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Abstract

It has been shown in Spirtes(1995) that X and Y are d-separated given Z in a directed
graph associated with arecursive or non-recursive linear model without correlated errors if
and only if the model entails that p*, = 0. Thisresult cannot be directly applied to a linear
model with correlated errors, however, because the standard graphical representation of a
linear model with correlated errorsis not a directed graph. The main result of this paper is
to show how to associate adirected graph with alinear model L with correlated errors, and
then use d-separation in the associated directed graph to determine whether L entails that a
particular partial correlation is zero.

/

In alinear structural equation model (SEM) some partial correlations may be equal to zero
for all values of the model's free parameters (for which the partial correlation is defined).
(When we refer to "al values' of the free parameters, we assume that there are no
constraints upon the models parameters except for the coefficients and the correlations
among the error variables that are fixed at zero.) In this case we will say that the SEM
linearly entailsthat the partial correlation is zero. It has been shown in Spirtes(1995) that
X and Y are d-separated given Z in a directed graph associated with a recursive or non-
recursive linear model with uncorrelated errorsif and only if the model linearly entails that
Pxyz - 0. This result cannot be directly applied to a linear model with correlated errors,
however, because the standard graphical representation of a linear model with correlated
errorsis not adirected graph. The main result of this paper is to show how to associate a
directed graph with alinear model L with correlated errors, and then use d-separation in the
associated directed graph to determine whether L linearly entails that a particular partia



correlationis zero. The standard graph terminology in this paper, the standard terminology
for linear structural equation models, and the relationship between the two terminologies
are described in the Appendix.

If G is the graph of SEM L with correlated errors, let Transform(G) be the graph
resulting from replacing a double headed arrow between correlated errors E; and £ with a
new latent variable T* (i <j) and edges from TY to X; and X]j, and then removing the error
terms from the graph. See Figure 1. A trek between X, and X] is an undirected path
between X and Xj that contains no colliders. If there is a trek X; <— TV, —> X] in
Transform(G), we will say that X; and Xj are d-adjacent in Transform(G). A trek Xj <—
TY — X. is cdled a correlated error trek in Transform(G). In Transform(G), a
correlated error trek sequence is a sequence of vertices <X;,.., X,> such that no pair
of vertices adjacent in the sequence are identical, and for each pair of vertices X, and Xs
adjacent in the sequence, there is a correlated error trek between X, and Xs. For example in
Figure 1, the sequence of vertices <X,A,B,C,D,Y> is a correlated error trek sequence
between X and Y.
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It might at first glance appear that for every parameterization of G, there is a
parameterization of Transform(G) with the same covariance matrix. The following theorem
shows that this is not the case.

Theorem 1: There exists a SEM L with measured variables X, correlated errors, graph
G, and correlation matrix X(X) such that no linear parameterization of Transform(G) has
marginal correlation matrix Z(X).

Proof. Assume that L has no structural equations, but every pair of errors is correlated in
L. G and Transform(G) are shown in Figure 2.
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Suppose that the marginal correlation matrix X(X) is the following:

1.0 0.99 0.99
2(X)={099 1.0 099
099 0.99 1.0

Every parameterization of Transform(G) is of the following form:

X, =aq,T+a,T,+b,&,
X, =a,T| +a,T, + by, (1)
X; = a,T, +a,T, + bye

Suppose first that the variance of each of the variables is equal to 1. It follows then that




2 2 2
va(X,}=1=a," +a, +b,

var(X,)=1=a,’ +a,,> +b,’ (2)

V&I(XS) = 1 = 0322 + 0332 + b332

corr(X,,X,) = 0.99 = g,,a,
corr(X,,X3) =0.99 = a*a® (3
corr(X1,Xz) = 0.99 = a,,dy;

From (1), the absolute values of each of the coefficients is less than one. From (2), it
follows that a,, a, ax, as, a3, and agz all have absolute values greater than 0.99. Hence
varCT,) is greater than 1, which is a contradiction. It follows that there are no solutions to
(2) and (3).

