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PROOF THEORY

Proof theory is a branch of mathematical logic that was founded by
David Hilbert around 1920 to pursue HILBERTs PROGRAM. The
problems that were addressed by the program had been formulated,
in some sense, already at the turn of the century, for example, in
Hubert's famous address to the First International Congress of
Mathematicians in Paris. They were closely connected to the set
theoretic foundations for analysis investigated by Cantor and
Dedekind, in particular, to difficulties with the unrestricted notion of
system or set; they were also related to the philosophical conflict
with Kronecker on the very nature of mathematics. At that time, the
central issue for Hilbert was the "consistency of sets" in Cantor's
sense. Hilbert suggested that the existence of consistent sets, e.g., the
set of real numbers, could be secured by proving the consistency of a
suitable, characterizing axiom system, but indicated only vaguely
how to give such proofs model theoretically. Four years later, Hilbert
departed radically from these indications and proposed a novel way
of attacking the consistency problem for theories. This approach
required, first of all, a strict formalization of mathematics together
with logic; then, the syntactic configurations of the joint formalism
would be considered as mathematical objects; finally, mathematical
arguments would be used to show that contradictory formulas cannot
be derived by the logical rules.

This two-pronged approach of developing 'substantial parts of
mathematics in formal theories (be they set theory, second order
arithmetic, finite type theory, or still other theories) and of proving
their consistency (or the consistency of significant sub-theories) was
sharpened in lectures beginning in 1917/18 and then pursued
systematically in the twenties by Hilbert and a group of collaborators
including Paul Bernays, Wilhelm Ackermann, and Johan von
Neumann. In particular, the formalizability of analysis in a second-
order theory was verified by Hilbert already in those very early
lectures; the record of that was published as Supplement IV of
(Hilbert and Bernays 1939). So it was possible to focus on the second
prong, namely to establish the consistency of "arithmetic" (second
order number theory and set theory) by elementary mathematical,
so-called finitist means. This part of the task proved to be much
more recalcitrant than expected, and only limited results were
obtained. That results were limited by necessity was explained in
1931 by GODEL'S THEOREMS; indeed, they refuted the attempt of
establishing consistency on a finitist basis — as soon as it was



realized that finitist considerations could be carried out in a small
fragment of first-order arithmetic. This led to the formulation of a
general reductive program; see sections 2 and 4.

Gentzen and Godel made the first contributions to the general
reductive program by establishing the consistency of classical first-
order arithmetic, PA, relative to intuitionistic arithmetic, HA, as
formalized by Hey ting. Gentzen proved in 1936 the consistency of
PA relative to a quantifier-free theory of arithmetic that included
transfinite recursion up to the first epsilon number; in his 1941
lectures at Yale, Godel proved the consistency of the same theory
relative to a theory of computable functionals of finite type. These
two "Ansatze" turned out to be most important for subsequent proof
theoretic work. Currently it is known how to analyze, in Gentzen-
style, strong subsystems of second order arithmetic and set theory.
The first prong of proof theoretic investigations, the actual formal
development of parts of mathematics, has also been pursued — with
a surprising result: the bulk of classical analyis can be developed in
theories that are conservative over (fragments of) first-order
arithmetic.

1 Metamathemat i c s
2 Hilbert's Program
3 Mathematical work and logical tools
4 Reductive results ;

5 Outlook

1 Metamathematics

Consistency is the crucial logical notion connected with Hilbert's
investigations. In traditional, Aristotelian logic it was viewed as a
semantic notion: two or more statements are consistent, if they are
simultaneously true under some interpretation. In modern logic
there is a syntactic definition that fits complex theories since Fregefs
Be griffsschrift: a set of statements is consistent with respect to a
logical calculus, if no statement of the form (P&-iP) is derivable from
the statements by rules of the calculus. If these definitions are
equivalent for a logic we have a significant fact, as the equivalence
amounts to the completeness of the logic's system of rules. The first
such completeness theorem was obtained for sentential logic by
Bernays in (1918) and, independently, by Emil Post in (1921); the



completeness of predicate logic was proved by Kurt Godel in (1930).
The crucial step in such proofs shows that "syntactic consistency"
implies "semantic consistency". The other direction is established
quite directly, but involves the notion of truth. Here we have located
one central issue that has motivated proof theoretic investigations,
namely, to avoid the uncritical use of the broad concept of classical
truth for infinite mathematical structures.

