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1. Introduction

Many theories suppose there are variables that have not been measured but that influence

measured variables. In studies in econometrics, psychometrics, sociology and elsewhere

the principal aim may be to uncover the causal relations among such "latent11 variables. In

such cases the measuring instruments are often designed with Tairly definite ideas as to

which measured items are caused by which unmeasured variables. Survey questionnaires

may involve hundreds of items, and the very number of variables is ordinarily an

impediment to drawing useful conclusions about structure.
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In this paper I propose an algorithm for constructing a set of causal structures from

sample data, given some background knowledge about which measured variables are

indicators of which latent variables. The algorithm is an extension of work described in

Chapter 10 of Spirtes, Glymour and Scheines(1993), and Scheines(1993). Under a set of

assumptions stated in the following sections, the set of alternative models output from

population statistics is certain to contain the true model. The algorithm performs

statistical tests on samples of measured variables in order to make decisions about

conditional independence relations2 among the latent variables in the population. These

decisions about conditional independence relations in the population are then used to

construct (using the PC or FCI algorithms described in Spirtes, Glymour, and Scheines,

1993) a set of causal structures compatible with the conditional independence relations

judged to hold in the population.

Section 2 describes the problem more precisely. Section 3 lists the assumptions made and

outlines the algorithm. Sections 4, 5, and 6 describe the three portions of the algorithm in

more detail. Finally, section 7 describes a simulation study of an application of the

algorithm to linear models. The proofs of the theorems are in the Appendix (except for

Theorem 1, which is a slight modification of a theorem proved in Spirtes, Glymour and

Scheines(1993) and Scheines(1993).)

2. Directed Acyclic Graph (DAG) Models

Factor analysis models, path models with jointly independent errors, recursive linear

structural equation models with jointly independent errors, and various kinds of latent

variable models including latent class analysis models, latent profile analysis models, and

latent trait analysis models, are all instances of DAG models.

A directed graph3 is an ordered pair of a finite set of vertices V, and a set of directed

edges E. A directed edge from A toB is an ordered pair of distinct vertices <AJB> in V in

which A is the tail of the edge and B is the head; the edge is out of A and into/?, and A is

parent of B and B is a child of A. A and B are adjacent if and only if there is a directed

edge from A to B or from B to A. A sequence of vertices ^/i9...9Vn> in G is an

undirected path between V\ and Vn if and only if for 1 <i < n, V[ and V^-i are adjacent

in G. A path U is acyclic if no vertex in the path occurs more than once. A sequence of

2"Conditional independence relations" refers to both independence relations and conditional independence
relations.
3Sets of variables and terms being defined are placed in boldface, and individual variables in italics.



vertices <V\9...yn> in G is a directed path from Vi to Vn if and only if for 1 </ < n,

there is a directed edge from V/ to V^-i in G. If there is an acyclic directed path from A to

B or B = A then A is an ancestor of B, and B is a descendant of A. A directed graph is

acyclic if and only if it contains no directed cyclic paths.

A directed acyclic graph (DAG) G with a set of vertices V can be given both a causal

interpretation and a statistical interpretation. A set V of variables is causally sufficient in

a given population if and only if every common cause of a variable in V is also in V. A

DAG can be used to represent causal relationships between causally sufficient sets of

variables; under this interpretation a DAG will be called a causal DAG. If V is a causally

sufficient set of variables, there is an edge from A to B in a causal DAGG with variables

V if and only if A is a direct cause of B relative to V. On the other hand, a DAG with a

set of vertices V can also represent a set of probability measures over V. Following the

terminology of Lauritzen et al. (1990) say that a probability measure over a set of

variables V satisfies the local directed Markov property for a DAG G with vertices V

if and only if for every W in V, W is independent of V\(Descendants(W,G) u

Parents(W,G)) given Parents(W,G), where Parents(W,G) is the set of parents of Win G,

and Descendants(W^,G) is the set of descendants of W in G. A DAG G represents the set

of probability measures which satisfy the local directed Markov property for G. If a

conditional independence relation is true in every probability measure that satisfies the

local directed Markov property for DAG G, say that G entails the conditional

independence relation. If every conditional independence relation true in a probability

measure P is entailed by DAG G, say that P is faithful to G. The use of DAGs to

simultaneously represent a set of causal hypotheses and a family of probability measures

extends back to the path diagrams introduced by Sewell Wright(1934). Variants of DAG

models were introduced in the 1980's in Wermuth(1980), Wermuth and Lauritzen(1983),

Kiiveri, Speed, and Carlin(1984), Kiiveri and Speed(1982), and Pearl(1988). For

simplicity, it will always be assumed that the probability measures represented have

densities. Then if a probability measure with density /(V) satisfies the local directed

Markov property for DAG G, there is a factorization off(V) of the form:

VeV

Recursive linear structural equation model, or RSEMs (adapting the terminology in

Bollen, 1989) with jointly independent error terms can be represented as DAG models in



which each variable is a linear function of its parent in the DAG and an error term with a

non-zero variance. The error terms are not represented in the DAG. Call the assignment

of the coefficients and the variances of the exogenous variables a linear parameterization

of a DAG. The linear coefficients and the variances of the exogenous variables determine

the correlation matrix. In order to fully specify the probability measure, it is necessary to

specify the joint probability measure over the exogenous variables. It will be assumed

that the error terms are jointly independent for a causally sufficient set of variables.

Again, this assumption does not entail that any given set of measured variables are jointly

independent; this will not be the case if the measured variables are not causally sufficient.

Rather, the assumption is that the probability measure over the measured variables is the

marginal of a probability measure with jointly independent errors.

