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Abstract

This paper is concerned with the problem of making causal inferences from observational
data, when the underlying causal structure may involve feedback loops. In particular,
making causal inferences under the assumption that the causal system which generated
the data is linear and that there are no unmeasured common causes (latent variables).
Linear causal structures of this type can be represented by non-recursive linear structural
equation models.

I present a correct polynomial time (on sparse graphs) discovery algorithm for linear
cyclic models that contain no latent variables. This algorithm outputs a representation of
a class of non-recursive linear structural equation models, given observational data as
input. Under the assumption that all conditional independencies found in the
observational data are true for structural reasons rather than because of particular
parameter values, the algorithm discovers causal features of the structure which generated
the data. A simple modification of the algorithm can be used)as a decision procedure
(whose runtime is polynomial in the number of vertices) for determining when two
directed graphs (cyclic or acyclic) entail the same set of conditional independence
relations.

After proving that the algorithm is correct I then show that it is also complete in the sense
that if two linear structural equation models are used as conditional independence
* oracles' for the discovery algorithm, then the algorithm will give the same output only if
every conditional independence entailed by one model is entailed by the other and vice
versa. Another way of saying this is that the algorithm can be used as a decision
procedure for determining Markov equivalence of directed cyclic graphs; if the
conditional independencies associated with two cyclic graphs result in the same output
from the algorithm, when used as input, then the two graphs are equivalent.

h thank P. Spirtes, C. Glymour, R. Scheines & C. Meek for helpful conversations. Research supported by
NSF grant 9102169. ©1995 Thomas Richardson, Carnegie-Mellon University.

-1 -



§1 Linear Feedback and Non-Recursive Structural Equation Models

§1.1 Linear Structural Equation Models

In a Structural Equation Model (SEM) the variables are divided into two disjoint sets: the

error variables, and the substantive variables. Associated to each substantive variable V

there is a unique error term ev. In a linear SEM each substantive variable V is written as

a linear function of other substantive variables and 8v. A linear SEM also specifies a joint

distribution over the error terms.

If the coefficients in the linear equations are such that the substantive variables are a

unique linear function of the error variables alone, the set of equations is said to have a

reduced form. A linear SEM with a reduced form also determines a joint distribution

over the substantive variables. I will consider only linear SEMs which have coefficients

for which there is a reduced form, all variances and partial variances among the

substantive variables are finite and positive, and all partial correlations among the

substantive variables are well defined (e.g. not infinite). In addition I will consider only

linear SEMs with error terms that are jointly independent. This corresponds to the

assumption that there are no unmeasured common causes in the structure that generated

the data.
Since, in this discussion, I am not concerned with first moments, each variable can be
expressed as a deviation from its mean without loss of generality.
The following is an example of a non-recursive linear SEM:

X=ex Y=eY j .
A=ai*X + a2-B + eA

B=p r Y + p2-A + eB

The £y's are jointly independent standard normal error terms.

A structural equation model is said to be recursive, if for some ordering of the variables
the matrix of coefficients is in lower triangular form.

1.2 Graphs
There is a directed graph, naturally associated with a given linear SEM, by the rule that
there is an edge from X to Y (X-^Y) if and only if the coefficient of X, in the equation
for Y, is non-zero. By convention, error terms are not included in the graph. Hence the
graph relating to the model above is (here the error terms are omitted, being assumed
jointly independent):
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Figure 1

A linear SEM with a jointly independent distribution over the error terms constitutes a
parameterization of its associated graph. It is easy to see that the linear SEM associated
with an acyclic graph will be a recursive structural equation model.

1.3 Linear Entailment
A directed graph containing disjoint sets of variables X, Y, and Z2 linearly entails that X
is independent of Y given Z if and only if X is independent of Y given Z for all values of
the non-zero linear coefficients and all distributions of the exogenous variables in which
they have positive variances and are jointly independent It is important to note that in
any particular SEM with directed graph £ there may be conditional independencies
which hold even though they are not linearly entailed by Q. However, if a zero-
correlation holds for some, but not all, parameterizations of Q, then the set of
parameterizations in which this 'extra' conditional independence holds, is of zero
Lebesgue measure over the set of all parameter value assignments to the non-zero linear
coefficents.

In the example of the graph given in Figure 1 there are two conditional independence
facts that are linearly entailed by the model: X JL Y and X JL Y I {A,B}.3

ii
1.4 Conditional Independencies and d-separation.
Verma and Pearl (see Pearl 1988) provided a rule for calculating the conditional
independence relations linearly entailed by an acyclic graph Q. They showed that a
certain 'path' condition, called 'd-connection1, held between disjoint sets of vertices in an
acyclic graph if and only if that graph linearly entailed a conditional dependence relation
between those sets of vertices. The notion of 'd-connection' requires a few preliminary
graphical definitions:

Definition: Edge, Parent, Child
An arrow from A to B (A-»B), in a directed graph is called an edge from A to B. An
arrow from A to B (A->B) or from B to A (B->A) are both called an edge between A
and B. If there is an edge <A,B> in Q then A is a parent of B, and B is a child of B.

2We use bold face letters (X) to denote sets of variables.
3 'X JL Y I Z' means that 'X is independent of Y given Z'
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Definition: Directed Path
A sequence of distinct edges <Eu...£n> in Q is a directed path P from Vi to Vn+i if
and only if there exists a sequences of vertices <Vi,.. .Vn+i> s.t. for l < i < n ,
<Vi,Vi+1> = El In this case Pis said to be a directed path from Vhto Vn+1.

Definition: Ancestor and Descendant
If there is a directed path from A to B, or A = B, then A is said to be an ancestor of B,
and B is said to be a descendant of B. (Thus 'ancestor1 is the transitive, reflexive closure
of the 'parent' relation, and likewise with 'descendant' and 'child')

Definition: Undirected Path
A sequence of distinct edges <E\,...,En> in Q is an undirected path if and only if there
exists a sequences of vertices <V1,...Vn.|-i> s.t. for 1< i < n either <Vi+!,Vj> = E\ or

Definition: Collider (Non-collider) Relative to Edges or a Path.
Given three vertices A, B and C such that there is an edge between A and B, and between
B and C, then if the edges 'collide' at B, B is said to be a collider between A and C,
relative to these edges i.e. A-*B<- C.

Definition: d-connection
In a graph </, an undirected path U between distinct vertices X and Y not in some set Z,
d-connects X and Y, given Z, if and only if (i) every collider on U has a descendant in Z,
and (ii) any vertex U on U in Z is a collider on U.
For disjoint sets of vertices X, Y and Z, if there is a path which d-connects some vertex
X e X and Ye Y given Z, then X and Y are said to be d-connected given Z. If there is no
such path which d-connects a vertex Xe X with some vertex Yety given Z, then X and Y
are said to be d-separated by Z.

Verma and Pearl showed that d-separation characterized precisely the independence and
conditional independence relations linearly entailed by an acyclic graph:

Theorem (Verma and Pearl, 1990): In an acyclic graph Q, for disjoint vertex sets X, Y
and Z in the graph, X is d-separated from Y by Z if and only if Q linearly entails that X
JL Y I Z.

Subsequently Spirtes (1995), building upon an idea in Haavelmo (1943) showed that this
relation, d-separation, also characterized the independencies that are linearly entailed by a
cyclic graph (a similar result was proved independently by Koster (1994)):

Theorem (Spirtes): In a (cyclic or acyclic) graph Q9 for disjoint sets of vertices, X, Y, Z,

X and Y are d-separated given Z, if and only if Q linearly entails X JL Y I Z.
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Spirtes has further shown that d-separation corresponds to vanishing zero partial
correlations:

Theorem (Spirtes): In a linear SEM L with jointly independent error variables and

(cyclic or acyclic) directed graph £ containing substantive variables X, Y and Z, where X

* Y and Z does not contain X or Y, X is d-separated from Y given Z in £ if and only if L

linearly entails that pxY.Z = 0.

§2 Discovery

§2.1 The Discovery Problem

Suppose that we are given data sampled from a population whose causal structure is
correctly described by some non-recursive structural equation model M. Is it possible to
discover the causal graph of M from the data, or at least recover some features of the
causal graph from the data? In Spirtes et al. (1995) the problem of discovering features of
the causal graph is considered under the assumption that it is acyclic, but that there may
be latent variables (i.e. there may be unmeasured variables that are the direct cause of at
least two measured variables.) Here I consider the problem of discovering features of the
causal graph under the assumption that it may be cyclic, but there are no latent variables.
Future research is needed on the problem of discovering the causal graph when it may be
cyclic and there may be latent variables.

In order to make inferences about causal relations from a sample distribution, it is
necessary to introduce some axioms that relate probability distributions to causal
relations. The two assumptions that I make use of are the Causal Independence and the
Causal Faithfulness Assumptions, described in the next two subsections.

§2.2 The Causal Independence Assumption

The most fundamental assumption relating causality and probability that I will make is
the following:

Causal Independence Assumption: If A does not cause B, and B does not cause A, and
there is no third variable that causes both A and B, then A and B are uncorrelated.

This assumption makes it possible to draw a causal conclusion from statistical data and
lies at the foundation of the theory of randomized experiments. If the value of A is
randomized, the experimenter knows that the randomizing device is the sole cause of A.
Hence the experimenter knows B did not cause A, and that there is no third variable
which causes both A and B. This leaves only two alternatives: either A causes B or it
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does not. If A and B are correlated in the experimental population, the experimenter
concludes that A does cause B, which is an application of the Causal Independence
Assumption.

Since in this paper I consider only linear SEMs without correlated errors or latent
variables, it follows from the Causal Independence Assumption that if A and B are
correlated then either A causes B, or B causes A (or both). It then follows from the
Theorem of Spirtes cited earlier that whether a partial correlation is linearly entailed to be
zero by a given SEM can be determined by applying d-separation to the associated graph.

§2.3 The Faithfulness Assumption

In addition to the zero partial correlations that are entailed for all linear parameterizations
of a graph, there may be zero partial correlations that hold only for some particular
parameterizations of a graph. For example, suppose Figure 2 is the directed graph of a
SEM that describes the relations among Tax Rate, the Economy, and Tax Revenues.

Economy

Tax
Revenues

Figure 2. Economic Model

In this case there are no vanishing partial correlation constraints entailed for all values of
the free parameters. But if Pi = —(p2 x p3), then Tax Rate and Tax Revenues are
uncorrelated. The SEM postulates a direct effect of Tax Rate on Revenue (pi), and an
indirect effect through the Economy (P2 x p3). The parameter constraint indicates that
these effects exactly offset each other, leaving no total effect whatsoever. In such a case
the population is said to be unfaithful to the graph of the causal structure that generated
it. A distribution is faithful to a directed graph Q, if each partial correlation that is zero in
the distribution is entailed to be zero by (j.

Causal Faithfulness Assumption: If the directed graph Q associated with a SEM
correctly describes the causal structure in the population, then each partial correlation that
is zero in the population distribution is entailed to be zero by Q.

The faithfulness assumption limits the SEMs considered to those in which population
constraints are entailed by structure, not by particular values of the parameters. If one
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assumes faithfulness, then if A and B are not d-separated given C, then p A 3 . c * 0,
(because it is not linearly entailed to equal zero for all values of the free parameters.)
Faithfulness should not be assumed when there are deterministic relationships among
variables, or equality constraints upon free parameters, since either of these can lead to
violations of the assumption. Some form of the assumption of faithfulness is used in
every science, and amounts to no more than the belief that an improbable and unstable
cancellation of parameters does not hide real causal influences. When a theory cannot
explain an empirical regularity save by invoking a special parameterization, most
scientists are uneasy with the theory and look for an alternative.

