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Preface — Version 2.0

ALE 2.0 is a proper extension of version 1.0. Specifically, version 2.0 will run any
grammar that will run under version 1.0. But version 2.0 includes many extensions
to version 1.0, including the following.

• Inequations

• ExtensionaJity

• General Constraints on Types

• Mini-interpreter

• Error-suppression

Inequations allow inequality constraints to be imposed between two structures. Ex-
tensionality allows structures of specified types to be identified if they are struc-
turally identicial. Together, these provide the ability to simulate Prolog II pro-
grams (Colmerauer 1987). ALE 2.0 also allows general constraints to be placed on
types, using arbitrary descriptions from the constraint language, including equa-
tions, inequations and disjunctions, and procedural attachments. It also has a mini-
interpreter, which allows the user to traverse and edit an ALE parse tree. Error
messages for incompatible descriptions are now automatically disabled during lexi-
con and empty category compilation.

The second release of ALE, Version 2.0, is based on an extension of the first
version of ALE, that was completed for Gerald Penn's (1993) MS Project in the
Computational Linguistics Program at Carnegie Mellon University.

There are many people whom we would like to thank for their comments and
feedback on version 1.0 and /?-versions of 2.0. These people have actually used the
system in their research and have thus had the best opportunity to provide us with
practical feedback. First, I would like to thank the first group of users, housed at
Sharp Laboratories of Europe, located in Oxford, England, including Pete White-
lock, Antonio Sanfillipo, and Osamu Nishida. They not only used the system but
provided feedback on the code. Secondly, the group at University of Tubingen,
who are developing a competing system, Troll, have rigorously tested existing sys-
tems, including ALE, both for their ability to express grammars naturally and for
efficiency. Specifically, we would like to thank Detmar Meurers, Dale Gerdemann,
Thilo Gotz, Paul King, John Griffith, and Erhard Hinrichs. John and Thilo also
provided the changes necessary for the system to run directly in Quintus Prolog.
This group is undoubtedly the best informed when it comes to implemented gram-
mar formalisms. We would also like to thank the grammar development group at
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Stanford University, including Ivan Sag, Chris Manning, Suzanne Riehemann. We
would further like to thank Bob Kasper, Carl Pollard, and Andreas Kathol of the
Ohio State University, for a great deal of feedback on the design of HPSG gram-
mars in general, and ALE implementations of them in particular. Chris Manning,
in addition, found a bug in SICStus Prologs prior to 2.1.8, which prevented cyclic
structures from being used in completed chart edges, a bug found by both Steven
Bird of Edinburgh and C. J. Rupp of IDSIA. Their feedback on Bob Carpenter's
prototype implementation of HPSG for English led to the design of Gerald Penn's
much more comprehensive implementation of HPSG and was the primary impetus
for the importation of general type constraints into version 2.0. Next, we would like
to thank Claire Gardent, who has been using ALE to develop discourse grammars
in Amsterdam. We should also thank Carsten Guenther and Markus Walther, of
the Universities of Hamburg and Diisseldorf, respectively, who have used the system
to develop phonological grammars. Finally, we should thank Michael Mastroianni,
who implemented a comprehensive approach to constraint-based phonology in ALE
(Mastroianni 1993). He suffered through early, buggy versions of the system, thus
sparing the rest of us much of that pain. The feedback we received from these users
was invaluable.

We would like to thank EAGLES, the European Advisory Group on Linguis-
tic Engineering Standards, for allowing us to present our system at a meeting in
Saarbriicken in March 1993 of the European Expert Group on Linguistic Formalisms
devoted to implemented formalisms. We learned a great deal from the other par-
ticipants in the workshop including especially Jochen Done, Michael Dorna, and
Martin Emele, of Stuttgart, and Andreas Podelski, then associated with the Digi-
tal Equipment Paris Research Lab. We also benefitted from discussions with Hans
Uszkoreit, Rolf Backofen, and Uli Krieger, of Saarbriicken, Steve Pulman from SRI
in Cambridge, and C. J. Rupp and Graham Russell, of ISSCO in Switzerland.

We had many discussions of the ALE formalism at the HPSG workshop running
concurrently with the LSA Linguistic Institute in Columbus. We would especially
like to thank Gregor Erbach for comments on our system, including benchmark
test results. We would also like to thank Hiroshi Tusda, of the Institute for New
Gernateion Computer Technology, for discussion of our systems and comparisons
to his system, cu-Prolog. We also discussed ALE heavily during the workshop
on implementations of attribute-value logics, during the 1993 Summer School on
Logic, Language, and Information in Lisbon, Portugal. We especially benefitted
from discussions with Suresh Manandhar, of the University of Edinburgh, and Ger-
rit Rentier of Tilburg University, and Gert Webelhuth of the University of North
Carolina, among those we have not already thanked. We also benefitted from dis-
cussions with Ed Stabler and Mark Johnson, and from sitting in on their class on
the implementation of constraint-based grammars.

We would also like to thank Ann Copestake and Ted Briscoe, of the Cambridge
Computing Laboratory, for feedback on the design of the system.

We would like to thank Richard O'Keefe, who provided some invaluable feedback
on coding style. Of course, any glitches or failure to follow his excellent example are
our own.

I would also like to thank Elizabeth Hinkelman, who runs the Software Reg-
istry, and Mark Kantrowitz, who administers the Prolog Resource Guide and the
Prime Time Freeware for AI CD-ROM. They have helped in publicizing the system
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description as well as providing access.

The extensions we have not made, though would like to, include the addition of:

• Primitive, Atomic Data Types

• Parametric Types

• Partial Type Inference

• Assert Mode in Compiler

• Peephole Code Optimization

• Subsumption Checking of Chart Edges
The incorporation of Prolog data types such as Real, Integer, Character, and String,
is straightforward theoretically, but not so straightforward in terms of ALE. The
same goes for parametric polymorphism at the type level. Partial type inference
could provide a great deal of optimization in some circumstances. We could not
figure out how to incoprorate these three changes without drastically modifying
the underlying representations and algorithms. The remaining changes are lying
dormant because we have other obligations.

The next wave of development of attribute-logic grammars should not be in
Prolog, but rather through the use of a direct abstract machine. Bob Carpenter has
worked on an abstract machine with Yan Qu, in the context of her MS project in
the Carnegie Mellon Computational Linguistics Program, and with Shuly Wintner,
of the Technion, in Haifa, Israel, who is writing a PhD dissertation on the topic.
Such an undertaking is also underway among the LIFE community, lead by Hassan
Ait-Kaci, Andreas Podelski, and Peter van Roy.

We would like to thank a number of people for discovering bugs and providing
comments on Version 2.0: Ingo Schroeder, Frank Morawietz, Detmar Meurers, Rob
Malouf, Frederik Fouvry, Jo Calder, and Suresh Manandhar.

Finally, we would like to thank Jo Calder,Chris Brew, Kevin Humphreys, and
Mike Reape, who developed the Pleuk grammar development environment as well
as interfacing it to ALE. Details of that system can be found in the appropriate
Appendix.

