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The following note presents a method for quickly recalculating the implied covariance

matrix (E(0))of a recursive linear structural equation model, when one parameter in the

model is changed. Fast re-calculation is required in order to make practical the use of Gibbs

sampling techniques with linear structural equation models.

Statement of the problem

The Gibbs sampling technique requires that for every sample 'draw1 from the posterior

distribution, for every parameter, it is necessary to evaluate the likelihood function of the

model; sometimes several times.

The algorithm used by the Gibbs sampler is such that only one model parameter (0j) is

changed at a time, this feature can be exploited since some parts of the implied covariance

matrix will be unaffected by changes to certain parameters, and thus these elements of the

covariance matrix do not need to be re-calculated. While it is true that changing some of the

parameters in a model will result in a change in the value of all of the entries in the implied

covariance matrix, for a recursive model this cannot be the case in general.

Moreover, even though it may be the case that changing certain parameters will result in

changes to many entries in the covariance matrix, work can still be cut-down here by

making use of the fact that parts of the expression for some implied covariance will be very

similar to certain pieces of the expression of other implied covariances. Moreover, such

similarities are reflected in the structure of the directed paths and treks between pairs of

variables in the graph.

In this note we first give recursive relationships from which we will derive algebraic

expressions for the covariances and variances. Then we give a data structures which can be

used to encode these expressions. Finally we show how it is possible from this data

structure to construct an ordered set of quantities which must be re-calculated when a given

parameter is changed, in order to re-calculate the implied covariance matrix. Thus we can

avoid having to carry out any tests, concerning what to recalculate, while the sampler is

running; all tests are carried out beforehand. All that is calculated when a given parameter is

* I thank Richard Scheines, Steven Klepper, Peter Spirtes, Clark Glymour and Chris Meek for helpful
conversations.
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changed are exactly those elements of the implied covariance matrix which change. The

recurrence relations ensure that there is little or no redundancy in recalculating these parts of

the covariance matrix.

Representation of the Covariance Matrix

We begin by deriving algebraic expressions for the implied covariance matrix. The basic

principle that we employ is to try, wherever possible, to represent covariances in terms of

other covariances. In this way the amount of re-calculation will be minimized.

By employing a number of simple recurrence relations we can show that the form of the

espressions that we will need to represent are in fact quite simple. We can represent any

covariance or variance fact by an expression of the form:

Cov(X,Y) = at •[. ] + a2 •[. ]+...+an •[. ] +V(ex)H(ex,Y)

Where the ai expressions are model parameters, while the place-holders [.] are filled by

other covariance facts , and n < r where r is the max number of parents possessed by any

variable in the graph. H(ex,Y) is a term whose value is Cov(ex,Y)/V(ex) and which is also

calculated recursively.

We now give the recursive procedure from which we will derive expressions for the

covariances and variances. These expressions will then be encoded using the data structure

described in the next section.

A couple of small points of notation:

First, we assume that the graph is represented in a form in which every non-error variable

X has associated with it a unique error variable ex. All error variables are uncorrelated. (i.e.

if in the Bollen-style diagram there would have been an arc between two error terms say ex

and ey, showing that they would have been correlated, then instead we put in a (latent)

non-error variable as a common cause of X and Y, and keep the errors (ex,ey,£T)

uncorrelated.)

Second we denote the coefficient on an edge between X and Y as Edge(X,Y) [or

Edge(Y,X)].

Third, we include ex as one of the parents of X.

Procedure
1. Extend the partial ordering induced on the variables by the graph to a total ordering (>•),

such that a variable always comes after its ancestors and before its descendnts i.e. if X is an

ancestor of Y in the graph then X ̂  Y.
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2. For every pair of variables X, Y such that X < Y calculate

H(ex,Y):=
Cov(ex,Y)

V(ex)

Start with the variables which are last in the t l ) ordering (i.e. those which come at the

'bottom' of the graph in the sense that they have no descendants). Then make use of the

recurrence relation:

H(ex,X) = l

H(ex>Y)= £Edge(X,Z)-H(ez,Y) forX*Y
Z€Orildreo(X)

to form an expression for H(ex,Y) with X < Y, by moving 'back' through the ordering i.e.

only calculate an expression for H(ex,Y) if for all V >- X and W ^ Y [reverse lexicographic

order] we have already calculated expressions for H(ev,W).Since children always come

after their parents in the ordering we already know H(ez,Y) when calculating H(ex,Y). In

this way we can express every term H(ex,Y) as a sum of products of two other quantities

one of which we know directly [Edge(X,Z)], the other [H(ez,Y)] we have already formed

an expression for. Note that H(£x,Y)*O if and only if Y is a descendant of X, hence no

calculation is required to evaluate H(£x,Y) for Y-< X, since it is zero.