Suppose now that we do not fix the variances of the exogenous variables at one. We will
show that if the corresponding set of equations has a solution, then so do (2) and (3),
which is a contradiction.

var(X,) = | = 0'; 2 var(7;) + dig? var(rg) + b, 2var(E"))
var(X,) = 1 = ax®varCr® + 0" var(ro) + 2 % vart) (2"
var (Xg) =1=a 322 var (72) +a' 33 var (Tg) +b' 332 var (E 3)

caa(XXp) = 0.99 = d, a',; varCJ,)

COIT(Xl,Xg) =099 =0 22al 3gvar(r2)
corr(X,X3) = 0.99 = &g a'xp var(ra)

, (3)

Suppose now that 2' and 3' have a solution. Then set

& =dJvaT)) a, =d,varl}) a, =da, va(l;)
@y =dynyvar(ly) ajz=a’pdvar(rs)  ag= @svar®)
b, =0, Jvar(e'|) by, =V, var(e',) by, =8, fvar(e,)

These now form a solution to (2) and (3), which isa contradiction. .\

Lemma 1: If Eis apositive definite matrix, then there exists a positive definite matrix E'
= E - 81, where 8isareal positive number.

Proof. Suppose that E is a positive definite matrix. It followsthen that for all solutions of
det(E - XL) =0, A, is positive. Let the smallest solution of det(E - XL) = 0 be A,,. Let 8 be




less than \ and greater than 0. Let Z' = Z - 51. We will now show that al of the solutions
of det(Z' - V1) =0 are positive. Z' - VI =Z-81-VI=2Z - (V + 5)1. IfwesatV =X -
5, then for each solution of det(Z - XI) = 0, there is a solution of det(Z - (V + 8)1) = 0.
SinceV = X - 8, and 8 isless than X, the smallest solution of det(Z' - VI) = 0 is greater
than 0. /.

A linear transformation of a set of random variables is lower triangular if and only if
there is an ordering of the variables such that the matrix representing the transformation is
zero for al entries &, whenj > i.

Lemma 2: If X, ..., X, have ajoint normal distribution N(0,Z), where Z is positive
definite, then there is a set of n mututally independent standard normal variables T, ..., Th,
such that X, ..., X, are alower triangular linear transformation of T, ..., T, and for each
i, the coefficient of T; in the equation for X; is not equal to zero.

Proof. For every positive definite correlation matrix Z, a complete directed graph can be
given alinear parameterization that represents Z (Spirtes et al. 1993). The reduced form of
a complete directed graph is a lower triangular transformation of independent error
variables that is non-zero on the diagonal, because Z is positive definite. .\

Theorem 2: If G isthe graph of SEM L with measured variables X, normally distributed
correlated errors, and marginal correlation matrix Z(X), {X, Y} uZc X, and X is d-
separated from Y given Z in Transform(G), then p*, =01in Z(i).

Proof. First we will construct a latent variable modd of g,,...,e,. Then we will use this
model to form the latent variable model L' with graph G' that has marginal correlation
matrix Z(X) but no correlated errors, and in which X is d-separated from Y given Z in G\
It follows that PXY, = 0 in Z(X).

Order the variables so that X is first, Y is second, followed by each variable with a
descendant in Z, followed by any remaining variables that have X or Y as descendants,
followed by the rest of the variables. Given this ordering, we will now refer to the
variablesas X p...", wherefor al i, X" isthe i* variable in the ordering. Suppose for the
graph in Figure 1 we are interested in whether p* = 0 (i.e. Z = 0). One renaming of the
variables for the graph in Figure 1 that is compatible with the ordering rules given above is
shown in Figure 3.
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Suppose that the correlation matrix among the error terms of L is E. We will show that
there is alatent variable model of Z of the form

&= aT +¢€"
Fsi

where each of the T; and E"; are uncorrelated.

By hypothesis, £ is a positive definite matrix. By Lemma 1, there is a set of variables
€'p....£"w with positive definite matrix £ = E - 81. As afirst step to constructing a latent
variable model of e, we will construct a latent variable model of €\ represented by a
directed graph H. Note that H does not contain any of the X variables or e variables.

By Lemma 2, there is a set of variables T, ..., T, such that e’y ..., €', with correlation
matrix E'(s') are alower triangular linear transformation of T,..., T, and for each i, the
coefficient of T; in the equation for € is not equal to zero. That is

where & ~ 0. The transformation can be represented by a directed graph H in which for
each i, there areedgesfrom T; to €], ] > 1.




