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Abstract

The notion of mechanical process has played a crucial role in mathe-
matical logic since the early thirties; it has become central in computer
science, artificial intelligence, and cognitive psychology. But thediscussion
of Church's Thesis, which identifies the informal concept with a mathe-
matically precise one, has hardly progressed beyond the pioneering work
of Church, Gddel, Post, and Turing. Turing addressed directly the ques-
tion: What are the possible mechanical processes a human computor can
carry out in calculating values of a number-theoretic function? He claimed
that all such processes can be simulated by machines, in modern terms,
by deterministic Turing machines. Turing's considerations for this claim
involved, first, a formulation of boundedness and locality conditions (for
linear symbolic configurations and mechanical operations); second, a proof
that computational processes (satisfying these conditions) can be carried
out by Turing machines; third, the central thesis that all mechanical pro-
cesses carried out by human computors must satisfy the conditions. In
Turing's presentation these three aspects are intertwined and important
steps in the proof are only hinted at. We introduce K-graph machines and
use them to give a detailed mathematical explication of the first two as-
pects of Turing's considerations for general configurations, i.e. K-graphs.
This generalization of machines and theorems provides, in our view, a
significant strengthening of Turing's argument for his central thesis.

I ntroduction I

Turing's analysis of dlEiedtive calculability is a paradigm of a foundational study
that (i) led from an informally understood concept to a mathematically precise
notion, (ii) offered a detailed investigation of the new mathematical notion, and
. (iii) settled an important open question, namely the Entscheidungsproblem. The
special character of Turing's analysis was recognized immediately by Church in
his review of Turing's 1936 paper. The review was published in thefirst issue of
the 1937 volume of the Journal of Symbolic Logic, and Church contrasted in it
Turing's mathematical notion for effective calculability (viaidealized machines)
with hisown (via A-definability) and G&del'sgeneral recursivenessand asser ted:
"Of these, the first has the advantage of making the identification with effec-
tiveness in the ordinary (not explicitly defined) sense evident immediately "

Gode had noticed in his (1936) an " absoluteness' of the concept of com-
putability, but found only Turing'sanalysisconvincing; heclaimed that Turing's
work provides " a precise and unquestionably adequate definition of the general
concept of formal system” (1964, p. 369). As aformal system is simply defined




to be a mechanical procedure for producing theorems, the adequacy of the defi-
nition rests on Turing's analysis of mechanical procedures. And with respect to
the latter Gtdel remarked (pp. 369-70): "Turing's work gives an analysis of the
concept of 'mechanical procedure (alias 'algorithm' or 'computation procedure'
or 'finite combinatorial procedure'). This concept is shown [our emphasis] to
be equivalent with that of a 'Turing machine.” Nowhere in Godel's writings is
there an indication of the nature of Turing's conceptual analysis or of a proof for
the claim that the analyzed concept is equivalent with that of a Turing machine.
Godel's schematic description of Turing's way of proceeding is correct: in
section 9 of (Turing 1936) there is an analysis of effective calculability, and the
analysis is intertwined with a sketch of an argument showing that mechanical
procedures on linear configurations can be performed by very restricted ma-
chines, i.e., by deterministic Turing machines over a two-letter alphabet. Turing
intended to give an analysis of mechanical processes on planar configurations;
but such processes are not described, let alone proved to be reducible to com-
putations on linear objects. This gap in Turing's considerations is the starting-
point of our work. We formulate broad boundedness and locality conditions
that emerge from Turing's conceptual analysis, give a precise mathematical de-
scription of planar and even more general computations, and present a detailed
reductive argument. For the descriptive part we introduce K-graph machines,
they are a far-reaching generalization of Post production systems and thus, via
. Post's description of Turing machines, also of Turing machines.

1 Turing's Analysis’

In 1936, the very year in which Turing's paper appeared, .Post published a
computation model strikingly similar to Turing's. Our brief discussion of Post's
model is not to emphasize this well-known similarity, but rather to bring out
the strikingly dissimilar methodological attitudes underlying Post's and Turing's
work. Post has a worker operate in a symbol space consisting of "a two way
infinite sequence of spaces or boxes ..".2 The boxes admit two conditions:
“they can be unmarked or marked by a single sign, say a vertical stroke. The
worker operatesinjust one box at atime and can perform a number of primitive
acts: make a vertical stroke [V], erase a vertical stroke [23], move to the box
immediately to the right [M,] or to the left [Mi] (of the box he is in), and
determine whether the box he is in is marked or not [D]. In carrying out
a "combinatory process' the worker begins in a special box and then follows
directions from a finite, numbered sequence of instructions. The t-th direction,

MThis section is based on (Sieg 1994) which was completed in June 1991; for details of the
recongtruction of Turing's analysis and also for the broader systematic and historical context
of our investigations we refer the reader to that paper.

?Post remarksthat the infinite sequence of boxes is ordinally similar to the series of integers
and can be replaced by a potentially infinite one, expanding the finite sequence as necessary.




i between 1 and n, is in one of the following forms. (i) carry out act V, E, M.,
or Mi and then follow direction #, (ii) carry out act D and then, depending on
whether the answer is positive or negative, follow direction j[ or j['. (Post has
a special stop instruction, but that can be replaced by the convention to halt,
when the number of the next direction is greater than n.) .

Are there intrinsic reasons for choosing this formulation as an explication
of effective calculability, except for its simplicity and Post's expectation that it
will turn out to be equivalent to recursiveness? An answer to this question is
not clear from Post's paper, at the end of which he wrote:

The writer expects the present formulation to turn out to be equiva-
lent to recursiveness in the sense of the Godel-Church development.
Its purpose, however, is not only to present a system of a certain log-
ical potency but also, in its restricted field, of psychological fidelity.
In the latter sense wider and wider formulations are contemplated.
On theother hand, our aim will beto show that all such arelogically
reducible to formulation 1. We offer this conclusion at the present
moment as a working hypothesis. And to our mind such is Church's
identification of effective calculability with recursiveness.