Cantor applied consistency in an informal way to sets. He
distinguished, for example in a letter to Dedekind, a consistent from
an inconsistent multiplicity. The latter is such "that the assumption
that all of its elements fare together1 leads to a contradiction",
whereas the elements of the former "can be thought of without
contradiction as 'being together1". Cantor had conveyed these
distinctions by letter to Hilbert already in 1897; see (Purkert and
Ilgauds) for the text of the letters and (Sieg 1990) for the wider
historical context. Hilbert pointed out, implicitly in (1900) and
explicitly in (1905), that Cantor had not given a rigorous criterion for
distinguishing between consistent and inconsistent multiplicities. In
(1900) Hilbert suggested to remedy the problem for analysis and to
give the proof of the "existence of the totality of real numbers or —
in the terminology of G. Cantor — the proof of the fact that the
system of real numbers is a consistent (complete) set" by
establishing the consistency of an axiomatic characterization of the
reals. Indeed, he claimed that the consistency could be established
"by a suitable modification of familiar methods". Hilbert1 s own hints,
partly in unpublished lecture notes, and remarks of Bernays make it
plausible that he had a model theoretic proof in mind. This
"problematic" can be traced back to considerations in Dedekind's
essay (1888) as explicated carefully in his letter to Keferstein, where
he asked of his notion simply infinite system: " ... does such a system
exist at all in the realms of our ideas? Without a logical proof of
existence it would always remain doubtful whether the notion of
such a system might not perhaps contain internal contradictions."
Clearly, Dedekind tried to establish the consistency by exhibiting a
suitable "logical", i.e., set theoretic model.

In 1904 Hilbert began to pursue a completely different
strategy for giving consistency proofs. His new way of proceeding
was still aimed at securing the existence of sets, but intended to
exploit the formalizability of the theory at hand. Formalizations had
to satisfy requirements stricter than those imposed on the structure
of theories by the traditional (Euclidean) axiomatic-deductive



method. The additional requirement was the regimentation of
inferential steps in proofs: not only axioms had to be given in
advance, but the rules representing steps in mathematical arguments
had to be taken from a predetermined list. To avoid a regress in the
definition of proof and to achieve intersubjectivity at an absolutely
minimal level, the rules had to be "formal" or "mechanical" and had
to depend only on the form of statements. Thus, to exclude any
ambiguity, a precise and effectively described language was also
needed to formalize particular theories; the indications in (Hilbert
1905) were very sketchy, however.

The general kind of requirements had been clear to Aristotle
and were explicitly formulated by Leibniz; but only Frege presented
in his Be griffsschrift — in addition to an expressively rich language
with relations and quantifiers — an adequate logical calculus.
Through the formalization of mathematical proofs Frege pursued a
clear philosophical aim, namely, to recognize the "epistemological
nature" of theorems. In the introduction to his Grundgesetze der
Arithmetik Frege wrote: "By insisting that the chains of inference do
not have any gaps we succeed in bringing to light every axiom,
assumption, hypothesis or whatever else you want to call it on which
a proof rests; in this way we obtain a basis for judging the
epistemological nature of the theorem." An epistemological analysis
of theorems was also aimed for by Hilbert in his work on the
foundations of geometry; that was done quite differently, however,
relying on a more traditional axiomatic presentation and pushing
forward genuinely metamathematical investigations. For the
emerging proof theoretic work the formal aspect Frege had
emphasized would be exploited by Hilbert, but in a distinctively
novel way.