From the construction of//, there are no edges from Tj to €\ unlessj = 1. Hence, for every
j * 1,in H every every trek between €\ and €] contains T, It follows that there is at most
one trek between e\ and (—:*\/J The edge from T, to €\ is not zero. Hence if g and e, are not
correlated in L (i.e. X; and Xj are not d-adjacent in Transform(G)) then the edge from T; to
£] is zero. In the example from Figure 3, a, = a4 = a5 = a6 = 0.

Applying this strategy to each of the T; variables in turn, we can now show that for each i
andr > i, if there is no trek between €', and €" containing avariable Tjs wherej < i, and X,
is not d-adjacent to X in Transform(G) (i.e. E; and £j are uncorrelated in L), then the Ty -»
€', edge can be removed from the graph (i.e. g, can be set to zero.) Suppose on the contrary
that there is no trek between €', and €\ containing avariable Tjg wherej < i, and X, is not d-
adjacent to X; in Transform(G) (i.e. g and E; are uncorrelated in L), but the Ty —» €', edge is
not removed from the graph by this procedure (i.e. a" is not set to zero.) By the
construction of//, if k > i, then there is no edge from T to e It follows that if in H there
is no trek between €', and €" containing avariable Tj, wherej < i, then every trek between
E\ and any other variable contains the edge from T; to €\ which is not equal to zero.The T,
—> €', edge exists by hypothesis, so there is exactly one trek between E\ and E\ in //.
Hence E\ and £, are correlated in every parameterization of //. (Note that this could not be
claimed if there were more than one trek between E\ and E\ since in that case the treks
might cancel each other.) Since the covariances between distinct £ variables are equal to the
correlations between the corresponding £ variables, it followsthat E; and £, are correlated in
L', and hence d-adjacent in Transform(G). This is a contradictfon. The end result of this
process of edge removal for the graph in Figure 3 is shown in Figure 4.
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Figure 4. H after extra edges are removed
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From the latent variable model without correlated errors of the £ variables, we can now
form alatent variable model without correlated errors of the £ variables. For each i, let £\
be a normally distributed variable with variance 8 that is independent of all of the T;, and all
of the other £" variables. It follows then that




E = Z a;T; +€";
jsi
because the addition of the €\ term does not change any of the correlations, and adds 8 to
the variance of eV

From the latent variable model without correlated errors of the e variables, we can now
form a latent variable model without correlated errors of Z(X). If we use the above
equation to replace each e in the SEM L, we form a SEM L' which has no correlated
errors, but has the same marginal covariance matrix asL. If the equationsin L are:

X, =Y.bX +¢

Ji
then the equationsin L' are:

X, =Yb,X,+YaT +¢",
Jwi FLY

L' has a graph G' obtained from G and H in the following way: Remove each error
variable from G (because dl of the error terms are uncorrelated in L"), add each of the T.
variablesto G, and add an edge from T, to Xj if in H there is an edge from T, to €. Note
that the ancestor relations among the X variablesin G' is the same as the ancestor relations
among the X variables in Transform(G). Given the graph G from Figure 3 and the graph H
from Figure 4, the end result is shown in Figure 5. Asin Transfohn(G), wewill cal atrek
Xj <r- T, -> X~ that containsa T variable acorrelated error trek in G\

T, T, T, T, T,
X, —— X, X, X, X, —»

Figure 5. G'
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We will now show that if there is a correlated error trek between X; and X; in G’ that
contains a variable T, then in Transform(G) there is a correlated error trek sequence
between X and X, such that every variable in the correlated error trek sequence, with the
possible exception of the endpoints, has index (i.e. subscript) less than or equal to r
(henceforth referred to as the correlated error trek sequence in Transform(G) corresponding
to the correlated error trek between X and X; in G’.) The proof is by induction on r.
Suppose first that r = 1. If there is a correlated error trek between X; and X in G’ that
contains T, then there are correlated error treks between X, and X, in Transform(G), and
between X; and X,. The concatenation of these two correlated error treks forms a correlated
error trek sequence in which (trivially) every variable in the sequence except for the
endpoints has an index less than or equal to 1. The induction hypothesis is that for all r <n,
if there is a correlated error trek between X; and X; in G’ that contains T,, then in
Transform(G) there is a correlated error trek sequence between X; and X, such that every
variable in the sequence, with the possible exception of the endpoints has an index less than
r. Suppose now that in G’ there is a correlated error trek between X; and X such that the
trek contains T,,,, where i, j =2 n+1. Since the edge between T,,, and X, exists in G’, it
follows from the method of construction of G’ that either there is a correlated error trek
between X, and X ,, in G' that contains some T, r <n+1, or X ,, and X, are d-adjacent in
Transform(G). In the former case, by the induction hypothesis there is a correlated error