It is also possible to give a personalist Bayesian argument for assuming faithfulness. For
any graph, the set of linear parameterizations of the graph that lead to violations of linear
faithfulness are Lebesgue measure zero in the space of all parameterizations. Hence any
Bayesian whose prior over the parameters is absolutely continuous with Lebesgue
measure, assigns a zero prior probability to violations of faithfulness. Of course, this
argument is not relevant to those Bayesians who place a prior over the parameters that is
not absolutely continuous with Lebesgue measure and assigns a non-zero probability to
violations of faithfulness.

The assumption of faithfulness guarantees the asymptotic correctness of the Cyclic
Causal Discovery (CCD) algorithm described in Section 3. It does not guarantee that on
samples of finite size this algorithm is reliable.

Given the Causal Independence Assumption, an assumption of no latent variables, a
linearity assumption, and the Causal Faithfulness assumption, it follows that in a
distribution P generated by a causal structure represented by a directed graph g, PXY.Z = 0
if and only if X is d-separated from Y given Z in Q. So, if it is possible to perform
statistical tests of zero partial correlations, then this information can be exploited to draw
conclusions about the d-separation relations in gy and then to reconstruct as much
information about Q as possible. Henceforth I will speak of reconstructing features of Q
from d-separation relations, and from zero partial correlation interchangeably, since given
my assumptions, these are equivalent.

Of course the number of distinct d-separation relations grows exponentially with the
number of variables in the graph. Therefore it is important to discover the features of g
from a subset of the set of all d-separation relations. The CCD algorithm described in the
next section chooses the subset of d-separation relations that it needs to reconstruct
features of g as it goes along. Therefore I assume that it has access to a d-separation
oracle that correctly answers questions about d-separation relations in g. In practice, of
course, the oracle is some kind of statistical test of the hypothesis that a particular partial
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correlation is zero in a population that satisfies the Causal Independence and Causal
Faithfulness assumptions with respect to causal graph Q. (The algorithm is correct for any
distribution for which a d-separation oracle is available; however, the only case for
which such an oracle is known, when the graph is cyclic, is the linear case.)

§2.4 Output Representation - Partial Ancestral Graphs (PAGs)

In general, it is not possible to reconstruct a unique graph Q given information only about
its d-separation relations, because there may be more than one graph that contains exactly
the same set of d-separation relations. Thus directed (cyclic or acyclic) graphs can be
partitioned into d-separation equivalence classes:

Definition: Equiv(^)
Two directed graphs Q, Q * are said to be equivalent if they both linearly entail the same
set of independencies and conditional independencies. The set of directed graphs
equivalent to a given graph £7 is denoted by Equiv(Q).

Richardson( 1994b, 1995) presents a polynomial-time algorithm for determining when
two graphs are d-separation equivalent to each other; a simpler algorithm is presented in
Section 4. (Note that there is a stronger sense of equivalence, linear statistical equivalence
between two graphs, which holds when every distribution described by a linear
parameterization of one graph can also be described by a linear parameterization of the
other graph, and vice-versa. In the acyclic case it is known that^d-separation equivalence
is equivalent to linear statistical equivalence, but it is not known if this is so for cyclic
graphs.)

The members of Equiv(^) always have certain features in common. I now introduce the
formalism with which the features common to all graphs in Equiv(^), for some fixed Q^
will be represented. A PAG is an extended graph, consisting of a set of vertices V, a set
of edges between vertices, and a set of edge-endpoints, two for each edge, drawn from the
set {o, -, >}. In addition, pairs of edge endpoints may be connected by underlining, or
dotted underlining. In the following definition, which provides a semantics for PAGs, '*'
is used as a meta-symbol indicating the presence of any one of {o, -, >}.
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Definition: Partial Ancestral Graph (PAG)
*F is a PAG for Directed Cyclic Graph Q with vertex set V, if and only if
(i) There is an edge between A and B in F̂ if and only if A and B are d-connected in g
given any subset W e V\{ A,B}.
(ii) If there is an edge in *F, A—* B, out of A (not necessarily into B), then in every graph
in Equiv(^), A is an ancestor of B .
(iii) If there is an edge in *F, A*->B, into B, then in every graph in Equiv(^), B is not an
ancestor of A.
(iv) If there is an underlining A*—*B*—*C in ¥ then B is an ancestor of (at least one
of) A or C in every graph in Equiv(£).
(v) If there is an edge from A to B, and from C to B, (A—>B<-C), then the arrow heads at
B are joined by dotted underlining, thus A—>B<—C, only if in every graph in Equiv(^)
B is not a descendant of a common child of A and C.
(vi) Any edge endpoint not marked in one of the above ways is left with a small circle
thus: o—*.

Observe that condition (i) differs from the other five conditions in providing necessary
and sufficient condtions on Equiv(^) for a given symbol, in this case an edge, to appear
in a PAG. The other five conditions merely state necessary conditions. For this reason
there are in fact many different PAGs for a graph g. Although they all have the same
edges, they do not necessarily have the same endpoints. Some of the PAGs provide more
information than others about causal structure, e.g. they have fewer o's at the end of
edges.4 Some PAGs (providing less information) represent graphs from different Markov
equivalence classes. However, the PAGs output by the discovery algorithm I present,
provide sufficient information so as to ensure that graphs with tfte features described by a
particular PAG all lie in one d-separation equivalence class.

Since every clause in the definition refers only to Equiv(^), it follows that if *F is a PAG
for Directed Cyclic Graph £, and g*e Equiv(^), then *¥ is also a PAG for g\ This is not
surprising since, as the output of the discovery algorithm, the PAG is designed to
represent features common to all graphs in the equivalence class. Hence a PAG *F
produced by the algorithm represents a unique d-separation equivalence class.

As a consequence, this shows that the set of features described by a PAG is rich enough
to enable us to distinguish between any two equivalence classes i.e. there is some feature
common to all graphs in one equivalence class that is not true of all graphs in the other

4If one PAG has a V at the end of an edge, then every other PAG for the same graph either has a V or a V
in that location. Similarly if one PAG has a'-' at the end of an edge then every other PAG either has a'-' or
an V in that location.
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equivalence class, and this difference can be expressed by a difference in the PAGs
representing those equivalence classes.

Example:
Suppose Q is as follows:

A • X

In this case it can be shown that Equiv(^) includes (only) two graphs:

Equiv(0

The PAG which the discovery algorithm outputs given as input an oracle for deciding
conditional independence facts in Q, is:

A

PAG for Q given by algorithm

B

Observe that the PAG tells us the following facts about Equiv(^):5

(a) X is an ancestor of Y, and Y is an ancestor of X in every graph in Equi v(£).
(b) In no graph in Equiv(<j) is X or Y an ancestor of A or B.
(c) In every graph in Equiv(^) both A and B are ancestors of'̂ C and Y.

Note that not every edge in the PAG appears in every graph in Equiv(^). This is because
an edge in the PAG indicates only that the two variables connected by the edge are
d-connected given any subset of the other variables. In fact it is possible to show
something stronger, namely that if there is an edge between two vertices in a PAG, then
there is some graph represented by the PAG in which that edge is present.6 This example
is atypical in that the PAG given by the algorithm contains no V endpoints; however, it
shows how much information a PAG may provide. Notice that the following are also
PAGs for Q though they are less informative:

A

Other PAGs for Q

B * ft'Y B

5This is not an exhaustive list. e.g. the presence of the dotted line connecting the arrowheads on the A—»X,
and B—>X edges, tells us that in no graph in Equiv(^) are both of these edges present. Likewise with the
dotted line connecting the arrowheads of the B-»Y, and A—>Y edges.
6See previous footnote.
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The algorithm I present does not always give the most informative PAG for a given graph
Q in that there may be features common to all graphs in the equivalence class which are
not captured by the PAG that the algorithm outputs. In this sense the algorithm is not
complete. However, the algorithm is 'd-separation complete1 in the sense that if the
conditional independence oracles for two different graphs cause the algorithm to produce
the same PAG as output, then the two graphs are d-separation equivalent, i.e. the oracles
always give the same answer. This has the consequence that any extensions of the CCD
algorithm, say to make it produce a more informative PAG, will not need to make any
further consultations of the d-separation oracle; the answer to any potential query can
already be inferred (in polynomial time) by lookng at the PAG that the algorithm outputs.

§3 Discovery Algorithm for Cyclic Graphs (Without Latents)

Two minor definitions are required to state the algorithm:

Definiton: p-adjacent in a PAG

Two vertices, X and Y in a PAG are p-adjacent if there is an edge between them,
X — Yin the PAG.7

Definition: Adjacencies0F,X)

For PAG *F, AdjacenciesCF,X) is a function giving the set of variables Y s.t. there is an
edge X—Y in *F.

*F is a dynamic object in the algorithm that changes as the algorithm progresses, and
hence AdjacenciesCF,X) also changes as the algorithm progresses.

The Cyclic Causal Discovery (CCD) Algorithm

The overall strategy for discovery is shown below :

Discovery

Algorithm
-•PAG

d-separation
equivalence

class

7 Here as elsewhere '*' as a meta-symbol indicating any of the three ends -, o, >.

-11-



CCD Algorithm

Input: An oracle for answering questions of the form: "Is X d-separated from Y given set
Z,(X,YeZ) in graph £?"

Output: A PAG for Q.

a) Form the complete undirected PAG VF, i.e. for each pair of variables A and B, *P
contains the edge A o—o B.

b) n = 0.
repeat

repeat
select an ordered pair of variables X and Y that are p-adjacent in *F
such that the number of vertices in AdjacenciesOF,X)\{ Y} is greater
than or equal to n;
repeat

select a subset S of Adjacencies CF,X)\{Y} with n vertices;
if X and Y are d-separated given S delete edge X o—o Y from *F
and set Sepset(X,Y) = S and Sepset(Y,X) = S;

until every subset S of AdjacenciesOF,X)\{ Y} with n vertices has
been selected or some subset S has been found for which X and Y are
d-separated given S;

until all ordered pairs of p-adjacent vertices X and Y such that
AdjacenciesCF,X)\{Y} has greater than or equal to n vertices have been
selected;
n = n + 1;

until for each ordered pair of p-adjacent vertices X, Y, AdjacenciesOF,X)\{Y}
has less than n vertices.