This material is based upon work supported under a National Science Foun-
dation Graduate Research Fellowship (for Gerald Penn). Any opinions, findings,
conclusions or recommendations expressed in this publication are those of the au-
thors) and do not necessarily reflect the views of the National Science Foundation.

Bob Carpenter and Gerald Penn
Pittsburgh, August 1994



Preface — Version 1.0

A number of people have asked me to make this system, along with its documen-
tation, available to the public. Now that it's available, I hope that it's useful. But
a word of caution is in order. The system is still only a prototype, hence the label
"version /?."

Any bug reports would be greatly appreciated. But what I'd really like is com-
ments on the functionality of the system, as well as on the utility of its documenta-
tion. I am also interested in hearing of any applications that are made of the system.
I would also be glad to answer questions about the system. I have tried to document
the strategies used by ALE in this guide. I have also tried to comment the code to
the point where it might be adaptable by others. I would, of course, be interested in
any kind of improvements or extensions that are discovered or developed, and would
like to have the chance to incorporate any such improvements in future versions of
this package.

In the implementation, I have endeavored to follow the logic programming
methodology laid out by O'Keefe (1990), but there are many spots where I have
fallen short. Thus the code is not as fast as it could be, even in Prolog. But I view
this system more as a prototype, indicating the utility of a typed logic programming
and grammar development system. Borrowing techniques from the WAM directly,
implementing an abstract machine C, would lead to roughly a 100-fold speedup, as
there is no reason that ALE should be slower than Prolog itself.

I would like to acknowledge the help of Gerald Penn in working through many
implementation details of a general constraint resolver, which was the inspiration
for this implementation. This version of the system is a great improvement on the
last version due to Gerald's work on the system. Secondly, I would like to thank
Michael Mastroianni, who has actually used the system to develop grammars for
phonology. Finally, I would like to thank Carl Pollard and Bob Kasper for looking
over a grammar of HPSG coded in ALE and providing the impetus for the inclusion
of empty categories and lexical rules.

The system is available without charge from the author.. It is designed to run in
either SICStus or Quintus Prologs.

Bob Carpenter
Pittsburgh, 1993
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Chapter 1

Introduction

This report serves as an introduction to both the ALE formalism and its Prolog
implementation. ALE is an integrated phrase structure parsing and definite clause
logic programming system in which the terms are typed feature structures. Typed
feature structures combine type inheritance and appropriateness specifications for
features and their values. The feature structures used in ALE generalize the common
feature structure systems found in the linguistic programming systems PATR-II and
FUG, the grammar formalisms HPSG and LFG, as well as the logic programming
systems Prolog-II and LOGIN. Programs in any of these languages can be encoded
directly in ALE.

Terms in grammars and logic programs are specified in ALE using a typed ver-
sion of Rounds and Rasper's attribute-value logic with variables. At the term level,
we have variables, types, feature value restrictions, equations, inequations, general
constraints, and disjunction. The definite clause programs allow disjunction, nega-
tion and cut, specified with Prolog syntax. Phrase structure grammars are specified
in a manner similar to DCGS, allowing definite clause procedural attachment. The
grammar formalism also fully supports empty categories. Lexical development is
supported by a very general form of lexical rule which operates on both categories
and surface strings. Macros are available to help organize large descriptions, either
in programs or in grammars. Both definite clause programs and grammars are com-
piled into abstract machine instructions. These instructions are then interpreted
by an emulator compiled from the type specifications. Like Prolog compilers, a
structure copying strategy is used for matching both definite clauses and grammar
rules.

For parsing, ALE compiles from the grammar specification a Prolog-optimized
bottom-up, dynamic chart parser. Definite clauses are also compiled into Prolog.
As it stands, the current version of ALE, running definite clause programs, runs at
rougly 1000 logical inferences per second (1000 LI/s) on a DECStation 5100. This is
roughly 15% of the speed of the SICStus 2.1 interpreter, and about 1.5% as fast as
the SICStus compiler running naive reverse on a 30-element list. The definite clause
compiler performs last call optimization, but does not index arguments. Thus it
will provide relatively well versus non-optimized interpreters, but further lag behind
compiled grammars when programs are written more in a more sophisticated manner
than naive reverse.

Full details of the theory behind ALE can be found in Carpenter (1992).
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The user who is only interested in definite clause programming can skip the
material on phrase structure grammars, while those interested in only grammars
without procedural attachments may skip the material in the section on definite
clauses.



Chapter 2

Prolog Preliminaries

While it is not absolutely necessary, some familiarity with logic programming in
general, and Prolog in particular, is helpful in understanding the definite clause
portion of ALE. Similarly, experience with unification grammar systems such as
PATR-II, DCGS, or FUG is helpful in understanding the phrase structure component of
the system. In particular, writing efficient programs and grammars in ALE involves
the same kinds of strategies necessary for writing efficient programs in Prolog or
PATR-II. For those not familiar with Prolog, the sequence of two books by Sterling
and Shapiro (1986) and by O'Keefe (1990) are excellent general introductions to the
theory and practice of logic programming. For those not familiar with unification-
based grammar formalisms, Shieber (1986), Gazdar and Mellish (1987) and Pereira
and Shieber (1987) are useful resources.

For those not familiar with Prolog, we need to point out the salient features of
the language which will be assumed throughout this report. This section contains
all of the information necessary about Prolog required to run ALE.

Terms

A Prolog constant is composed of either a sequence of characters and/or under-
scores, beginning with a lower case letter, a number, or any sequence of symbols
surrounded by apostrophes. So, abc, johnDoe, b_17, 123, 'JohnDoe1, '65$*,
and ' -65a. ' are constants, but A19, JohnDoe, B.I 12, _au8, and [dd,e] are not
(although see the warning at the end of this section). A variable, on the other hand,
is any string of letters, underscores or numbers beginning with a capital letter. Thus
C, C_foo, and TR6ab are variables, but IXa, aXX, and JCy1 are not.

In general, it is a bad idea to have constants or variables which are only dis-
tinguished by the capitalization of some of their letters. For instance, while aBa
and aba are different constants, they should not both be used in one program. One
reason for this in the context of ALE is that the output routines adopt standard
capitalization conventions which hide the differences between such constants.

Warning: As pointed out to us by Ingo Schroeder, constants or atoms beginning
with a capital letter are not treated properly by the compiler. Thus constants such

1 Technically, a variable may begin with an underscore, but such variables, said to be anonymous,
have a very different status than those which begin with a capital letter. The use of anonymous
variables is discussed later. —
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as * Foo * should not be used.

Space and Comments

In your own program and grammar files, extra whitespace between symbols beyond
that needed to separate constants or variables is ignored. Whitespace consists of
either spaces, blank lines or line breaks are ignored. This allows you to format
your programs in a manner that is readable. Furthermore, any symbols on a line
appearing after a */, symbol are treated as comments and ignored.