trek sequence between X, and X, that, except for the endpoints, contains only vertices

n+l
whose indices are less than or equal to n+1. In the latter case, /<Xi,XM> is a correlated
error trek sequence between X, and X ,,. Similarly, there is a correlated error trek sequence
between X ,, and X; that, except for the endpoints, contains only vertices whose indices
are less than or equal to n+1. These two correlated error trek sequences can be concatenated
to form a correlated error trek sequence between X; and X; that, except for the endpoints,
contains only vertices whose indices are less than or equal to n+1. For the G' shown in
Figure 5, there is a correlated error trek between X and X, and a corresponding correlated

error trek sequence <X,X,,X> in the graph Transform(G) in Figure 3.

We will now show that if X, and X, are d-connected given Z in G’, then X, and X, are d-
connected given Z in Transform(G) using Lemma 3.3.1+ (Richardson 1994, which is an
extension to the cyclic case of Lemma 3.3.1 in Spirtes et al. 1993). Lemma 3.3.1+ states
that there is a path in a directed graph G that d-connects X and Y given Z if and only if
there is a sequence of vertices Q and a set P of paths in G between pairs of adjacent
vertices in Q that have the following properties: (i) For each occurrence of a pair of adjacent
variables X; and X;in Q, i # j, and there is a unique path in P that d-connects X, and X,




given ZVEX"Xj}; (i) if <XMGACe> is a subsequence of Q, the corresponding path between
Xj and Xj in Pisinto X, and the corresponding path between Xj and X,, in P isinto Xj (in
which case we say that the occurrence of Xj isacollider in Q) then Xj has a descendant in
Z; and (iii) if there is an occurrence of Xj that is a non-collider in Q, then Xj is not in Z.
Note that we do not require that avertex occur only once in Q. Hence one occurrence of a
vertex in Q may be a collider, and another occurrence of the same vertex in Q may be a
non-collider.

Suppose now that there is an undirected path U that d-connects X, and X, given Z in G\
Intuitively, in G' we would like to form Q and P by breaking U into pieces, such that each
correlated error trek occurs as a separate piece. More formally, form a sequence Q of
vertices and an associated sequence P of paths in G' with the following properties. (i)
every vertex in Qisin X and occurs on U; (ii) no vertex occursin Q more than once; (iii) if
A occurs before B in Q, then A occurs before B on U; (iv) if the subpath of U between A
and B is acorrelated error trek, then A and B both occur in that order in Q. The path in P
associated with apair A and B of adjacent verticesin Q is the subpath of U between A and
B. In the example in Figure 5, in G' the d-connecting path between X and X, givenZ =0
ISX] <r- X5 <-Tyq-> Xg -> X3, Q= <XpX5,Xe,X2>, and P = <X; <- X5, X5 <- T4 ->
Xe, Xg —> X2>. In thisexample, there are no collidersin Q.

Because U is a path that d-connects X; and X, given Z in G', it is easy to see that the paths
in P have the following properties in G': (i) Each path in Q d-coiyiects its endpoints X; and
Xj given ZV X~} ; (i) if thereis an occurrence of X; in Q that is a collider then X; has a
descendant in Z; and (iii) if thereis an occurrence of X; in Q that is a non-collider, then X;
iIsnotin Z.