3. For any pair of variables X,Y, Cov(X, Y) can be expressed as:

Cov(X,Y) = ]TEdge(W,X).Cov(W,Y)
WeParents(X)

Where £x eParents(X). Distinguishing between ex and the other parents of X, then

applying the definition of H(ex,Y), we arrive at the following expression, which we shall

use for representing the covariance:

Cov(X, Y) = V(ex) • H(ex, Y) + jEdge(W,X) • Cov(W, Y)
W€Parents(X)\{£x}

If we now apply the above expression, starting with variables which come first in the

ordering, (i.e. those that come at the top of the graph, in the sense that they have no

ancestors), and such that X ^ Y w e can then proceed to express Cov(X,Y) again as a sum

of products of two terms, one of which [Edge(W,X) or V(ex)] we know directly since they

are model parameters the other of which [Cov(W,Y) or H(ex,Y)] we have derived an

expression for already, either in step 2 [H(ex,Y)] or in step 3 [Cov(W,Y)]. Again we

proceed through the variables in reverse lexicographic order, though (in contrast to the step

2) we begin with the first elements in the -< ordering i.e. we calculate Cov(X,Y) only if we

have already calculated Cov(V,W) for all V -< X, W r< Y.
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[This step also calculates variances since Cov(X,X)=V(X).]

It should be pointed out here, that we calculate expressions for covariances involving latent

variables even though these are not required for the Gibbs procedure; the reason that we do

this, is because these covariances are (in general) useful as sub-components of covariances

between measured variables.

Data Structures
We now outline the data structures that we will make use of in order to encode the algebraic

expressions for the covanance information. We first re-emphasize the point that we made

earlier, that the Covariances could be expressed as a linear combination of other

covariances, together with another term (H(£x,Y)), with the linear coefficients being model

parameters. Thus we represent the expression for the covanance as a double linked list, one

direction of linkage for the summation, the other for the recursion. The following example

demonstrates this:

Cov(X,Y) =

Cov(X,Y):

Cov(Y,W):

, W) + a4Cov(Y,V) + ... -KXACov(Y,Z) +V(ex>H(e

Cov(Y,Z):

On

/ /

(Arrows which do not point to anything are pointers to records which are not included in the diagram for
reasons of space. In the actual implementation which we give below, the records have a number of
additional fields, not shown in this diagram.)

We will refer to the lists which traverse the page horizontally as being 'sum lists1; it will be

important later to distinguish the records which occur at the head of sum lists; in this

example these are the records containing oci,pi, yi, 81, indicated by the double lined box.



The records in the data structure will take the following form:

Coefficient:

Next Term in Sum:

Cov or H term:

Value:

Params occurring:

Param#

Pointer

Pointer

Real

Set

Coefficient-
Next Term in Sum:

Cov or H term:

Param#
Pointer
Pointer

Head Record Form Non-Head Record Form

Explanation of Fields:
Coefficient denotes records the parameter number of the coefficient (e.g. a^c^ etc., in the

above example).
Cov or H term is a pointer to the head of a linked list which gives the sum expressing the

Cov(, ) or H( , ) to be multiplied by the Coefficient given by "Param #". When this
pointer is empty, the coefficient is multiplied by 1.

Next Term in Sum is a pointer to the record giving the next term in the sum.When this pointer
is empty, the term is the last in the sum.

Value is a field oniy in the head-records of a sum list. It contains the sum of the product of
the coefficient and the value of the Cov or H term for each record in the list.