For each triple of vertices A,B,C such that the pair A,B and the pair B,C are each

p-adjacent in *¥ but the pair A, C are not p-adjacent in XP, orient A*—*B*—*C as

A—>B<—C if and only if B is not in Sepset<A,C>; orient A*—*B*—*C as

A*—*B*—*C if and only if B is in Sepset<A,C>.
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flC. For each triple of vertices <A,X,Y> in *¥ such that

(a) A is not p-adjacent to X or Y in W

(b) X and Y are p-adjacent in *¥

(c) X e Sepset<A,Y>

(i) If Sepset < A, Y > e Sepset < A,X > then orient X o-* Y as X<—Y

(ii) Else if Sepset<A,X> is not a subset of Sepset<A,Y>, then orient X o-*Y as X<—

Y if A and X are d-connected given Sepset<A,Y>

1fD. For each vertex V in *¥ form the following set: Xe LocaI0F,V) if and only if X is
p-adjacent to V in *F, or there is some vertex Y such that X—>Y<—V in *F.
(LocalOF,V) is calculated once for each vertex V and does not change as the
algorithm progresses.)
m = 1.

repeat
repeat

select an ordered triple <A,B,C> such that A—>B<—C but A and C
are not p-adjacent, and LocaIOF,A)XSepset<A,C> u {B,C}) has
greater than or equal to m vertices,
repeat

select a set T c Local(xF,A)XSepset<A,C> u {B,C}) with m
vertices, and test if A and C are d-separated given
T u Sepset<A,C> u {B} then orient the triple A—>B<—C as
A—>B<—C, and record T yp Sepset<A,O u {B} in
SupSepset<A,B,C>.

until every subset T c LocaIOF,A)\(Sepset<A,C> u {B,C}) with m
vertices has been selected or a d-separating set for A and C has been
recorded in SupSepset<A,B,C>.

until all triples such that A—>B<—C, (i.e. not A—>B<—Q, A and C are
not p-adjacent, and LocaIOF,A)XSepset<A,C> u {B,C}) have greater
than or equal to m vertices have been selected,
m = m + L

until each ordered triple <A,B,C> such that A—>B<—C but A and C are not
p-adjacent, is such that LocalOF,A)XSepset<A,C> u {B}) has fewer than m
vertices.
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1fE. If there is a quadruple <A,B,C,D> of distinct vertices such that

(i) A—>B<—C in ¥

(ii) A—>D<—C or A—>D<—C in *¥

(iii) B and D are p-adjacent in *F

then orient B*-oD as B—>D in 4* if D is not in SupSepset<A,B,O

else orient B*-oD as B*—D in ¥ if D is in SupSepset<A,B,C>

1fF. For each quadruple <A,B,C,D> of distinct vertices such that
(i) A—>B<—C in V

(ii) D is not p-adjacent to both A and C in *¥

if A and D are d-connected given SupSepset<A,B,C> u {D}, then orient B*—°D as

B—>D in ¥

§3.2 Soundness and Completeness

Theorem 1 (Soundness)
Given as input an oracle for d-separation relations in the (cyclic or acyclic) graph Q, then
the output is a PAG *¥ for Q.

Theorem 1 is proved by showing that each section of the algorithm makes correct
inferences from the answers of the d-separation oracle applied to Q, The proof is given in
Section 5.

In practice, an approximation to a d-separation oracle can be implemented as a statistical
test that the corresponding partial correlation vanishes. As the sample size increases
without limit, if the significance level of the statistical test is systematically lowered, then
the probabilities of both Type I and Type II error for the test approach zero, so that the
statistical test is correct with probability one. Of course, this does not guarantee that the
CCD algorithm as implemented is reliable on realistic sample sizes. The reliability of the
algorithm depends upon the following factors:

1. Whether the Causal Independence Assumption holds (i.e. there are no latent
variables).

2. Whether the Causal Faithfulness Assumption holds.
3. Whether the distributional assumptions made by the statistical tests hold.
4. The power of the statistical tests against alternatives.
5. The significance level used in the statistical tests.

In the future, I will test the sensitivity of the algorithm to these factors on simulated data.
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Theorem 2 (d-separation Completeness)

If the CCD algorithm, when given as input d-separation oracles for the graphs £1, £2

produces as output PAGs *Fi, ¥2 respectively, then 4^ is identical to ¥2 if and only if

Qi and Q2 are d-separation equivalent, i.e. £2 G Equiv(^) and vice versa.

The proof is based on the characterization of equivalence, mentioned earlier, in
Richardson (1994b). (It follows directly from Theorem 1 that if Q\ and Q2 are equivalent
then *Fi is identical to

§3.3 Trace of CCD Algorithm
The following illustrates the operation of the algorithm given as input a d-separation
oracle for the following graph:

A • X

Initial Complete Undirected PAG *F:

Section 1JA:
Since A and B are d-separated given the empty set, the algorithm removes the edge
between A and B and records Sepset<A,B> = Sepset<B,A> = 0. This is the only pair of
vertices that are not p-adjacent in this graph hence after flA *F is as follows:

A Xx
Section 1JB
Since Xg Sepset<A,B> and Ye Sepset<A,B>, Ao-oXo-oB and Ao-oYo-oB are oriented
respectively as A->X<-B and A->Y<-B. Thus flB performs the following orientation:

A . oX A

B S SY B
Section flC - Performs no orientations in this case.
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Section 1JD

Since A and B are d-separated given {X,Y}, the algorithm records SupSepset<A,X,B> =
SupSepset<A,Y,B> = {X,Y}, and it orients A->X<-B as A->X<-B, and A->Y<-B as
A->Y<-B. Thus after flD, the PAG Y is as foUows:

B-
Section fflE
The quadruple <A,B,X,Y> is such that (i) A->X<-B, (ii) A->Y<-B, (iii) X and Y are
p-adjacent, thus it satisfies the conditions in section flE. Since Ye SupSepset<A,X,B>,
the edge Xo-oY is oriented as Y—oX. Since Xe SupSepset<A,Y,B>, this edge is further
oriented as Y—X.
Section 5fF - Performs no orientations in this case, hence the PAG that is output is:

A-

PAGY

§3.4 Complexity of CCD Algorithm

Let MaxDegree(^) = Max|{X I Y <- X, or X <- Y in g}[

and MaxAdj(^) = Max|{X I X is p - adjacent to Y in any PAG for g}\

The number of d-separation tests performed by Step flA of the CCD algorithm will, in a
worst case, be bounded by ••

J

Total no. of tests of
oracle consultations in ̂ A ~~

where n = number of vertices in Q, k = MaxAdj(^).
Since MaxAdj(^) < (MaxDegree(^))2, hence with MaxDegree(£)=r this step is O(nr2+3).
It should be stressed that even as a worst case complexity bound this is a very loose one;
the bound presumes that there is a graph in which every pair of vertices in the graph,
which are not p-adjacent, are only d-separated given all vertices p-adjacent to one of
them.
Step flB performs no additional tests of d-separation
Step flC performs at most one d-separation test for each triple satisfying the conditions
given. Thus this step is O(n3).
In a worst case the number of tests of d-separation that Step flD performs is bounded by

Total number of MvWn-3\ ^ (m + l)n3(n -3)m + 1
< 3 > \ y / n - 3 \ < (m +

oracle consultations in ^D ~" \ 3 / ^ l l I m!
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where m = MaxllLocalCP^QI in flD. Since m < (MaxDegree(^))2, this step is O(n r2+4).
Again this is a loose bound.
Step flE performs no tests of d-separation, while step flF performs at most one test for
each quadruple satisfying the conditions. Hence this step is O(n4), (though in many
graphs there may be very few quadruples satisfying all four conditions).

§3.5 Partial Ancestral Graphs (PAGs) and Parially Oriented Inducing Path Graphs
(POIPGs)
The extended graphs which I introduce here - Partial Ancestral Graphs - use a superset
of the set of symbols used by Spirtes1 Partially Oriented Inducing Path Graphs (POIPGs),
(See Spirtes et aL> 1993) but the graphical interpretation of the orientations given to
edges is different.8 After formulating the PAG construct I conjectured that the output of
Spirtes' FCI algorithm, for making causal inference in the presence of latent variables and
selection bias (See Spirtes, Meek and Richardson 1995), which is a POIPG, could be
interpreted directly as a PAG. Shortly thereafter Spirtes proved this conjecture;9 he has
now adopted the PAG interpretation of the FCI algorithm output.
A direct Corollary of Spirtes1 result is that PAGs can be used to represent the d-separation
equivalence class for directed acyclic graphs with latent variables.10 It is an open
question whether or not the set of symbols is sufficiently rich to allow us to represent the
class of cyclic graphs with latent variables.

§4 d-separation Equivalence
Since the CCD algorithm is d-separation complete, the orientation rules in the algorithm

may be used to construct a d-separation equivalence algorithm. Below I present an

algorithm that, given as input a directed cyclic or acyclic graph Q will produce as output

the same PAG that the CCD algorithm outputs given only a d-separation oracle for Q.

However, this algorithm, unlike the CCD algorithm, runs in time polynomial in the

number of vertices, even if MaxDegree(^) is not kept fixed. Thus this algorithm can be

used to test for d-separation equivalence of two graphs in polynomial time.

Specifically, whereas in a PAG an arrow head at the A end of an edge A<-*B signifies that A is not an
ancestor of B in any graph in the equivalence class, in a POIPG it indicates information about the
orientation of what Spirtes calls inducing paths between A and B. Similar differences apply to the
significance of the tail end of an edge.
9Many of the steps of this proof were proved earlier, see §6.8 of Causation, Prediction and Search, Spirtes
etaL, 1994.
10In fact, a subset of the symbols present in PAGs will suffice: the conditional independencies entailed by
the A—>B<—C are not entailed by any directed acyclic graph, with or without latent variables.
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Definition: Parents(X), Children(X), An(X) and Descendants(X)

Parents(X) = {V I 3X e X, V is a parent of X in £}, Children(X) = {V I 3X e X, V is a

child of X in £}, An(X) = {V I 3X e X, V is an ancestor of X in Q}y and Descendants(X)

= {V I 3X G X, and V is a descendant of X in Q)

Cyclic PAG-Frotn-Graph Algorithm

Input: Directed Cyclic or Acyclic graph Q

Output: The CCD PAG NP for Q.

fla Form the complete undirected PAG *F, whch has an edge o-o between every pair of
vertices in the vertex set V.

For each ordered pair of vertices <A,B> form the following sets:

SA ,B = Children(A) n An({A,B})
T A ,B = (Parents(SA,B u {A}) u SA3)XDescendants(Children(A)nChildren(B)) u {A,B})

For each ordered pair <A,B>-
If A and B are d-separated given T A I B in Q then record TA,B in Sepset<A,B> and Sepset
<B,A> and remove the edge Ao-oB from *F.
else if A and B are d-separated given TB,A in Q then record TB,A in Sepset<A,B> and
Sepset <B,A> and remove the edge Ao-oB from x¥.

1fb For each triple of vertices A,B,C such that the pair A, B and the pair B, C are each

p-adjacent in *F but the pair A, C are not p-adjacent in VF, orient A*—*B*—*C as

A—>B<—C if and only if B is not in Sepset<A,C>; orient A*-r*B*—*C as

A*—*B*—*C if and only if B is in Sepset<A,C>.

Ĵc For each triple of vertices <A,X,Y> in *¥ such that

(a) A is not p-adjacent to X or Y in *F

(b) X and Y are p-adjacent in *¥

(c) X « Sepset<A,Y>

Orient X a-* Y as X<—Y if A and X are d-connected given Sepset<A,Y>

f̂d For each triple <A,B,C> or <C,B,A> such that A—>B<—C, A and C are not

p-adjacent, form the following set:

QA,B,C = Children(A) n An({ A,B,C})
RA,B,C = (Parents(QA,B,c u {A}) u QA>B,c)XDescendants(Children(A)nChildren(C)) u

If A and C are d-separated given RA>B,C U {B} then orient A—>B<—C as A—>B<—C,
and record RA,B,C u {B} in SupSepset<A,B,C>.
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If there is a quadruple <A,B,C,D> of distinct vertices such that

(ii) A—>D<—C or A—>D<—C in ¥,

(iii) B and D are p-adjacent in x¥,

then orient B*-oD as B—>D in NK if D is not in SupSepset<A,B,C>

else orient B*-oD as B*—D in *F if D is in SupSepset<A,B,C>.

or each quadruple <A,B,C,D> of distinct vertices such that

(i) A—>B<—C in *P

(ii) D is not p-adjacent to both A and C in *F, and

if A and D are d-connected given SupSepset<A,B,C> u {D}, then orient B*—oD as B

—>D in *F.