Running Prolog

To fire up Prolog locally, you should contact your systems administrator. You should
have either SICStus or Quintus Prolog, or a Prolog compiler compatible with one
of these. Once Prolog is fired up, you will see a prompt. The Prolog prompt should
look like:

I ?-

It is important that Prolog be invoked from a directory for which the user has
write permission. ALE, in the process of compiling user programs, writes a number
of local files.

Queries

What you type after the prompt is called a query. Queries should always end with
a period and be followed by a carriage return. In fact, all of the grammar rules,
definite clauses, macros and lexical entries in your programs should also end with
periods. Most of the interface in ALE is handled directly by top-level Prolog queries.
Many of these will return yes or no after they are called, the significance of which
within ALE is explained on a query by query basis.

Running ALE

To run ALE, it is only necessary to type the following query:

I ?- compile (File) .

where File is the file in which the file a le .p l resides. Note that File does not have
to be local to the directory from which Prolog was invoked.

Exiting Prolog and Breaking

To exit from Prolog, you can type hal t at any prompt (followed by a period, of
course).

If you find Prolog hanging at some point, and you are working on a standard
Unix implementation, typing control-c should produce something like the following
message:



Prolog interruption (h for help)?

You should reply with the character a, with or without a following period, followed
by a carriage return. If this doesn't work, typing control-z should take you out of
Prolog altogether.

Saved States

All information concerning an ALE state is encoded in the current Prolog state.
Thus, any options presented by the local system to save Prolog states should be
able to save ALE states.



Chapter 3

Feature Structures, Types and
Descriptions

This section reviews the basic material from Carpenter (1992), Chapters 1-10, which
is necessary to use ALE.

Inheritance Hierarchies

ALE is a language with strong typing. What this means is that every structure it uses
comes with a type. These types are arranged in an inheritance hierarchy, whereby
type constraints on more general types are inherited by their more specific subtypes,
leading to what is known as inheritance-based polymorphism. Inheritance-based
polymorphism is a cornerstone of object-oriented programming. In this section, we
discuss the organization of types into an inheritance hierarchy. Thus many types will
have subtypes, which are more specific instances of the type. For instance, person
might have subtypes male and female.

ALE does much of its processing of types at compile time, as it is reading and
processing the grammar file. Thus the user is required to declare all of the types
that will be used along with the subtyping relationship between them. An example
of a simple ALE type declaration is as follows:

bot sub [b , c ] . "/, two basic types — b and c
b sub [d , e ] .

d sub [g ,h] .
e sub • .

c sub [d,f] . 7. b and c unify to d
f sub • .

There are quite a few things to note about this declaration. The types declared here
are bot, b, c, d, e, f and g. Note that each type that is mentioned gets its
own specification. Of course, the whitespace is not important, but it is convenient
to have each type start its own line. A simple type specification consists of the
name of the type, followed by the keyword sub, followed by a list of its subtypes
(separated by whitespace). In this case, bot has two subtypes, b and c, while f, d
and e have no subtypes. The subtypes are specified by a Prolog list. In this case, a
Prolog list consists of a sequence of elements separated by commas and enclosed in



square brackets. Note that no whitespace is needed between the list brackets and
types, between the types and commas, or between the final bracket and the period.
Whitespace is only needed between constants. The extra whitespace on successive
lines is conventional, indicating the level in the ordering for the user, but is ignored
by the program. Also notice that there are comments on two of the lines; recall that
comments begin with a % sign and continue the length of the line.

The relation of subtyping is only specified one step at a time, but is taken to
be transitive. Thus, in the example, d is a subtype of c, and c is a subtype of bot,
so d is also a subtype of bot. The user only needs to specify the direct subtyping
relationship. The transitive closure of this relation is computed by the compiler.
While redundant specifications, such as putting d directly on the subtype list of
bot, will not alter the behavior of the compiler, they are confusing to the reader of
the program and should be avoided. In addition, the derived transitive subtyping
relationship must be anti-symmetric. In particular, this means that there should
not be two distinct types each of which is a subtype of the other.

There are two additional restrictions on the inheritance hierarchy beyond the
requirement that it form a partial order. First, there is a special type bot, which
must be declared as the unique most general type. In other words, every type must
be a subtype of bot. Removing the declaration of bot would violate this condition,
as would adding an additional specification, such as simply adding j sub [ k , l ] , as
j would not be a subtype of bot, or a declaration m sub [bot] , as bot would no
longer be the most general type.

The second and more subtle restriction on type hierarchies is that they be
bounded complete. Since type declarations must be finite, this amounts to the re-
striction that every pair of types which have a common subtype have a unique most
general common subtype. In the case at hand, b and c have three common subtypes,
d, g, and h. But these subtypes of b and c are ordered in such a way that d is the
most general type in the set, as both g and h are subtypes of d. An example of a
type declaration violating this condition is:

bot sub [ a , b ] .
a sub [ c , d ] .

c sub • .
d sub • .

b sub [ c , d ] .

The problem here is that while a and b have two common subtypes, namely c and d,
they do not have a most general common subtype, since c is not a subtype of d, and
d is not a subtype of c. In general, a violation of the bounded completeness condition
such as is found in this example can be patched without destroying the ordering by
simply adding additional types. In this case, the following type hierarchy preserves
all of the subtyping relations of the one above, but satisfies bounded completeness:

bot sub [ a , b ] .
a sub [e] .

e sub [ c , d ] .
c sub • .
d sub • .

b sub [e] .
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In this case, the new type e is the most general subtype of a and b.
This last example brings up another point about inheritance hierarchies. When

a type only has one subtype, the system provides a warning message (as opposed
to an error message). This condition will not cause any compile-time or run-time
errors, and is perfectly compatible with the logic of the system. It is simply not
a very good idea from either a conceptual or implementational point of view. For
more on this topic, see Carpenter (1992:Chapter 9).

Feature Structures

The primary representational device in ALE is the typed feature structure. In phrase
structure grammars, feature structures model categories, while in the definite clause
programs, they serve the same role as first-order terms in Prolog, that of a universal
data structure. Feature structures are much like the frames of AI systems, the
records of imperative programming languages like C or Pascal, and the feature
descriptions used in standard linguistic theories of phonology, and more recently, of
syntax.

Rather than presenting a formal definition of feature structures, which can be
found in Carpenter (1992:Chapter 2), we present an informal description here. In
fact, we begin by discussing feature structures which are not necessarily well-typed.
In the next section, the type system is presented.