Investigating wider and wider formulations and reducing them to Formulation
1 would change for Post this "hypothesis not so much to a definition or to
an axiom but to a natural law". It is methodologically remarkable that luring
proceeded in exactly the opposite way when trying tojustify that all computable
numbers are machine computable or, in our way of speaking, that all effectively
calculable functions are Turing computable: He did not extend a narrow notion
reducibly and, in this way, obtain quasi-empirical support, but rather analyzed
the intended broad concept and reduced it to a narrow oné, once and for all.
The intended concept was mechanical calculability by a human being, and in
the reductive argument Turing exploited crucially limitations of the computing
agent.

Turing's On computable numbers opens with a description of what is os-
- tensibly its subject, namely, "real numbers whose expressions as a decimal are
calculable by finite means'. Turing is quick to point out that the problem of
explicating " calculable by finite means' isthe same when considering, e.g., com-
putable functions of an integral variable. Thusit sufficesto address the question:
"What does it mean for a real number to be calculable by finite means?' But
Turing develops first the theory of his machines.® A Turing machine consists of
a finite, but potentially infinite tape; the tape is divided into squares, and each
square may carry a symbol from a finite alphabet, say, the two-letter alphabet
consisting of 0 and 1. The machine is able to scan one square at a time and
perform, depending on the content of the observed square and its own internal

®Note that the presentation of Hiring machinex we give is not Turing's, but rather the one
that evolved from Post's formulation in (1947).




state, one of four operations: print 0, print 1, or shift attention to one of the
two immediately adjacent squares. The operation of the machine is given by a
finite list of commands in the form of quadruples ¢;sxciq,, that express: if the
machine is in internal state ¢; and finds symbol s; on the square it is scanning,
then it is to carry out operation ¢; and change its state to ¢m. The determin-
istic character of the machine operation is guaranteed by the requirement that
a program must not contain two different quadruples with the same first two
components.

In section 9 Turing argues that the operations of his machines “include all
those which are used in the computation of a number”. But he does not try
to establish the claim directly; he rather attempts to answer what he views
as “the real question at issue”: “What are the possible processes which can
be carried out [by a computor?] in computing a number?” Turing imagines a
computor writing symbols on paper that is divided into squares “like a child’s
arithmetic book”. As the two-dimensional character of this computing space
is taken—without any argument—not to be essential, Turing considers the one-
dimensional tape divided into squares as the basic computing space and formu-
lates one important restriction. The restriction is motivated by limits of the
human sensory apparatus to distinguish at one glance between symbolic con-
figurations of sufficient complexity and states that only finitely many distinct
symbols can be written on a square. Turing suggests as a reason that “If we
were to allow an infinity of symbols, then there would be symbols differing to an
arbitrarily small extent”, and we would not be able to distinguish at one glance
between them. A second and clearly related way of arguing this point uses a
finite number of symbols and strings of such symbols. E.g., Arabic numerals
like 9979 or 9989 are seen by us at one glance to be different; however, it is not
possible for us to determine immediately that 9889995496783998769 is different
from 98899954967899998769. This second avenue suggests that a computor can
operate directly only on a finite number of (linear) configurations.

Now we turn to the question: What determines the steps of the computor,
and what kind of elementary operations can he carry out? The behavior is

. uniquely determined at any moment by two factors: (i) the symbolic configura-
tion he observes and (ii) his internal state. This uniqueness requirement may be
called the determinacy condition (D); it guarantees that computations are
deterministic. Internal states, or as Turing also says “states of mind”, are intro-
duced to have the computor’s behavior depend possibly on earlier observations
and, thus, to reflect his experience. Since Turing wanted to isolate operations
of the computor that are “so elementary that it is not easy to imagine them
further divided”, it is crucial that symbolic configurations that help fix the con-
ditions for a computor’s actions are immediately recognizable. We are thus led
to postulate that a computor has to satisfy two boundedness conditions:

4Following Gandy, we distinguish between a computor (a human carrying out a mechanical
computation) and a computer (a mechanical device employed for computational purposes);
cf. (Gandy 1988), p. 81, in particular fn. 24.




(B.1) thereis afixed boundfor the number of symbolic configurations a computor
can immediately recognize;

(B.2)° thereis a fixed boundfor the number of internal states that need be taken
into account.

For a given computor there are consequently only boundedly many different
combinations of symbolic configurations and internal states. Since his behavior
is, according to (D), uniquely determined by such combinations and associated
operations, the computor can carry out at most finitely many different opera-
tions. These operations are restricted by the following locality conditions:

(L.1) only elements of observed symbolic configurations can be changed;

(L.2) the digtribution of observed squares can be changed, but each of the new
observed squares must be within a bounded distance of an immediately previously
observed square.

Turing emphasized that "the new observed squares must be immediately
recognisable by the [computor]”; that means the observed configurations aris-
ing from changes according to (L.2) must be among the finitely many ones
of (B.l). Clearly, the same must hold for the symbolic configurations result-
ing from changes according to (L.l). Since some steps may involve a change
of internal state, Turing concluded that the most general single operation is a
change either of symbolic configuration and, possibly, internal state or of ob-
served square and, possibly, internal state. With this restrictive analysis of the
steps a computor can take, the proposition that his computations can be carried
out by a Turing machine is established rather easily.® Thus we have:

Theorem 1 (Turing's Theorem for calculable functiods) Any number the-
oretic function F that can be calculated by a computor satisfying the determinacy
condition (D) and the conditions (B) and (L) can be computed by a Turing ma-
chine.