I do not include the proof that this algorithm is correct, but it is very similar to the proof

that the CCD algorithm itself is correct. The main difference between the two algorithms

lies in the fact the CCD algorithm must search for the Sepset and SupSepset sets, testing

many different candidates, whereas the PAG-from-graph algorithm is faced with the

much simpler task of constructing these sets, given the graph itself.

Since, by Theorem 2, given two graphs Q\y Qi as input, the CCD algorithm will produce

the same PAG as output if and only if Qx and Q2 are d-separation equivalent, the

algorithm given above provides a procedure for deciding the d-separation equivalence of

two directed graphs. Moreover the algorithm is of complexity O(n ) where n is the

number of vertices in the graph. This algorithm is significantly faster than the procedure

presented in Richardson (1994b) which was O(n9).

In addition, if a directed cyclic graph Q is provided as input to the PAG-from-graph

algorithm, then it is also possible to tell from the execution of the algorithm, whether or

not there is a directed acyclic graph that is d-separation equivalent to Q: There is a DAG

(f d-separation equivalent to Q if and only if steps flc-flf perform no orientations. This

follows from the fact that the combination of d-separation relations that the rules in flc-flf

require are not entailed by any DAG (See Richardson 1994, 1994b). _
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§5 Proofs

§5.1 Proof of Theorem 1

Theorem 1: (Soundness) Given as input an oracle for testing d-separation relations in the

directed (cyclic or acyclic) graph G, then the output is a PAG *F for Q.

Proof. The proof proceeds by showing that each section of the CCD algorithm makes

correct inferences from the d-separation oracle for Q, to the structure of any graph in

Equiv(^).

Sections 1TA-1TB

Lemma 1
Given a PAG *F for graph Q, if at least one of the following holds:

(i) X is a parent of Y in g, or
(ii) Y is a parent of X in g, or
(iii) There is some vertex Z which is a child of both X and Y, such that Z is an ancestor

of either X or Y (or both)
then X and Y are p-adjacent in *F, i.e. X and Y are d-connected given any subset
SeV\{X,Y} of the other vertices in g.

Proof: If (i) holds then the path X->Y d-connects X and Y given any subset SeV\{X,Y},
hence X and Y are p-adjacent in any PAG *F for graph g. The case in which (ii) holds is
equally trivial: X<—Y is a d-connecting path given any set ScVy{X,Y}.
If (iii) holds there is a common child (Z) of X and Y which is an ancestor of X or Y;
therefore either there is a directed path X—>Z—>Ai->...An—>Y (n > 0), or there is a
directed path Y—>Z->Ai—»...An—>X. Suppose without much loss of generality that it is

the former. Let S be an arbitrary subset of the other variables (SeV\{X,Y}). There are

two cases to consider:

Case 1: S n {Z, Ai. . .An}^ 0; in this case X-»Z <—Y is a d-connecting path.

Case 2: S n {Z, Ai...An}= 0; then X-»Z—>Ai-^...An—>Y is a d-connecting path. .\

Lemma 2
In a graph g, with vertices V, if the following hold11:
(i) X is not a parent of Y in Q
(ii) Y is not a parent of X in Qy and
(iii) there is no vertex Z s.t. Z is a common child of X and Y, and an ancestor of X or Y

None of the conditions in the antecedent of Lemma 1 hold.
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then for any set Q, X and Y are d-separated given T, defined as follows:
S = Children(X) n Ancestors({X,Y}u Q)
T = (Parents(S u {X}) u S)\(Descendants (Children(X)nChildren(Y)) u {X,Y}).

Proof: Every vertex in S is an ancestor of X or Y or Q. Every vertex in T is either a
parent of X, a vertex in S, or a parent of a vertex in S, hence every vertex in T is an
ancestor of X or Y or Q. It is sufficient to prove that if (i), (ii) and (iii) hold then X and Y
are d-separated given T.

Suppose, on the contrary that there is a path d-connecting X and Y given T.
Let W be the first vertex on the path from X to Y. (It follows from (i) and (ii) that W*Y.)
There are two cases to consider:

Case 1: The path contains X<-W...Y.
Subcase A: W is not a descendant of a common child of X and Y.
If W is not a descendant of a common child, then We T (Since W is a parent of X).
Thus since W is a non-collider on the path, the path is not d-connecting given T
Subcase B: W is a descendant of a common child of X and Y.
In this case since X is a child of W, it follows that X is a descendant of some common
child Z of X and Y. But this is contrary to the assumption that (iii) holds.

Case 2: The path contains X-^W... Y.

Subcase A: W is not a descendant of a common child of X and Y.
Let V be the next vertex on the path.

Sub-subcase a: The path contains X->W<-V... Y. "
If this path is d-connecting then some descendant of W is in T, but then some
descendant of W is an ancestor of X or Y or Q. Hence W is an ancestor of X, Y or
Q. So if some descendant of W is in T, then W is in S. Moreover, since W is (by
hypothesis) not a descendant of a common child, V ^ Y .

Now V is a parent of W, and We S. Moreover V is not a descendant of a common
child since in that instance W would also be a descendant of a common child,
contrary to hypothesis. X * V * Y, so VeT. Thus V occurs as a non-collider, but V
e T, hence the path fails to d-connect given T.
Sub-subcase b: The path contains X—>W->V...Y.

If some path X->W-»V...Y d-connects given T then W is either an ancestor of Y
or some vertex in T. However if W is an ancestor of some vertex in T, then W is an
ancestor of X, Y or Q, since every vertex in T is an ancestor of X, Y or Q. Hence
We S, and thus since W is (by hypothesis) not a descendant of a common child of X
and Y, and X ^ W ^ Y , W G T . Since W occurs as a non-collider on this path, it
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follows that any path X-*W-»V... Y fails to d-connect given T. (This allows for the
possibility that V=Y).

Subcase B: W is a descendant of a common child.
Thus Descendants (W) n T = 0, since descendants of W are also descendants of
common children of X and Y and so cannot occur in T.
Since no descendant of W has been conditioned on, if W occurs on a d-connecting path
then W is a non-collider. We can show that any other vertex on such a d-connecting
path must be a non-collider: Suppose that there is a collider on the path, then take the
first collider on the path after W, let us say <A, B, C>, so that the path now takes the
form: X—>W-^V-»...-^...->A-->B^-C...Y. Since <A, B, C> is the first collider after
V, it follows that B is a descendant of W. But if the path is d-connecting then some
descendant of B, say D, has been conditioned on, i.e. De T. But then since D is a
descendant of B, and B is a descendant of W, De Descendants(W) which is a
contradiction since Descendants (W) n T = 0.

As there are no colliders on the path it follows that W is an ancestor of Y. But then W
is a descendant of a common child of X and Y, and an ancestor of Y. But this
contradicts (iii).

This completes the proof of Lemma 2. .*.

Corollary A
Given a graph Q, and PAG *F for Q, X and Y are p-adjacent in *¥ if and only if one of the
following holds in Q:

(i) X is a parent of Y, or
(ii) Y is a parent of X, or ';
(iii) there is some vertex Z which is a child of both X and Y, such that Z is an ancestor

of either X or Y (or both)
Proof: 'If is proved by Lemma 1. 'Only if follows from Lemma 2 with Q = 0 by
contraposition.

Definition: p-adjacent in a graph Q
Corollary A gives necessary and sufficient conditions on a graph Q for a pair of vertices
to be p-adjacent in any PAG for Q. Thus it makes sense to speak of a pair of vertices X, Y
being p-adjacent in graph Q, where this means that at least one of (i), (ii) and (iii) holds.

It follows from Corollary A that a pair of vertices are p-adjacent in Q if and only if they
are p-adjacent in every PAG for Q. For this reason I will often refer to a pair of variables
as p-adjacent without specifying whether I am referring to the graph or the PAG.

-22-



Corollary B
In a graph Q, if X and Y are d-separated by some set R, then X and Y are d-separated by
a set T in which every vertex is an ancestor of X or Y. Furthermore, either T is a subset
of the vertices p-adjacent to X or X is an ancestor of Y.

Proof: Since X and Y are d-separated by some set R, X and Y are not p-adjacent in Q.

Apply Lemma 2, with Q=0 . In that case

S = Children(X) n Ancestors({X,Y})

T = (Parents(S u {X}) u S)\(Descendants (Children(X)nChildren(Y)) u {X,Y})

It follows from Lemma 2 that X and Y are d-separated given T. Every vertex in S is an
ancestor of X or Y. Every vertex in T is either a parent of X, a vertex in S, or a parent of a
vertex in S, hence every vertex in T is an ancestor of X or Y.
It only remains to show that either T is a subset of the vertices p-adjacent to X or X is an
ancestor of Y in Q. Every vertex in T is either a parent of X, a child of X, or a parent V of
some vertex C in S, where C is also a child of X. Any vertex in the first two categories is
clearly p-adjacent to X. Since C is in S, C is an ancestor of X or Y. If C is an ancestor of
X, then V is p-adjacent to X. If C is an ancestor of Y, then X is an ancestor of Y. /.

Lemma 3
In a graph Q, if A and B are not p-adjacent, then either A and B are d-separated given a
set TA of vertices p-adjacent to A or by a set T B of vertices p-adjacent to B.
Proof: By Corollary B to Lemma 2, if A and B are not p-adjacent then A and B are
d-separated given TA where: jj
SA = Children(A) n Ancestors({ A,B})

TA = (Parents(S u {A}) u S)\(Desccndants (Children(A)nChildren(B)) u {A,B}),

Case 1: A is not an ancestor of B
From Corollary B to Lemma 2, since A is not an ancestor of B, TA e {X IX p-adjacent
to A}.

Case 2: B is not an ancestor of A.
It follows again by symmetry that A and B are d-separated given T B , where T B is
defined symmetrically to TA in Case 1.

Case 3: B is an ancestor of A and A is an ancestor of B.
Now any vertex V in TA is either a child of A, a parent of A or a parent of some vertex
C in SA, which is itself a child of A. Clearly vertices in the first two categories are
p-adjacent to A; as before, vertices in the last category are p-adjacent to A if C is an
ancestor of A. Any vertex in S\ is an ancestor of A or B. Since A is an ancestor of B,
and B is an ancestor of A, it follows that every vertex in SA is an ancestor of A, hence
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every vertex in TA is p-adjacent to A. [Note that it is also the case that every vertex in
T is p-adjacent to B.] /.

Suppose that the input to the algorithm is a d-separation oracle for a directed graph Q. To

find a set which d-separates some pair of variables A and B in Q the algorithm tests

subsets of the vertices which are p-adjacent to A in *F, and subsets of vertices which are

p-adjacent to B in ¥ to see if they d-separate A and B. Since the vertices which are

p-adjacent to A and B in Q are at all times a subset of the vertices p-adjacent to A and B

in x¥12 it follows from Lemma 3 that step flA is guaranteed to find a set which

d-separates A and B, if any set d-separates A and B in Q.