Latent class analysis model, described in Bartholomew(1987) are special cases of DAG

models in which all of the variables are discrete. In a discrete DAG model all of the

variables are discrete variables with a finite number of categories, and the joint

probability measure can be factored into the form:

P(V) = f j WParents(V,G))
VeV

A discrete parameterization of a DAG G assigns values to /*(V1Parents(V0) for each V in

the DAG. i

The goal is to infer causal relationships among a set of latent variables L, given a set of

measured variables M that are indicators of variables in L. It is assumed that there is

sample data for the measured variables, and from background knowledge the user

specifies which variables in M are indicators of which variables in L. For example the

variables in L might be various psychological attributes, and the variables in M answers

to test questions intended to measure those attributes. M u L may not be a causally

sufficient set of variables. However, it will always be assumed that there is some set of

variables O such that M u L u O i s causally sufficient It is also assumed that if the user

specifies that a variable M in M is an indicator of a variable L in L, then M is a child of L

in the causal graph (i.e. there is a directed edge from L to M.) However, it is not assumed

that M is directly causally connected only to the variable in L that the user has specified it

is an indicator of, i.e. M may also be the child of some other variable i n M u L u O .



The DAG in figure 1 will be used to illustrate the algorithm.

Figure 1: True Causal DAG G

Suppose that M = {A\MMM^2fi3,C\yC%C3^4J\^2^3J^4M,E2,EzM\, L =
{AJS.CJD.E}, and M u L i s causally sufficient Suppose that the user specifies that each
variable in M is indicator of the variable with the corresponding name in L (e.g. A\9 A%

and A3 are indicators of A). Each variable in M is a child of some variable in L. In
general, Measured(L) is the subset of variables in M that the user has specified as
indicators of L, and Latent(M) is the latent variable specified by the user as the latent that
M is an indicator of. For example, in figure 1, Measured(A) = {Ai,A2^3} and Latent(Ai)

= A. Call the subgraph containing only the variables i n L u O and the edges between
those variables the structural graph. The graph with the edges between variables in L u
O removed is called the measurement graph.

In contrast to the previous case, suppose instead that the set of measured variables M =
{Ai,A2A3,Ci9C2,C3,C4j)iJD2J)3J)4J£l£2£3,E4h i.e. the variables {BiJB2^3} were
not measured. In this case L = {A,CJDJL} (because no variable in M is an indicator of B )
and M u L i s not causally sufficient However, if O = {B}, then M u L u O i s causally
sufficient.

It is not assumed that a variable M in M is directly causally connected only to Latent(M).
For example, C\ is a child of C2, both of which are indicators of C. D\ is a child of B2,



which is an indicator of another latent variable, B. Finally, E\ is a child of another latent

variable, D. The edges between measured variables and variables that they are not

intended to be indicators of are in boldface in figure 1.

3. Outline of the Algorithm

In this section, the inputs, outputs, and basic structure of the algorithm are described.

3.1 The Input

The input to the algorithm is:

1. sample data for a set of measured variables M;

2. an initial measurement DAG which is a subgraph of the true measurement

DAG, and in which each measured variable is listed as an indicator of exactly one

latent variable in L, and each latent variable in L has at least one measured

indicator;

3. an assumption about the family of distributions that the true model lies in,

either discrete (including a specification of the number of categories for each

latent variable), or linear,

4. optional background knowledge (such as time order) constraining the causal

relationships among the latents;

5. an optional assumption about the causal sufficiency of the latent variables;

6. a significance level for the statistical tests to be performed.
n

For the example of figure 1, an example of an initial measurement DAG is shown in

figure 2.



C1 C2 C3 C4

Dx D2 D3 D4

Figure 2: Initial Measurement DAG

3.2 The Output

The algorithm can be ran either under the assumption that the latent variables are causally

sufficient, or that the latent variables are not causally sufficient. In either case, the output

is a set of DAGs. However, the conventions by which sets of DAGs are represented is

much more complicated in the latter case. Hence, this section will describe the

representation conventions only for the former case. The representation conventions for

the latter case are described in Chapter 6 of Spirtes, Glymour, and Scheines(1993).

In order to describe the output of the algorithm the following definitions are needed. Two

DAGs with the same set of variables are faithfully indistinguishable if and only if they

entail the same set of conditional independence relations. The f a i th fu l

indistinguishability class of a DAG G is the set of DAGs faithfully indistinguishable

from L. In some, but not all cases, the faithful indistinguishability class of a DAG G

contains a single DAG.

If causal sufficiency of the latent variables is assumed, the algorithm outputs a pattern

containing the variables in L (see Verma and Pearl, 1990) that represents the subset of a

faithful indistinguishability class of DAGs compatible with the optional background

knowledge about the causal structure. A pattern is a graphical object that may contain

both directed edges and undirected edges. In a DAG or a pattern, B is an unshielded



collider on a path U containing <AJS7C> if and only if U contains edges A -> B and C ->

B, and A and C are not adjacent in G. A DAG G is in the set of graphs represented by /7if

and only if:

(i) G has the same adjacency relations as 77;

(ii) if the edge between A and B is oriented A -> B in 77, then it is oriented A -> B in

G;

(iii) if F is an unshielded collider on the path <XJZ> in G then Y is an unshielded
collider on <X,Y£> in 71

Figure 3 illustrates a pattern and the three DAGs that it represents.

D

(ii) (iii)

Figure 3: Pattern Representing Faithful Indistinguishability Class of DAG G

Given that figure 1 shows the true causal DAG, and figure 2 the initial measurement

DAG, the pattern in figure 3 is the output of the algorithm.

3.3 Outline of the Algorithm

The basic outline of the algorithm is as follows:



1. Given a set of measured variables, find a subset of the measured variables which are

almost pure (which, roughly speaking, means that in the true measurement DAG for that

subset of measured variables, each measured variable in the subset is not directly causally

related to any variables except the latent variable the user specifies that it is an indicator

of.) A more precise account of this step and the exact definition of almost purity are

given in section 5.