, As the Turing computable functions are recursive, F is recursive. This ar-
gument for F's recursiveness does not appeal to any form of Church's Thesis;
rather, such an appeal is replaced by the assumption that the calculation of F is
done by a computor satisfying the conditions (D), (B), and (L). If that assump-
tion is to be discharged a substantive thesis is needed. We call this thesis—that
a mechanica computor must satisfy the conditions (D) and (B), and that the

°G6del objected in (1972) to this condition for a notion of human calculability that might
properly extend mechanical calculability; for a computor it seems quite unobjectionable.
uring congtructed machines that mimic the work of computers on linear configurations
directly and observed: " The machinesjust described do not differ very essentially from com-
puting machines as defined in § 2, and corresponding to any machine of this type a computing
machine can be congtructed to compute the same sequence, that is to say the sequence com-
puted by the computer [in our terminology: compute*.” Cf. section 2 below for this reductive
claim.




elementary operations he can carry out must be restricted as conditions (L)
require—Turing's Central Thesis.

In the historica and systematic context in which Turing found himsdf, he
asked exactly the right question; What are the processes a computor can carry
out in calculating anumber? The generd problematic required an analysis of the
idealized capabilities of a computor, and exactly this feature makes the analysis
epistemologically significant. The separation of conceptual analysis (leading to
the axiomatic conditions) and rigorous proof (establishing Turing's Theorem)
is essential for clarifying on what the correctness of his central thesis rests;
namely, on recognizing that the axiomatic conditions are true for computors
who proceed mechanicdly. We have to remember that clearly when engaging
in methodological discussions concerning artificial intelligence and cognitive sci-
ence. Even Godd got it wrong, when he claimed that Turing's argument in
the 1936 paper was intended to show that "mental processes cannot go beyond
mechanical procedures’.

2 Post Productions & Puzzles

Gbdd's misunderstanding of the intended scope of the analysis may be due
to Turing's provocative, but only figurative attribution of "states of mind" to
machines; it is surprising nevertheless, as Turing argues at length for the eim-
inability of states of mind in section 9 (HI) of his paper. He describes there
a modified computor and avoids the introduction of "state of mind", consid-
ering instead "a more physical and definite counterpart of it". The computor
is now dlowed to work in a desultory manner, possibly doing only one step of
the computation at a sitting: "It is aways possible for the [computor] to break
of from his work, to go away and forget al about it, and later to come back
and go on with it." But on breaking df the computor must leave a "note of
instruction" that informs him on how to proceed when returning to his job;
such notes are the "counterparts’ of states of mind. Turing incorporates notes
into "state formulas' (in the language of first order logic) that describe states
 of a machine mimicking the computor and formulates appropriate rules that
transform a given state into the next one.

Post used in (1947) amost elegant way of describing Turing machines purely
symbolicaly via his production systems (on the way to solving, negatively, the
word-problem for semi-groups).” The configurations of a Turing machine are
given by instantaneous descriptions of the form aqiSk/3, where a and /? are
possibly empty strings of symbols in the machine's alphabet; more precisely, an
id contains exactly one state symbol, and to its right there must be at least one
symbol. Such id!s express that the current tape content is as*/?, the machine
isin state gi, and it scans (a square with symbal) s*. Quadruples gikCiQm of

"Post's way of looking at Turing machines underlies also the presentation in (Davis 1958);
for a more detailed discussion the reader is referred to that classcal text.




the program are represented by rules; for example, if the operation Q is print
0, the corresponding rule is:

ctqiSp => ag.0/3.

That can be done, obvioudy, for al the different operations; one just has to
append 0 or 5n to a (ft) in case ¢/ isthe operation move to the left (right) and a
(/) is the empty string—reflecting the expansion of the only potentially infinite
tape by a blank square. This formulation can be generalized so that machines
operate directly on finite strings of symbols; operations can be indicated as
follows:

ayqiS3 => a-y*q,6*0.

If in internal state gi a string machine recognizes the string jS (i.e., takes in
the sequence at one glance), it replaces that string by y*6* and changes its
internal stateto gn,. Caling ordinary Turing machines letter machines, Turing's
claim reported in note 6 can be formulated as a Reduction Lemma: Any
computation of a string machine can be carried out by a letter machine.

The rule systems describing string machines are semi-Thue systems and, as
the latter, not deterministic, if their programs arejust sequences of production
rules. The usua non-determinism certainly can be excluded by requiring that,
if the antecedents of two rules coincide, so must the consequents. But that
requirement does not remove every possbility of two rules being applicable
simultaneoudly: consider a machine whose program includes in addition to the
above rule aso the rule

cy*qé* B = aylq, 618,

where 8* is an initial segment of rf, and 7” is an end segment of 7; then both
rules would be applicableto~qiS. This kind of non-determinism can be excluded
in a variety of ways, for example, by ordering the rules and aways using the
first applicable rule; this approach was taken by Markov in his 1954 Theory of
Algorithms.
: However, as we emphasized aready, Turing had intended to analyze genuine
planar computations, not just string machines or letter machines operating in
the plane.® To formulate and prove a Reduction Lemma for planar computa-
tions, one has to specify the finite symbolic configurations that can be operated
on and the mechanica operations that can be performed. Turing recognized
the dgnificance of Post's presentation for achieving mathematical results, but
also for the-conceptua analysis of calculability: as to the former, Turing ex-
tended in his (1950) Post's and Markov's result concerning the unsolvability of

8such machines are also discussed in Kleene's Introduction to Metamathematics, pp. 376-
381, in an informed and ingightful defense of Turing's Thesis. However, in Kleene's way of
extending configurations and operations, much sronger normalizing conditions are in place;
e.g., when considering machines corresponding to our string machines the strings must be of
the same length.




the word-problem for semi-groups to semi-groups with cancellation; as to the
latter, we look at Turing's semi-popular and most informative presentation of
Solvable and Unsolvable Problems (1953).

