
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Asynchronous Teams: Near-Scale-Effective Organizations
for Distributed, Computer-Based Agents

Sarosh Talukdar, Andrew Gove and Pedro de Souza

EDRC 05-94-95

ASYNCHRONOUS TEAMS: NEAR-SCALE-EFFECTIVE ORGANIZATIONS
FOR DISTRIBUTED, COMPUTER-BASED AGENTS

Sarosh Talukdar Andrew Gove Pedro de Souza
Engineering Design Research Center

Carnegie Mellon University
Pittsburgh, PA 15213

ABSTRACT
An asynchronous team (A-Team) is a strongly cyclic computational network of
autonomous agents and shared memories. Results circulate through this network.
Agents cooperate by working on one another's results. There is a growing body of
evidence that such networks are extremely effective in solving optimization problems.
Moreover, they seem to benefit from increases in scale: big networks are more
effective than small ones. This article explains why.

INTRODUCTION
Many algorithms are available for optimization and constraint satisfaction. Some, such
as branch-and-bound, are rigorous, others, such as genetic algorithms, are heuristic.
However, none of the available algorithms is entirely suitable for many, if not most,
practical problems. The rigorous algorithms tend to be too slow, the heuristics, too
unreliable.

For several years we have been experimenting with a prescription for assembling
algorithms into teams so they can cooperate. We arrived at this prescription by
combining features from a number of natural and synthetic systems, particularly: insect
societies [1], cellular communities [2], genetic algorithms [3], blackboards [4], simulated
annealing [5] and tabu search [6]. The resulting prescription produces strongly cyclic
computational networks called asynchronous teams (A-Teams). Results are circulated
through these networks by software agents. The number of agents can be made
arbitrarily large. Each agent is completely autonomous (it decides what it is going to do
and when, just as do the members of an in$ect society). Results that are not being
worked on by the agents accumulate in shared memories Gust as happens in
blackboards) to form populations (like those used in genetic algorithms). Destruction
(the elimination of weak results), inhibition (the avoidance of certain classes of results)

and chance play key roles in determining what happens to the populations (just as
they do in natural systems and to a lesser extent, in some synthetic systems).

While all the features of A-Teams can be found in biological systems, there is one that
is rare in synthetic systems for computational problems. This feature is the complete
absence of any centralized planning or coordination. Agents in an A-Team work
without supervision and cooperate by modifying one another's results. This mode of
cooperation is asynchronous: agents choose which results they will work on and
when. No agent is ever forced to wait for results from another. Rather, all the agents
can work in parallel all the time. In contrast, other synthetic systems invariably have
some scheme to force at least a partial order on the activities of their computational
modules.

We have applied A-Teams to a number of large and difficult problems including
traveling salesman problems [141, sets of nonlinear equations [7], high-rise building
design [8], reconfigurable robot design [9], diagnosis of faults in electric networks [10],
control of electric networks [11], job-shop-scheduling [16], protein structure analysis
[17], and train-scheduling [15]. Other groups, who have borrowed the A-team
technology from us, have applied it to steel-mill scheduling, paper-mill scheduling and
constraint satisfaction [18]. In all these cases, A-Teams have proved to be remarkably
effective. They find better solutions more quickly than can any of their constituent
algorithms. Indeed, A-Teams seem to provide some benefits-of-scale: the more
algorithms (each formed into an autonomous agent), the better the results. Why is this?
The following material provides some clues.

A PRESCRIPTION FOR DESIGNING A-TEAMS
In other articles, we have defined A-Teams in terms of their features. Here, we will
define them constructively. Specifically, we will give a seven step prescription for
producing an A-Team and illustrate it with one of our earlier applications, the traveling
salesman problem (TSP).

Step 1: Choose a difficult computational problem
The TSP is an optimization problem that can be simply stated, is extremely difficult to
solve and has a wide range of practical uses. The problem itself is: given m cities and
their inter-city distances, find the shortest tour of the cities. (A tour is a closed path that
goes through every city.) The number of distinct tours (there are(m-1)! /2 of them)
grows so rapidly with m that it is impractical to conduct an exhaustive search for the
shortest tour, even when there are as few as 30 cities. Practical problems often have
hundreds or even thousands of cities.

Step 2. Decompose the problem into related-problems
One of the many ways in which a TSP can be decomposed is into the following three
related-problems: finding good complete tours, finding good partial tours, and finding

good 1-trees. (A.1-tree is a path that goes through all the cities but is not quite closed.
1-trees are useful in determining lower bounds for TSPs.)