Section 1TB

The next lemma gives an important property of d-separating sets that are found through a

search which never tests a set unless it has already tested every proper subset of that set

(as in the CCD algorithm).

Lemma 4 Suppose that in a graph Q, Y is not an ancestor of X or Z or R. If there is a set

S, RczS, such that YeS and every proper subset T s.t. RcTczS, not containing Y,

d-connects X and Z then S d-connects X and Z in Q.

Proof Let T*= Ancestors({X,Z}uR)nS. Now, R^T*, and T* is a proper subset of S, so

by hypothesis there is a d-connecting path, P, conditional on T*. By the definition of a

d-connecting path, every element on P is either an ancestor oij one of the endpoints, or

T*. Moreover, by definition, every element in T* is an ancestor of X or Z or R. Thus

every element on the path P is an ancestor of X or Z or R. Since neither Y nor any

element in S\T* is an ancestor of X or Z or R, it follows that no vertex in S\T* lies on P.

Since T* dS the only way in which P could fail to d-connect given S would be if some

element of S\T* lay on the path (every collider active given T* will remain active given
S). Hence P still d-connects X and Z given S. /.

Definition: Minimal d-separating Set

If X and Y are d-separated given S, and are d-connected given any proper subset of S,

then S is a minimal d-separating set for X and Y.

12This is because if a pair of vertices X,Y are p-adjacent in Q then no set is found which d-separates them
hence the edge between X and Y in Cis never deleted.

-24-



The following corollary is useful here:
Corollary: In a graph £ if S is a minimal d-separating set for X and Y, then any vertex
in S is an ancestor of X or Y.

Proof: The corollary follows immediately from Lemma 4, with R = 0 via

contraposition. /.

This shows that the unshielded non-collider orientation rule in flB is correct If A and B,

and B and C are p-adjacent, but Sepset(A,C) contains B, then it follows from the nature

of the search procedure that A and C are not d-separated given any subset of

Sepset(A,C). It follows that B is an ancestor of A or C. Hence A*—*B*—*C should be

oriented as A*-*B*-*C in the PAG.

The proof which follows makes frequent use of the following Lemma which I state here

without proof. (It is an extension to the cyclic case of Lemma 3.3.1 in Causation,

Prediction and Search, Spirtes et aL, 1993. See Richardson(1994) for a proof.) The

Lemma gives conditions under which a set of 'short1 d-connecting paths may be put

together to form a single path.

CPS Lemma 3.3.1+ (Richardson 1994b)
In a directed (cyclic or acyclic) graph Q over a set of vertices V, IF the following
conditions hold:
(a) R is a sequence of vertices in V from A to B, R = < A=Xo,...Xn+i=B>, such that

Vi, 0 < i < n, Xi * Xi+i (the Xi are only pairwise distinct i.e. not necessarily distinct).
(b)ScV\{A,B)
(c) £ is a set of undirected paths such that

(i) for each pair of consecutive vertices in R, Xi and Xi+i, there is a unique undirected
path in S that d-connects Xi and X*+i given S\{Xi, X*+i}.

(ii) if some vertex Xk in R, is in S, then the paths in % , that contain Xk as an endpoint
collide at Xk, (i.e. both paths are directed into Xk).

(iii) if for three vertices Xk-i, Xk, Xk+i occurring in R, the d-connecting paths in S
between Xk_i and Xk, and Xk and Xk+i, collide at Xk then Xk has a descendant in S.

THEN there is a path U in g that d-connects AsXo and B=Xn+i given S.

The following Lemma shows the correctness of the orientation rule in flB:

Lemma 5: If A and B are p-adjacent, B and C are p-adjacent, and B is an ancestor of A
or C then A and C are d-connected given any set S, s.t. A,B,C £ S.
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Proof: Without loss of generality, let us suppose that B is an ancestor of C. It is sufficient .
to prove that A and C are d-connected conditional on S. There are two cases to consider,
depending upon whether or not some (proper) descendant of B is in S.

Case 1: Some (proper) descendant of B is in S.
It follows from Lemma 1 and the p-adjacency of A and B, that given any set S,
A,B,C£ S, there is a d-connecting path from A to B, and likewise a d-connecting path
from B to C, conditional on S. Since some descendant of B is in S, but B itself is not
in S, it follows by a simple application of Lemma 3.3.1+ that A and C are d-connected,
since it does not matter whether or not the path from A to B and the path from B to C
collide atB.

Case 2: No descendant of B is in S.

It follows from Lemma 1 that there is a path d-connecting A and B. Since no
descendant of B has been conditioned on the directed path B—>...-»C is d-connecting.
Since Be S, it follows that by Lemma 3.3.1+ that A and C are d-connected given S. .\

It follows by contraposition that if A and B are p-adjacent, B and C are p-adjacent, A and

C are d-separated given Sepset<A,C>, and Bg Sepset<A,C>, then B is not an ancestor of

A or C, hence A*—*B*—*C should be oriented as A—>B<—C.

Section

Lemma 6: In a graph Q, suppose X is an ancestor of Y. If there is a set S such that A and
Y are d-separated given S, X and Y are d-connected given S, add Xg S, then A and X are
d-separated given S.
Proof: Let X be an ancestor of Y. Let S be any set such that X and Y are d-connected
given S, Xg S, and A and Y are d-separated by S. Suppose, for a contradiction, that A and
X are d-connected given S, it then follows that there is a d-connecting path P from A to
X. There are now two cases:

Case 1: Some descendant of X is in S.
Since XgS, and some descendant of X is in S, it follows from Lemma 3.3.1+ that the
d-connecting path from A to X given S and the d-connecting path fronrX to Y given S
can be put together to form a d-connecting path from A to Y given S. This is a
contradiction since it was assumed that A and Y were d-separated given S.

Case 2: No descendant of X is in S.
In this case since X is an ancestor of Y, there is a d-connecting directed path X-^.. .—»Y.
Again, by Lemma 3.3.1+ the d-connecting path from A to X and the d-connecting
directed path from X to Y can be put together to form a d-connecting path from A to Y
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given S. This is again a contradiction since it was assumed that A and Y were d-separated
given S.
We have now shown that under the conditions in the antecedent, S is a d-separating set
for A and X. .\

Lemma 7: Let A, X and Y be three vertices in a graph Q, such that X and Y are
p-adjacent. If there is a set S such that:

(ii) A and Y are d-separated given S, and
(iii) A and X are d-connected given S.

Then X is not an ancestor of Y.

Proof: If X and Y are p-adjacent then X and Y are d-connected by every subset of the
other variables. In particular X and Y are d-connected given S. Since S d-separates A and
Y but d-connects A and X, it follows from Lemma 6 that X is not an ancestor of Y. /.
.13.\

Step flC simply applies Lemma 7. Suppose that <A,X,Y> is a triple such that:

(i) A is not p-adjacent to X or Y

(ii) X and Y are p-adjacent in *F, and

(iii)XeSepset<A,Y>

flC(i) is justified in the following way. Suppose that Sepset<A,Y> c Sepset<A,X>.

Recall that the search procedure used in %A to find Sepset<A,X> tests every subset of

Sepset<A,X> to see if it d-separates A and X, before testing Seij[)set<A,X>. In particular,

if Sepset<A,Y> e Sepset<A,X>, then A and X are d-connected given Sepset<A,Y>, so

taking S = Sepset<A,Y>, we can apply Lemma 7 to orient X *-*Y as X<—Y.

flC(ii) is justified in the following way. Suppose that A and X are d-connected given

Sepset<A,Y>. Since X £ Sepset<A,Y>, setting S = Sepset<A,Y>, we can again apply

Lemma 7 to orient X *-* Y as X<—Y.

The condition in UC(ii) that Sepset<A,X> c Sepset<A,Y> is hot needed to make flC(ii)
correct (as evidenced by the fact that it plays no role in the justification of the rule); it is
included in order to avoid carrying out a redundant test of d-separation. If
Sepset<A,X> c Sepset < A,Y >, then A and X are not d-connected given
Sepset<A,Y>. (This is because Yg Sepset<A,X>. Hence X*-*Y will eventually by
another application of flC(i) be oriented as X—>Y in the PAG. It follows that X is an

13We do not need this last fact to prove the correctness of the algorithm, but we include it since it shows
the circumstances under which this inference is possible.
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ancestor of Y in Q. By Lemma 6, since X is an ancestor of Y in Q, A and X are not
d-connected given Sepset<A,Y>.) If Sepset<A,Y> = Sepset<A>X> then there is no need
to test whether A and X are d-connected given Sepset<A,Y>, because it is already known
that they are not d-connected (by definition of Sepset<A,X>).

It is a feature of this orientation rule that X and Y may be arbitrarily far from A. Rules of
this type are needed by a cyclic discovery algorithm, because, as was shown in
Richardson (1994b), two cyclic graphs may agree 'locally' on d-separation relations, but
disagree on some d-separation relation between distant variables. (Whether or not such
rules will ever be used on real data, in which 'distant' variables are generally found to be
independent by statistical tests is another question.)

Section HP

This section searches to find 'extra' d-separating sets for unshielded colliders. In the
acyclic case a triple of vertices X*-*Y*-*Z, where X and Y are p-adjacent, Y and Z are
p-adjacent, but X and Z are not p-adjacent either has the property that every d-separating
set for X and Z contains Y, or that every d-separating set for X and Z does not contain
Y.14 However, in the cyclic case it is possible for X and Z to be d-separated by one set
containing Y, and one set not containing Y. We already know from Lemma 5 that if X
and Z are d-separated by some set which does not contain Y, then Y is not an ancestor of
X or Z. What can be inferred if in addition X and Z are also d-separated by a set which
contains Y? This is answered by the next Lemma and Corollary:

';
Lemma 8: If in a graph Q, Y is a descendant of a common child of X and Z then X and Z
are d-connected by any set containing Y.
Proof: Suppose that Y is a descendant of a common child C of X and Z. Then the path
X—»C*-Z d-connects X and Z given any set containing Y.

Corollary: If in a graph Q, X and Y are p-adjacent, Y and Z are p-adjacent, but X and Z
are not p-adjacent, Y is not an ancestor of X or Z, and there is some set S such that Ye S,
and X and Z are d-separated given S, then Y is not a descendant of a common child of X
andZ.

14This is also true even in the acyclic case with latent variables.
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Lemma 9: If in graph Q, Y is not a descendant of a common child of X and Z, then X and
Z are d-separated by the set T, defined as follows:
S = Children(X) n Ancestors({X,Y,Z})
T = (Parents(S u {X}) u S)\(Descendants (Children(X)nChildren(Z)) u {X,Z})
Further, if X and Y, and Y and Z are p-adjacent then Ye T.

Proof: It follows from Lemma 2, with Q={ Y} that X and Z are d-separated given T.
All that remains is to show that Ye T. There are three cases to consider here:
Casel: Y is a child of X.
If Y is a child of X, then since Y is an ancestor of Y, Ye S. In both cases since Y is not a
descendant of a common child of X and Z, Ye T.
Case 2: Y is a parent of X
Since Y is a parent of X and Y is not a descendant of a common child of X and Z, Ye T.
Case 3: X and Y have a common child C that is an ancestor of X or Y
Since C is a child of X and an ancestor of X or Y, Ce S. Since Y is a parent of C, and Y is
not a descendant of a common child of X and Z then Ye T. /.