We will now show how to construct a sequence of vertices Q" and a set P of paths in
Transform(G) between pairs of adjacent vertices in Q' that have the following properties:
(i) For each occurrence of apair of adjacent variables X" and Xj in Q' there is a unique path
in P that d-connects X and Xj given ZXfX”Xj}; (ii) if there is an occurrence of Xj in Q'
that is acollider, then X* has a descendant in Z; and (jii) if there is an occurrence of X; in
Q' that is anon-collider, then X isnotin Z. It will follow from Lemma 3.3.1+ that X and
Y are d-connected given Z in Transform(G).

We will create Q' by several modifications of Q. Step (1) in creating Q' is to replace each
subsequence kx~icr of Q such that X, and Xs are on a correlated error trek in Q, with the
corresponding correlated error trek sequence <X,,..., Xs> in Transform(G). Note that each
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occurrence of X betwéen,<Xr, ....Xs> is acallider in Q\ In the example, after the first
step Q' = <X1,X5,X4,Xg,X2> and P = <X, <= XA X5 <= Tys -> Xgo Xy <= TN -> Xg, Xo
—> X,>, i.e. we replaced the subsequence <X4,Xe> in Q by <X5,X4,Xg>.

Recall that the ancestor relations among the X variables (which includes the variables in Z)
in G' is the same as the ancestor relations among the X variables in Transform(G). After
stage (1) in creating Q', if X is not an ancestor of Z in Transform(G) (or in G'), but has
an occurrence in Q' that is a collider, it follows that Xy was added to Q' by replacing a
subsequence <X ;Ks> of Q by acorresponding correlated error trek sequence <X, ... ,Xg>
in Transform(G). Hence any such Xy lies between some pair of vertices X, and X that are
adjacent in Q. Because every vertex in <X,, ..., X in Q' (except for X; and Xs) has an
index lessthanr and s, and X is not an ancestor of Z in G\ it follows from the ordering
of the variables that we chose, that X, and X, are not ancestors of Z in G\ Because X, and
Xs are on U but not ancestors of Z in G', there is a subpath of U that is a directed path
from X, to X; and a subpath of U that is a directed path X to X5, or vice versa. In either
case, in G', X; is an ancestor of X; and Xs is an ancestor of X;, or X; is an ancestor of X,
and X is an ancestor of Xp Becausein G\ X, is an ancestor of X, and X an ancestor of
X, orvice-versa, and k < r and s, it follows from the ordering of the variables that Xy is
also an ancestor of X; or X, in G\ Hence Xy is an ancestor of X; or X, in Transform(G).
In the example, in Transform(G) X4 is not an ancestor of the empty set but is an ancestor of
X, and it is between two vertices Xs and Xg which also are not ancestors of the empty set
but are ancestors of Xj or X.. i

If there is some vertex X in Q' that is not an ancestor of Z, but occursin Q' as a collider,
suppose without loss of generality that there is a vertex that is an ancestor of X; but not of
Z, that occurs as acollider in Q\ Let X, be the last occurrence of acollider in Q' that is an
ancestor of X; but not of Z, if there is one, otherwise let X, = X;. Step (2) in forming*Q'
and P' is to replace the subsequence <X,...,X> by <X Xz> if X5 * X, and replacing
the corresponding paths in P by a directed path from X, to X; if X5 * Xi. (Such a
directed path exists if X, * X, because X, is an ancestor of Xp) This removes dl
occurences of vertices between X; and X, that are not ancestors of Z, but are colliders in
Q\ In the example, X, = X4, and after step 2, Q' = <XpX4,Xe,X2> and P' = <X; <- Xy,
X, T X, X > X,>.

By definition, every vertex that occurs as a collider between X, and X, in Q' is an ancestor
of Z or of X,. Let Xy, be the first vertex after X, in Q' that is an ancestor of X, but not of
Z, if thereis one, otherwise let X, = X,. Step (3) in forming Q' and P' is to replace the
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subsequence <Xy, ...,X>> by <Xt, X,> if X, * X,, and replacing the corresponding paths
in P by a directed path from X, to X, if X, * X,. This removes all occurrences of
colliders between X, and X, that are not ancestors of Z. Note that al occurrences of
collidersthat are left are between X, and X,,, and every occurrence of a collider between X,
and Xb is an ancestor of Z by construction. In the example, X, = X,, and after step (3), Q'
and P' are unchanged.