Step 3. Assign a memory to each related-problem
The purpose of this memory is to hold a population of trial-solutions to its problem. To
complete the step, an upper bound on the size of the population must be set and a
representation for each of its members designed. For the TSP we set the upper bound
at 500. We chose ordered lists of cities as our representation for complete tours, partial
tours and 1-trees. For instance, {Atlanta, Boston, Raleigh, Pittsburgh} means a tour that
goes from Atlanta to Boston to Raleigh to Pittsburgh, and then back to Atlanta.

Step 4. Select a representative sample of the available algorithms for each related-
problem
The TSP is an NP-hard problem, which means that rigorous algorithms that can solve
it in reasonable (polynomial) amounts of time are unknown. However, there are
literally hundreds of relatively fast heuristics for generating and refining sub-optimal
tours. For instance, "arbitrary insertion" (At) is a simple heuristic that creates complete
tours from partial tours as follows [14]: a) arbitrarily pick a city from among those not
included in the partial tour, b) insert this city into the partial tour at the cheapest
available site, and c) repeat till a complete tour is obtained. There are also some very
complicated and much more powerful heuristics. One of the best is the Lin-Kernighan
(LK) algorithm [12].

The sample of algorithms we chose is given in Fig. 1.

Step 5. Form each algorithm into an autonomous agent
Think of an agent as operating between two worlds: one it perceives (its input-world),
the other it affects (its output-world). Then any agent can be thought to consist of two
components:
- an operator that transforms stimuli from the input-world into effects on the output-

world, and
- a control system that chooses the stimuli for the operator and schedules its activities.

For an agent composed purely of software, the input- and output-worlds can always be
modeled as memories (that may be shared and may overlap) [19]. The operator can
be modeled as a mapping from an "in-space" (the set of all the objects that can be
stored in the input-memory) to an "out-space" (the set of all the objects that can be
stored in the output-memory). The control system can be thought to consist of three
subsystems: sensors to examine the contents of the input-memory, selectors to choose
objects from these contents, and schedulers to decide when the operator wilt work on
the selected objects.

If the control system is completely self-contained, that is, if the agent accepts no
instructions on what to do from the outside, then the agent is said to be autonomous.

Thus, to convert an algorithm into an autonomous agent one needs to designate its
input and output memories, provide communications with these memories, and add
control programs for input-selection and activity-scheduling. How should this selection
and scheduling be done? There are many possibilities. For the TSP, we used random
selection, biased in favor of the best solutions. The scheduling strategy for each agent
was to run continuously with all the processing resources made available to it.

Step 6. Interconnect the agents and memories into a strongly cyclic network in which
results can circulate indefinitely
It is helpful to visualize networks of agents and memories as directed graphs in which
nodes denote memories and arcs denote agents, as in Fig 2. Such graphs are called
data flows. A data flow is strongly cyclic if most of its agents work in closed loops, it is
often necessary to create a few new agents to close loops and make a data flow
strongly cyclic. In the case of the TSP, there are few standard algorithms for
deconstruction (breaking complete tours into good partial tours). Therefore, to close
the loop through the complete and partial tour memories (Ftg.2.b) we developed a
deconstruction algorithm of our own. Another type of agent, called a destructive agent,
must also be developed. Destructive agents eliminate poor solutions and make room
for new solutions to be added. Each memory must have at least one. Otherwise, the
memory will become clogged with solutions and circulation will cease. In the TSP, the
destructive agents were designed to eliminate randomly, using a monotonic
distribution (the probability of elimination was made to increase monotonically from
zero, for the best solution in the memory, to a maximum, for the worst solution).

Step 7. Seed the memories with starting solutions and run the network. If the solutions
are overly slow in converging to acceptable values, repeat from step 2, adding more
agents and/or memories
Fig. 2 shows some networks for the TSP and Fig. 3 shows the results they produce for
a number of difficult problem-instances. All of these results are far better than can be
produced by LK-the best of the algorithms used in the team-when it is working alone.
Notice that there is an improvement in the quality of the results and often, in the speed
with which they are produced, as the networks increase in size. This is so even though

all the agents must share just one computer (a Dec 5000). When each agent was
given its own computer, there was a profound increase in speed for the larger
networks, 3.c and 3.d. We have observed such benefits-of-scale in all the cases we
have tackled. More specifically, the performance of the team invariably improves as
computers are added until each agent has all the computer resources it can use.
Performance also improves with some, but not all, expansions of the sets of agents
and memories.

