWkZksk + {ak + l + l/7*)O(a*||pY||) + O{ak)\\sk\\

= (Z%WkZk - G.)sk + G.sk + (a* + 1

Recalling (3.34) and noting that yi^Sk = y%sk we have

yUk = sl(Z?WkZk - G.)sk + pfc||
2 + (orfc + 1

since ||5fc|| and \\sk\\ are of the same order. Therefore

VJ-h _ sT
k{ZlWkZk-G.)sk

\\sk\\2 \\h\\2

(^jy (3.48)

Similarly from (3.47) and (3.34) we have

<

+2(1 + 0{ak))\\{ZlWkZk - G,)sk\\ \\G71/2\\ \\sk\\ + (l + O(afc))
2||S*||2

:* | | ((1 + O(fffc))l|5*ll + \\(2%WkZk - G.

(3.49)

and thus

j . (3.50)

At this point we invoke the update criterion, and note from (2.14) that if BFGS
updating of Bk takes place at iteration fc, then ||afcpY|| < 7fc||sfc|| where {7*} is summable.
Using this, the assumption that ok converges to zero, and (3.48) we see that for large k

(3.51)
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and using (3.50)

Therefore
lly.ll2 lly^ll21!5^||2 _ -
~ r - = .,- i l2 ~T~ = 1 + CJ(a* + 7*)- (3.52)
yksk \\*k\r yk

sk

We now consider x/>(Bk+i) given by (3.38). A simple expansion shows that for large
fc, ln(l + O(ak + 7fc)) = O(CTA: + 7*). Using this, (3.51) and (3.52) we have

4>(BM) = 1>(Bk) + O{ok + lk) + In cos2 §k + [l - _» H - l n - ^ - l . (3.53)
L COS20 COS20J

Note that for x > 0 the function 1 — x + In x is non-positive, implying that the term in
square brackets is non-positive, and that In cos2 0k is also non-positive. We can therefore
delete these terms to obtain

iKBM) < *l*{Bk) + O(ak + 7.). (3.54)

Before proceeding further we show that a similar expression holds when finite differences
are used.

Part II. Let us now consider the iterates k for which updating takes place and for which
wk is computed by finite differences. In this case (2.15) holds. Again we begin by
considering (3.46),

yk = Z j l ^ Z ^ + a f c ^ ^

Using (3.41) the second and third terms are of order a*(a*||pY||)- Thus

yk = Z

= {ZlWkZk - G.)sk + G.sk + O(ak)(\\sk\\ + a*||pY||). (3.55)

Noting once more that y%sk = y^Sk and recalling the definition (3.34) we have

ylh = s\{ZlWkZk - G.)8k + \\h\\2 + O(ak)(\\sk\\
2 +

since ||i^|| and ||s*|| are of the same order. Therefore

yjsk _ sT
k{ZlWkZk-G.)sk /

P̂ F - 1 +—P^P—+ 0 { a k ) \ l + i^r)
. (3.56)
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Similarly from (3.55) and (3.34) we have

ylyk < \\(ZjWkZk-Gt)sk\\
2\\G:l\\

+2(1 + O(ak))\\{ZjWkZk - G.)sk\\ ||G:1/2|| p*|| + (1 + 0{ak))\\sk\\
2

[(1 + O(ak))\\sk\\

+4O(\\akPY\\)2,

and thus

"'"•'" "2 < 1 + O{ak) + ak0 (tgf\ + o\0 I ^f^- ) . (3.57)

The rest of the proof is identical to the one in our previous paper. We note from
(2.15) that if BFGS updating of Bk takes place at iteration *;, then ||pY|| < 7fd||Pzll/crfc/2.
Using this, (3.56) and the fact that Gk converges to zero, we see that for large k

and using (3.57)

Therefore

llrf n(n rtW

We now consider ip(Bk+i) given by (3.38). Noting that ln(l + 0(aj/2)) = 0{a\12) for all
large A;, we see that if updating takes place at iteration k

= *P(Bk) + O(al
k
/2) + In cos 2 § k + f l - - ^ + In — ^ - 1 . (3.59)

L cos2^ cos20j
Since both In cos2 Ok as well as the term inside the square brackets are non-positive, we
can delete them to obtain

rP(BM)<^(Bk) + O(al
k
/2). (3.60)

We now combine the results of Parts I and II of this proof. Let us subdivide the set of
iterates U for which BFGS updating takes place into two subsets: U1 corresponds to the
iterates in which wk is computed by Broyden's method, and Un to the iterates in which
finite differences are used. We also define U'k = U' n {1,2, ...A:} and U'£ = U" n {1,2, ...fc}.