A feature structure consists of two pieces of information. The first is a type.
Every feature structure must have a type drawn from the inheritance hierarchy.
The other kind of information specified by a feature structure is a finite, possibly
empty, collection of feature/value pairs. A feature value pair consists of a feature and
a value, where the value is itself a feature structure. The difference between feature
structures and the representations used in phonology and in GPSG, for instance, is
that it is possible for two different substructures (values of features at some level of
nesting) to be token identical in a feature structure. Consider the following feature
structure drawn from the lexical entry for John in the categorial grammar in the
appendix, displayed in the output notation of ALE:

cat
QSTORE e_list
SYNSEM basic

SEM j
SYN np

The type of this feature structure is cat, which is interpreted to mean it is a category.
It is defined for two features, QSTORE and SYNSEM. As can be seen from this example,
we follow the HPSG notational convention of displaying features in all caps, while
types are displayed in lower case. Also note that features and their values are printed
in alphabetic order of the feature names. In this case, the value of the QSTORE feature
is the simple feature structure of type eJ-ist,1 which has no feature values. On the

1Set values, like those employed in HPSG, are not supported by ALE. In the categorial grammar
in the appendix, they are represented by lists and treated by attached procedures for union and
selection.



other hand, the feature SYNSEM has a complex feature as its value, which is of type
basic , and has two feature values SEM and SYN, both of which have simple values.

This last feature structure doesn't involve any structure sharing. But consider
the lexical entry for runs:

cat
QSTORE e . l i s t
SYNSEM backward

ARG basic
SEM [0] individual
SYN np

RES basic
SEM run

RUNNER [0]
SYN s

Here there is structure sharing between the path SYNSEM ARG SEM and the path
SYNSEM RES SEM RUNNER, where a path is simply a sequence of features. This struc-
ture sharing is indicated by the tag [0 ] . In this case, the sharing indicates that
the semantics of the argument of runs fills the runner role in the semantics of the
result. Also note that a shared structure is only displayed once; later occurrences
simply list the tag. Of course, this example only involves structure sharing of a very
simple feature structure, in this case one consisting of only a type with no features.
In general, structures of arbitrary complexity may be shared, as we will see in the
next example.

ALE, like Prolog II and HPSG, but unlike most other systems, allows cyclic struc-
tures to be processed and even printed. For instance, consider the following repre-
sentation we might use for the liar sentence This sentence is false:

[0] false
ARG1 [0]

In this case, the empty path and the feature ARG1 share a value. Similarly, the
path ARG1 ARG1 ARG1 and the path ARG1 ARG1, both of which are defined, are also
identical. But consider a representation for the negation of the liar sentence, It is
false that this sentence is false:

f a l s e
ARG1 [0] fa l s e

ARG1 [0]

Unlike Prolog II, ALE does not necessarily treat these two feature structures as being
identical, as it does not conflate a cyclic structure with its infinite unfolding. We take
up the notion of token identical structures in the section below on extensionality.

It is interesting to note that with typed feature structures, there is a choice be-
tween representing information using a type and representing the same information
using feature values. This is a familiar situation found in most inheritance-based
representation schemes. Thus the relation specified in the value of the path SYNSEM
RES SEM is represented using a type, in:
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SEM run
RUNNER [0]

An alternative encoding, which is not without merit, is:

SEM unary_rel
REL run
ARG1 [0]

In general, type information is processed much more efficiently than feature value
information, so as much information as possible should be placed in the types. The
drawback is that type information must be computed at compile-time and remain
accessible at run-time. More types simply require more memory.2

Subsumption and Unification

Feature structures are inherently partial in the information they provide. Based
on the type inheritance ordering, we can order feature structures based on how
much information they provide. This ordering is referred to as the subsumption
ordering. The notion of subsumption, or information containment, can be used to
define the notion of unification, or information combination. Unification conjoins
the information in two feature structures into a single result if they are consistent
and detects an inconsistency otherwise.

Subsumption

We define subsumption, saying that F subsumes G, if and only if:

• the type of F is more general than the type of G

• if a feature / is defined in F then / is also defined in G such that the value in
F subsumes the value in G

• if two paths are shared in F then they are also shared in G

Consider the following examples of subsumption, where we let < stand for subsump-
tion:

agr < agr
PERS first PERS first

NUM plu

sign phrase
SUBJ agr < SUBJ agr

PERS pers PERS first
NUM plu

2 In general, the amount of memory required to represent n types is proportional to the number
of pairs of consistent types. In the worst case, this is O(n2) in the number of types.
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sign

SUBJ agr

PERS first

NUM plu

OBJ agr

PERS first

NUM plu

false

ARG1 false

ARG1 false

sign

SUBJ

<
OBJ

[0]
PERS

NUM
[0]

false

< ARG1 [0]
ARG1

agr
first

plu

false <

[0]

[1] false

ARG1 [1]

Note that the second of these subsumptions holds only if pers is a more general
type than f i r s t , and sign is a more general type than phrase. It is also important
to note that the feature structure consisting simply of the type bot will subsume
every other structure, as the type bot is assumed to be more general than every
other type.

Unification

Unification is an operation defined over pairs of feature structures that combines
the information contained in both of them if they are consistent and fails otherwise.
In ALE, unification is very efficient.3 Declaratively, unifying two feature structures
computes a result which is the most general feature structure subsumed by both
input structures. But the operational definition is more enlightening, and can be
given by simple conditions which tell us how to unify two structures. We begin by
unifying the types of the structures in the type hierarchy. This is why we required the
bounded completeness condition on our inheritance hierarchies; we want unification
to produce a unique result. If the types are inconsistent, unification fails. If the
types are consistent, the resulting type is the unification of the input types. Next,
we recursively unify all of the feature values of the structures being unified which
occur in both structures. If a feature only occurs in one structure, we copy it over
into the result. This algorithm terminates because we only need to unify structures
which are non-distinct and there are a finite number of nodes in any input structure.

Some examples of unification follow, where we use + to represent the operation:

agr
PERS

sign

SUBJ

•

first

agr
PERS 1st

agr
NUM plu

sign

• SUBJ [0]

OBJ [0]

agr
PERS

NUM

bot

first

sing

sign

= SUBJ [0] agr

PERS first

3 Using a typed version of the Martelli and Montanari (1982) algorithm, which was adapted to
cyclic structures by JaiFar (1984), unification can be performed in what is known as quasi-linear
time in the size of the input structures, where in this case, quasi-linear in n is denned to be
O(n - ack~1(n))i where ack"1 is the inverse of Ackermann's function, which will never exceed 4
or 5 for structures that can be represented on existing computers. There is also a factor in the
complexity of unification stemming from the type hierarchy and appropriateness conditions, which
we discuss below.
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OBJ agr
NUM plu

t
F [0] t +
G [0]

agr
PERS firs t

e.list +

t
F

G

+

t
F [1]
[1]

agr
PERS

ne.list
HD a
TL e_list

t
= F

G

second

NUM plu
OBJ [0]

[1] t
F [1]
[1]

= *failure*

•failure*

Note that the second example respects our assumption that the type bot is the
most general type, and thus more general than agr. The second example illustrates
what happens in a simple case of structure sharing: information is retrieved from
both the SUBJ and OBJ and shared in the result. The third example shows how two
structures without cycles can be unified to produce a structure with a cycle. Just as
the feature structure bot subsumes every other structure, it is also the identity with
respect to unification; unifying the feature structure consisting just of the type bot
with any feature structure F results simply in F. The last two unification attempts
fail, assuming that the types f i r s t and second and the types e_list and ne_list
are incompatible.