MODELS OF COOPERATION AND EFFECTIVENESS
Any computer-based oranization, if it works at all, will work better if its computers are
made faster or are better utilized. Here we will examine some features of organizations
and cooperation that are computer-independent.

Cooperation can be defined in a variety of ways. We use a very broad definition:
agents cooperate when they exchange data, regardless of whether the exchanges are
profitable or not. If the agents are computer-based, then every way in which they can
exchange data can be modeled by a graph of the sort that has been called a data-flow
[19]. In other words, the space of all data-flows captures all the different ways in which
computer-based agents can cooperate. In still other words, given a set of agents, the
problem of designing an effective way for them to cooperate reduces to a search
through the space of all data flows for an effective data flow.

Terminology
How can effectiveness be measured? Consider any node of a data-flow. This node
represents a memory. The memory contains a population of competing solutions to P,
a problem, that is related in some way to OP, the overall problem to be solved. If P is
the same as OP, the memory is called a primary memory. Let S be the space (set) of
all possible solutions (including bad ones) to P, and let G, called the goal space, be
the subset of S that contains all the acceptable solutions to P. Assume that G is non-
empty (the problem has at least one acceptable solution). Suppose that the memory is
large enough to hold a population of N solutions. If the node is to be effective, this
population must evolve a non-empty intersection with G (that is, at least one of the
solutions in the memory must evolve into an acceptable solution). We measure the
effectiveness of a memory by the expected speed (the reciprocal of the expected time)
of this evolution, and the effectiveness of the entire network by the effectiveness of its
fastest primary memory. Note that by this definition, effectiveness is problem-specific.
An organization's effectiveness will vary from one problem to another.

The evolution of a population of solutions in a memory is, of course, determined by the
agents that act on (write to) the memory (Fig. 4). These agents may be divided into two
sets: constructive agents that add new members to the population or modify existing
members, and destructive agents that delete members from the population.

Visualize the evolution of a population as a tangle of paths that are traced through S.
Each of these paths is a sequence of points: {xo, x-|, —, XL}. The starting point, xo, is
one of the "seeds11 placed in the memory before any agents were activated. Each
succeeding point, xj, can be thought of as being developed from its immediate
predecessor, xj-i, by a constructive agent. (Sometimes the predecessor may neither
be obvious nor unique. In such cases, a predecessor may be chosen arbitrarily without
affecting the argument we are about to make.) The path is successful if it reaches the
goal space, that is, if XL e G.

Successful paths are not unique: if there is one path from a starting point to G, then
inevitably, there are many. Some of these paths can take much longer to develop than
others. The task of the destructive agents is to terminate paths that are likely to be
overly long, before too much time has been wasted on their development.

Let xo be any member of the initial population of solutions in the memory and let C be
the set of constructive agents that act on the memory. Which of these constructive
agents are needed to forge the shortest path from xo to the goal space? In what order
should they be invoked? How much time will they take? To examine these very difficult
questions, we will use a distance metric for S that is asymmetric and dependent on C.
Specifically, we define the distance from one point to another as the minimum number
of constructive operations needed to get from the first point to the second.

A Theorem on Expected Path Length
Let:

S be partitioned into disjoint regions: {So, Si,—, S^} , such that all the points in
Sn are at the same distance, n, from G (Fig. 5);

UK be the subset of S containing the regions So through SK, that is, UK contains
all the points that are K operations or less from G;

Rn be the residue of Sn, that is, the fraction of points in UK that are at distances of n
or greater from G. In other words:

Rn = ^ j _ n . > K [llSjII / IIUKII]• where II.II is a norm of set-mass;
e = 1/(p-q), where e is called the selection error, p is the probability that the next

agent selected in the development of a path will move the path closer to G, q is
the probability that it will move the path further from G, and (1-p-q) is the
probability that it will leave the path at the same distance from G.

If:
• the destructive agents make the portion of S that is outside UK completely

inaccessible, preventing paths in UK from ever leaving it;
• N starting points are randomly chosen from UK;

the best (closest to G) of these points is identified and a path from it to G is
developed by the sequential application of constructive agents,

e is constant and non-negative at every stage of this development;

then:

Rn = 0 if and only if Sn = Sn+1 = — = SK = 0

R1. R2.-~. RK decrease monotonically as K decreases

R2. R3,—. RK decrease monotonically as the variety of
constructive skills in C increases, that is, as the number
of agents in C increases

Lmin= Z

Lexp = s-L-mi

(2)

(3)

(4)

(5)

where Lmin is the distance of the best starting point from G, and Lexp is the expected
length of the path from this point to G. Results (1) and (2) are obvious from the
definition of Rn. The other results are proved in the Appendix.