Params occurring is again a field only in the head-recordof a 'sum' list. It is used to record
the set of model parameters numbers for the parameters that occur within a given
expression at all levels of recursion e.g. for the record in which "pi" occurs in the above
example, Params occuring would be a set of model parameter numbers including the
no.s for Pi,...pm>V(ewX together with those for any parameters occuring in the linked
lists pointed to by the records in which pi,...pm,V(ew) occur. This field is not used while
the sampler is running; it is only used initially in order to work out which quantities must
be recalculated when a given parameter is changed.

When implementing constructing this data structure, using the recurrence relations
introduced in the last section, it is necessary to check whether a term is identically zero,
e.g. H(£x,Y), where Y is not a descendant of X, in which case the record can be omitted.
Likewise there is no need to point to terms which are identically 1 e.g. H(ex,X).(This
should not present any great problems.)

Recalculation Lists
We now show how lists of which quantities must be re-calculated when a given parameter

changes, can be inferred from the data structure that we have set up in the previous section.

We first fill in the Params Occuring field in the head-records in the data structure. This can

be achieved quite simply as follows:
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1. For each of the sum lists corresponding to a (non-zero) H(ex,Y) do the following:
Begin with CurrentRecord as the Head record.
Store the location of the Head record.
Let ParamsOcc = {} (The empty set.)
(*) Let ParamsOcc = ParamsOcc u {The no. in the Coefficient field of CurrentRecord} u

The set in the Params Occurring Field of the Head-Record pointed to by the Cov or H term field
of the CurrentRecord

If the Next Term field in CurrentRecord is non-null then let CurrentRecord = Next Term., and
repeat the Step (*).
Else set Current Record = Head Record, and set Params Occurring = ParamsOcc.

It is important that the H(ex,Y) sum-lists are considered in the same (reverse-

lexicographic) order that they were constructed. In this way the ParamsOcc field of any

head-record that is consulted in Step (*) will already have been filled in.

2. For each of the sum lists corresponding to a (non-zero) Cov(X,Y) cany out exactly the

same procedure as in 1, once again considering the covariances in the same (reverse-

lexicographic) order in which they were originally constructed.

After this procedure has been carried out the Params Occurring field in every head-record

will be filled in. From here it is relatively simple to construct lists of quantities which must

be recalculated whenevery a particular parameter is changed:

3. Construct a (linked) list of pointers to head-records, which we will call the re-calculation

list, for each of the model parameters as follows:

Consider each of the non-zero H(e , ) lists in turn, once again respecting the reverse

lexicographic order as before. Now if a model parameter (e.g. a) is listed in the Params

Occurring field of the head-record of a sum list (e.g. the list for H(ex,Y)) then append a

pointer to this head-record to the re-calculation list for a.

Carry out the same procedure with the non-zero Cov(X,Y) lists, again respecting the

reverse lexicographic order (appending pointers to the head-records of a sum list to the re-

calculation list for a).

Use with the Gibbs Sampler

The re-calculation list is exactly what is required in order to efficiently 'update1 the implied

covariance matrix after changing a single model parameter (e.g. a). To update the implied

covariance matrx we simply take each of the sum-lists referred to in the re-calculation list
for a, in order. Taking each list in turn we carry out the sum as follows:

Begin with CurrentRecord as the Head record.
Store the location of the Head record.
Let Val = 0
(*) Let Val = Val + (The value of the parameter whose number is Coefficient in the Current
Record) x (The number in the Value field of the Head-Record pointed to by the Cov or H term field
of the CurrentRecord or 1 if the Cov or H term pointer of the CurrentRecord is null).
If the Next Term field in CurrentRecord is non-null then let CurrentRecord = Next Term., and
repeat the Step (*).
Else set Current Record = Head Record, and set Value = Val.
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The construction of the re-calculation lists ensures that no Value field is updated unless all

those that it refers to have already been updated.

To extract the implied covariance matrix, all that is required is to look up the Value fields in

the corresponding head-record of the list for that term.

Worked Example
In order to clarify the method, we go through the following worked example:

- ^ - e x Model Parameters: V(

2. Derivation of expressions for H(e,) terms, reverse lexicographic ordering, starting at end of -< ordering.

H(eY,Y)=l. H(ex,Y)=O. H(eT,Y)=Edge(T,Y)H(eY,Y)=PH(eY,Y)=p.

H(eXvX)=l • H(eT,X)=Edge(T,X)H(ex,X)=a-H(ex,X)=a

H(eT,T)=l.