2. Give the sample data for the subset of measured variables chosen in step 1 to the PC

algorithm (described in section 4) if the assumption of causal sufficiency of the latent

variables is made, or to the FCI algorithm, if it is not

a. The PC or FCI algorithms test various conditional independence relations among

the latent variables using the tests described in section 6. (In the case of linear

parameterizations of DAGs, the algorithm uses tests of zero partial correlations

instead of tests of conditional independence, even if the probability measure is not

normal.)

The point of step 1 is that is that the subset of variables that it selects have a known

measurement DAG. Then using the known measurement DAG, it is possible to detect

features of the causal relations between the latent variables.

3.4. The Correctness of the Algorithm

In the linear case, in the large sample limit, the set of DAGs represented by the output of

the algorithm contains the true structural DAG G with probability 1 under the following

assumptions:

1. the user input is correct;

2. the Causal Markov Condition holds: if G is a causal DAG with causally

sufficient vertex set V and P is a probability measure over the vertices in V

generated by the causal structure represented by G then G and P satisfy the Causal

Markov Condition if and only if for every W in V, W is independent of

VXDescendants(WO u Parents(HO) given Parents(WO-

3. the Causal Faithfulness condition holds: if G is a causal DAG over a causally

sufficient set of variables V, and P a probability measure generated by G then <G,

P> satisfies the Faithfulness Condition if and only if every conditional

independence relation true in P is entailed by the Causal Markov Condition

applied to G;
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4. the true caual DAG has a non-zero prior probability, and for each DAG, the

prior distribution over the linear parameters for that DAG (the linear coefficients

and the variances of the error variables) is absolutely continuous with Lebesgue

measure;

5. after step 1 of the algorithm, each latent variable has at least three measured

indicators.

The proof of this follows from the theorems stating the correctness of the individual steps

*n the algorithm given in the following sections.in

The correctness of the tests used in step 2a require that the output of step 1 be a subset of

measured variables with an almout pure measurement DAG. In the discrete case, while

there are necessary conditions for a subset of variables to be almost pure (stated in

section 5), I do not know of any sufficient conditions. So the assumptions needed to

prove the corresponding correctness result for the discrete case are the same as above,

except that assumptions 4 and 5 are replaced with the assumption that the subset of

variables output by step 1 is almost pure.

The meaning and justification of assumptions 2 and 3 are discussed more fully in Spirtes,

Glymour and Scheines(1993). However, if one makes these assumptions then the

probability measure of data generated by a causal process represented by causal DAG G

is a member of the set of probability measures represented by TrAG G.

In assuming the Causal Markov and Faithfulness Conditions it is not being assumed that

any given set of measured variables is causally sufficient. It is assumed that the

probability measure over a set of measured variables is the marginal of a probability

measure faithful to the causal graph that generated it. In figure 1, {Ai^A?,} *s n o t a

causally sufficient set of variables, but it can be expanded to the causally sufficient set of

variables { A i ^ ^ ^ L and it is assumed that the probability measure over {A\yA2yA^>A}

is faithful to the subgraph of G containing just those variables.

Under the assumption that the set L of latent variables is causally sufficient, for models

with causal graphs represented by DAGs of a fixed maximum order (the order of a vertex

is the number of other vertices it is adjacent to) the number of tests of conditional

independence relations the algorithm must perform is polynomial in the number of latent

vertices.
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4. The PC and FCI Algorithms

The PC algorithm takes as input optional background information about the causal

structure, and uses tests of conditional independence relations among a set of variables V

to construct a pattern containing variables V that represents the subset of a faithful

indistinguishability class compatible with the user entered background knowledge. The

current implementation (see Scheines, Spirtes, Meek, and Glymour forthcoming) uses the

sample data for the measured variables to test conditional independence relations among

the measured variables. This version of the algorithm could not be applied to the problem

described here, because the measured variables are not causally sufficient. However, the

next two sections describe how to use sample data for the measured variables to test

conditional independence among the latent variables. If the set of latent variables is

causally sufficient, the PC algorithm can then use these tests to construct a pattern

containing the latent variables.

Like the PC algorithm, the FCI takes as input optional background information about the

causal structure, and uses tests of conditional independence relations to construct a set of

causal DAGs. The current implementation (see Scheines, Spirtes, Meek, and Glymour

forthcoming) also uses the sample data for the measured variables to test conditional

independence relations among the measured variables. Unlike the PC algorithm, the FCI

algorithm does not assume that the measured variables are causally sufficient, so it could

be applied directly to the sample data for the measured variables. However, while the

output of the FCI algorithm is in some cases informative about the existence and

relationships among latent variables, in the kinds of models considered here, the output

would be correct but extremely uninformative in the sense that it places very few

constraints on the causal relationships among the latent variables. The methods for testing

conditional independence among the latent variables using the sample data among the

measured variables described in the next two sections make the output of the FCI

algorithm much more informative for the kinds of models considered here.

Given the first three assumptions listed in section 3.4, and correct statistical decisions

about conditional independence relations in the population, the output of both the FCI

and PC algorithms are correct in the sense that the true causal DAG is a member of the

set of DAGs represented by their output.
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5. Purification

Before testing for conditional independence relations among the latent variables, a search

is performed for a submodel of the measurement DAG of M u L in which the measured

variables bear a particularly simple relationship to the latent variables. The basic idea is

to find a subset M1 of M such that every variable M in Mf is a child of no other variable

i n M ' u L u O except for Latent(M). In that case we say that the measurement DAG is

pure. Finding such a subset is called purification of the measurement DAG. (Anderson

and Gerbing, 1982, Anderson and Gerbing, 1988, Spirtes, Glymour, and Scheines, 1993,

and Scheines, 1993 all discuss purification in the linear case.) By purifying a

measurement DAG it is possible to determine the form of the measurement DAG without

knowing the structural model. Then, using the known form of the measurement DAG, it

is possible to determine the conditional independence relations among the latent

variables.