Lemma 10: If X and Z are d-separated by some set R, then for all sets Q c Ancestors(R
u {X,Z})\{X,Z}, X and Z are d-separated by R u Q.

Proof: Suppose for a contradiction that there is a path P d-connecting X and Z given R u
Q. It follows that every vertex on P is an ancestor of either X, Z, o r R u Q . Since
Q cz Ancestors(R u {X,Z}) it follows that every vertex on P is an ancestor of X, Z or R.
Let A be the collider furthest from X on P which is an ancestor of X and not R (or X if no
such collider exists), let B be the first collider after A on P whi^i is an ancestor of Z and
not R (or Z if no such collider exists). Clearly the paths X «-...<— A, and B—>...—>Z are
d-connecting given R, since by the definition of A and B, no vertex on these paths is in
R. In addition the subpath of P between A and B is also d-connecting given R since every
collider is an ancestor of R, and no non-collider lies in R, since, by hypothesis P
d-connects given R u Q. It follows, by Lemma 3.3.1+, that there is a path d-connecting
X and Z given R. This is a contradiction. .\

The search in section flD considers each triple A-»B<-C in *F, A and C are not
p-adjacent, in turn, and attempts to find a set R which is a subset of LocaICF,A)\{C} such
that A and C are d-separated given R u ( B } u Sepset<A,C>. It follows from Lemma 8
that if there is some set which d-separates A and C, and contains B, then B is not a
descendant of a common child of A and C. It then follows from Lemma 9 that in this case
there is some subset, the set T given in the Lemma which contains B, d-separates A and
C and in which every vertex is either a parent of A, a child of A, or a parent of a child of
A and so T c LocaI0F,X). Since Sepset<A,C> is a minimal d-separating set for A and C,
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it follows that Sepset<A,C> e Ancestors ({A,C})\{A,C} (c Ancestors (T u{A,C}).
Hence by Lemma 10, T u Sepset<A,C> also d-separates A and C.

The reader may wonder why flD tests sets of the form T u Sepset<A,C>, (where
T c LocaICF,A)), instead of just testing sets of the form T c LocaICF,A)); Lemma 9
shows that a search of the latter kind would succeed in finding a d-separating set for A
and C which contained B. The answer is that from Lemma 10 it follows that any set
T e LocalCF,A) which d-separates A and C, is such that T u Sepset<A,C> also
d-separates A and C, but the reverse is not true. In particular the smallest set T such that
T u Sepset<A,C> d-separates A and C may be considerably smaller than the smallest set
T which d-separates A and C alone, hence the search is significantly faster.15

One more lemma is required to explain why the algorithm begins the search in flD with
m=l, and does not test T=0:

Lemma 11: If X and Y are p-adjacent, Y and Z are p-adjacent, X and Z are not
p-adjacent, Y is not an ancestor of X or Z, and S is a minimal d-separating set for X and Z
then X and Z are d-connected given S u ( Y ) .

Proof: Corollary A to Lemma 2 implies that if X and Y are p-adjacent then either X-^Y,
Y->X or X—»C<—Y, where C is an ancestor of X or Y. Thus under the hypothesis that Y
is not an ancestor of X it follows that X is an ancestor of Y. Moreover, it follows that
there is a directed path P from X to Y, on which every vertex except X is a descendant of
Y, and hence on which every vertex except X is not an ancestor of X or Z. (In the case
X—>Y, the last assertion is trivial In the other case it merely states a property of the path
X—>C—»... Y, where C is a common child of X and Y.) Likewise there is a path Q from Z
to Y on which every vertex except Z is not an ancestor of X or Z.
If S is a minimal d-separating set every vertex in S is an ancestor of X or Z, (and
X,Z £ S). Hence no vertex on P or Q is in S. It follows that P d-connects X and Y given
S, and Q d-connects Y and Z given S. It then follows from Lemma 3.3.1+ that these paths
can be joined to form a single d-connecting path, hence X and Z are d-connected given S
u { Y } . /.

This completes the proof that step flD of the algorithm will succeed in findings set which
d-separates A and C, and contains B, for each triple A—>B<—C if any such set exists.

15In some cases the cardinality of the smallest set (T u Sepset<A,Q>) may be greater than the cardinality
of the smallest T; but this is not true in general, and since we only intend to discover linear models this is
insignificant. (With discrete models conditioning on a large set of variables in a conditional independence
test may reduce dramatically the power of the test.)
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Section HE

The following Lemma provides the justification of flE where A—>B<—C, A—>D<—C,
and D is not in SupSepset<A,B,C>, in which case B*-oD is oriented as B—>D.

Lemma 12: If in a PAG W for Q, X—>V<—Z, X—>W<—Z, X and Z are not
p-adjacent, and W is an ancestor of V in Q, then any set S such that VeS, and X and Z
are d-separated by S, also contains W.

Proof Suppose there were some d-separating set S for X and Z which contained V and
did not contain W. Then, since W is an ancestor of V and Ve S, but WgS, it follows by
Lemma 3.3.1+ that d-connecting paths from X to W given S and from W to Z given S can
be put together to form a new d-connecting path from X to Z given S (irrespective of
whether or not these paths collide at W). Such d-connecting paths between X and W, and
between W and Z exist (by Corollary A to Lemma 1) since X is p-adjacent to W and W is
p-adjacent to Z. This is a contradiction. /.

Note: In fact the converse to this lemma is also true: If every d-separating set containing
V also contains W, then W is an ancestor of V.16

Proof of Converse to Lemma 12: It is sufficient to prove that if W is not an ancestor of
V then there is some set which d-separates X and Z, but does not contain W.

It follows from Lemma 9 and the assumption that X—>V<—Z in the PAG VF, that there
is some set R containing V which d-separates X and Z. Let S be any subset of R such that
Ve S, and S d-separates X and Z, but there is no subset TcS, such that VeT and X and Z
are d-separated by T. (Such a set S, is guaranteed to exist.) It follows from Lemma 4, that
every vertex in S is an ancestor of X, Z or V. Since by hypothesis X—>W<—Z in the
PAG, W is not an ancestor of X or Z. If in addition W is not'4n ancestor of V, then it
follows that W £ S. (Since W is not an ancestor of X,Vor Z.)

Thus if W is not an ancestor of V, then there is some set, namely S, which d-separates X
and Z, and contains V, but does not contain W. .\

In the case in which A—>B<—C, A—>D<—C, and D is in SupSepset<A,B,C> the
algorithm orients B*-oD as B*—D, this inference can be justified as follows:

If D is in SupSepset<A,B,C> then it follows from Lemma 4, and the nature of the search
for SupSepset<A,B,O17 that D is an ancestor of {B} u Sepset<A,C>. Since
Sepset<A,C> is a minimal d-separating set for A and C, moreover, every vertex in
Sepset<A,O is an ancestor of A or C, thus if D is in SupSepset<A,B,C>, then D is an
ancestor of A,C or B. However, since there are arrowheads at D on the edges from A to

16The converse is staled separately since it is not required in any of the proof that follows.
17Namely the fact that section flD looks for the smallest superset of {B} u Sepset<A,C>, which
d-separates A and C.
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D, and C to D, it follows that D is not an ancestor of A or C, hence D is an ancestor of B.
Thus it is correct to orient B*-*D as B*—D.

In the case in which A-^D^-C in *F, (A and C are not p-adjacent and there is no dotted
line A—>D<—C), it follows from the discussion and corollaries following Lemma 8,
that since A and C are d-connected by any set S that contains D, (and does not contain A
or C), D is a descendant of a common child of A and C. Moreover since A and C are
d-separated by some set containing B, B is not a descendant of a common child of A and
C. Hence B is not a descendant of D. Thus in the case where in VF, A—>B<—C,
A—>D<—C, B and D are p-adjacent, B*-*D should be oriented as B<—D.

Note Since neither Sepset nor SupSepset are consulted in making this last inference, this
case might better be termed a 'propagation rule', rather than an 'orientation rule'.

Section j[F

A and C are d-separated by SupSepset<A,B,C>, and BeSupSepset<A,B,C>. Hence by
Lemma 10, if D is an ancestor of B, then A and C are d-separated by
SupSepset<A,B,C> u {D}. Hence by contraposition, if A and C are d-connected given
SupSepset<A,B,C> u {D} then D is not an ancestor of B. (In fact, it follows that D is
not an ancestor of A,B or C.) Since D is not an ancestor of B, but B and D are p-adjacent
it follows that B is an ancestor of D. Thus B*—*D should be oriented as B—>D in x¥.

This completes the proof of the correctness of the CCD algorithm. .\

§5.2 Proof of Theorem 2: d-separation Completeness

In order to prove the d-separation completeness of the CCD algorithm, all that is required
is to show that whenever the first input to the CCD algorithm is a d-separation oracle for
Qi that results in output *Fi, and the second input to the CCD algorithm is a d-separation
oracle for Q2 that results in output ¥2 , and *Fi and ¥2 are identical, then Q\ and Q2 are
d-separation equivalent. I shall do this by proving that when d-separation oracles for Q\
and Qi are used as input to the CCD algorithm and produce the same PAG as output, then
Qi, and Qi satisfy the five conditions of the Cyclic Equivalence Theorem CET(I)-(V)
(given below) with respect to one another. It has already been shown in
Richardson( 1994b) that two graphs Q\ and §2 are d-separation equivalent to one another
if and only if they satisfy these 5 conditions.

A number of extra definitions are required in order to state the Cyclic Equivalence
Theorem :
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Definition: Unshielded Conductor and Unshielded Non-Conductor

In a (cyclic or acyclic) graph £, a triple of vertices <A,B,C> is said to form an unshielded

conductor if:

(i) A and B are p-adjacent, B and C are p-adjacent, A and C are not p-adjacent

(ii) B is an ancestor of A or C
If <A,B,C> satisfies (i), but B is not an ancestor of A or C, then <A,B,O is said to be an
unshielded non-conductor.

Definition: Unshielded Perfect and Imperfect Non-Conductors
In a (cyclic or acylcic) graph Q, a triple of vertices <A,B,C> is said to be an unshielded

perfect non-conductor if:

(i) A and B are p-adjacent, B and C are p-adjacent, but A and C are not

p-adjacent.

(ii) B is not an ancestor of A or C.

(iii) B is a descendant of a common child of A and C.

If <A,B>C> satisfies (i) and (ii) but B is not a descendant of a common child of A and C,

then <A,B,C> is said to be an unshielded imperfect non-conductor.

Definition: Itinerary

If <Xo,Xi,...,Xn+i> is a sequence of distinct vertices s.t. Vi 0 < i < n, X\ and Xj+i are

p-adjacent then <Xo,Xi,...Xn+i> is said to be an itinerary..1*

Definition: Mutually Exclusive Unshielded Conductors with respect to an Itinerary

If <XQ,.. .Xn+i> is an itinerary such that: y;

(i) Vt 1< t < n, <Xt-i> Xt, X t+i> is an unshielded conductor,

(ii) Vk 1< k < n, X^-i is an ancestor of X^, and X^+i is an ancestor of X^, and

(iii) Xo is not a descendant of Xi, and Xn is not an ancestor of Xn+j, then <Xo,Xi,X2>

and <Xn_i,Xn,Xn+i> are mutually exclusive (m.e.) unshielded conductors on the

itinerary <XQ,...Xn+i>.