Turing starts out with a description of puzzles. square piece puzzles, puz-
zles involving the separation of rigid bodies or the transformation of knots; i.e.,
puzzlesin two and threedimensions. "Linear" puzzles aredescribed as Post sys-
tems and called substitution puzzes. They are viewed by Turing as a "normal"
or "gandard" form of describing puzzles; indeed, a form of the Church-Turing
thesis is formulated as follows:

Given any puzzle we can find a corresponding substitution puzzde
which is equivalent to it in the sense that given a solution of the one
we can easily find a solution of the other. H the original puzzle is
concerned with rows of pieces of a finite number of different kinds,
then the substitutions may be applied as an alternative set of rules
to the pieces of the original puzzle. A transformation can be carried
out by the rules of the original puzzle if and only if it can be carried
out by the substitutions... (1953, p.15)

Turing admits, with some understatement, that this formulation is " somewhat
lacking in definiteness’ and claims that it will remain so; he characterizes its
status as lying between a theorem and a definition: "In so far as we know a
priori what is a puzzle and what is not, the statement is a theorem. In so far
as we do not know what puzzles are, the statement is a definition which tells
us something about what they are" Of course, Turing continues, one could
define puzzle by a phrase beginning with 'a set of definite rules’, or one could
reduce its definition to that of 'computable function' or 'systematic procedure'.
A definition of any of these notions would provide one for pdzzles.

Even before we had seen Turing's marvelous 1953 paper, our attempts of
describing mechanical procedures on general symbolic configurations had made
use of the puzzle-metaphor. The informal idea had three distinct components. a
computor was to operate on finite connected configurations; such configurations
- were to contain a unique distinguished element (corresponding to the scanned
square); the operations wereto substitute neighborhoods (of a bounded number of
different forms) of the distinguished element by appropriate other neighborhoods
resulting in a new configuration, and such substitutions were to be given by
generalized production rules. Naturally, the question was how to transform
this into appropriate mathematical concepts; referring to Turing's statement
above, we were unwittingly trying to remove (as far as possible) the lack of
definiteness in the description of general puzzles. But in contrast to Turing,
we wanted to analyze deterministic procedures and follow more closely his own
analysis given in 1936. For this purpose weintroduced K-graph machines. These
machines were inspired, in part, by Kolmogorov and Uspensky's 1958 analysis
of algorithms.




K-graph machines operate, not surprisingly, on K-graphs. These are finite
connected graphs whose vertices are labeled by symbols and contain a uniquely
labeled central vertex. They satisfy also the principle of unique location, i.e.,
every path of labels (starting with the label of the central vertex) determines
a unique vertex. K-graph machines substitute distinguished K-subgraphs by
other K-graphs; their programs are finite lists of generalized production rules
specifying such substitutions. As these substitutions are local, we say that the
machines satisfy the principle of local action. The subtle difficulties surrounding
the principle of local action, even for the case of string machines, are discussed
in the next section.?

Turing machines, when presented by production systems as above, are eas-
ily seen to be K-graph machines. Conversely, the theorem in section 4 shows
that computations of K-graph machines can be carried out by Turing machines.
Given this mathematical analysis, Turing’s central thesis is turned into the
thesis that K-graph machines, clearly satisfying the boundedness and locality
conditions, subsume directly the work of computors. Our main theorem thus
reduces mechanical processes carried out by computors to Turing machine com-
putations. — We want to emphasize very forcefully that our generalization of
Turing’s analysis is a direct extension of the latter, both technically and concep-
tually. This is in striking contrast to other such generalizations, e.g., those of
Friedman and Shepherdson, see (Shepherdson 1988); Gandy’s penetrating anal-
ysis of machine computability is discussed briefly in the Concluding Remarks.

3 K-Graph Machines

To state and prove the main theorem we have to review some general concepts
from graph theory and introduce some notions especially lprropriate for our
goals. As labeled graphs are going to be considered, we let & be a (potentially
infinite) universe of vertices, £ a finite set of labels, or alphabet, and Ib a labeling
function from U to L. L-labeled finite graphs G are defined with reference to U,
L, and lb; thus, they can be given as ordered pairs (V, E), where V is a finite
" subset of i/ and E C {{u,v} | u,v € V}; a pair {u,v} € E is called an edge and
may be denoted by uv. u and v are said to be adjacent. For a vertex v € V and
an edge uv € E, we write also v € G and uv € G. The sets of vertices and edges
of G are also denoted by Vg and Eg. Given G = (V,E) and G' = (V', E'),
GUG' = (VUV',EUE'). We write G' C G and say that G’ is a subgraph of G
fV'CVandE' CE[V'. G\G =(V\V,E|(V\V"). Here the symbol
‘1’ indicates the restriction of a relation to a subset of its domain.

9Thus, our K-graph machines are deterministic graph rewriting systems; there is a consid-
erable literature in computer science that discusses such systems, see for example the survey
article (Courcelle 1990). The category theoretic way of presenting rewrite systems is for our
purposes, however, not suitable: the substitution operations have to be graphically concrete
and direct, not indirectly obtainable through pushout diagrams. Tim Herron (1995) used the
category theoretic framework to characterize K-graph machines.




A path in G from ui to u, is a sequence U\U2 -. - u, of distinct vertices of G
such that for every pair of consecutive vertices u» and u».i the edge UiUi+i is
in G. A vertex v belongs to the path if v is an element of the sequence; an edge
uv belongs to the path in case u and v are consecutive vertices in the sequence.
The length of a path is defined as the number of edges belonging to the path;
len(u, t;) is the length of a shortest path from u to v, if any path from u to v
exists. A component of a graph G is a maximal subgraph G' of G such that for
any two verticesu and v in G', thereisapath in G' fromutov; if G = G' then
G is called connected.

The remaining definitions are tailored to our purposes and allow us to solve
succinctly the central issue of representing symbolic configurations in a most
general way—as labeled graphs. The structure of such configurations is fixed
by the underlying, unlabeled vertices. As the specific nature of the vertices is
irrelevant, we call a label-preserving bijection n from WtoW a permutation and
use such bijections to specify isomorphisms. Clearly, two labeled graphs G and
G' are isomorphic just in case there is a label and edge preserving bijection
between G and G'; we write G = G*. Given a graph G, a permutation n picks
out a unique graph G* isomorphic to G, defined by VG* = {K(U) \U e VG} and
EG* = {7r(tx),7r(v)} | {u,v} € EG}- If in addition n is the identity over V* for
some graph if, we write G =« G". Finally, to fix the analogue of the scanned
square, or rather the handle for the puzzle pieces, a distinguished label * € C
is considered. C*-labeled graphs are those -labeled graphs that contain exactly
one vertex v with Ib(v) = *; this vertex is then called the graph's central vertex
and is referred to simply as * when the context is clear.