5.1 The Input

The input to the algorithm is:

1. sample data for a set of measured variables M;

2. an initial measurement DAG that is a subgraph of the true measurement DAG,

and in which each measured variable is listed as an indicator of exactly one latent

variable in L, and each latent variable in L has at least one measured indicator;

3. an assumption about the family of distributions that the true model lies in,

either discrete (including a specification of the number of categories for each

latent variable), or linear;

4. a significance level for the statistical tests it performs.

5.2 The Output

The output of the algorithm is a pure measurement DAG that contains a subset of the

variables in M. For example, if figure 1 is the true causal DAG, (where L = {AJB,CJ),E},

M = {Ai4243^ i^233>Ci ,C2 ,C3 ,C 4 A^2^3^4 ,£ l^2^3^4} and O = 0 ) , the true

measurement DAG is not pure, because D\ is is a child of 2?2 as well as D; C\ is a child

of C*i as well as C; and E\ is a child of D as well as E. However, the true measurement

DAG for the subset of M that does not contain D\, C2, or E\ is pure. If the initial

measurement DAG is the DAG in figure 2, the output of the algorithm is the pure

measurement DAG shown in figure 4.
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F F F
C 2 C 3 C 4

D2 D3 DA

Figure 4: Purified Measurement DAG

There are other subsets of M that also have pure measurement DAGs. For example, the

subset of M that does not contain £>2, C% or E\ has a pure measurement DAG.

5.3 Outline of the Algorithm
A one factor DAG of a set of variables X is a DAG with a set of vertices X u {L}, and

edges from L to each member of X. The following procedure is a generalization of a

procedure described in Scheines(1993). An n x 1 set of variables consists of n variables

that are indicators of one latent and one variable that is an indicator of another latent. The

following algorithm performs a number of statistical tests of one factor models. If the true

causal DAG is assumed to be a linear RSEM, then the statistical tests are done under the

assumption that each one factor model is a linear RSEM. If the true causal DAG is

assumed to be discrete (where for each latent variable, the number of categories is

specified) the statistical test for a one factor model of an n x 1 set of variables is done

under the assumption that the one factor model is discrete. In addition, the number of

categories for the latent variable in the one factor model is set equal to the number of

categories for the latent variable with n indicators in the set of measured variables.

For each variable M in M, let score(M) be the number of n x 1 sets of variables

containing M such that the one factor model of M fails a statistical test, and no one factor
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model of a subset of the n x 1 set of variables is overidentified. The simplest version of

the algorithm is presented below.

set NT = M;

repeat

for each variable M in Mf, calculate score(M);

for some variable M in Mf such that no other variable in Mf has a higher score,

remove M from Mf;

until for each M in M \ score(M) = 0.

The scoring function can also be modified to take into account how badly a one-factor

model fails a test, as well as how many tests are failed. The algorithm could also be

halted if at some point the number of one factor models failing tests is small, and

removing many more variables fails to change that number much.

Suppose that the data was generated by a linear parameterization of the DAG in figure 1.

The user inputs a pure measurement DAG shown in figure 2. The output of the

purification algorithm is shown in figure 4. No matter what the causal relationships

between the latents, a DAG with the measurement DAG shown in figure 2 is not entailed

to fit the data because in the true DAG there are edges from C2 to Ci, from B2 to£>i, and

from D to E\. For example, as explained below, any 3 x 1 foursome that contains an

indicator of D and any three indicators of E including E\, is not entailed to have a one

factor linear model. On the other hand any 3 x 1 foursome that contains an indicator of D

and any three indicators of E excluding E\, is entailed to have a one factor linear model.

So E\ occurs in more foursomes of variables that fail one factor tests than E% E3, or £4,

and at some point in the algorithm, E\ is be a better candidate for removal than any other

variable that has not yet been removed from Mf.

It is possible to test for the existence of one factor linear models in a variety of different

ways. See Bartholomew(1985) for a summary of methods relevant to such tests. Relevant

tests of models are also discussed in Akaike(1983), Schwartz(1978), and Bozdogan and

Ramirez(1986) for normally distributed variables, and Amemiya and Anderson(1985),

Fachel(1984) and Hakistan, Rogers and Cattell(1982) for non-normally distributed

variables. Another method described in Spirtes, Glymour, and Scheines(1993) and

Scheines(1993) uses tests of vanishing tetrad differences among the measured variables.

A tetrad difference among four measured variables is of the form
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)> where p^X\Xl) represents the correlation of X\ and X% For a given

set of four variables, there are 3 different tetrad differences among the four variables

(which can be formed by permuting the order of the variables in the example given).

There is a one factor linear model of the four variables X\, X2, X3, and X4 if and only if

all three tetrad differences among the four variables are equal to zero. There is a

statistical test for vanishing tetrad differences for normally distributed variables devised

by Wishart(1928), and an asymptotically correct distribution free test devised by

Bollen(1990). A simultaneous test for multiple vanishing tetrad differences can be

approximated by making a Bonferroni adjustment (see BoUen 1990). The advantage of

testing the tetrad differences is that it does not require maximum likelihood estimates of

the parameters, which can be slow and suffer from convergence problems. By increasing

the sample size and decreasing the significance level it is possible to reduce the

probability of type I and type II errors simultaneously.

In the discrete case, whether the one factor places constraints on the measured marginal

or not depends upon the number of categories for the measured and latent variables.