Definition: Uncovered Itinerary

If <X0,...,Xn+i> is an itinerary such that Vi j 0 <~i < j - l < j < n+1 Xi and Xj are not

p-adjacent in the graph then <Xo,...Xn+i> is an uncovered itinerary., i.e. an itinerary is

uncovered if the only vertices on the itinerary which are p-adjacent to other vertices on

the itinerary, are those that occur consecutively on the itinerary.

18Thus itinerary is to PAG, as undirected path is to directed graph.
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Cyclic Equivalence Theorem (Richardson 1994b)
Graphs Q\ and (ji are d-separation equivalent if and only if the following five condtions
hold:

CET(I) (j\ and Qi have the same p-adjacencies.

CET(II) Qi and Qi have the same unshielded elements i.e.

(Ha) the same unshielded conductors, and
(lib) the same unshielded perfect non-conductors

CET(III) For all triples <A,B,C> and <X,Y,Z>, <A,B,C> and <X,Y,Z> are m.e.
conductors on some uncovered itinerary P=<A,B,C,...X,Y,Z> in Qi if and only if
<A,B,C> and <X,Y,Z> are m.e. conductors on some uncovered itinerary
Q=<A,B,C,...X,Y,Z>in ^

CET(IV) If <A,X,B> and <A,Y,B> are unshielded imperfect non-conductors (in Q\ and
£2), then X is an ancestor of Y in Q\ if and only if X is an ancestor of Y in £72.

CET(V) If <A,B,C> and <X,Y,Z> are mutually exclusive conductors on some uncovered
itinerary P E=<A,B,C, . . .X,Y,Z> ancj <A,M,Z> is an unshielded imperfect non-conductor
(in Q\ and Qi), then M is a descendant of B in Q\ iff M is a descendant of B in Qi.

Lemma 13: Given a sequence of vertices <Xo>—Xn+i> in a directed graph £ having the
property that Vk, 0 < k < n, Xk is an ancestor of Xk+i, and Xk is p-adjacent to Xk+i there
is a subsequence of the Xi's, which we label the Yj's having the following properties:

(a) XQ^YO

(b) Vj, Yj is an ancestor of Yj+i
(c) Vj,k If j < k, Yj and Yk are p-adjacent in the graph if abd only if k=j+l. i.e. the
only Yk's which are p-adjacent are those that occur consecutively.

Proof: The Yk's can be constructed as follows:
LetYo = Xo.
Let Yfc+i = X-q where T| is the greatest h > j such that Xh is p-adjacent to Xj where Xj=Yk-

Property (a) is immediate from the construction. Property (b) follows from the transitivity
of the ancestor relation, and the fact that the Y^'s are a subsequence of the Xi's. It is also
clear, from the construction that if k=j+l then Yj and Yk are p-adjacent. Moreover, if
Yj=Xa19 and Yfc=Xp are p-adjacent, and j < k, then it follows again from the construction
that if Yj+i=Xy> then p < y, so k < j+1. (Since the Yk's are a subsequence of the Xi's.)
Hence Yj+i=Yk..'.

19 That is, the f* vertex in the sequence of Y vertices is the (Xth vertex in the sequence of X vertices.

-34-



Lemma 14: Let Q\ and Q% be two graphs satisfying CET(I)-(III). Suppose there is a
directed path Di—»...Dn, in Q\. Let Do be a vertex distinct from Di,... ,Dn , s.t. Do is
p-adjacent to Di in Qi and Qi, Do is not p-adjacent to D2,...Dn in Qi or £2 and Do is not
a descendant of Di in Q\ or Qi. It then follows that Di is an ancestor of Dn in Qi.

Proof: By induction on n.
Base Case: n=2
Since, by hypothesis, Do is not p-adjacent to D2, it follows that <Do, Di, D2> forms an
unshielded conductor in Q\ (since Di is an ancestor of D2). Hence this triple of vertices
also forms an unshielded conductor in £72, by CET(IIa). Hence Di is an ancestor of Do or
D2 in Cft. Since, by hypothesis Di is not an ancestor of Do in £2, it follows that Di is an
ancestor of D2 in Cfa.

Inductive Case: Suppose that the hypothesis is true for paths of length n.
It follows from Lemma 13 that there is a subsequence <Da(opDo,Da(i),Da(2)...Da(r)=Dn>
such that the only p-adjacent vertices are those that occur consecutively, and in Q\ each
vertex is an ancestor of the next vertex in the sequence. Moreover, since, by hypothesis,
Do is not p-adjacent to D2,...Dn, it follows that Da(i)^Di. Since Q\ and Q2 satisfy
CET(I), they have the same p-adjacencies, hence in Qi the only vertices that are
p-adjacent are those that occur consecutively in the sequence. Suppose, for a
contradiction that Da(r_i) is not an ancestor of D^) in Cfi. Let s be the smallest j such that
Da(j) is not an ancestor of Da(j_!) in Cft,. (Such a j exists since Da(i)=D! and Da(O)=Do is
not a descendant of Di.) It then follows that <Da(s_i),Da(s),Da(s+i)> and
<Do(r-2)>Da(r-i)>Da(r)> are mutually exclusive conductors on the unshielded itinerary
<Da(s_i),...Da(r)>. But these two triples are not mutually exclusive in Q\ since Da(r_j) is
an ancestor of Da(r) in Q\\ hence Q\ and Qi fail to satisfy CET(III), which is a
contradiction.

Hence Da(r_i) is an ancestor of Da(r) in (fr- It then follows from the induction hypothesis
that Di is an ancestor of Da(r)=Dn. .\

Theorem 2: (d-separation Completeness)
If the CCD algorithm, when given as input d-separation oracles for the graphs Q\, Qi

.produces as output PAGs *Fi, ¥2 respectively, then ¥1 is identical to ¥2 if and only if Qi
and Qi are d-separation equivalent, i.e. Qi e Equiv(^) and vice versa.

Proof: We will show that if two graphs, Q\ and £2 are not d-separation equivalent, then
the PAG discovered by the CCD algorithm, given Q\ and Cp, as input would differ in
some respect.

It follows from the cyclic equivalence theorem that if Q\ and §2 are not d-separation
equivalent, then they fail to satisfy one or more of the five conditions CET(I)-(V). Let *Fi
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and ¥2 denote, respectively, the PAGs output by the CCD algorithm when given Qx and
Qi as input

Case 1: Q\ and Qi fail to satisfy CET(I)
In this case the two graphs have different p-adjacencies. Let us suppose without loss of
generality that there is some pair of variables, X and Y which are p-adjacent in Qi and not
p-adjacent in Qi. Since X and Y are p-adjacent in Q\, X and Y are d-connected
conditional upon any subset of the other vertices. Hence there is an edge between X and

Since X and Y are not p-adjacent in £72, there is some subset S, (X,Y£ S) such that X and
Y are d-separated in Qi given S. It follows from Lemma 3, that X and Y are d-separated
by a set of variables T, such that either T is a subset of the vertices p-adjacent to X, or T
is a subset of the vertices p-adjacent to Y. It follows that in step HA of the CCD algorithm
the edge between X and Y in *F would be removed. Since edges are not added back in at
any later stage of the algorithm, there is no edge in HKo between X and Y. Hence *Fi and
4*2 are different.

Case 2: Qi and fr fail to satisfy CET(IIa)
We assume that Q\ and £2 satisfy CET(I). In this case the two graphs have different
unshielded non-conductors. Without much loss of generality, suppose that there is some
triple of vertices <X,Y,Z> such that in Q\, Y is an ancestor of X or Z, while in (72 Y is not
an ancestor of either X or Z.

If Y is an ancestor of X or Z then it follows from the corollary to Lemma 4 that every set
which d-separates X and Z includes Y. Hence Ye Sepset(X,ZA in Q\. Thus <X,Y,Z> is
marked as X*-*Y*-*Z in step flB. It then follows from the correctness of the algorithm
that in Wu either X*->Y—*Z, X*—Y<-*Z, or X*-*Y*-*Z.
If Y is not an ancestor of X or Z in Qi, then Y is not in any minimal d-separating set for
X and Z. In particular Yg Sepset(X,Z) for Qi. Again it follows from the correctness of the
algorithm that <X,Y,Z> is oriented as X*->Y<-*Z, or X*->Y<-*Z in *F2- Thus *¥\ and

are different.

Case 3: Qi and Qi fail to satisfy CET(IIb)
We assume that Q\ and Q2 satisfy CET(I), CET(IIa). In this case the two graphs have
different unshielded imperfect non-conductors, i.e. there is some triple <X,Y,Z> such that
it forms an unshielded non-conductor in both Q\ and Q2-, but in one graph Y is a
descendant of a common child of X and Z, while in the other graph it is not. Let us
assume that Y is a descendant of a common child of X and Z in Q\, while in (72 it is not
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It follows from Lemma 8 that in Q\9 X and Z are d-connected given any subset containing
Y. In this case the search in CCD section flD will fail to find any set SupsepseKX,Y,Z>.
Hence in *Fi <X,Y,Z> will be oriented as X*->Y<-*Z (i.e. without dotted underlining).
If Y is not a descendant of a common child of X and Z in £72, then it follows from Lemma
9 and Lemma 10, that there is some subset T of LocalCP2,X), such that X and Z are
d-separated given T u ( Y ) u Sepset<X,Z>. Section flD will find such a set T, and hence
<X,Y,Z> will be oriented as X*->Y<-*Z in ¥2. Since no subsequent orientation rule
removes or adds dotted underlining, it follows immediately that *Fi and ¥2 are different.