Comments
Expressions (1) - (5) provide a model of those parts of an organization that are
computer-independent. Their main implication is: increases in the effectiveness of an
organization can be obtained by reductions in e and Lmin- How can such reductions
be achieved? What else can we infer from the model?

Construction and destruction as complementary processes
Construction works by shrinking the outer regions of S, destruction, by making these
regions inaccessible. As such, construction and destruction provide different means to
the same ends: to make Lmin finite (either by making S^ empty or inaccessible), and

to make Lmin small (by reducing the values of the residues, Ri ,—,RK) .

Results (3) and (4) imply that the more constructive-agents there are, and the greater
the variety of their skills, the shorter Lmin will be.

The model does not treat destruction in enough detail to examine the effects of the
numbers of destructive agents. But it is reasonable to believe that there are benefits to
making these numbers large. Certainly, destructive agents can serve more functions
than just making the outer regions of S inaccessible. Eliminating cyclic paths in S (Fig.

5) and keeping those portions of S that have been visited from being revisited, for
instance.

Are construction and destruction equally useful? Synthetic systems often favor one
over the other. For instance, all the "smarts" of a hill-climbing algorithm are in the
process by which it constructs new solutions from old ones. Simulated annealing
algorithms, however, concentrate their "smarts" in processes for destroying weak
solutions. Natural systems are often more symmetrical, with large numbers of both
constructive and destructive agents. The process of Lamelar bone growth [9], for
instance, relies as much for its efficacy on cells that add bone material to surfaces
where the stress is high, as it does on cells that remove bone material from surfaces
where the stress is low.

Perhaps some forms of knowledge are easier to compile into constructive agents,
others, into destructive agents. Records of past successes and recipes for what to do
or where to look, probably fall into the former category; records of past mistakes and
recipes for what not to do or where not to look, into the latter category. Or put another
way, it is probably easier to eliminate the effects of some mistakes than to prevent
them from happening.

The effects of population size, N
Lmin decreases as N increases because all the Rn in (4) are less than 1 in value, and
therefore, [Rn]N + 1 < [RnlN- The effects are most pronounced on the outer regions of S
because Rn > Rn+1, and therefore, [Rn]N > [Rn+1]N. In other words, increases in
population size benefit the initial stages of a search more they do than the final stages.
When the inner regions are relatively small, populations must grow to astronomical
proportions before they can affect the final stages of a search.

Selection error
For every point in S, the constructive agents can be divided into three categories: the
right agents for the point (any one of which will, if applied, produce a new point that is
one operation closer to G), neutral agents (which will produce new points no closer to
G), and the wrong agents (which will produce points further from G). These categories
are uncertain. At each step in the development of a path, it is possible that one of the
neutral or wrong-agents will be selected. If the wrong agents are more likely to be
selected than the right ones (p < q) then, the average path will never reach the goal.

Opportunities for concurrency
The assumptions under which the expression for Lexp was derived can be relaxed,
and the value for Lexp reduced, by exploiting parallelism in at least two ways. The first,
is to develop several paths in parallel. Not only does this eliminate the difficulty of
identifying the best starting point, but a path originating from an inferior point could,
through fortunate selection of agents, reach the goal space before any other. The

second, is to use several existing points, instead of just one, to develop the next point
along a path. The additional information so brought into play can only help.

Delays
The total time taken to construct a path is the sum of the time that constructive agents
spend actually working on this path plus the time by which they are delayed in their
work. The delays are of three types: synchronization delays that occur when a
constructive agent must pause in order to satisfy a synchronization or precedence
constraint in the organization's control structure, communication delays that occur
when a constructive agent must wait for the delivery of data it needs, and resource
contention delays that occur when a constructive agent must wait for the computers if
needs.

Synchronization delays disappear when the precedence constraints that cause them
are relaxed. In other words, they can be switched on or off strictly by organizational
changes, and in this sense, are computer-independent. For instance, the control
structure of the traditional genetic algorithm requires construction and destruction to
occur sequentially. Thus, all the construction must cease while the weaker trial-
solutions are destroyed, and each peiod of destruction constitutes a synchronization
delay. This delay would disappear if construction and destruction were allowed to
proceed in parallel.