3. Derivation of expr. for Cov(,) terms, reverse lexicographic ordering, starting at beginning of -< ordering

Cov(T,T)=V(eT)-H(eT,T) = V(eT) Cov(T,X)=V(eT)H(eT,X) Cov(T,Y)=V(eT>H(eT,Y)

Cov(X,X)=V(ex)-H(ex,X)+Edge(X,T>Cov(T,X)

Cov(X,Y)=V(ex)-H(ex,Y)+Edge(X,T)-Cov(T, Y)= a-Cov(T,Y) (Since H(ex,Y)=0.)

Cov(Y,Y)=V(eY)-H(eY,Y)+Edge(Y,T)-Cov(T,Y)= V(eY) + |3Cov(T,Y)

(We include the 'unsimplified' terms in order to illustrate the recurrence formulae.)

Data Structure:

Cov(X,Y):
a,V(ey

Cov(X,X):
a

(a,V(eT),
Vfe)}

Cov(Y.Y):

C
O

.

V(8y)}

• V(eY) Cov(T,X):
V(er)

Cov(T,Y):

I
V(er)

I
a
{a}

w
Cov(T,T): V(8r)

Key: -^-Next Term in Sum

CovorHTerm

(Non-Head)

(Head)

t
Coefficientoefficl

Params Occurring

-7-



Re-Calculation Lists
V(eT): Cov(T,T), Cov(T,X), Cov(T,Y), Cov(X,X), Cov(X,Y), Cov(Y,Y)

V(ex): Cov(X,X)

V(eY): Cov(Y,Y)

a: H(eT,X), Cov(T,X), Cov(X,X), Cov(X,Y)

P: H(eT,Y), Cov(T,Y), Cov(X,Y), Cov(Y,Y)

[Note the re-calculation lists are ordered, so that if the given parameter is changed, then

summing each of the sum-lists in turn will re-calculate the implied covariance matrix; if a

sum list has another sum list as a term, then it is re-calculate first] <End of Example>

Complexity Calculations
In a worst case, in which the re-calculation list for a given parameter included every H-term

and every Covariance fact, the total number of elements in the re-calculation list would be

O(n2) where n is the number of variables (measured or unmeasured) occurring in the graph:

The numer of covariance/variance facts is: \ n(n +1)

The number of H(,) terms is: \ n(n -1)

Hence the maximum number of terms occurring in any re-calculation list is: n2

The maximum number of calculations involved in the calculation of any given term is: 2r,

where r = Max( Max no. of parents of any vertex* 1, Max no. of children of any vertex),

since each term is expressed as a sum of at most r terms each of which is a product of 2

other terms, hence r multiplications, r additions, giving 2r operations in total for each H(,)

or Covariance/Variance term.

Hence in the worst case, in which the re-calculation list for a given parameter includes

every H(,) term and every Covariance/ Variance fact the Maximum number of calculations

performed will be 2-r-n2 < 2n3, (since a variable can have at most n-1 parents or

children).

Of course in almost all cases the re-calculation list will have many fewer than n2 many

terms, it is for this reason that we carefully calculate these lists. However, even in a worst
case this bound is

Conclusion:

The method advanced here is for acyclic graphs. It is not immediately clear how it might be

generalized to cyclic models; it will be possible for both H(ex,Y) and H(eY>X) to be non-

zero, whereas this is not the case now (this is part of the reason the trek rule doesn't work

with cyclic graphs). One method might be to convert the model to an (unfaithful) acyclic
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model in the manner outlined by Heise. Any method which uses the trek rule will fail to

generalize; work is ongoing on finding a cyclic analog to the trek rule.

Bibliography

Schemes, R., Hoijtink, H., Boomsma, A., (1995) Bayesian Estimation and Testing of
Structural Equation Models . CMU Philosophy, Methodology and Logic
Technical Report CMU-PHIL-66

Scheines, R., Spirtes, P., Glymour, C. & Meek, C. (1994) Tetrad II: Tools for Causal
Modeling. User's manual. Hillsdale, NJ: Erlbaum.

Spirtes, P., Glymour, C, & Scheines, R. (1993). Causation, prediction, and search.
Springer-Verlag Lecture Notes in Statistics, 81. Springer-Verlag.

-9-