We will now show that every path between a pair of variables X, and X, in P d-connects
Xy and X,, given Z\{ Xy,Xvy}. If the path between X,, and X, isaso in P, then it d-connects
Xy and X, given ZVjX"XJ because every path in P has this property. If the path between
Xy and X, isnot in P, but was added in step (1) of the formation of P\ then the path
between X, and X, is a correlated error trek, which d-connects X, and X, given
ZMX"XJ because no T variable is in Z. If the path between X, and X, is not in P, but
was added in step (2) of the formation of P\ then X, = X, X, = X, and the path between
Xy and X, is adirected path from X, to X, that does not contain any member of Z. Hence
the path d-connects X, and X* given Z. Similarly, if the path between path between X, and
Xy isnotin P, but was added in step (3) of the formation of P°, then X, = Xp, Xy = Xy,
and the path between X, and X" is adirected path from X, to X, that does not contain any
member of Z. Hence the path d-connects X~ and X, given Z.

We will now show that every vertex that occurs as a collider in Q' has a descendant in Z,
and every vertex that occurs as anon-collider in Q" isnot in Z. Eyery vertex that occurs as
a collider in Q' is an ancestor of Z, because steps (2) and (3) in the formation of Q'
removed al occurrences of colliders that were not ancestors of Z. Every vertex that occurs
as a non-collider in Q and as a non-collider in Q' is not in Z, because every vertex that
occurs as anon-collider in Qisnotin Z. The only vertices that may occur as non-colliders
in Q" but notin Q are X, and X,. X5 is notin Z, because ether it is equal to X! or X5,
neither of whichisin Z, or itis not an ancestor of Z by construction. Similarly, X; is not
inZ.

Hence Q' is a sequence of paths that satisfy properties (i), (ii), and (iii). It follows from
Lemma 3.3.1+ that X; and X, are d-connected given Z in Transform(G).

By contraposition, since Xy and X, are d-separated in Transform(G), they are d-separated
given Z in G\ Because G' is the directed graph of a latent variable model L' with
correlation matrix that has marginad £(X), no correlated errors, and X, and X, are




d-separated given Z in G’, it follows from Theorem 3 (Spirtes 1995) that pxy.z'= 0 in
X(X). ..

Theorem 3: If G is the graph of SEM L with normally distributed correlated errors and
marginal correlation matrix X(X), and X is d-connected to Y given Z in Transform(G) then
L does not linearly entail that py, , = 0.

Proof. If X is not d-separated from Y given Z in Transform(G), then by Theorem 3
(Spirtes 1995) there is a parameterization of Transform(G) with correlation matrix X(X)
such that p,,, # 0. By the convention adopted for new latent variables names in
Transform(G), no new latent variable was called T; where j >i. For the sake of notational
convenience, we will also use the name T; to refer to T;. In that parameterization,

X, =Y b;X;+Y a,T; +¢€,

j<i jwi
Now define
&=y a,T,+¢€,
j#i
It follows then that
X, =Y bX, +¢

Jj<i
which is a parameterization of L in which pyy , #0. ..

Because the covariance matrix of the non-error variables in a linear SEM does not depend
upon whether the error terms are normally distributed, but depends only upon the linear
coefficients and the covariance matrix among the errors, Theorem 2 and Theorem 3 can
obviously be extended to the case where the error terms are not normally distributed.
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Appendix

Sets of variables and defined terms are in boldface. A directed graph is an ordered pair
of afinite set of vertices V, and a set of directed edges E. A directed edge from A to B is
an ordered pair of distinct vertices <A,B>in V in which A is the tail of the edge and B is
the head; the edgeisout of A and into B, and A is parent of B and B isachild of A. A
sequence of edges <E!,...,E,> in G is an undirected path if and only if there exists a
sequence of vertices <Vi,...,Vn:1> such that for 1 < i < n dther <Vi,Vi+i> = E* or
<Vi.i,Vj> = Ej. A path U isacyclic if no vertex occurring on an edge in the path occurs
more than once. A sequence of edges <Ei,...,E,> in G is adirected path if and only if
there exists a sequence of vertices <Vi,...,V +i>such thatfor 1 <i < n <Vi\Vi+i> = Ei.
If thereis an acyclic directed path from A to B or B = A then A is an ancestor of B, and B
is adescendant of A. A directed graph is acyclic if and only if it contains no directed
cyclic paths.’