Bartholomew(1980), Holland(1981), and Rosenbaum(1984) describe tests for one factor

models assuming the measured variables are binary, and the probability of a positive

response increases monotonically with increasing values of the latent variable. A more

general method of testing whether there is a one factor discrete model is to compare the

observed frequencies with those predicted by the model using standard %2 goodness of fit

tests, as in Goodman(1978). (Each one factor model, in addition to being a discrete DAG

model, is also a graphical log-linear model. See Bishop, Fienberg, and Holland, 1975 and

Whittaker, 1990 for descriptions of graphical log-linear models.) Unfortunately, as

Bartholomew(1985) points out, this method is not practical when the number of variables

is large. Aitkin e t al. (1981) used a graphical method to test goodness of fit, but there is

no completely satisfactory method when the number of variables is large.

5.4 Correctness of the Algorithm

Three different kinds of problems can arise when the purification algorithm is applied.

First, the algorithm might remove so many variables from Mf that given the distributional

assumptions (linear or discrete) the only one factor models that can be formed from the

variables remaining in Mf are not overidentified, and cannot be subjected to a statistical

test In such a case, there can obviously be no guarantee that the true measurement DAG

for Mf is pure. In the linear case, as long as there are at least two latent variables, and

each latent variable has at least three indicator in Mf, this is not a problem. In the discrete
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case, whether or not there are overidentified one factor models of n x 1 subsets of

measured variables in Mf depends upon the number of categories of the measured and

latent variables.

Second, it might be that the true measurement DAG does not entail that there exist one

factor models for each n x 1 subset, but it happens to have a parameterization in which

each n x 1 subset has a one factor model of the appropriate kind (linear or discrete). In

Spirtes, Glymour and Scheines(1993) it is shown that the set of linear parameterizations

of G for which tetrad differences are equal to zero when they are not entailed by G to be

equal to 0, has Lebesgue measure 0.1 do not know of an analogous result for the disctete

case.

Third, it is possible that the true measurement DAG entails the existence of the

appropriate one factor models even though it is not pure. However, it turns out that if the

true measurement DAG entails the existence of the appropriate one factor models, it is

guaranteed to be almost pure in the sense defined below, and almost purity is a sufficient

condition for the tests of conditional independence described in the next section to be

correct.

A DAG G is almost pure with respect to function Latent and a partition of V into M, L,

and O if and only if:

1. if M is in Measured(L) then L is a direct cause (parent in the causal graph) of

M with respect t o M u L u O , and

2. for every L in L, Measured(L) is not empty, and

3. for each M e M, G entails that M is independent of (M u L)\{MJLatent(M)}

given Latent(M).

For the case where the probabilty measure over the measured variables is the marginal of

a probability measured generated by a linear RSEM, the next theorem states necessary

and sufficient conditions for a causal DAG to be almost pure. If V has a correlation

matrix C, and S c V , let C(S) be the marginal correlation matrix of C.

Theorem 1: If G is a DAG over a set of variables M u L u O , L contains more than

one variable, and C(M u L u O ) i s generated by a linear parameterization of G, then G

contains an almost pure measurement DAG with respect to function Latent and a

partition of V into M, L, and O if and only if
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1. if M is in Measured(L) then L is a direct cause (parent in the causal graph) of

M with respect t o M u L u O ;

2. for each L G L , there are at least 3 measured variables in Measured(L);

3. for every linear parameterization of G and each 3 x 1 foursome S of measured

variables there is a linear parameterization of a one factor DAG of S with C(S).

This entails that given a prior distribution over DAGs in which the true causal DAG has a

non-zero probability, and for each DAG G the distribution over the linear parameters not

fixed at zero and the variances of the error terms is absolutely continuous with Lebesgue

measure, the probability is one that a set of measured variables is almost pure given that

all of the n x 1 subsets have one factor line models.

A weaker result is available for the discrete case. Theorem 2 states a necessary condition

for a DAG to be almost pure.

Theorem 2: If G is a DAG over a set of variables M u L u O, P(M u L u O ) i s

generated by a discrete parameterization of G, and G is an almost pure measurement

DAG with respect to function Latent and a partition of V into M, L, and O then for every

discrete parameterization of G, for each L e L, and for each subset S c Measured(L),

and single variable M € M\S there is a discrete parameterization of a one factor DAG of

S u {M} with marginal probability measure P(S u {M}), where the latent variable has

the same number of categories as L.

At the end of the purification process for discrete variables, one can test whether the

measurement DAG is almost pure by testing whether there is a parameterization of a

DAG with a pure measurement DAG and all of the latent variables adjacent to each other

that fits the data. If there is no such parameterization, conclude that the subset of

measured variables does not have an almost pure measurement DAG. However, at that

point more heuristics are needed for eliminating further variables to find a subset of

measured variables that do have an almost pure measurement DAG.

6. Testing For Conditional Independence Among Latent Variables

In this section, the inputs, outputs, and basic structure of an algorithm for tesing

conditional independence among latent variables is described.
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6.1 The Input

The input to the algorithm is:

1. sample data for a set of measured variables Mf;

2. an almost pure measurement DAG for M f;

3. an assumption about the family of distributions that the true model lies in,

either discrete (including a specification of the maximum number of categories

for each latent variable), or linear,

4. a specification of the conditional independence relation to be tested;

5. a significance level for the test to be performed.

6.2 The Output of the Algorithm

The output of the algorithm is a yes or no decision about whether the specified

conditional independence relation is judged to hold in the population.

63 Outline of the Algorithm

Given an almost pure DAG G and a probability measure generated by G with density

function /(V), in order to test whether two latent variables A and B are independent

conditional on a set of latent variables Q, a DAG TestiGyAJBSX) will be formed. This

DAG entails exactly one non-trivial4 conditional independence relation among the latent

variables, namely that A and B are independent conditional on Q. Test{G^,B,Q) is

constructed in such a way that A is independent of B given Q in/(V) if and only if there is

a parameterization of 7&rt(G,A,5,Q) such that G has the same Marginal as/(V) over the

variables in Test(GAJB,Q\

If DAG G contains a set of variables V, and G is an almost pure DAG with respect to

function Latent and a partition of V into M, L, and O, let V(A,5,Q) = {Aji} u Q U

Measured({A,2?} u Q). If A and B are inL and Q is included in L, then the set of

vertices in 7&rt(G,A,fi,Q) is the set V(A,Z?,Q); each pair of variables in Q is adjacent; for

each L in {AJi } u Q and each member M of Measured(L), there is an edge from L to M;

there are edges from each member of Q to A and B; there is no edge between A and B.