Hilbert gave repeatedly courses on the foundations of
mathematics in the period from 1904 to 1917; the spirit of his
lectures is captured in his Zurich talk Axiomatisches Denken. The
mathematical development and philosophical clarification of a new
consistency program began to be given only in Hilbert's lectures on
Prinzipien der Mathematik presented in the winter term of 1917/18.
These lectures mark the beginning of the fruitful collaboration with
Bernays, who supported Hilbert's preparation in essential ways and
also wrote careful notes. The notes of these and later lectures are
amazing documents, as one finds in them for the first time a detailed
modern presentation of the syntax and informal semantics of
predicate logic and of finite type theories. The 1917/18 notes served



as the basis for Hilbert and Ackermann's book Grundzuge der
theoretischen Logik published only in 1928; indeed, the notes contain
with minor exceptions all the material presented in the book. In the
lectures during the winter terms 1920 and 1921/22, proof theory
and the finitist consistency program emerged.

2 Hilbert's Program

For the purpose of the consistency program, metamathematics was
taken in Hubert's 1921/22 lectures to be included in, if not co-
extensive with, the part of mathematics acceptable to constructivists
like Kronecker and Brouwer. The point of consistency proofs was no
longer to guarantee the existence of sets, but to establish the
instrumental usefulness of classical mathematical theories T, say set
theory, with respect to finitist mathematics. That focus rested on the
observation that the statement formulating the consistency of T is
equivalent to the reflection principle />r(a, laf) => a; here, Pr is the
finitist proof predicate for T, a a finitistically meaningful statement,
and V its translation into the language of T. A finitist consistency
proof for T would thus ensure that T is a reliable instrument for the
proof of finitist statements. Other important metamathematical
issues were the completeness and decidability of theories.

The formalizability of mathematics was obviously crucial for
this proof theoretic approach, and the programmatic goal was seen as
a way to circumvent some philosophical issues, e.g., concerning the
nature of infinite sets in the case of set theory. For these reasons
Hilbertfs philosophical position is (still) frequently equated with
formalism in the sense of Frege's articles Uber die Grundlagen der
Geometrie and of Brouwerfs inaugural address Intuitionism and
Formalism. Such a view is not completely unsupported by some of
Hilbertfs polemical remarks during the twenties, but on balance his
philosophical views developed into a sophisticated instrumentalism,
if that label is taken in Ernest Nagelfs judicious sense; see (Nagel
1961). Hilbert's is an instrumentalism emphasizing the contentual
motivation of mathematical theories; that is perhaps most clearly
expressed in the first chapter of (Hilbert and Bernays 1934). A
sustained philosophical analysis of proof theoretic research in the
context of broader issues in the philosophy of mathematics was
provided by Bernays; his penetrating essays stretch over five
decades and have been collected in his (1976). (Feferman 1988) and



(Sieg 1988) give complementary accounts; for altogether contrasting
approaches, see (Detlefsen 1986) and (Simpson 1988).

The mathematical work is most remarkable for what it started,
as it constitutes the beginnings of modern mathematical logic. Even
before Godel and Gentzen's work it was rich in accomplishments:
consider, as examples, the completeness proof of Bernays for
sentential logic; the partial solutions to the decision problem for
predicate logic (i.e., Hilbert's Entscheidungsproblem) obtained by
Behmann, Bernays, Schonfinkel, and Herbrand; the consistency proofs
given by Ackermann, von Neumann, and Herbrand. Taking for
granted the broader conceptual clarifications and the focus on first
order logic, Herbrandfs "theoreme fondamentale" is perhaps the most
significant result on purely logical grounds, but also because of its
applicability in consistency proofs. Godel pointed to its essence when
he gave in (1933o) the following formulation of HERBRAND's
THEOREM: "If we take a theory which is constructive in the sense
that each existence assertion made in the axioms is covered by a
construction, and if we add to this theory the non-constructive notion
of existence and all the logical rules concerning it, e.g., the law of
excluded middle, we shall never get into any contradiction."