Scale-Effective Distributed Procesing
The question that we consider here is: what happens to the effectiveness of an
organization as the number of its agents is increased? We assume that the
organization uses a distributed network of computers. To simplify the analysis, we
further assume that each constructive agent is provided with a computer for its
exclusive use, so the resource contention delays are zero, and this computer is sized
so every agent takes the same amount of time to perform one constructive operation.
Then, for any memory in the organization:

TRP(C) =p.e.Lmin + TSyn + Tcom (6)

where RP is the problem associated with the memory, TRP(C) is the expected time to
reach the goal (an acceptable solution to RP), C is the contingent of constructive
agents that act on the memory, e.Lmin is the expected number of constructive
operations needed to reach the goal, p is the constant time required for each
constructive operation,Tsyn is the net synchronization delay, and Tcom is the net
communication delay.

How can TRP(C) be made small? To reduce Lmin requires the expansion of C. But
increasing the number of agents can increase e, TSyn and TCom. (e tends to increase
because the larger the number of agents, the more difficult it is to pick the right agent;

Tsyn because precedence constraints tend to form bottlenecks, especially in
organizations with many supervisory layers; and Tcom because more agents
inevitably require more data to be delivered over greater distances).

We say that a memory is scale-effective if Tp(C) decreases as C expands. An
organization is scale effective if its fastest primary memory is scale-effective.

Human organizations tend to be "scale-ineffective." Hence the saying, "too many
cooks spoil the broth." In a scale-effective organization, there cannot be too many
cooks. More specifically, scale effectiveness has two consequences of great practical
signifance to distributed problem-solving. First, an organization that is scale effective
can accommodate an arbitrarily large number of agents, without restrictions on their
size or generality; big agents can be mixed with small agents, generalists with
specialists. In other words, the skills required by a problem can be encapsulated in a
few large and very broad agents, or in an army of much smaller specialists. Second,
the problem of improving the performance of a scale-effective organization reduces to
one of finding which agents to add.

HOW A-TEAMS WORK
In an A-Team, all the agents are autonomous. Each does whatever it wants whenever
it wants. In other words, cooperation (data exchanges) occur asynchronously: there
are no precedence constraints and therefore, no agent can be made to wait on
another. Indeed, all the agents can, if they so choose and if enough computers are
available, work in parallel all the time. There are two consequences.

First, Tsyn = 0, regardless of the number of agents. Thus, a significant barrier to scale-
effectiveness is removed.

Second, there can be no centralized plan for the control of the agents. Rather, agents
must be self-selecting and self-scheduling. On the upside, this makes for flexibility.
New agents can be added without having to modify any centralized planning system.
On the downside, very little is known about designing good self-selection and
scheduling techniques.

The experiments we have conducted [7]-[11], [14], [15] demonstrate that very simple
self-selection heuristics are often more than adequate, at least for optimization and
constraint-satisfaction problems. The essence of these heuristics is to select solutions
randomly, with a bias towards good solutions for constructive agents, and bad
solutions for destructive agents. "Good" and "bad" are measured in terms of the
problem's criteria, that is, its objectives and constraints.

If an A-Team is implemented in the sort of distributed network of computers described
earlier, The expected time in the sort of distributed network described earlier, has a

favorable form: T(C) = p.e.Lmin +Tcom. Scale effectiveness can be achieved by
keeping increases in e and TCom from outweighing decreases in Lmin. as C is
expanded.

To illustrate, consider a train-scheduling problem [15]: given a set of tracks and a set of
trains, minimize the total lateness of the trains subject to precedence and capacity
(PC) constraints (such as, a train can travel only along connected rail segments) and
a number of problem-specific (PS) constraints (such as, the minimum allowable
separations between trains). PC constraints occur in one form or another in virtually all
scheduling problems. The scheduling literature is full of generic algorithms that can be
adapted to handle their variations. But the PS constraints are quite another matter.
Customizing a generic algorithm to include large numbers of them, can, and usually is,
prohibitively difficult. By using an A-Team one can avoid this difficulty as follows:
• Include as many generic algorithms as desired, each formed into an autonomous
agent with a random selector.

•Dedicate a separate algorithm to each PS constraint. Design this specialized
algorithm to eliminate violations of its constraint without concern for what happens to
the other constraints. (This makes the algorithm easy to design but myopic: in
meeting its constraint it may cause others to be violated.) Form the algorithm into an
autonomous agent by including a selector that picks solutions with large violations of
the algorithm's constraint.

• Design destructive agents that recognize and eliminate closed paths in solution
space. (The specialized agents, being myopic, can easily get into cycles, with one
agent undoing the efforts of another. It is easier to destroy such cycles than to
prevent them from happening.)