Vertex X isacollider on an acyclic undirected path U in directed graph G if and only if
there are two edges on U that are directed into X. Three digoint sets X, Y, and Z, X and
Y are d-separated given Z in G if and only if there is no acyclic undirected path U from a
member of X to a member of Y such that every non-collider on U is not in Z, and every
collider on U has adescendant in Z. For three digoint sets X, Y, and Z, X and Y are d-
connected given Z in G if and only if X and Y are not d-separjated given Z.

The variablesin alinear structural equation model (SEM) can be divided into two sets, the
"error variables' or "error terms," and the substantive variables. Corresponding to each
substantive variable X< isalinear equation with Xj on the left hand side of the equation, and
the direct causes of ~ plus the error term E;- on the right hand side of the equation. Since we
have no interest in first moments, without loss of generality each variable can be expressed
as adeviation from its mean.

An undirected path is often defined as a sequence of vertices rather than a sequence of edges. The two
definitions are essentially equivalent for acyclic directed graphs, because a pair of vertices can be identified
with a unique edgein the graph. However, acyclic graph may contain morethan one edge between a pair of
vertices. In that caseit is no longer possible to identify a pair of vertices with a unique edge.

14




Consider, for example, two SEMs S, and S, over X = { X, X5, X3}, wherein both SEMs
Xj isadirect cause of X, and X, is adirect cause of Xs. The structural equations2 in Figure
6 are common to both § and S,.

Xo=pi X 1*%2
X3 =PyX,+e3

Figure 6. Structural Equations for SEMs § and S,

where $; and p, are free parameters ranging over real values, and e, e, and e; are error
terms. In addition suppose that " and e; are distributed as multivariate normal. In S, we
will assume that the correlation between each pair of distinct error terms is fixed a zero.
The free parameters of § are 0 = <p, P>, where p is the set of linear coefficients { p, P}
and P is the set of variances of the error terms. We will use I"C©®!) to denote the
covariance matrix parameterized by the vector Q, for model S, and occasionaly leave out
the model subscript if the context makes it clear which model is being referred to. If al the
pairs of error termsin a SEM S are uncorrelated, we say S is a SEM with uncorrelated
errors.

S, contains the same structural equations as Sj, but in S, we will alow the errors between
X, and X3 to be correlated, i.e., we make the correlation between the errors of X, and X5 a
free parameter, instead of fixing it at zero, asin Sy. In S, the fre parameters are 9 = <p,
P'>, where pis the set of linear coefficients {p!,p,} and P is the set of variances of the
error terms and the correlation between e, and e;. If the correlations between any of the
error terms in a SEM are not fixed at zero, we will call it a SEM with correlated errors.?

It is possible to associate with each SEM with uncorrelated errors a directed graph that
represents the causal structure of the model and the form of the linear equations. For
example, the directed graph associated with the substantive variables in S, IS Xy—» X, —>
X3, because X is the only substantive variable that occurs on the right hand side of the
equation for X,, and X is the only substantive variable that appears on the right hand side
of the equation for X3. We generally do not include error terms in the directed graph

ZWerealize that it is sightly unconventional to write the trivial equation for the exogenous variable
Xi in terms of its error, but this savesto give the error terms a unified and special status as providing all
the external sour ces of variation for the system

3Wedo not consider SEMs with other sorts of constraints on the parameters, e.g., equality constraints.
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associated with a SEM unless the errors are correlated. We enclose measured variables in
boxes, latent variables in circles, and |eave error variables unenclosed.

X1|——»

X |—— %3]

nD 83

N

Figure 7. SEM S, with correlated errors

The typica path diagram that would be given for S, is shown in Figure 7. This is not
strictly adirected graph because of the double-headed arrow between error terms £, and £,
which indicates that £,and £ are correlated. It is generally accepted that correlation is to be
explained by some form of causal connection. Accordingly if £, and £; are correlated we
will assume that either £,causes £3, causes £2, some latent variable causes both £, and £3,
or some combination of these. In other words, double-headed arrows are an ambiguous

representation of a causal connection.
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