Case 4: Qi and (ji fail to satisfy CET(III)
We assume that Qx and Q2 satisfy CET(I), CET(IIa), CET(IIb). In this case the two
graphs have the same p-adjacencies, and unshielded conductors, perfect non-conductors,
and imperfect non-conductors. However, the two graphs have different mutually
exclusive conductors. Hence in both Q\ and Qi there is an uncovered itinerary,
<Xo,...Xn+i> such that every triple <Xk-i,Xk,Xk+i> (l<k<n) on this itinerary is a
conductor, but in one graph <XQ,XI ,X2> and <Xn_i,Xn,Xn+i> are mutually exclusive, i.e.
Xi is not an ancestor of Xo, and Xn is not an ancestor of Xn+i, while in the other they are
not mutually exclusive. Let us suppose without loss of generality that <Xo,Xi,X2> and
<Xn_i,Xn,Xn+i> are mutually exclusive in Q\9 while in £72 they are not.
It follows from the definition of m.e. conductors that in Q\, the vertices Xi,. . .Xn ,
inclusive are not ancestors of Xo or Xn+i. Hence {Xi,...Xn} n Sepset(Xo,Xn+i) = 0,
since Sepset(Xo,Xn+i) is minimal, and so is a subset of Ancestors(Xo,Xn+i). (Here we
refer to Sepset(Xo,Xn+i) calculated for Q\.) For the same reason Descendants({Xi,...,
Xn}) ^ Sepset(Xo,Xn+i) = 0. It follows from the definition of m.e. conductors on an
itinerary that X^ is an ancestor of X^+i (1 < k < n), thus there is a directed path P^=
Xfc—»...—>Xjc+i. Since no descendant of Xi,...Xn is in Sepset(Xo,Xn+i), each of the
directed paths Pk d-connects each vertex Xk to its successor Xk+i (1 < k < n), conditional
on Sepset(Xo,Xn+i). In addition, since XQ and Xi are p-adjacent there is some path Q
d-connecting Xo and Xi given Sepset(Xo,Xn+i). Since each Pi is out of Xi (i.e. the path
goes Xi->...-»X0, by applying Lemma 3.3.1+, with 3:={Q,Pi,...Pn}, R = <X0>.-.Xn>, S
= Sepset(Xo>Xn+i) a path d-connecting Xo and Xn given Sepset(Xo,Xn+i) can be
constructed. A symmetric argument shows that Xi and Xn+i are also d-connected given
Sepset(Xo,Xn+i). It then follows that the edges Xo*—*Xi and Xn*—*Xn+i are oriented
as Xo*—>Xi and Xn<—*Xn+1 in ^ by stage flC of the CCD algorithm (unless they have
already been oriented this way in a previous stage of the algorithm). Thus again, by the
correctness of the algorithm these arrowheads will be present in *Fi. (Subsequent stages
of the algorithm only add '-' and V endpoints, not V endpoints. If either of the arrowhead
at Xi or Xn were replaced with a '-' the algorithm would be incorrect.)
Since by hypothesis, <Xo>Xi,X2> and <Xn-i,Xn,Xn+i> are not mutually exclusive in £2,
either Xi is an ancestor of Xo, or Xn is an ancestor of X n + i , it follows from the
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correctness of the orientation rules in the CCD algorithm that the edges Xo*-—*Xi and
Xn*—*Xn+i will not both be oriented as Xo*—>Xi and Xn<—*Xn+i in *F2. Thus Yi
and ^2 will once again be different.

Case 5: Qi and Qi fail to satisfy either CET(TV) or CET(V)
We assume that Qx and g2 satisfy CET(I)-(HI).20 If Qx and Q2 fail to satisfy either
CET(IV) or CET(V), then in either case we have the following situtation: There is some
sequence of vertices in Q\ and (ji<Xo,Xi,...Xn, Xn+i>, 21 satisfying the following:

(a) if i > j then X* and Xj are p-adjacent if and only if i=j+1,
(b) Xi is not an ancestor of XQ, and Xn is not an ancestor of Xn+1, and
(c)Vk, 1 < k < n, Xk-u and X^+i are ancestors of X^.

In addition there is some vertex V, p-adjacent to Xo and Xn+i in Q\ and Q2 , not an
ancestor of XQ or Xn+i in Q\ or Qi and not a descendant of a common child of XQ and
Xn+i in Q\ or Cp,. As explained in Case 3, this implies in both of the PAGs *Fi and 4/2>
Xo—>y<—xn+i.
Since Qi and Qi fail to satisfy CET(IV) or CET(V), in one graph V is a descendant of X1?

while in the other graph V is not a descendant of Xi. Let us suppose without loss of
generality that V is a descendant of Xi in Q\ , and V is not a descendant of Xi in Qi. As
in previous cases it is sufficient to show that if *Fi and 4*2 are the CCD PAGs
corresponding to Q\ and Q2 respectively, then *Fi and ^2 are different. We may suppose,
again without loss of generality that V is the closest such vertex to any X^ (1< k < n) in
Qi, in the sense that the shortest directed path PsX^—>...-» V in Q\ contains at most the
same number of vertices as the shortest directed path in Q\ from any X^ ( l<k < n) to
some other vertex V satisfying the conditions on V.

V
Claim: Let W be the first vertex on P which is p-adjacent to V, (both in Q\ and Qi since
by CET(I) (j\ and £72 have the same p-adjacencies). We will show that the assumption
that V is the closest such vertex to any X^ (in Qi) together with the assumption that Q\
and Q2 satisfy CET(I)-(III) imply that W is a descendant of Xi in Qi. We prove this by
showing that every vertex in the directed subpath P(Xk, W)=Xk—>...W in Q\ is also a
descendant of Xi in <#.

Proof of Claim: By induction on the vertices occuring on the path P(Xk, W).
Base: X^. By hypothesis X^ is a descendant of Xi in both Q\ and £72.

conditions under which CET(IV) or CET(V) fail are quite intricate precisely because the assumption
that CET(I)-(III) are satisfied implies that the graphs agree in many respects.
21 In the case where CET(IV) fails n=l, while if CET(V) fails, n>l.
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Inductive Case: Yr; where P(Xk, W^Xk->Yi-^...->Y r-^...Y tsW. By the induction
hypothesis, for s < r, Ys is a descendant of Xi in Q2. Now there are two subcases to
consider:

Subcase 1: Not both Xo and Xn+i are p-adjacent to Yr.
Suppose without loss that Xo is not p-adjacent to Yr. Since in Q\ there is a directed path
Xo->...Xk—>Y!-^...Yr, by Lemma 13 it then follows that there is some subsequence of
this sequence of vertices, Q^<Xo,...Yr> such that consecutive vertices in Q are
p-adjacent, but only these vertices are p-adjacent. Moreover, since Xo is not p-adjacent to
Yr, this sequence of vertices is of length greater than 2. i.e. Q=<Xo,D...Yr> where D is
the first vertex in the subsequence after Xo, hence either D=XK (1 < K < k) or D=Y^,
(1 < | i < r). Since in either case D is a descendant of Xi in both Q\ and £2, (either by the
inductive hypothesis or by the hypothesis of case 5), but Xo is not a descendant of Xi in
Qi or £72 it follows that D is not an ancestor of Xo in Q\ or ^2. Hence we may apply
Lemma 14, to deduce that Yr is a descendant of D. Hence Yr is a descendant of Xi, since
Xi is an ancestor of D.

Subcase 2: Both Xo and Xn+i are p-adjacent to Y r

First note that in Q\ the vertex Yr is a descendant of X^, and X^ is not an ancestor of X$
or Xn+i. It follows that Yr is not an ancestor of Xo or Xn+i in Q\ . Moreover, since Xo
and Xn+i are not p-adjacent, <Xo,Yr,Xn+i> forms an unshielded non-conductor in Q\.
Hence <Xo,Yr,Xn+i> forms an unshielded non-conductor in Qi, since by hypothesis Q\
and Qi satisfy CET(IIa). So Yr is not an ancestor of Xo or Xn+i in Q\ or Qi. Further, since
Yr is an ancestor of V in Q\ and V is not a descendant of a common child of Xo and Xn+i
in Q\, it follows that Yr is not a descendant of a common chnd of XQ and Xn+i in Q\.
Thus <Xo, Yr,Xn+i> forms an unshielded imperfect non-conductor in Q\y hence also in
£2, since Q\ and Q2 satisfy CET(I),(IIa) and (lib).22 Now, if Yr were not a descendant of
Xi in £72 > then Y r would satisfy the conditions on V, yet be closer to X^ than V (Yr

occurs before V on the shortest directed path from Xk to V in Q\). This is a contradiction,
hence Y r is a descendant of Xk in Q2.

This completes the proof of the claim. We now show that *Fi and ^ 2 are different.

Consider the edge W*-*V in *Fi. In Qi, W is an ancestor of V, hence it follows from the
correctness of the algorithm in *Pi this edge is oriented as Wo-* V or W—* V.

2 2If Qx and Q2 satisfy CET(I), CET(Ha), CET(IIb) then they have the same p-adjacencies, the same
unshielded conductors and the same unshielded perfect non-conductors. Thus all other unshielded triples
which are not conductors or perfect non-conductors are imperfect non-conductors. Hence Qx and Q2 have
the same imperfect non-conductors.
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In <j2, however, since Xi is not an ancestor of V, but, as we have just shown Xi is an
ancestor of W, it follows that W is not an ancestor of V. There are now two cases to
consider:

Subcase 1: n=l, and W=Xi

In this case Xo—>Xi<—X2, in *F2 (and ¥1). Supsepset(Xo,V,X2) is the smallest set
containing Sepset(Xo,X2)u{ V} which d-separates Xo and X2, in the sense that no subset
of Supsepset (Xo,V,X2) which contains Sepset(Xo,X2) u{V} d-separates Xo and X2. It
follows from Lemma 4 (with R =Sepset(Xo,X2) u {V}) that every vertex in
Supsepset(X0,V,X2) is an ancestor of Xo, X2 or Sepset(X0,X2) u{V} . Since every
vertex in Sepset(Xo,X2) is an ancestor of Xo or X2, it follows that every vertex in
Supsepset(Xo,V,X2) is an ancestor of Xo, X2 or V. Xi is not an ancestor of Xo or X2, or
V in §2- Hence in step flD of the algorithm given a d-separation oracle for £72 as input
Xi£ Supsepset(X0,V,X2). Thus step flE of the CCD algorithm will orient Wo-*V in ¥2
as W<-* V (unless they have already been oriented this way in a previous stage of the
algorithm). Thus *Fi and ¥2 are not equivalent

Case 2: n>l ,orW^Xi.
Claim: Xo and Xn+i are d-connected given Supsepset(X0,V,Xn+1)u{ W} in fy.
Proof: We have already shown that W is a descendant of Xi, and so also of Xn in Q\ and
CJ2. Since in both Q\ and Q2 Xo is p-adjacent to Xi, but Xi is not an ancestor of Xo, it
follows that Xo is an ancestor of Xi. Hence in both Q\ and Qz there is a directed path PQ
from Xo to Xi on which every vertex except for Xo is a descendant of Xi. (In the case
Xo—>Xi, the last assertion is trivial. In the case where Xo and Xi have a common child
that is an ancestor of Xo or Xi, and Xi is not an ancestor of XQ, it merely states a property
of the path Xo~^C-^...Xi, where C is a common child of Xo and Xi.) Since W is a
descendant of Xi, it follows that there is a directed path Pi from Xi to W. Concatenating
Po and Pi we construct a directed path P* from Xo to W on which every vertex except Xo
is a descendant of Xi. Since Xi is not an ancestor of Xo, Xn+i or V, it follows that no
vertex on P*, except Xo, is an ancestor of Xo, Xn+i or V. Similarly we can construct a
path from Q* from Xn+i to W on which no vertex, except Xn+i, is an ancestor of Xo,Xn+i
orV.

Since every vertex in Supsepset(Xo,V,Xn+i) is an ancestor of Xo, Xn+i or
Sepset(Xo,Xn+i)u{ V}, it follows as before that every vertex in Supsepset(Xo,V^Xn+i) is
an ancestor of Xo,Xn+i or V. Thus no vertex in Supsepset(Xo,V,Xn+i) lies on P* or Q*
(Xo, Xn+i £ Supsepset(Xo,V,Xn+i) by definition). It now follows by Lemma 3.3.1+that
we can concatenate P* and Q* to form a path which d-connects Xo and Xn+i given
Supsepset(X0,V,Xn+i)u{W}.
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It follows directly from this claim that step flF of the CCD algorithm will orient V*-oW
as V—>W in ¥2 (unless they have already been oriented this way in a previous stage of
the algorithm). Hence *Fi and ¥2 are different.

Since Cases 1-5 exhaust the possible ways in which Q\ and Qi may fail to satisfy
CET(I)-(V), this completes the proof that the CCD algorithm locates the d-separation
equivalence class. .*.
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