• Design destructive agents to eliminate solutions that revisit parts of the space that
have already been explored. (It is easier to interrupt revisits to prevent them from
happening.)

• Design destructive agents that eliminate solutions based on their distances from the
current Pareto (non-dominated) set of solutions; the greater the distance, the more
likely the solution is to be eliminated.

An A-Team built along these lines is described in [15]. Tests indicate that it can
improve on-time-arrivals from 75%, which is typical of current railroad performance, to
over 90%, at which level railroads could compete, in terms of punctuality, with the
trucking industry.

SUMMARY
Any computer-based organization for cooperative problem-solving can be modeled as
a network of memories and agents. Each memory holds a population of trial-solutions
to a problem that is related to the overall problem to be solved. If this related problem

is the same as the overall problem, the memory is called a primary memory. Every
network must have at least one primary memory.

The effectiveness of a memory is measured by the speed with which its population
evolves an acceptable solution to its problem. The effectiveness of the organization as
a whole, is the effectiveness of its fastest primary memory.

The evolution (movement) of the population of solutions in any memory is determined
by the population of agents that act on that memory. These agents can be of two types:
constructive agents that add solutions to the population and destructive agents that
delete solutions.

Expressions (1)-(5) provide a computer-independent model of the effectiveness of any
memory. This model implies:
• Construction and destruction are dual processes. Weakness in one can be

compensated by strengths in the other. In practice, it is advisable to allow for both:
some forms of knowledge are easier to compile into constructive agents, others, into
destructive agents.

• Starting from a random population of trial-solutions, Lmin, the minimum number of
constructive operations necessary to develop an acceptable solution, decreases with
increases in the size of the solution-population (N) and with expansions of the
constructive-agent-population (C). But N is less influential than G.

• While expansions of C reduce Lmin. they do not necessarily increase overall
effectiveness. This is because expansions of C can produce increases in the
selection error (e) and the synchronization delay (Tsyn). both of which have an
adverse influence on effectiveness.

• If each agent has its own properly sized computer, then the net effect of expanding C
is captured by a quantity: fp(C) = e.Lmin + Tsyn- If an expansion of C is to be
beneficial, it must cause fp(C) to decrease. An organization is said to be scale-
effective if a beneficial expansion is always possible. Scale-effectiveness is a
desirable property because it reduces the problem of improving organizational
performance to one of finding the right agents to add. (A super-agent is a network of
memories and agents.)

An A-Team is an organization in which all the agents are autonomous. Each does
whatever it wants whenever it wants. As a result, synchronization delays are
nonexistent and the only barrier to scale-effectiveness is keeping the selection-error
from growing faster than Lmin shrinks. In other words, where the selection error can be
kept from growing rapidly, an A-Team allows arbitrarily large numbers and varieties of
agents to beneficially cooperate: massive agents with miniscule agents; rigorous
agents with heuristics, general-purpose agents with specialists.

Empirical evidence suggests that it is fairly easy to keep the selection error suitably
small, at least for optimization and constraint-satisfaction problems. More specifically,
random selection seems to work adequately, provided it is biased towards the better
solutions for constructive agents and the poorer solutions for destructive agents.

We suspect that the greatest benefits of A-Teams will be realized in widely distributed
networks of computers where each of the agents can have its own computer,
customized for its own needs.

REFERENCES
[I] G.F. Oster and E.O. Wilson, "Caste and Ecology in the Social Insects," Princeton

University Press, Princeton, NJ, 1978.
[2] A. Kerr, Jr., "Subacute Bacterial Endocardites," Charles C. Thomas, Springfild, IL,

1955.
[3] "Handbook of Genetic Algorithms," edited by L. Davis, Van Nostrand Reinhold,

1991
[4] H. P. Nii, "Blackboard Systems: The Blackboard Model of Problem Solving and the

Evolution of Blackboard Architectures, Parts I and II, Al Magazine, 7:2 and 7:3,
1986.

[5] S. Kirkpatrick, CD. Gelatt, and M.P. Cecchi, "Optimization by Simulated Annealing,"
Science, Vol. 220, Number 4598, May, 1983.

[6] F. Glover, "Tabu Search-Parts I and II," ORSA Journal of Computing, Vol. 1. No. 3,
Summer 1989 and Vol. 2, No. 1, Winter 1990.

[7] P.S. de Souza and S.N. Talukdar, "Genetic Algorithms in Asynchronous Teams,"
Proceedings of the Fourth International Conference on Genetic Algorithms,
Morgan Kaufmann, Los Altos, CA, 1991.