The results obtained in the twenties, including Herbrand's
Theorem, were disappointing when measured against the hopes and
ambitions in the Hilbert school: Ackermann, yon Neumann, and
Herbrand had established essentially the consistency of first order
arithmetic with a very restricted principle of induction (for
quantifier-free formulas). Actual limits on finitist considerations for
consistency proofs had been reached; that became clear in 1931
through GODELS THEOREMS and the realization that finitist proofs
could be formalized in a weak fragment of number theory. Initially,
Godel did not share the view on the limits of finitist reasoning, as is
clear from the final remarks in his (1931) and contemporaneous
correspondence with von Neumann and Herbrand. But by December
1933, when he lectured in Cambridge, he had changed his position:
having isolated a "system A", essentially a version of primitive
recursive arithmetic (PRA), he made the following claim: "Now all the
intuitionistic [i.e., finitist] proofs complying with the requirements of
the system A which have ever been constructed can easily be
expressed in the system of classical analysis and even in the system
of classical arithmetic, and there are reasons for believing that this
will hold for any proof which one will ever be able to construct."



The solvability of the Entscheidungsproblem had been made
implausible by Godel's results, but the actual proof of unsolvability
had to wait until 1936 for a conceptual clarification of "mechanical
procedure" or "algorithm". Such a clarification was achieved mainly
through the work of Church and Turing, see COMPUTABILITY
THEORY and CHURCHs THESIS. A precise notion of mechanical
procedure was also needed to prove the incompleteness theorems for
general "formal" theories satisfying basic representability and
derivability conditions; after all, Godel had established limits only for
(formalizations of) particular theories, like the system of Principia
Mathematica and then current axiomatic set theories. In his attempt
to characterize a proper extension of the class of primitive recursive
functions, Godel introduced in his Princeton lectures of 1934 the
general recursive functions through an equational calculus. The
informal concept underlying Godel's and also Church's approach,
calculability of functions in a "formal" calculus, was carefully
analyzed by Hilbert and Bernays in Supplement II of their book
(1939); they formulated recursiveness conditions for general
deductive formalisms and showed that the number theoretic
functions whose values can be calculated in formalisms satisfying
these conditions {reckonable functions) are exactly the general
recursive ones.

The impact of the incompleteness theorems on Hilbert's
Program was profound and yet limited. On the one hand, as
remarked above, they pointed out definite limits of finitist
considerations; on the other hand, they left open the possibility of
modifying the program to a general reductive program that was no
longer aiming for "absolute" finitist consistency proofs, but rather for
consistency proofs relative to "appropriate" constructive theories.
Before Godel's results were known, Bernays had given in his (1930) a
detailed and searching analysis of the philosophical aims of Hilbert's
proof theory; in the Postscriptum to that paper published in (1976),
Bernays expressed clearly what was lost due to the incompleteness
theorems: the sharp distinction of what is intuitive and what is non-
intuitive, a distinction that was basic for the proposed philosophical
treatment of the problem of the infinite. Thus, it is the particular
"solution" to a philosophical problem that was shown to be
impossible.

Work in proof theory continued with the explicit goal of
achieving relative consistency proofs. Such work is in a venerable
mathematical tradition, as the many examples of significant results



show, e.g., the consistency of non-Euclidean relative to Euclidean
geometry, that of Euclidean geometry relative to analysis; the
consistency of set theory with the axiom of choice relative to set
theory (without the axiom of choice), that of set theory with the
negation of the axiom of choice relative to set theory. The
mathematical significance of relative consistency proofs is often
brought out by sharpening them to conservative extension results.
Such results may ensure, for example, that the theories have the
same class of provably total functions, see section 4. However, the
initial motivation for such arguments is most frequently
philosophical: one wants to guarantee the coherence of the original
theory on an epistemologically distinguished basis. In this spirit one
has to see the specific results that have been obtained in the pursuit
of the general reductive program.