For example, if G has the measurement DAG shown in figure 3, then Test(GyAJD,{B,C})

is shown in figure 5. Test\GArB9Q) is the same DAG as Test(GAyB9Q) except that

Test'(GAyB9Q) also contains an edge from A toi?. It is assumed that Test'(GAyByQ) is

4A conditional independence relation among variables in V is non-trivial if is not true in every probability
distribution over V.
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identified, which in the linear case is always true as long as each latent variable contains

at least three measured indicators.

Ax A2
 Az

Test (G A JD iB C })

Figure 5

Let p(AyB.Q) represent the partial correlation of A and B given Q. The algorithm for

testing whether p(AyB.Q) = 0 in the linear case, or A and B are independent conditional

on Q in the discrete case is basically the same: if Test(GA>BjQ) is an identified model,

and after consistently estimating the parameters in Test'(GA>B,Q) and Test(GAJi,Q), the

fit of the models to the data is significantly different, the corresponding constraint is

judged not to hold.

In the linear case, there are several different ways of testing if the difference in fit is

significant. One could determine whether the difference in fit of the the two nested

models is significant, using programs such as LISREL (Joreskog and Sorbom, 1984) or

EQS (Bentler, 1985). (There are such tests for normally distributed variables, as well as

asymptotically distribution free tests.) In the linear normal case, one could perform a

maximum likelihood estimate of the parameters of Test(GyAJ}9Q)9 and perform a t-test to

see if the parameter of the edge between A and B is significantly different from zero.

If there are at least three measured indicators for each latent variable, then Test'(G>A>B,Q)

is an identified linear model, and TestiGyAJiQ) is overidentified. Scheines (personal

communication) has pointed out that in testing for zero partial correlations among the

latent variables it is always possible to estimate the correlation matrix among the latents

in TestXGyAJByQ) as long as it is identified. Hence, an alternative procedure is to test for

zero partial correlations among the latents by estimating the correlation matrix among the

latents, and then directly testing for zero partial correlations. The test should take into
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account that the correlation matrix among the latent variables was estimated rather than

measured. Which of these two procedures is more reliable in small samples is not known.

In the discrete case one could compare 7e,rt(G,A,Z?,Q) with Test(G>ArB,Q) by

determining whether the difference in the fit of the two nested models is significant The

parameters can be estimated using the E-M algorithm described in Bartholomew^ 985).

Unfortunately, as Bartholomew(1985) points out, the standard tests of goodness of fit are

not practical when the number of variables is large.

6.4 Correctness of the Algorithm

The tests of conditional independence or zero partial correlation have been reduced to

tests of discrete or linear models. For these tests of models, in the normal case, the

calculation of the probability of type I error is correct, and in the discrete case and the

non-normal linear case, the calculation of the probability of type I error is asymptotically

correct. The correctness of the calculation of the probability of type I error for the tests of

zero partial correlation or conditional independence is guaranteed by the following two

theorems.

Theorem 3: If G is an almost pure DAG with respect to function Latent and a partition of

V into M, L, and O,G has a linear parameterization with marginal correlation matrix

C(Measured({A,#} u Q}), and Test'(G A JB,Q) is identified, then p(A,£.Q) = 0 in C if

and only there is a linear parameterization of Test(G>A A Q ) 'With marginal correlation

matrix C(Measured({A,B} u Q}).

Adapting the notation in Pearl(1988) write I/>(X,Y,Z) if and only if X is independent of Z

conditional on Y in a probability measure P

Theorem 4: If G is an almost pure DAG with respect to function Latent and a partition of

V into M, L, and O, G has a discrete parameterization with marginal />(Measured({A,B}

u Q)), and TestXGAJBQ) is identified, then ]/>(A,Q,Z?) if and only there is a discrete

parameterization of Test(GAJ*,Q) with marginalPflVfeasureddAJi} u Q)).

If the variables in M u L are discrete, then the theorem holds when both Test'(GA>B>Q)

and Test(G>AJi,Q) are also discrete DAG models, with the latent variables in

Test'(G,AJB>Q) and Test(G,AyB,Q) having the same number of categories as the

corresponding variables in {AJB} u Q. (Test'(GAJi,Q) and 7es<G,A,2?,Q), in addition to
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being discrete DAG models, are also graphical log-linear models.) Whether

Test'iGyAJiSX) is identified depends upon the number of categories of the measured and

latent variables.

7. Simulation Tests

In this simulation I tested only the PC algorithm using the test of zero partial correlation

for the linear case described in section 6. For simulation tests of the purification

algorithm, see Scheines, Spirtes, and Glymour (forthcoming).

At sample size 250, ten linear models were generated pseudo-randomly by the following

process. Ten DAGs were generated, where each DAG had a pure measurement DAG in

which there were six latent vertices and each latent vertex had four measured indicators.

The adjacencies between the latent variables were pseudo-randomly generated, where on

average each latent vertex was adjacent to 2 other latent vertices (i.e. the average order of

vertices in the latent subgraph was 2). Each of the error terms was given a standard

normal distribution. The linear coefficients for the existing edges were pseudo-randomly

assigned values between 0.5 and 1.5. Then a pseudo-random sample was generated from

each of the ten models. The sample data was input to the algorithm. Tests of conditional

independence were done with the LISREL program. For each DAG G, and each partial

correlation p(A,#,Q) = 0 tested, the model TesKGAJSyQ) was formed, and given to

LISREL along with the sample data. The parameters were estimated, and if LISREL

judged (using its modification indices) that adding the edge between A and B would

significantly improve the fit of the data the partial correlation was judged to be non-zero.