For an £*-labeled graph G, we let G* be the (unique) component of G
containing *. A sequence a of labels associated with a path from the central
vertex * to some vertex v is called a label-sequencefor v; the gt of such sequences
is denoted by Lbs(v). If labeled graphs have the property that, for any vertex v,
a label sequencefrom Lbs(v) labels a path to v and not to any other vertex, then
the labeling provides a coordinate system. Notice, however, that each vertex
may have a number of different "coordinates'. This leads to the following
~ definition:

Definition 2 A finite connected £*-labeled graph K is a Kolmogorov-graph, or
K-graph, over C if (Va)(Vu,t; € K)[a € Lbs(u) D Lbs(v) =» u = v].

We refer to the above property of graphs as the principle of unique location;
it guarantees that isomorphisms between K-graphs are uniquely determined.
This principle and its relation to condition (a) in Kolmogorov and Uspensky's
work is discussed in remark 1 below. — K-graphs constitute the class of finite
symbolic configurations on which our machines operate, and we describe now
what elementary operations are allowed on such configurations. The operations
take the form of generalized production rules and are directly motivated as
puzzle-piece substitutions.
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Definition 3 A graph-rewrite rule, or simply rule, R isan ordered pair (A, C),
where (i?'s antecedent) A and (it's consequent) C are K-graphs. For a given
R we let AR be A and CR be C. A sequence H of rules such that for every
Q,ReK [AQ ~ AR => AQ UCQ —ARUCR] is called a program.

The application of a rule R to a K-graph If substitutes CR -for Aj* in If:
that requires, certainly, that AR is (isomorphic to) a subgraph of K and that
CR can be "inserted into" K\ AR. The crucial work is done by the vertices
which occur in both AR and CR. AS an easy example, consider rule R:

and K-graph K:

To apply R to K, we first remove AR from if, except for those vertices which
appear also in CR; this is given by K\ (Ar \ CR): j

OA0AC! &0,
OF0NG303030!

Insrting crR into K\(AR\Cr) leads to the graph (K\(ARCR))UCR, denoted
by RI[K]:




The above case is specid in two respects. First, AR C K. In general, we
would like to apply i?, if AR is isomorphic to a subgraph of K, and, clearly, for
evary K' =~ K, R[K'] should be isomorphic to R[K]. This can be most easily
accomplished by using a permutation n such that AR C K. Because of the
key role played by the identity between certain verticesin AR and in CR, we of
course aso have to apply n to CR and make a similar replacement.

The second special property of our example is this: none of the "new" ver-
tices of CR (i.e., vertices which did not occur in AR), occur in K\ (AR\CR). In
general, however, K\ A" may contain vertices which appear also in CJ; these
vertices in CE must be replaced as well. This second replacement, say, to C', has
to satisfy two properties: (i) none of the vertices in V*~ nV¢j may be replaced;
(i) al vertices which occur in C but not in A*g should not occur anywhere in
K\A\ (i) may be stated as C ~A~_C£; (ii) is given by Vc H Vi C Va\ e

Definition 4 Given aK-graph K and arule R, Ris said to be applicable to K
if for some permutation 7, A\ C K. In this case, RIK] = {K\ (A*\C"))UC
for some C ~4- CE suchthat Ve nV"A C Vo™ r.

If we restrict ourselves to programs, we rule out the kind of non-determinism
that Turing considered for his machines, but it may still be that a number of
different rules can be applied to a given state K. As suggested for the case
of string machines in section 2, we avoid this difficulty by ordering the rules
linearly and always using the first (in that ordering) applicable rule. Findly,
having defined the configurations on which our machines operate and the steps
they can take, we define the machines themselves.

Definition 5 Let £ be a finite alphabet with a distinguished element * and
let M = (S!F), where S is the set of dl K-graphs over C and T is a partial
function from Sto S M is a K-graph Machine over C if ani only if thereis a
program 11 = (i?0,..., Rn) such that:

For every 56 S if thereis an R 6 11 that is applicable to 5, then
A'(B) = (iA[S])*, wherei = m\n{j \ Rj e 11 s applicable to 5} ;
otherwise T is undefined for 5.

The elements of 5 are the states of M, and T is the machine's transition
function. We say that T satisfies the principle of local action. — We can givean
obvioudy equivalent definition of K-graph machines that brings out the special
principles more directly. Let M = (5, T), where Sis aset of £4-labeled graphs
and T is apartial function from Sto <§ M is a K-graph Machine over C if and
only if (i) Sisthe largest set of £¢-labeled graphs that satisfy the principle of
unique location, and (ii) T satisfies the principle of local action.

Remarks

1. The principle of unique location. In the brief discussion preceding the
definition of K-graph machines, we mentioned two sources of non-determinism
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present aready for letter and string machines (and the standard way of cir-
cumventing them). However, there is one additional source, when graphs, even
labeled ones with a central vertex, are considered as the configurations on which
production rules operate: if the antecedent of a rule can be embedded into a
given graph, it usually can be done in a variety of ways, the result of the rule
application will in generd depend on the chosen embedding. It is precisdly this
kind of indeterminacy that is excluded by the principle of unique location, as
it guarantees that there is a unique embedding, if a K-graph can be embedded
into another K-graph at all. The principle is dso related to a second conceptual
issue, namely, immediate recognizability. For any K-graph machine M and any
K-graph whatsoever, we can decide in constant time, whether any rule of M's
program is applicable. Mathematically, the principle is exploited for the reduc-
tion in section 4. It guarantees that, for any £*-labeled graph, paths starting at
the central vertex are uniquely characterized by the sequence of symbols label-
ing their vertices. Thus, using the lexicographica ordering on strings of labels
from £, we can choose for each vertex a unique address which picks out that
vertex in terms only of labels.