3 Mathematical work and logical tools

The development of the general reductive program is characterized
by modifications of the two-pronged approach of Hilbert's original
program, namely: (i) weakening the theories in which parts of
mathematics are formalized, and (ii) strengthening the theories in
which the metamathematical considerations are carried out and,
consequently, relative to which constructive consistency proofs can
be given. The first modification reaches back to Weyl's book Das
Kontinuum and culminated in the seventies, wnen it was realized
that the classical results of mathematical analysis can be obtained in
conservative extensions of first order arithmetic. The second
modification started with work of Godel and Gentzen in 1933, when
they established independently the consistency of classical
arithmetic relative to intuitionistic arithmetic; it led in the seventies
and eighties to consistency proofs of subsystems of second order
arithmetic or, synonymously, subsystems of analysis relative to
intuitionistic theories of constructive ordinals. Obviously, only a
sketch of some main results can be attempted here.

Second order arithmetic has been used for some time as a
framework for the formal development of classical mathematical
analysis; i.e., the theory of the continuum set-theoretically described
by Dedekind and Cantor. Because of this mathematical adequacy,
second order arithmetic and a variety of subsystems have been
thoroughly investigated. The main set theoretic principles for these
systems are the comprehension axiom



CA (3X)(Vy)(yeX <=> S(y))

and the axiom of choice in the form

AC (Vx)(3Y)S(x,Y) => (3Z)(Vx)S(x,(Z)x) ,

where S is in each case an arbitrary formula of the language and thus
may contain set quantifiers; ye(Z)x is defined as <y,x>eZ. These
principles are impredicative, as the sets X and Z whose existence is
postulated are in general characterized by reference to all sets of
natural numbers. The induction principle is formulated either as a
schema or as a second-order axiom

IND (VX)[OeX & (Vy)(yeX => yfeX) => (Vx)xeX] .

Theories are denoted by the name of their set existence principle
enclosed in parentheses; thus (CA) names full analysis. If P follows
its name, a theory uses the second-order axiom IND to formalize
induction. Two general results are of interest, as they show that
second order arithmetic has a certain robustness: (CA) is proof -
theoretically equivalent to Zermelo-Frankel set theory without the
power set axiom; (AC) is conservative over (CA) for n^-formulas and
properly stronger, as there is a Fl^-instance of AC not provable in
(CA). In the presence of full CA, the theories^ with the induction
schema, respectively IND are equivalent, but they can be of
strikingly different strength, when the set existence principles are
restricted; for example, (E^-CA)r is conservative over PA, whereas
(r£-CA) proves the consistency of PA.

Hilbert and Bernays used ramified type theory with the axiom
of reducibility in (1917/18) to develop analysis; the presentation in
Supplement IV of their (1939) is based on this early work, but
employs full second order arithmetic as the formal framework. They
encouraged developments with restricted means already in (1920),
where they wrote w.r.t. Brouwer and Weyl: "The positive and fruitful
part of the investigations into the foundations of mathematics carried
out by these two researchers fits into the mold of the axiomatic
method and is exactly in the spirit of this method. For one
investigates here, how a part of analysis can be delimited by a
certain narrower system of assumptions." (p. 34) Subsystems of
analysis are now mainly defined by restricting S in the set existence



schemata to particular classes of formulas. The set theoretic
demands can be reduced dramatically: Hilbert and Bernays's 1939
presentation, for example, can be given quite readily in (Ili-CA)l\
Strictly mathematical work continued to accompany work on
consistency proofs for subsystems; it had the aim of establishing the
mathematical significance of subsystems and made use of work in
the constructivist tradition.