[8] R.W. Quadrel, "Asynchronous Design Environments: Architecture and Behavior,"
Ph. D. dissertation, Department of Architecture, Carnegie Mellon University,
Pittsburgh, PA, 1991.

[9] S. Murthy, "Synergy in cooperating agents: designing manipulators from task
specifications," Ph.D. dissertation, Department of Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh, PA, 1992.

[10] C.L. Chen, "Bayesian Nets and A-Teams for Power System Fault Diagnosis," Ph.
D. dissertation, Electrical and Computer Engineering Department, Carnegie
Mellon University, Pittsburgh, PA, 1992.

[II] S. N. Talukdar, V.C. Ramesh, "A parallel global optimization algorithm and its
application to the CCOPF problem," Proceedings of the Power Industry Computer
Applications Conference, Phoenix, May, 1993.

[12] S. Lin and B.W. Kernighan, "An Effective Heuristic Algorithm for the Traveling-
Salesman Problem," Operations Research, Vol. 21,1973, pp. 498-516.

[13] M. Held and R.M. Karp, "The Traveling-Salesman Problem and Minimum
Spanning Trees," Operations Research, Vol. 18, 1138-1162, 1970.

[14] P. de Souza, "Asynchronous Organizations for Multi-Algorithm Problems," Ph. D.
dissertation, Dept. of Electrical and Computer Engineering, Carnegie Mellon
University, Pittsburgh, PA, 1993.

[15] C. K. Tsen, "Solving Train Scheduling Problems Using A-Teams," Ph.D.
dissertation, Electrical and Computer engineering Deoartment, CMU, Pittsburgh,
1995.

[16] S. Y. Chen, S. N. Talukdar, N. M. Sadeh, "Job-Shop-Scheduling by a Team of
Asynchronous Agents," IJCAI-93 Workshop on Knowledge-Based Production,
Scheduling and Control, Chambery, France, 1993.

[17] Prptian stuff
[18] S. R. Gorti, S Htfmair, R. D. Sriram, S. Talukdar, S. Murthy, "Solving Constraint

Satisfaction Problems Using A-Teams," to appear in Al-EDAM.
[19] S. N. Talukdar and P. S. de Souza "Insects, Fish and Computer-Based Super-

Agents," Systems and Control theory for Power Systems, edited by Chow,
Kokotovic and Thomas, Vol. 64 of the Institute of Mathematics and its
Applications, Springer-Verlag, 1994.

[20] J. H. Kao, J. S. Hemmerle, F. P. Prinz, "Asynchronous-Teams Based Collision
Avoidance in PAWS," EDRC Report, Carnegie mellon University, June 1995.

[21] P. Krolak and W. Felts, "A Man-Machine Approach Toward Solving the Traveling
Salesman Problem," Communications of the ACM, Vol. 14, No. 5, May 1971.

[22] M. Grotschel, "Polyedrishe Kombinatorik and Schnittebenverfahren," Preprint No.
38, Universitat Augsburg, 1984.

[23] M. Padberg and G. Rinald, "Optimization of a 532-city Symmetric Traveling
Salesman Problem," Oerations Research Letters, Vol. 6, No. 1, March 1987.

APPENDIX
Contracting the outer regions of S by expanding C
Let dc(x,y) be the distance from any point x e S to any other point y e S. We define
dc(x,y) to be the minimum number of constructive operations needed to get from x to y.
Each of these operations must be performed by an agent from C. Thus, dc(x,y) is
dependent on C. Suppose that an agent containing a new constructive skill is added
to C and this skill makes it possible to get from some point to another in fewer
operations. Then these points will have grown closer. Thus, dC2(x,y) ^ dC1 (x,y) if C2
:DC1. In particular, dG2(x,g) ^ dd(x.g) '* C2 ^ C I , where g e G. Thus, the outer
regions of S (Fig. 5) contract as C expands. In other words, the residues R2. R3»—. RK
decrease as C expands.