Type System

As we mentioned in the introduction, what distinguishes ALE from other approaches
to feature structures and most other approaches to terms, is that there is a strong
type discipline enforced on feature structures. We have already demonstrated how
to define a type hierarchy, but that is only half the story with respect to typing. The
other component of our type system is a notion of feature appropriateness^ whereby
each type must specify which features it can be defined for, and furthermore, which
types of values such features can take. The notion of appropriateness used here is
similar to that found in object-oriented approaches to typing. For instance, if a
feature is appropriate for a type, it will also be appropriate for all of the subtypes
of that type. In other words, appropriateness specifications are inherited by a type
from its supertypes. Furthermore, value restrictions on feature values are also inher-
ited. Another important consideration for ALE'S type system is the notion of type
inference, whereby types for structures which are underspecified can be automati-
cally inferred. This is a property our system shares with the functional language ML,
though our notion of typing is only first-order. To further put ALE'S type system
in perspective, we note that type inheritance must be declared by the user at com-
pile time, rather than being inferred. Furthermore, types in ALE are semantic, in
Smolka's (1988b) terms, meaning that types are used at run-time. Even though ALE
employs semantic typing, the type system is employed statically (at compile-time)
to detect type errors in grammars and programs.
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As an example of an appropriateness declaration, consider the simple type spec-
ification for lists with a head/tail encoding:

bot sub [list,atom] .
l i s t sub [e_l ist ,ne_list] .

e . l i s t sub • .
ne . l i s t sub •

intro [hd:bot,
t l : l i s t ] .

atom sub [a,b].
a sub • .
b sub • •

This specification tells us that a list can be either empty (eJ . i s t ) or non-empty
(ne_l ist) . It implicitly tells us that a non-empty list can not have any features
defined for it, since none are declared directly or inherited from more general types.
The declaration also tells us that a non-empty list has two features, representing the
head and the tail of a list, and, furthermore, that the head of a list can be anything
(since every structure is of type bot), but the tail of the list must itself be a list.
Note that features must also be Prolog constants, even though the output routines
convert them to all caps.

In ALE, every feature structure must respect the appropriateness restrictions in
the type declarations. This amounts to two restrictions. First, if a feature is defined
for a feature structure of a given type, then that type must be appropriate for the
feature. Furthermore, the value of the feature must be of the appropriate type, as
declared in the appropriateness conditions. The second condition goes the other
way around: if a feature is appropriate for a type, then every feature structure of
that type must have a value for the feature. A feature structure respecting these
two conditions is said to be totally well-typed in the terminology of Carpenter (1992,
Chapter 6).4 For instance, consider the following feature structures:

list
HD a
TL bot

ne.list
HD bot
TL ne.list

HD atom
TL list

ne.list
HD [0] ne.list

HD [0]
4 The choice of totally well-typed structures was motivated by the desire to represent feature

structures as records at run-time, without listing their features. Internally, a feature structure is
represented as a term of the form Tag-Sort ( V I , . . . , VI) where Tag represents the token identity of
the structure using a Prolog variable, Sort is the type of structure, and VI through VI are the values
of the appropriate features, in alphabetical order of the features' names, which are themselves left
implicit. Furthermore, the Tag is used for forwarding and dereferencing during unification.
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TL [0]
TL e . l i s t

The first structure violates the typing condition because the type l i s t is not appro-
priate for any features, only ne_list is. But even if we were to change its type to
ne_list, it would still violate the type conditions, because bot is not an appropri-
ate type for the value of TL in a ne_list. On the other hand, the second and third
structures above are totally well-typed. Note that the second such structure does
not specify what kind of list occurs at the path TL TL, nor does it specify what the
HD value is, but it does specify that the second element of the list, the TL HD value
is an atom, but it doesn't specify which one.

To demonstrate how inheritance works in a simple case, consider the specification
fragment from the categorial grammar in the appendix:

functional sub [forward,backward]
intro [arg:synsem,

res:synsem] .
forward sub • .
backward sub • .

This tells us that functional objects have ARG and RES features. Because forward
and backward are subtypes of functional, they will also have ARG and RES features,
with the same restrictions.

There are a couple of important restrictions placed on appropriateness conditions
in ALE. The most significant of these is the acyclicity requirement. This condition
disallows type specifications which require a type to have a value which is of the
same or more specific type. For example, the following specification is not allowed:

person sub [male,female]
intro [father:male,

mother:female].
male sub [] .
female sub • .

The problem here is the obvious one that there are no most general feature structures
that are both of type person and totally well-typed.5 This is because any person
must have a father and mother feature, which are male and female respectively,
but since male and female are subtypes of person, they must also have mother and
father values. It is significant to note that the acyclicity condition does not rule
out recursive structures, as can be seen with the example of lists. The l i s t type
specification is acceptable because not every list is required to have a head and tail,
only non-empty lists are. The acyclicity restriction can be stated graph theoretically
by constructing a directed graph from the type specification. The nodes of the graph
are simply the types. There is an edge from every type to all of its supertypes, and
an edge from every type to the types in the type restrictions in its features. Type
specifications are only acceptable if they produce a graph with no cycles. One cycle

5 The only finite feature structures that could meet this type system would have to be cyclic, as
noted in Carpenter (1992). The problem is that there is no most general such cyclic structure, so
type inference can not be unique.
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in the person graph is from male to person (by the supertype relation) and from
person to male (by the FATHER feature). On the other hand, there are no cycles in
the specification of l i s t .

The second restriction placed on appropriateness declarations is designed to limit
non-determinism in much the same way as the bounded completeness condition
on the inheritance hierarchy. This second condition requires every feature to be
introduced at a unique most general type. In other words, the set of types appropriate
for a feature must have a most general element. Thus the following type declaration
fragment is invalid:

a sub [b,c,d] .
b sub •

intro [f: w,
g:x] .

c sub •
intro [fry,

h:z] .
d sub • .

The problem is that the feature F is appropriate for types b and c, but there is not a
unique most general type for which it's appropriate. In general, just like the bounded
completeness condition, type specifications which violate the feature introduction
condition can be patched, without violating any of their existing structure, by adding
additional types. In this case, we add a new type between a and the types b and c,
producing the equivalent well-formed specification:

a sub [e ,d] .
e sub [b,c]

intro [f:bot] .
b sub •

intro [f:w,
g:x] .

c sub •
intro [f: y,

h:z] .
d sub • .

This example also illustrates how subtypes of a type can place additional restrictions
on values on features as well as introducing additional features.

As a further illustration of how feature introduction can be obeyed in general,
consider the following specification of a type system for representing first-order
terms:

sem.obj sub [individual,proposition].
individual sub [a,b] .

a sub • .
b sub D .

proposition sub [atomic.prop,relational].
atomic.prop sub • . _
relational.prop sub [unary.prop,transitive_prop]
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intro [argl : individual] .
unary .prop sub • .
t ransi t ive.prop sub [binary .prop, ternary .prop]

intro [arg2:individual].
binary.prop sub • .
ternary.prop sub •

intro [arg3:individual].