By the mid-seventies, through final efforts of Feferman,
Friedman, and Takeuti it was clear that classical analysis could be
carried out in conservative extensions of number theory, for
example, (n£-CA)l\ In this context Friedman suggested to pursue a
strategy, familiar from investigations of the axiom of choice in set
theory, namely, to establish the equivalence of certain set existence
principles with mathematical theorems. This theme is played with
surprising variations in Friedman's and Simpson's work on
subsystems and gave rise to the enterprise of Reverse Mathematics.
To mention just two, by now "classical", examples: CA for arithmetic
formulas is equivalent to the theorem that every bounded sequence
of reals has a least upper bound and to Konig's lemma. — Friedman
introduced a second order theory WKLo that extends primitive
recursive arithmetic conservatively for II2 -formulas; the theory is
weak, but still provides a very good basis for developing parts of
analysis and algebra. Simpson considers in (1988) the development
of mathematics in such a conservative extension o^ PRA not only as a
"reductionist program", but equates it with Hilbert's Program. One
should recall, however, that Hilbert did not propose to redo all of
mathematics in (a conservative extension of) PRA, but rather to
justify — via finitist consistency proofs — the use of strong classical
theories sufficient for the direct formalization of mathematical
practice.

Hilbert's central idea for the metamathematical treatment of
the consistency problem found its expression in the e-calculus and
the associated substitution method. In (Hilbert and Bernays 1939) is
a presentation of what was achieved in its terms; even Herbrand's
(difficult) work was recast in terms of the e-calculus. This tradition
was kept up by Tait (1965) and more recently by Mints (1994).
However, other logical tools turned out to be more useful for proof
theoretic investigations: Gentzen's sequent calculi and Godel's so-
called Dialectica Interpretation. As to the latter, Godel used
computable functionals of finite type to obtain a reduction of



intuitionistic arithmetic; joining this reduction with the consistency of
PA relative to HA, a consistency proof relative to the system of these
functionals was obtained. Influenced by the considerations in
(Hilbert 1926), Godel presented this work already in a lecture at Yale
(1941), but published it only in (1958). Spector gave in (1962) a
consistency proof for full classical analysis using bar recursive
functionals of finite type; this proof prompted a searching analysis in
the Stanford Report on the foundations of analysis, Stanford, 1963.

Here the focus is on sequent calculi, as they have found the
most extensive use and widest applicability. In the form given to
them by (Tait 1968), they allow the proof of finite sets of formulas
built up from literals (atomic formulas or negations of such),
conjunction, disjunction, universal and existential quantification, and
— depending on the theory — infinitary conjunction and disjunction.
Thus, for just first order logic the basic logical symbols are A, V, 3, V,
and the rules of the calculi include the following ones, where P i s
used as a syntactic variable ranging over finite sets of formulas and
F, <]> stands for the union of r and the singleton <|>:

LA: r, 9,-19, cp atomic

r,
i = 0,1

r

V: DS? a* P(D

3:

r,(Vx)(px

r,g>t

r, (3x)<px

ae P(F) means that the parameter a occurs in one of the formulas in
T. The crucial claim established by Gentzen was his Hauptsatz or cut-
elimination theorem: every derivation in the logical system using the
cut-rule C_ can be transformed into a cut-free or normal derivation.



Inspecting the rules, one notices that the premises of all rules (except
for C_) contain only subformulas of formulas in the conclusion.
Consequently, a normal derivation of a sequent F contains only
subformulas of elements in F. This is the crucial subformula
property of normal derivations, providing a bound on the complexity
of formulas that can occur in a proof of F. In (Gentzen 1934) this
metamathematical fact is established and used to obtain in a most
perspicuous way the most far-reaching consistency result that had
been obtained, namely Herbrand's.