The pattern output by the algorithm (the "output pattern") was then compared with the

pattern corresponding to the DAG that generated the data (the "true pattern"). Four kinds

of errors were counted. If latent variables A and B were adjacent in the output pattern but

not in the true pattern, this was counted as an edge error of commission. If latent

variables A and B were adjacent in the true pattern but not in the output pattern, this was

counted as an edge error of omission. If A and B were adjacent in both the true pattern

and the output pattern, but the edge between A and B had an arrowhead at one end in the

output pattern but not the true pattern, this was counted as an arrowhead error of

commission. Finally, if A and B were adjacent in both the true pattern and the output

pattern, but the edge between A and B had an arrowhead at one end in the true pattern but

not the output pattern, this was counted as an arrowhead error of omission. This process

was then repeated at sample sizes of 1000, 2500, and 5000, and also with the average
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order of vertices in the latent subgraph set to 3. The results are summarized in the

following tables.

Sample

Size

Sample

Size

Sample

Size

Average Order

250

1000

2000

35.1

17.4

12.8

41.3

28.9

20.4

Table 1: % Edge Errors of Commission

Average Order

250

1000

2000

6.4

1.2

4.2

4.6

3.7

7.5

Table 2: % Edge Errors of Omission

Average Order

250

1000

2000

33.1

11.1

9.3

33.3

16.1

17.7

Table 3: % Arrow Errors of Commission

Average Order

2 3

Sample

Size

250

1000

2000

10.4

7.2

12.1

28.9

20.2

28.9

Table 4: % Arrow Errors of Omission

In general, the algorithm is more accurate on adjacencies than orientations. The overall

performance tends to improve with increasing sample size. The percentage of arrow

errors of omission and commission is quite high even at fairly large sample sizes, when

the graph is not sparse.
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8. Conclusion

The strategy described here for detecting causal relations among latent variables is in

some respects quite general. With respect to the purification algorithm, if G is an almost

pure DAG model, then for any latents L\ and L2, there are one factor models of all

subsets of measured variables that contain a subset of the indicators of L\ and a single

indicator of L^. However, the mere existence of a one factor model does not in general

place any constraints on the observed data, unless the family of probability measures that

the one factor model lies in is restricted. This is most plausibly done by relating the

family of probability measures of the one factor model to the family of probability

measures the model generated by DAG G is assumed to lie in. This is what has been done

for the linear and discrete cases. An open question is whether the same kind of

relationship between the one factor models and the family of probability measures the

model generated by G is assumed to lie in can be demonstrated for other interesting

families of probability measures. Similarly, it is an open question whether the

relationship between Test(GA,ByQ) or Test\GAMyQ) and the family of probability

measures the model generated by G is assumed to lie in can be demonstrated for other

interesting families of probability measures.

JJ
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Appendix

There is a graphical relation, d-separation, which characterizes when a DAG entails that

X is independent of Y given Z, which is used in the following proofs. If X, Y, and Z are

disjoint sets of variables in a DAG G, then X and Y are d-separated given Z if and only

if there is no undirected path U from any X in X to any Y in Y such that every collider on

U has a descendant in Z, and no non-collider on U is in Z; otherwise say that X and Y are

d-connected given Z. If X, Y, and Z are disjoint then DAG G entails X is independent of

Y given Z if and only if X is d-separated from Y given Z. See Pearl (1988). In a linear

DAG model, if X * Yy and X and Y are not in Z then a DAG G entails fKXJ.Z) = 0 for all

linear parameterization of G in which p(X,KZ) is defined and the errors are uncorrelated

and have non-zero variance if and only if X is d-separated from Y given Z. See Spirtes,

Glymour, and Schemes (1993).

The proofs below depend upon the following properties of linear models and discrete

models. Given a DAG G with variables V, as long as G does not constrain some partial

correlation to be zero when it is not zero in a correlation matrix C, there is a linear

parameterization of G with correlation matrix C (This parameterization can be formed by

simply making the linear coefficient of B in the equation for A equal to the partial

regression coefficient of A on B given V\{A>5}.) Similarly, given a DAG G with

variables V, as long as G does entail some conditional independence relation false in

probability measure P(V), there is a discrete parameterizaticiii of G with probability

measure

A DAG H is an I-map of a density/(V) if and only if it contains vertices V and for all

disjoint X, Y, and Z c V, if X and Y are d-separated given Z then Iy(X,Z,Y). If H is not

an I-map of/(V), then there is no parameterization of H with density/(V) because H

entails that X is independent of Y given Z, but ~Iy(X,Z,Y).

Lemma 1: If G is an almost pure measurement DAG with respect to function Latent and

a partition of V into M, L, and O, and G has a parameterization with density/(V), then G

entails that for each L e L, and each subset S £ Measured(L), and single variable M e

M\S a one factor DAG of S u {M} is an I-map of P(S u {M}).

Proof. G entails that each variable M i n S c Measured(L) is independent from all of

the other variables in (M u L)\{M,L} given L. Hence there is a factorization of f(S <u

{M}) of the form:
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/(V) = / (S u {M ,L}) x /(V \ ( S u {M,L}) IS u {M,L})

It is possible to calculate/(S u {MJL}) by integrating out V\(S u {Af/,}). Because
each variable in/(S u {M}) is independent of the other variables given L,

/(S u {M,L}) = llfiXlL) x /(L)
XeSu{M]

This is a parameterization of a one factor model with latent variable L. Hence the one
factor DAG is an I-map of/(S u {M,L}). Q.E.D

Theorem 2: If G is a DAG over a set of variables M u L u O, P(M u L u O ) i s
generated by a discrete parameterization of G, and G is an almost pure measurement
DAG with respect to function Latent and a partition of V into M, L, and O then for every
discrete parameterization of G, for each L € L, and for each subset S c: Measured(L),
and single variable M e M\S there is a discrete parameterization of a one factor DAG of
S u {M} with marginal probability measure ^(S u {M}), where the latent variable has
the same number of categories as L.