In this case, unary propositions have one argument feature, binary propositions have
two argument features, and ternary propositions have three argument features, all
of which must be filled by individuals.

Extensionality

ALE also respects the distinction between intensional and extensional types (see
Carpenter (1992:Chapter 8). The concept of extensional typing has its origins in
the assumption in standard treatments of feature structures, that there can only be
one copy of any atom (a feature structure with no appropriate features) in a feature
structure. Thus, if path wi leads to atom a, and path TT2 leads to atom a, then the
values for those two paths are token-identical. Token-identity refers to an identity
between two feature structures with respect to the objects themselves, as opposed
to structure-identity, which refers to an identity between two feature structures with
respect to the information they contain, i.e. whether their combined information
could be construed as information about the same object.

Smolka (1988a) partitioned his atoms according to whether more than one copy
could exist or not. In ALE, following Carpenter (1992), this notion of copyability has
been extended to arbitrary types - loosely speaking, those types which are copyable
we call intensional, and those which are not we call extensional. Thus, it is possible
to have two feature structures of the same intensional type which, although they
may be structure-identical, are not token-identical. Formally:

Given the set of types, Type, defined by an ALE signature, we designate a
subset, Ext Type C Type, as the set of extensional types. This set consists
only of maximally specific types, i.e. for each a 6 Ext Type, there is no
type r such that a subsumes r.

The restriction of Ext Type to maximally specific sorts is peculiar to ALE, and is
levied in order to reduce the computational complexity of enforcing extensionality.6

We need one more definition to formally state the effect which an extensional
type has on feature structures in ALE.

Given a set of extensional types, Ext Type, we define an equivalence re-
lation, x, the collasping relation, on well-typed feature structures, such
that Fi x F2 for Fi jt F2 only if:

• F\ has the same type, a, as F2, and a € Ext Type, and
6In theory (Carpenter 1992), this set is only required to be upward closed, which means that

if <r € Ext Type, and <T subsumes r, then r € ExtType. This relaxation of our requirement that
extensional sorts be maximal would actually not be too difficult to implement.
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• for every feature, /, appropriate to <r, Fx , the value of / in Fi, and
F / , the value of / i n F2, are defined, and F{ X F / .

In ALE, all feature structures behave as if they are what Carpenter (1992) referred
to as collapsed. That is, the only collapsing relation which exists between any two
feature structures is the trivial collapsing relation, namely:

F\ x F2 if and only if Fi is token-identical to F2 .

In the case of acyclic feature structures, this definition is equivalent to saying that
two feature structures of the same extensional type are token-identical if and only
if, for every feature appropriate to that type, their respective values on that feature
are token-identical. For example, supposing that we have a signature representing
dates, then the two substructures representing dates in the following structure must
be token identical.

married.person
BIRTHDAY [1] date

DAY 12
MONTH nov
YEAR 1971

SPOUSE BIRTHDAY [2] date
DAY 12
MONTH nov
YEAR 1971

In other words, this represents a person born on 12 November 1971, who is married
to a person with the same birthdate.

Now consider a slightly more complex example, which employs the following
signature.

bot sub [a,b,c,g].
a sub •

intro [f:b,g:c].
b sub • .
c sub • .
g sub •

intro [h:a,j:a].

If a, b, and c are extensional, then the values of H and J in g are always token-
identical:

g
H [0] a

F b
G c

J CO]

But if only a, and b are extensional, and c is intensional, then the values of H and
J are not necessarily token-identical, although, they are always structure-identical:
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g
H a

F [1] b
G c

J a
F [1]
G c

To cite an earlier example, suppose we were to specify that the type false, used
in the liar sentence and its negation, were extensional. Thus, we would specify:

ext([ . . . , false, . . . ] ) .

Now the liar sentence's representation is:

[0] false
ARG1 [0]

as before, but the negation of the liar sentence would also be represented by:

[0] false
ARG1 [0]

since if were still represented by:

[1] false
ARG1 [0] false

ARG1 [0]

then we could cite a non-trivial collasping relation, x, in which [1] x [0].
A related example involves the following standard example.

s

A [0] t
C [0]

B [1] t
C [1]

Assuming that t is extensional and only appropriate for the feature C, then the
structures [0] and [1] in the above structure would be identified.

Extensionality allows the proper representation of feature structures and terms
in both PATR-II, the Rounds-Kasper system, and in Prolog and Prolog II. For
PATR-II and the Rounds-Kasper system, all atoms (those types with no appropriate
features) are assumed to be extensional. Furthermore, in the Rounds-Kasper and
PATR-II systems, which are monotyped, there is only one type that is appropriate
for any features, and it must be appropriate for all features in the grammar. In
Prolog and Prolog II, the type hierarchy is assumed to be flat, and every type is
extensional.

Just as with implementations of Prolog, collapsing is only performed as it is
needed. As shown by Carpenter (1992), collapsing can be restricted to cases where
inequations are tested between two structures, with exactly the-same failure behav-
ior. It turned out to be less efficient to collapse structures before asserting them
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into the chart, primarily because the time to compare arbitrary structures for col-
lapsibility is cubic in the size of the structure being collapsed. See the section below
on inequations for further discussion. The most obvious ramification of this decision
is that the I/O routines will not automatically collapse structures before printing
them.

Extensional types in ALE are specified all at once in a list:

in the same file in which the subsumption relation is defined. All types which are
not mentioned in the ext specification are assumed to be intensional. If more than
one ext specification is given, the first one is used. If no ext specification is given,
then the specification:

ext([]).

is assumed.
Of course, collapsing is only enforced between feature structures whose life-spans

in ALE7 overlap. So, for example, if one request is given for the representation of
the liar sentence:

[0] false
ARG1 [0]

and then another is given for that of its negation, the output is not:

[0]

(referring to the same token above) but rather:

[0] false
ARG1 [0]

Every time a new context arises, numbering of structures begins again from [0].
Currently, extensionality is only enforced before the answer to a top-level query

is given.

Inequality

Feature structures may also incorporate inequality constraints, following (Carpenter
1992), which is in turn based on the notion of inequation in Prolog II (Colmerauer
1987). For instance, we might have the following representation of the semantics of
a sentence:

SEM binary.rel
REL know

ARG1 [0] referent

GENDER masc

7 The life-span of a feature structure in ALE is the period from its creation to the point when the
user command currently being executed finishes, unless that feature structure is asserted as an edge
in ALE'S chart parser. In this case, the life of the feature structure ends when the edge is removed.
Every new request for a parse to ALE removes all of the current edges.
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PERS third
NUM sing

ARG2 [1] referent
GENDER masc
PERS third
NUM sing

[0] =\= [1]

Below the feature information, we have included the constraint that the value of the
structure [0] is not identical to that of structure [1] . As a result, we cannot unify
this structure with the following one.