Kolmogorov and Uspensky used their condition (a) for similar purposes.
That condition is formulated in our setting asfollows For every graph 5 € <§ if
u and v are vertices of 5 both adjacent to some vertex w of 5, then Ib(u) ~ Ib(v).
We call a connected £*-labeled graph satisfying condition (a) a Kolmogorov
complex over C or, briefly, a K-complex. Condition (a) implies our principle of
unique location, but is not implied by it. The first clam is easily established,
for the second claim one sees directly that *—A—A—A—A is an example of a
K-graph that is not a K-complex.

2. Preservation under rule application. We require ;that T is a partial
function from Sto S As matters stand, programs and K-graph machines cannot
be "identified"; the reason is this: not every rule, when applied to a K-graph,
yidds a K-graph. As atrivial example, consder R = *—A—B => *—C—B
and K = B—C——A—B—A. Then RIK] = B—C——C—B—A which is
. certainly not a K-graph, even though K is a K-graph and Ris arule.

It is straightforward to modify any given machine program H to a program
TV such that TZ and 72 yield the same result when 11 transforms a K-graph
into a K-graph, but *R! makes the machine diverge on K-graph inputs that 11
transforms into graphs not satisfying the principle of unique location. Given this
modification, TV defines a unique partial function from Sto S — Kolmogorov
and Uspensky required a particular structure on rules preserving condition (a).
They use a partial function </) : VA —> Vc to determine those vertices that, in
our definition, arein VAnVC- AS one hasto be careful only about the symbols
adjacent to vertices in the image of 0, they imposed in effect the following
condition (/? for agiven rule (A, C, 0):

(M G O)l(y = 4>(x) kvyeC)™ [Ib(v) = * or (3w)(wx € A & Ib{w) = »(«))]].
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Consequently, if a program R satisfies (8), then M = (S, F) is a K-graph
machine, where S is the set of all K-graphs on £ and F is the unique function
on S defined by R.

3. Turing’s conditions. K-graph machines clearly satisfy the determinacy
condition, but also the boundedness and locality conditions—when those are
suitably interpreted: the number of “immediately recognizable” symbolic con-
figurations is given by the number of distinct antecedents and consequents of the
machine’s program; operations are quite properly viewed as modifying observed
configurations, and observed labeled vertices lie always within a fixed “radius”
around the central vertex. (The radius can be read off from the program, e.g.,
it can be taken to be the maximal length of paths in any K-graph of the pro-
gram.) We make some additional remarks about the principle of local action,
as it might be thought that—even in the case of string machines—locality is vi-
olated! The reason being, that in an “implementation” of those machines, e.g.,
on a standard Turing machine, the total tape content is affected when using a
rule that replaces a string by either a longer or a shorter one. However, this
seems to be pertinent only if the tape has a rigid extrinsic coordinate system
as given, for example, by the set of integers Z. When a different presentation of
Turing machines is chosen, as suggested for example in (Gandy 1980), or when
the underlying structure is flexible to insertions, as in our set-up, the concern
disappears.!® It is precisely the use of an intrinsic coordinate system, guaran-
teed through the principle of unique location, that makes for the locality of the
replacement operations.

4 Subsumption and Simulation /
K-graph machines capture the general starting-point of Turing’s analysis in a
most natural way. Consider, for example, encoding the squares in Turing’s
“child’s arithmetic book” as follows:

10T hese two ways of dealing with the issue are two sides of the same coin.
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One can attach numerals to the squares (like writing them in the book),
and directly encode, for example, the elementary school algorithm for column
addition via K-graph operations. A rule from such a machine is shown below.
(The rule collapses two digits and enters a special "carry" configuration so that
succesive rule applications will move the central vertex to the top of the next
column and place a '1' there before returningto continue collapsing the current

column.)
W,
%
©,
d

9-0-9:.@::@

It is also immediately evident that Turing machines are K-graph machines:
consider the following formulation of the rule aqiSk/3 => ag,,0/? from section 2:
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Such considerations can be given in a smilarly direct way for string ma-
chines and their generalizations to higher dimensions, thus in particular for
the generalized Turing machines described in (Kleene 1952). A host of other
models of computations, including the Kolmogorov machines as defined in (Us-
pensky and Semenov) or the register machines as introduced by (Shepherdson
and Sturgis), can be shown to be subsumed under K-graph machines. Joining
these observations with the main result of this section, we have an absolutely
uniform way of reducing computations of a particular model to Turing machine
computations. We have only to verify that the computation model is subsumed
under K-graph machines. So let us turn to the substantive task of this section,
namely, to simulate K-graph machine computations by a Turing machine, i.e,,
for an arbitrary K-graph machine M = (<ST) over the alphabet C we con-
struct a Turing machine’* M over the alphabet {0,1} that simulates Ai. The
simulation requires (i) that we give linear representations of K-graphs, and (ii)
that we show for every 5 6 <§ if cr = 5,Si,..., S, is a computation of .M,
thenr = To, 2\,... , T, is a computation of M. Here To represents 5, and T,
represents a K-graph isoinorphic to S,; furthermore, there exists a subsequence
Tt1,Tip,...,Tiyw_1 of r such that for 1 <j < n— 1, T" represents a K-graph
isoinorphic to §. The conditions for infinite computations are similar.