Proof. Suppose that G is almost pure. By lemma 1, the one factor model with latent L is
an I-map of P(S u {MJL,}). Hence the one factor DAG does not entail any conditional
independence relations false in P(S u {M^L}). It follows/ihat there is a discrete
parameterization of the one factor DAG with probability measure P(S u {M>L}). This
probability measure has marginal probability measure P(S u [M}). Q.E.D.

Lemma 2: If G is an almost pure model with respect to function Latent and a partition of
V into M, L, and O, and G has a parameterization with marginal density f({AJB} u Q),

then Tesf(GAJB,Q) is an I-map of density/(V(AJB,Q)).
Proof. By definition of almost pure:
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/ (MuL)= Ylf(M\Latent(M)) x/(L) =
VMeM J

x/({A,JB}uQ)x

x /(L \ ({A,B) u Q)I({A,5} u Q))
^A/eMeasured(L\(M,fl}uQ))

If the variables in VW(Ar6,Q) are integrated out then

/(V(A,B,Q)) = T\f(M\Latent(M) x

But this is also a parameterization of Test'(GAJi,Q.)- Hence Test\G^.fi,Q) does not
entail any conditional independence relations false in/(V(A^,Q)), and is an I-map of

). Q.E.D.

Lemma 3: If G is an almost pure model with respect to function Latent and a partition of
V into M, L, and O, G has a parameterization with marginal density J{{A J}} u Q), and
1/(A,QJB) then Test(GAJB,Q) is an I-map ofj{V(AJB7Q)).

Proof. By lemma 2, there is a factorization of/({A,B} u Q) of th^ form

Y[f(M\Latent(M)

Since I/A,Q,B), it follows that

,5,Q)) = Ylf(M\Latent(M) x/(AIQ)x/(5IQ)x/(Q)

But this is also a parameterization of Test(G>A>B*Q)- Hence Test(G,AyB,Q) entails a
subset of the conditional independence relations true in/(V(A,5,Q)), and is an I-map of

y Q.E.D.
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Theorem 3: If G is an almost pure DAG with respect to function Latent and a partition of
V into M, L, and O, G has a linear parameterization with marginal correlation matrix
C(Measured({A,£} u Q), and Test'(GA£Sl) is identified, then piAfi.Q) = 0 in C if and
only there is a linear parameterization of Test(GAyBXl) with marginal correlation matrix
C(Measured({A,S} uQ)) .
Proof. Suppose that the probability measure generated by G has density f(V) with
correlation matrix C, and p(A,Z?.Q) = 0 in C. C depends only upon the variances of the
exogenous variables and the linear coefficients, so there is a density f which is jointly
normal and has the same correlation matrix C. In/', p(A,i?.Q) = 0, so Iy<A,Q^). By
lemma 3, Test(GArB7Q) is an I-map of/(V(A^,Q)). Hence Test(GA£,Q) does not
entail any conditional independence relations false in f(V(AJi,Q)). It follows that
Test(GA>B9Q) does not constrain any partial correlations to be zero when they are not
zero in C(Measured({A ,B} u Q}). Hence there is a linear parameterization of
Test{GAyByQ) with marginal correlation matrix C(Measured({A,B} u Q)).

Suppose that the probability measure generated by G has density f(V) with correlation
matrix C, and pKA^B.Q) * 0 in C. By lemma 2, Test'(GA>B,Q) is an I-map of/(V) so there
is a linear parameterization of Test'(GAJB,Q.) with correlation matrix C(V(AJB,Q)), and
because it is identified the parameterization is unique. In that parameterization, p (AJi.Q)
& 0. Suppose that there is a parameterization of TestiGyAJiQ) with marginal correlation
matrix C(Measured({A,Z?} uQ)). In every parameterization of Test(GAyB9Q)y p(A^B.Q)
= 0. Because Test'{GyAJ},Q) and TesKGAJS.Q) are nested models, it follows that there is
a parameterization of Test'(<7,A,/?,Q) with marginal correlation matrix
C(Measured({A^} u Q}) in which p(AJB.Q) = 0. This is a contradiction. Q.E.D.

Theorem 4: If G is an almost pure DAG with respect to function Latent and a partition of

V into M, L, and O, G has a discrete parameterization with marginal POMeasuredQA,/?}
u Q)), and Tesf(GyAJZQ) is identified, then Jp(AyQJB) if and only there is a discrete
parameterization of TestifJAAQ) with marginalP(Measured({A,fi} u Q)).
Proof. Suppose that I/>(A,Q^). By lemma 3, TestGA£,Q) is an I-map of P(V(A^,Q)).
Hence it does not entail any conditional independence relations false in P(V(AJi,Q)). It
follows that there is a discrete parameterization of Test(GA>B,Q) with probability
measure

Suppose that ~I/>(A,Q,£). By lemma 2, Tesf(GA£&) is an I-map of
Hence there is a discrete parameterization of Test'(GAJi>Q) with probability measure
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P(V(AJByQ)). Because Test'(GAJByQ) is identified, the parameterization is unique.

Suppose now that there is a parameterization of Test(GAJBjQ) with marginal probability

measure P(Measured({AJB} u Q)), In that parameterization A is independent of B given

Q. Because TestiG>A>B>Q) is a proper subgraph of Test'(GyAJJ,Q), that is also a

parameterization of Test'(GAJ$*Q) in which A is independent of B given Q. But that is a

contradiction. Q.E.D.

' I