REL know
ARG1 [2]
ARG2 [2]

Any attempt to unify the structures [0] and [1] causes failure.
Furthermore, any attempt to inequate two extensionally identical structures will

cause failure. For instance, consider the following.

s s
F [1] t F [3]

H [1] + G [4] = fai lure
G [2] t [3] =\= [4]

H [1]

The values of the features F and G cannot be inequated because they are extensionally
identical (assuming the type t is declared to be extensional and is only appropriate
for the feature H.

When inequations are evaluated, they are reduced. For instance, consider the
following:

F [1] s
H bot
J bot

G [2] s
H bot
J bot

[1] =\= C2]

If the type s is extensional and appropriate for the features H and J, then the
inequation above is reduced to the following.

F [1] s
H
J
C3]
[4]

G [2] s

H
J

C3]

[5]
[6]
=\=

bot
bot

[5] ; [4] =\= [6]
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The set of inequations is stored in conjunctive normal form. The cost is some space
over the re-evaluation of inequations. Of course, if the types on [3] and [4] were
more refined than bot, then the inequations [3] =\= [5] and [4] =\= [6] would
further reduce. In addition, when reducing inequations in this way, we eliminate
those that are trivially satisfied. The ones that are printed are only the residue after
reduction. For instance, consider the following structure:

F [1] s
H
J

a
bot

G [2] s
H
J

Cl]

b
bot
=\= [2]

suming that <

F s
H
J

G s
H
J

a
[3] bot

b
[4] bot

Assuming that a and b are not unifiable, then this structure reduces to the following.

[3] =\= [4]

If structures [3] and [4] had begun with ununifiable types, then there would be no
residual inequation.

An important subcase is that of inequality between extensional atoms. If atoms
are extensional, then every instance is identical. Thus an inequality between two
identical, extensional atoms fails.

Attribute-Value Logic

Now that we have seen how the type system must be specified, we turn our attention
to the specification of feature structures themselves. The most convenient and ex-
pressive method of describing feature structures is the logical language developed by
Kasper and Rounds (1986), which we modify here in three ways. First, we replace
the notion of path sharing with the more compact and expressive notion of variable
due to Smolka (1988a). Second, we extend the language to types, following Pollard
(in press). Finally, we add inequations.

The collection of descriptions used in ALE can be described by the following BNF
grammar:

<desc> ::= <type>
I <variable>
I (<feature>:<desc>)
I (<desc>,<desc>)
I (<desc>;<desc>)
I (=\= <desc>)



22 CHAPTER 3. FEATURE STRUCTURES, TYPES AND DESCRIPTIONS

As we have said before, both types and features are represented by Prolog constants.
Variables, on the other hand, are represented by Prolog variables. As indicated by
the BNF, no whitespace is needed around the feature selecting colon, conjunction
comma and disjunction semi-colon, but any whitespace occurring will be ignored.

These descriptions are used for picking out feature structures that satisfy them.
We consider the clauses of the definition in turn. A description consisting of a type
picks out all feature structures of that type. A variable can be used to refer to any
feature structure, but multiple occurrences of the same variable must refer to the
same structure. A description of the form (<f eature>:<desc>) picks out a feature
structure whose value for the feature satisfies the nested description. An inequa-
tion =\= <desc> causes the embedded description to be evaluated, and the current
structure to be inequated with it. The resulting inequations are both symmetric
and persistent] as long as the feature structures remain, they can never be unified.

There are two ways of logically combining descriptions: following Prolog, the
comma represents conjunction and the semi-colon represents disjunction. A feature
structure satisfies a conjunction of descriptions just in case it satisfies both conjuncts,
while it satisfies a disjunction of descriptions if it satisfies either of the disjuncts.

We should also add to the above BNF grammar the following line:

<desc> ::= (<path> — <path>)

This is an equational description, of which inequations are the negation. Note, how-
ever, that while inequations are satisfied by the absence of token-identity, equational
descriptions are satisfied by the existence of structure-identity (i.e. the arguments
are unifiable), although it creates token-identity by unifying its arguments. All in-
stances of equational descriptions can be captured by using midtiple occurrences of
variables. For example, the description:

([argl]==[arg2])

is equivalent to the description:

(argl:X,arg2:X).

modulo other occurrences of X.
Standard assumptions about operator precedence and association are followed by

ALE, allowing us to omit most of the parentheses in descriptions. In particular, equa-
tional descriptions bind the most tightly, followed by feature selecting colon, then
by inequations, then conjunction and finally disjunction. Furthermore, conjunction
and disjunction are left-associative, while the feature selector is right-associative.
For instance, this gives us the following equivalences between descriptions:

a, b ; c, d ; e = (a ,b) ; (c ,d) ;e

a,b,c = a,(b,c)

f :g :bot ,h : j = (f :(g:bot)) , (h:j)

f :g: =\=k,h:j = ( f : (g : =\=(k))) , (h: j )

f:[g]==[h],h:j = (f
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Note that a space must occur between =\= and other operators such as :.
A description may be satisfied by no structure, a finite number of structures or

an infinite collection of feature structures. A description is said to be satisfiable if it
is satisfied by at least one structure. A description <f> entails a description $ if every
structure satisfying <f> also satisfies rj). Two descriptions are logically equivalent if
they entail each other, or equivalently, if they are satisfied by exactly the same set
of structures.

ALE is only sensitive to the differences between logically equivalent formulas
in terms of speed. For instance, the two descriptions ( t l : l i s t , n e J . i s t , h d : b o t )
and hd:bot are satisfied by exactly the same set of totally well-typed structures
assuming the type declaration for lists given above, but the smaller description
will be processed much more efficiently. There are also efficiency effects stemming
from the order in which conjuncts (and disjuncts) are presented. The general rule for
speedy processing is to eliminate descriptions from a conjunction if they are entailed
by other conjuncts, and to put conjuncts with more type and feature entailments
first. Thus with our specification for relations above, the description (arg l :a ,
binary_proposition) would be slower than (binary-proposition,argl :a), since
binary-proposition entails the existence of the feature argl, but not conversely.8

At run-time, ALE computes a representation of the most general feature structure
which satisfies a description. Thus a description such as hd:a with respect to the
list grammar is satisfied by the structure:

ne.list
HD a
TL list

Every other structure satisfying the description hd: a is subsumed by the structure
given above. In fact, the above structure is said to be a vague representation of all of
the structures that satisfy the description. The type conditions in ALE were devised
to obey the very important property, first noted by Kasper and Rounds (1986),
that every non-disjunctive description is satisfied by a unique most general feature
structure. Thus in the case of hd: a, there is no more general feature structure than
the one above which also satisfies hd: a.