Before addressing (ii) in the proof of theorem 6, we disgjdss the linear rep-
resentation of K-graphs. We assume that C is linearly ordered and let -< be
the lexicographical ordering on finite sequences of symbols from C induced by
that linear ordering. A second ordering on finite sequences a, 0 of symbols is
defined by a < (3 iff a is shorter than /? or a and /? are of the same length

.and a -< ft. The address Ad(v) of a vertex v e V is the <-minimal element of
Lbs(v); by connectedness such an address exists, and by the principle of unique
location Ad is injective. We assume that each vertex of U is a natural number,
and define for an arbitrary edge uv G E the location description LD(uv) by:

LB(UV)—' I (U|/6(U)l|l||bvv d AdW -<Ad(1j)

YN (vib(v),u,lb(u)) if  Ad(vV)<Ad(u)
When we refer to an edge uv we assume from now on that Ad(u) < Ad(v). We
define now an ordering on the location descriptions LD(E) = {LD(nt;) | uv € E}
for a given K-graph K as follows: LD(uiVi) C LD(unt”) iff Ad(ui) < Ad(u2)

"|n contrast to our earlier discussion, we are going to use a Turing machine whose tape is
extendable only to the right.
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or ui = U, and Ad(vi) < Ad(v2). GR(K), the canonical graph representation
of K, is the C-ordered sequence of location descriptions for K.

To obtain a tape representation of this sequence in the alphabet { 0,1}, we
first assign natural numbers to the symbolsin C: 0 is used for the least element
(in the original linear ordering of £), 1 for the next, etc. Every vertex v G Vis
aready anatural number, and we assume without loss of generality that astate
Swithnverticesconsstsof { 1,...,n}. Finaly, natural numbers are represented
in a modified binary form aobtained from the standard one by replacing every
1 by 11 and every 0 by 10; elements of a sequence of encoded natural numbers
are separated by exactly two 0's; elements of a sequence of such sequences are
separated by exactly three 0's. After these preparatory considerations, we can
establish:

Theorem 6 Any K-graph machine Ai can be simulated by some Turing ma-
chine M.

Proof. The program of the Turing machine M that is to simulate M trans-
forms any state 5 into .F(5), returnsto its initial state, and, if possible, further
transforms the resulting state T(S); the machine halts when none of the rules
defining T can be applied. (It should be obvious that this yields the kind of
simulation indicated above.) In the following more detailed description, we al-
ways use 5 to refer to the graph currently coded on the tape, even though there
are stages when some edges are removed and others are added.

Thefirst step in constructing M's program is to modify the encoding of M's
program Tt with rulesi?o,...,i?r_i.** For agiven rule, the antecedent A and
the consequent C are encoded by GR(-A) and GR(C). Aswe are only concerned
with the isomorphism class represented by each rule, we are freeto encode each
rule Ri (0<i < r) by anisomorphic rule. Let N be the méximum number of
vertices occurring in any rule and replace each rule Ri by an isomorphic R[ such
that for every vertex vof RN, Nei < v< N (i + 1). K will indicate now the
modified program i%,..., .R*-i- Thetapeisto contain as input 5, al of whose
vertices v are replaced however by u+M (where M = N-r) so that all (vertex-)
" numbers are greater than M. Obvioudy, CRD(S AR) = O for any R. This
has also the fallowing advantage (as will be clear from our further discussion):
by looking at a vertex one can determine immediately whether it occurred in
the original state or whether it was written by arule; in the latter case one can
decide which rule wrote it.

2An alternative to this simulation is the following: We can also represent a rule on the
tape smply by writing GR(A) followed by a separator (say, '0000'") and then by GR(C).
To represent the program we represent each rule in order, separating them by, say, '00000'.
Then we can describe a Turing machine U that smulates any K-graph machine conceptually
in exactly the same way in which a universal Turing machine smulates any other TYiring
machine M. In the latter case the input to the machine is a Godel number of M and an input
to M. Here U will take as input the coded program for the K-graph machine followed by the
initial state. Then U will carry out systematically the coded program.
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Now M examines each rule in the given order via a subroutine CHECK-
R that determines whether R can be applied to 5. If R is applicable, then
CHECK-R tries to modify 5 to an isomorphic 5', such that AR is a subgraph
of 5'. If Ris not applicable, CHECK-R may nevertheless have changed some
vertices on the tape, but the modified graph is isomorphic to S. Note that
this way of proceeding is essentially "dual" to that in the definition of K-graph
machines. we replace vertices occuring in the original state rather than those in
the rule being applied.

CHECK-R starts with the head leftmost on thetape and proceeds by moving
to the right, searching for appropriate edges one at time. Let min be the least
and max the greatest vertex of R. In the tth step, we are looking for an edge
in 5 which matches the ith edge uv of AR. U is the second vertex of some edge
(already matched to an edge in 5) and occurs consequently in 5. We search for
w in S such that the edge uw is in 5 and such that Ib(w) = Ib(v). If such a
vertex is found, we distinguish two cases: (i) if min < w < maxand w * v, then
w was written by R and isthe image of some vertex in AR other than v, and the
search for the correct vertex has to be continued; (ii) if w < min or w > max
or w = v, then w is the correct vertex, and M substitutes v for w everywhere
on the tape and proceeds to search for the next matching edge in S.

In sum, if M reaches the end of the tape before finding such a vertex, M
fails for this R; if CHECK-R fails for every rulei?, M halts; if CHECK-R finds
a matching edge for every edge in AR, R is applicable. (Note that the principle
of unique location allows us to avoid backtracking in case the algorithm failsfor -
a particular vertex.)

If arule R is applicable, M is going to modify its tape appropriately. For
each rule R thereis a subroutine APPLY -R which applies R to the current state:
all edges which contain any vertex from VAgr \ Vcr are erasecfyand all those from
CR are inserted—leftmost onto the tape (in the order of their appearance in
the canonical encoding GR(CR)). The tape contains now a representation of
R[S]] recall that the next state F(S) is defined as the connected component of
R[S] containing the central vertex. However, the remaining computation will
_ not be interfered with by unconnected edges left on the tape. Finally, the head
is returned to the left end of the tape, and the state is set to M's initial state.