For full first order number theory PA this treatment was
extended by Gentzen (1936) to a partial cut-elimination argument
whose termination was established by quantifier-free transfinite
induction up to the first epsilon number, TI(£o). In (1943), Gentzen
showed that this induction schema for every ordinal a less than £Q
can be established in PA; this is the first "ordinal analysis" of a
formal theory. In the fifties Lorenzen and, much more extensively,
Schiitte used infinitary extensions of Gentzen's finitary systems; in
particular for the treatment of PA they used the so-called co-rule that
allows one to infer F,(Vx) <|>x from the premises F,<|>n for each
natural number n. Though derivations are now infinite, PA-
derivations can be embedded into finitistically described ones and
can be transformed effectively into cut-free derivations; the natural
ordinal length of these derivations is bounded by £o. Schiitte
extended these methods to treat systems of ramified analysis RAa (of
order a) and obtained, in particular, ordinal bounds on the length of
normal derivations in terms of the Veblen-hierarchy of ordinal
functions. This work was used in 1963 by Feferman and Schiitte
independently to characterize the ordinal FQ of predicative analysis,
i.e., the first ordinal a such that TI(a) cannot be proved in RAp for p
less than a.

4 Reductive Results

The mathematical work just described was to a large extent inspired
by the attempt to establish the significance of relative consistency
proofs and/or to focus on manageable subsystems that might be a
proper next target for such proofs. Most of the reductive results
mentioned below can be established by the metamathematical tools,
the sequent calculi, though some of the original proofs used different
techniques.



The Godel-Gentzen result for number theory can be extended
to ramified analysis and also to obtain conservativeness for IT2-
formulas. This provides a relative consistency proof, as ramified
systems with intuitionistic logic are certainly acceptable
constructively (as long as the ordinals along which the systems are
iterated are acceptable). In the early sixties, partly through the
study of predicativity, significant subsystems with S restricted to
small classes of analytic formulas were isolated, among them (X\ -AC)
and (A}-CA). Kreisel pointed out that (ZJ-AC) 2 (A*-CA). Friedman
showed that (Z|-AC) is conservative over (A}-CA) for II^-formulas;
that the inclusion is proper was established later by Steel. Indeed,
(ZJ-AC) is conservative for n^-formulas over (no-CA)<£o, a theory
based on the transfinite iteration of the jump-operator and
equivalent to ramified analysis of level less than eo- This result
allowed the determination of the proof-theoretic ordinal of the
systems, but it showed also — and that was quite unexpected -- that
these prima facie impredicative theories were predicative in the
sense of Feferman and Schiitte. (Feferman 1964) and (Kreisel 1968)
provide excellent summaries.

The above theorem for (X}-AC) turned out to be a special case
of a general result: (£*+1-AC) is conservative over (Fft-CA)^ for
formulas in Fn, where Fo is II2, Ft is Tl\, and Fn is TI4 for n>l; this was
established in (Friedman 1970). As just explained, the case n=0 was
of special interest for the study of predicativity; the case n=l is also
to be placed in the context of foundational investigations. The most
immediate context is provided by Fefermanfs (1970) in which the
systems (rfj-CA)^ were related to the classical theory for (less than e0

times iterated) i.d. classes, i.e., classes defined by generalized
inductive definitions. Well-known examples are the classes O of
constructive ordinals and W of recursive well-founded trees.
Together, the papers reduced the subsystems (£2-AC) and (A2-CA) to
the classical theory of the tree classes Wv with index v less than e0.
Fefermanfs (1977) gives a detailed survey of mathematical and proof
theoretic work, including these last results.

Kreisel had introduced intuitionistic theories of iterated
inductive definitions in the Stanford Report; these theories were
viewed as codifying constructive principles that might be used in
consistency proofs for subsystems of analysis. Feferman and



Friedman's work described above established connections between
subsystems of analysis and classical theories of inductive definitions,
making a crucial step towards answering the major problem posed in
(Kreisel 1968): reduce (£2-AC) to a constructive theory of inductive
definitions; that would provide, as Kreisel put it then, "a solution to
Hilbert's problem for the subsystem of analysis ... (E2-AC)". The
classical theories for i.d. classes are reducible to intuitionistic theories
for accessible i.d. classes. This allowed, in particular, a satisfactory
solution of Kreisel's open problem, as (E2-AC) was shown to be
reducible to (ID)<eo(0), the intuitionistic theory of constructive number
classes with index less than e0. These and many further results were
obtained in (Buchholz e.a. 1981), in particular, the ordinal analysis of
the subsystems at hand. This work was influenced by earlier
considerations of Howard, Tait, and Takeuti.