Expected path-length from a starting point in Sn
Consider a starting point xrj in Sn. Suppose that a constructive agent works on xo to
produce the point x i . Let:

p be the probability that xi is one step closer to G, that is, xi e Sn-1

r be the probability that xi is no closer to G, that is, xi e Sn

q be the probability that xi is one step further from G, that is, xi e Sn+1

where p + r + q = 1. Given these probabilities, we would like to know how many
operations it would take to reach the goal. Our model is equivalent to a random walk in
one dimension. Let L be the expected length (i.e. number of operations) it takes to
reach Sn-1 for the first time. Once Sn-1 is reached, it will take an expected L more
operations to reach Sn-2. because the situation is identical. Thus, it will take a total of
nL time units to reach the goal. Here is an expression for L

L = expected number of operations to make one step of forward progress

= P*1

+ q * (operations to reach Sn-i from Sn+i)

+ r * (operations to reach Sn-1 from Sn)

= p + q(1+2L) + r(1+L)

L=1 / (1 -2q- r) = 1/(p-q)

Thus, starting with a point that is in Sn, the expected length of the path to G is:

Unin = n/(p-q) (i)

(Note: this expression is exact only when K, the destruction threshold, is infinite. When
K is finite, the exact expression is more complicated, but the additional complications
do not affect our arguments and therefore, are not included.)

Effective path-length from the best of N randomly chosen starting points
Consider a population of N starting points that are randomly chosen from the
subspace U«. where U« consists of the regions So. S i , —, SK. and all points in UK
are equally likely to be chosen. Let:

x be any one of the N starting points
P(n) be the probability that x e Sn,
R(n) be the probability that x € Sj, with j > n
RN(n) be the probability that none of the N starting points is in any Sj, such that j < n.

Assume that: P(n) = HSnll / HUKII where 11.11 is a norm of set-mass. Then:

R(n) = P(n) + P(n+1) + —+ P(K),

, and

PN(n)= RN(n)-RN(n+1)

xbest be the closest of the starting points to G
PM(n) be the probability that xbeste sn

be the expected distance of xbest from G
Then:

Lmin = £ n = 0 . > K n.PN(n)

£nss0.>Kn.[RN(n)-RN(n+1)l

Combining (i) and (ii) gives:

Uxp = e. Lmin-e.

where Uxp is the expected length of the path from xbest to G. and e - 1/(p-q)-

LK • Lin-Kernighan, one of the most powerful and most compUcated algorithms
available [12]

CLK : a simplified version of LK [14]

OR : Or-Opt, a moderately complicated algorithm [14]

AI : Arbitrary Insertion, a very short and simple algorithm [14]

HK : Held-Karp, an algorithm for converting tours to 1-Trees [13]

Dec : a deconstructor that produces a partial tour from the common edges of two
tours [14]

MI : a mixing algorithm that combines two tours to get one [14]

TM : a mixing algorithm that combines a tour with a 1-Tree to give a new tour [14]

Fig. 1 A Sampling of Heuristics for Traveling Salesman Problems.

Dl

IX OR CLK

mui
t—-L TOUR

(a)

Dl

HK

] Tours

D2

Dec

I-Trees

MI

D3

TM

(c)

IX OR QX«MET
D2

T o u r a

Dec

Partial
Tours

(b)

IX C1X HK

Dl

(d)

Fig. 2. Four data-flows for the traveling salesman problem. D1-D4 are destructive agents: they
eliminate members from solution-populations. The other agents are constructive (they add
members to solution-populations) and are based on the algorithms given in Fig. 1.

Dataflow
(see Fig. 2
for details)

Distance from the optimum solution/computation time
for the following problems:

Krolak24
100 cities [211

LK318
318 cities [1

PCB442
1 442 cities [21

ATT 532
] 532 cities [23|]

(a) 0% / 35 sees 1.27% / 2.9 h s. 1.20% / 4.2 h s. 0.87%/7.5 hs

(b) 0%/39 sees 1.13% / 2.4 h . 0.89% / 3 hr; . 0.47%/6.8 hs

(c) 0% / 39 sees 0.06% / 1 hi 0.26% / 4.8 h s. 0.40% / 14 hi s

(d) 0% /13 secj 0% /1.5 hrs 0.01% / 3.5 h -s. 0.06% / 13 his

Fig. 3. Results from the A-Teams of Fig. 2 for four representative TSP problems. The results arc
averages over 15 runs. Each run was terminated when improvements in the tours ceased.
All the agents of each A-Team were made to share a single computer - a DEC 5000. Lower
times were obtained when more computers were provided with the larger A-Teams
benefiting more than the smaller ones. For instance, with 4 computers for the ATT 532
problem, the time for (a) decreased from 7.5 to 5 hours while the time for (d) decreased
from 13 to 3.4 hours.

r "1
1

J

r U J

Fig. 4. From a memory's viewpoint, the rest of an organization is a set of agents.

Fig. 5. The space of solutions is partitioned into regions so that all the points in Sn are n-
constructive operations from the goal space, G. This partition depends on C, the contingent
of constructive agents. As C is expanded, the space shrinks about G in the sense that some
points that were far from G move closer.

I