Summing over the set of iterates in £/*, using (3.54) and (3.60), and noting that
Bj+\ = Bj for j £ J7fc, we have

a)12 + C2 Y, °i + C3 £.7ii (3.61)
jeu'k jeu'k
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for some constants CUC2,C3. By (3.31) and since \U"\ < \Uj\,

E a)'2 ̂  E

jeu"
\u"\

t=i

< 00.

Similarly

E °i

and since {7*} is summable we conclude from (3.61) that {xp(Bk)} is bounded above. By
(3.32) tl>(Bk) = SJLiCt"- ln t̂)> where Zj are the eigenvalues of i?*, and it is easy to see
that this implies that both Hi?*II and HB^1!! are bounded.

1 /9

To prove (3.45), we sum relations (3.53) and (3.59), recalling that a*, 7* and o^ are
summable, to obtain

fin cos2 ek + [ i - _ « + In

for some constant C. Since ip(Bk+\) > 0, and since both In cos2 0* and the term inside
the square brackets are non-positive we see that

lim In cos2 0* = 0,
kkeu

and

Now, for a; > 0 the function 1 —x + In x is concave and has its unique maximizer at x = 1.
Therefore the relations above imply that

lim cosfj* = lim g* = 1. (3.62)
k-*oo A:-too

Now from (3.36)-(3.37)

\\G:ll\Bk-G.)Pz\\
2 \\{Bk-I)sk\\

2

\\Bksk\\
2 - 2i^

Of.
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It is cleax from (3.62) that the last term converges to 0 for k 6 £/, which implies that
(3.45) holds.

a
This result immediately implies that the iterates are R-linearly convergent, regardless

of how often updating takes place.

Theorem 3.9 Suppose that the iterates {x^} generated by Algorithm I converge to a
solution point x+ that satisfies Assumptions 3.2. Then the rate of convergence is at least
R'linear.

Proof. Theorem 3.8 implies that the condition number of the matrices {£*} is bounded.
Therefore all the iterates are good iterates, and reasoning as in the proof of Theorem 3.6
we conclude that for all j

\\xj-x*\\<Cri,

for some constants C > 0 and 0 < r < 1.
D

As in our previous paper, we also note that the Broyden matrices S* are bounded and
this follows directly from R-linear convergence and the well-known bounded deterioration
property for Broyden's method (cf. Lemma 8.2.1 in Dennis and Schnabel (1983)).

3.4. Superlinear Convergence

Without the correction terms Wk and xfik, and using appropriate update criteria, Al-
gorithm I is 2-step Q-superlinearly convergent. This was proved by Nocedal and Overton
(1985) assuming that Y* and Zk are orthogonal bases, and that a good starting matrix
B\ is used. This result has been extended by Xie (1991) for more general bases and for
any positive definite starting matrix B\.

To establish 1-step superlinear convergence we need to assume that the steplengths
otk have the value 1 for all large A;. When a smooth merit function, such as Fletcher's
differentiable function (Fletcher (1973)) is used, it is not difficult to show that near the
solution unit steplengths give a sufficient reduction in the merit function and will be
accepted.

However the non-differentiable £\ merit function (1.7) used in this paper may reject
steplengths of one, even though the lower bound on \i is weaker than ||A||oo« Thus the
multiplier-free method can still suffer from the Maratos effect; the algorithm must be
modified to allow unit steplengths and to achieve a fast rate of convergence. (In the
numerical experiments described in the next section, we employ a non-monotone line
search (or watchdog technique) of Chamberlain et al (1982) that allows unit steplengths
to be accepted for all large fc. The analysis of the modified algorithm would be similar
to that presented in §5.5 of Byrd and Nocedal (1991).)

Nevertheless, if we assume that the iterates generated by Algorithm I converge R-
linearly to a solution and that unit steplengths are taken for all large fc, then the per-
formance of the method is no longer influenced by the merit function and the analysis is

26



identical to that of our previous paper. The convergence result can therefore be summa-
rized by:

Theorem 3.10 Suppose that the iterates generated by Algorithm I converge R-linearly
to a point x+ that satisfies Assumptions 3.2, and that a* = 1 for all large k. Then the
rate of convergence is 1-step Q-superlinear.
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