We want to determine now, in a rough way, the number of steps M needs
to transform a K-graph S with n vertices into T(S). Assume that the language
for M contains | symbols, and that M's program has r rules of size at most N
(i.e., at most N vertices occur in AUC). For agiven state 5 with n vertices, the
maximal degree of each vertex is/+1; otherwise, the principle of unique location
would be violated. Thus at most n(l + 1)/2 edges have to be represented. The
largest (vertex-) number to be represented is n, which has length 21ogn in our
modified binary notation. The largest LD has length of order log(2n +2Z). Thus
the representation of S is of length O(nlogn).
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The renumbering step must traverse the entire tape. Since we wish to in-
crease each vertex by at least M, we take M’ to be the least power of two
greater than or equal to M and add M’ to each vertex. This operation requires
shifting all of the cells right of the vertex being updated up to log M’ cells to the
right. This requires rewriting up to O(nlogn) cells for each vertex. Since this
operation is done to all occurrences (of which there may be up to !+ 1 many) of
each of the n vertices, it is an O(n?logn) operation. (The rewriting itself can
be done in a single pass over the number and requires logn steps.)

The further rewriting operations required for finding the applicable rule all
involve replacing numbers greater than M’ by numbers smaller than M’; thus,
no shifting is involved in these operations, since we allow extra 0’s to occur
between integers. Attempting to match a given edge in a rule to one on the
tape might require looking at the entire tape and is an O(nlogn) operation;
that may have to be done for every edge in every antecedent.

If we succeed in finding an applicable rule, we apply it; i.e., we transform
the tape by erasing all edges from Ag and inserting all edges from Cg at the
beginning of the tape. This may require shifting all O(nlogn) symbols by at
most the length of the largest GR(Ag). Hence only O(nlogn) many steps are
required for rule selection and application. But once this has been accomplished,
the entire transformation is complete, so the complexity of the simulation is
O(n?logn). -

Now let us consider simulating a full computation of M. If we let k& =
max{|Cr| — |Ar| | R € R}, then for any S € S, |F(S)] < |S| + k; here |K]|
is the cardinality of the set of vertices of K. Let h be a natural number such
that hn?logn is the complexity of the “step-simulation” for M of M we just
discussed. Assume, in a first example, that M runs in constant time, say, in m
steps. Then the length of the computation of M for input of size n is bounded
by

s = hn?logn + h(n + k)% log(n + k) + - - - + h(n + km)? log(n + km).
Clearly,
n?logn < s < mh(n + km)?log(n + km) = O(n?logn)

so s = O(n?logn).

If M runs in higher order time, however, the step-complexity of M is not
preserved. Assume, for example, that M runs in mn°-many steps, for some m
and c. Then the complexity of M for input of size n is bounded by

hn?logn+h(n+k)?log(n+k)+- - -+h(n+kmn)? log(n+kmn°) = O(n** logn)

This analysis illustrates the quite obvious point that the complexity of com-
puting a given function depends on the machine used to carry out the compu-
tation. An interesting example is multiplication: it can be computed in linear
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time by RAM's and SMM's (Schbnhage), but it is also known that Turing ma-
chines cannot multiply in linear time (Cook and Aanderaa; Paterson e.a.); we do
not know, whether K-graph machines can. This question and related ones raise
many interesting issues about complexity, particularly whether one model allows
a more fundamental analysis of the complexity of algorithms than another.

5 Concluding Remarks

For Turing the ultimate justification for his restrictive conditions lies in the
necessary limitation of human memory, and that can be directly linked to phys-
ical limitations also for machines, cf. (Mundici and Sieg), section 3. Church
in his review of Turing's paper seems to have mistaken Turing's analysis as
an analysis of machine computations. Church's apparent misunderstanding is
common: see, eg., (Mendelson 1990). So it is worthwhile to point out that
machine computability was analyzed only much later by Gandy (1980). Gandy
followed Turing's three-step-procedur e of analysis, axiomatic formulation of gen-
eral principles, and proof of a reduction theorem, but for " discrete deterministic
mechanical devices', not computors.

Gandy showed that everything computable by a device satisfying his princi-
ples, a Gandy machine, can already be computed by a Turing machine. To see
clearly the difference between Turing's analysis and Gaudy's, note that Gandy
machines incorporate paralldism: they compute directly Conway's game of life
and operate, in parallel, on bounded parts of symbolic configurations of possi-
bly unbounded size. The boundedness conditions for Gandy machines and the
principle of local causation are motivated by physical considerations. We have
been concerned, in contrast, with an explication and generalization of Turing's
argumentsfor histhesis, that all mechanical processes can beSimulated by (Tur-
ing) machines. We are coming back to this starting-point of our considerations
through three remarks.

First, Turing analyzed mechanical processes of a human computor. There-
duction of string machines or of K-graph machines to letter machines over a
" two-element alphabet does not show that mental processes cannot go beyond
mechanical ones; it only shows that Turing machines can serve as a "normal
form" for machines, because of the simplicity of their description.”® The ques-
tion, whether (different kinds of) machines are adequate mathematical models
for mental processes, is left completely open. That is an empirical issue!

Second, the formulation of the boundedness and locality conditions for me-
chanical processes and the design of general machine models allow us to give

3For this reason Turing machines are most suited for theoretical investigations. This state
of affairs is analogous to that involving logical calculi: natural deduction calculi reflect quite
directly the structure of ordinary arguments, but have a somewhat involved metamathematical
description; in contrast, axiomatic logical systems are not suited as frameworks for direct
formalizations, but—due to their smple description—are most suitable for metamathematical
investigations.
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uniform reductions. A natural generalization of K-graph machines, not giving
up these broad conditions, captures parallel computations of "discrete deter-
ministic mechanical devices', not computors. A future paper of ours gives such
a generalization, based on the presentation of machines by Gandy (1980) dis-
cussed above. )

Third, support for Turing's thesis is best given in two distinct steps. (i)
mechanical processes satisfying boundedness and locality conditions can be rec-
ognized "directly", without coding or other effective transformations, as com-
putations of a general modd; (ii) computations of the general model can be
simulated by Turing machines. The plausibility of Turing's thesis rests exclu-
sively on the plausibility of the modified central thesis (i); after all, (ii) is a
mathematical fact. Our modification of Turing's central thesis states that me-
chanical processes are easily seen to be computations of K-graph machines; in
our view, this is a most plausible claim.
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