Subsystems of set theory, in particular of admissible set theory,
were used by Jager and Pohlers in the early eighties to provide a
unifying approach to the investigations and, so it was hoped, an
avenue for analyzing even stronger systems than those
corresponding to the subsystems mentioned above; cf. (Jager 1986).
This has indeed been a succesful strategy and reveals, in the work of
Rathjen and others, a deep connection between large cardinals and
the constructive ordinals needed for the proof theoretic investigation
of such systems. Rathjen succeeded in analyzing (TÎ -CA) ; it seems

that the techniques developed for this case/ might allow the
treatment of full analysis. (Rathjen 1995) gives an informative
account of these proof theoretic investigations. They can no longer
be motivated by the concern of "securing" mathematical practice: the
systems that are investigated are much stronger than needed for
practice; the constructive ordinals used in the metamathematical
theory are obtained in analogy to "large cardinals" in set theory.

The systems WKL0, (r£-CA)l\ and (n}-CA)r have been
recognized as significant for the formalization of mathematical
practice and are reducible to theories based on principles that are
acceptable from constructive positions; after all, they are
conservative for n^-formulas over primitive recursive arithmetic
(PRA), intuitionistic number theory (HA), and the intuitionistic
theory for the finite constructive number classes (ID)<Q)(O). This
provides a coherent perspective bringing out the complementary
character of mathematical and metamathematical work that



ultimately aims for relating significant parts of mathematical practice
to distinctive foundational positions. But there is no obvious answer
to the question "What is the mathematical significance of those
subsystems, when taken as vehicles for the formal axiomatic study of
ordinary mathematics?"; similarly there is no obvious answer to the
question "What is the philosophical significance of the corresponding
systems PRA, HA, and (ID)<co(0), when taken as formal expressions of
foundational positions?". There is ample room for reflection on these
questions; the work reported here and in the literature provides rich
and crucial data; cf. (Sieg 1990). For the philosophical reflection on
the foundations of mathematics the investigations of subsystems of
set theory provide additional, significant material: what are
constructions that lead to "accessible domains", how is it that we
recognize their associated laws?

5 Outlook

"Internal" mathematical and philosophical challenges of work in
proof theory were sketched at the end of the last section. However,
the foundational goals of proof theoretic investigations have been
complemented over the last few decades by other important
directions.

First, Kreisel initiated in the fifties work that was to exploit the
gap between provability in particular formal ^theories and truth.
That led, on the one hand, to "global" characterizations of the
provably total functions of theories and to related independence
results. On the other hand, by attending "locally" to mathematical
details of proofs and by using proof theoretic techniques, it led to
explicit computational information of mathematical significance. This
seems to have come to fruition through recent work of Luckhardt
and Kohlenbach.

Second, methods and results of mathematical logic, but in
particular of proof theory, are playing an increasing role in computer
science. (Clearly, there has been significant and stimulating influence
also in the other direction.) Various (type) systems, e.g., Martin-
Lof's, Girard's F, Feferman's systems of explicit mathematics, have
been used for the presentation of proofs and computations, but also
for describing transformations on them.



Third, there is a direct connection to the general topic of
theorem proving; investigations here, when focusing on automated
proof search, might reflect back into proof theory by providing data
for a structural theory of (mathematical) proofs. Such a structural
proof theory would go beyond the representation of proofs in formal
theories and articulate search heuristics expressing "leading
mathematical ideas" for particular parts of mathematics; Saunders
MacLane suggested already in his Gottingen dissertation of 1934
such an extension of proof theoretic investigations.
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