The previous example also illustrates the kind of type inference used by ALE.
Even though the description hd:a does not explicitly mention either the feature
TL or the type ne_l ist , to find a feature structure satisfying the description, ALE
must infer this information. In particular, because ne_l ist is the most general
type for which HD is appropriate, we know that the result must be of type ne_List.
Furthermore, because ne_l is t is appropriate for both the features HD and TL, ALE
must add an appropriate TL value. The value type l i s t is also inferred, due to the
fact that a ne_l is t must have a TL value which is a list. As far as type inference
goes, the user does not need to provide anything other than the type specification;
the system computes type inference based on the appropriateness specification. In
general, type inference is very efficient in terms of time. The biggest concern should

8 This is because the depth of dereferencing depends on the history of types a given structure
is instantiated as. There is no path compression on-line, but it is carried out before an edge is
asserted into the chart.
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be how large the structures become.9 In contrast to a vague description, a disjunctive
description is usually ambiguous. Disjunction is where the complexity arises in
satisfying descriptions, as it corresponds operationally to non-determinism.10 For
instance, the description hd:(a;b) is satisfied by two distinct minimal structures,
neither of which subsumes the other:

ne.list

HD a

TL list

ne_list

HD b

TL list

On the other hand, the description hd:atom is satisfied by the structure:

ne.list

HD atom

TL list

Even though the descriptions hdratom and hd:(a;b) are not logically equivalent
(though the former entails the latter), they have the interesting property of being
unifiable with exactly the same set of structures. In other words, if a feature struc-
ture can be unified with the most general satisfier of hdratom, then it can be unified
with one of the minimal satisfiers of hd: (a;b).

In terms of efficiency, it is very important to use vagueness wherever possible
rather than ambiguity. In fact, it is almost always a good idea to arrange the
type specification with just this goal in mind. For instance, consider the difference
between the following pair of type specifications, which might be used for English
gender:

gender sub [mas c, f em, neut] .
masc sub • .
fern sub • .
neut sub • .

gender sub [animate,neut]
animate sub [masc,fern] .

masc sub [] .
fern sub • .

neut sub • .

Now consider the fact that the relative pronouns who and which are distinguished
on the basis of whether they select animate or inanimate genders. In the flatter
hierarchy, the only way to select the animate genders is by the ambiguous descrip-
tion masc;fern. The hierarchy with an explicit animate type can capture the same
possibilities with the vague description animate. An effective rule of thumb is that
ALE does an amount of work at best proportional to the number of most general
satisfiers of a description and at worst proportional to 2n, where n is the number
of disjuncts in the description. Thus the ambiguous description requires roughly
twice the time and memory to process than the vague description. Whether the
amount of work is closer to the number of satisfiers or exponential in the number of

9 Finding most general satisfiers for non-disjunctive descriptions, even those involving type in-
ference, is quasi-linear in the size of the description. But it should be kept in mind that there is
also a factor of complexity determined by the size of the type specification. In practice, this factor
is proportional to how large the inferred structure is. In general, the size of the inferred structure
is linear in the size of the description, with a constant for the type specification.

10 It corresponds so closely with non-determinism that satisfiability of descriptions with disjunc-
tions is NP-complete. Furthermore, the algorithm employed by ALE may produce up to 2n satisfiers
for a description with n disjunctions.
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disjuncts depends on how many unsatisfiable disjunctive possibilities drop out early
in the computation.

Inequations are persistent in that once that are created, they remain as long as
one of the structures being inequated remains. Thus the following two descriptions
are logically equivalent.

f : (=\=c) , f :c

f : c , f:(=\=c)

Both will cause failure. But they are not operationally equivalent. An inequation
is evaluated when it arises, and again after high-level unifications in the system.
But as we mentioned before, inequations are not evaluated every time an inequated
structure is modified. Also, the complexity is sensitive to the conjunctive normal
form of the inequation at the time at which it is evaluated, though it may later be
reduced.

Although inequations are persistent, they are not constantly enforced by ALE.
In an ideal system, inequations would be attached directly to structures so that they
could be evaluated on-line during unification. As things stand, ALE 2.0 represents
a structure by combining a regular feature structure and a set of inequations.

These sets of inequations are evaluated at run-time at the point they are en-
countered, before answers are given to top-level queries, before any edge is added
to ALE'S parsing chart, after every daughter is matched to a description in an ALE
grammar rule11, and after the head of an ALE definite clause has been matched to a
goal. At compile-time, inequations are checked for every empty category, for every
lexical entry, and after every lexical rule application.

Macros

ALE allows the user to employ a general form of parametric macros in descriptions.
Macros allow the user to define a description once and then use a shorthand for
it in other descriptions. We first consider a simple example of a macro definition,
drawn from the categorial grammar in the appendix. Suppose the user wants to
employ a description qstore:e_list frequently within a program. The following
macro definition can be used in the program file:

quantifier.free macro

qstore:e_list.

Then, rather than including the description qstore:e_J.ist in another description,
€ quantifier-free can be used instead. Whenever € quantifierjfree is used,
qstore: e_list is substituted.

In the above case, the <macrojspec> was a simple atom, but in general, it can
be supplied with arguments. The full BNF for macro definitions is as follows:

<macro_def> ::= <macro_head> macro <desc>.

11 In the case of cats>, they are enforced after the list description itself is matched, and also after
every element of the list is matched.
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<macro_head> : := <macro_name>

I <macro_name>(<seq(<var>)>)

<macro_spec> ::= <macro_name>

I <macro_name>(<seq(<desc>)>)

<seq(X)> ::= X

I X, <seq(X)>

Note that <seq(X)> is a parametric category in the BNF which abbreviates non-
empty sequences of objects of category X. The following clause should be added to
recursive definition of descriptions:

<desc> ::= G <macro\_spec>

A feature structure satisfies a description of the form € <macrospec> just in case
the structure satisfies the body of the definition of the macro.

Again considering the categorial grammar in the appendix, we have the following
macros with one and two arguments respectively:

np(Ind) macro

synrnp,

semrlnd.

n(Restr,Ind) macro

syn:n,

sem:(body:Restr,

ind:Ind).

In general, the arguments in the definition of a macro must be Prolog variables,
which can then be used as variables in the body of the macro. With the first macro,
the description $ np(j) would then be equivalent to the description syn:np,sem: j.
When evaluating a macro, the argument supplied, in this case j, is substituted for
the variable when expanding the macro. In general, the argument to a macro can
itself be an arbitrary description (possibly containing macros). For instance, the
description:

n((and,conjl:Rl,conj2:R2),Ind3)

would be equivalent to the description:

syn:n,
sem:(body:(and,conjl:Rl,conj2:R2),

ind:Ind3)

This example illustrates how other variables and even complex descriptions can be
substituted for the arguments of macros. Also note the parentheses around the
arguments to the first argument of the macro. Without the parentheses, as in
n ( and, con j 1: Rl, con j 2: R2, Ind3), the macro expansion routine would take this to
be a four argument macro, rather than a two argument macro with a complex first
argument. This brings up a related point, which is that different macros can have
the same name as long as they have the different numbers of arguments.

Macros can also contain other macros, as illustrated by the macro for proper
names in the categorial grammar:



27

pn(Name) macro

synsem: € np(Name),

C quantifier.free.

In this case, the macros are expanded recursively, so that the description pn(j)
would be equivalent to the description

synsem:(syn:np,sem:j) ,qstore:e_list

It is usually a good idea to use macros whenever the same description is going to
be re-used frequently. Not only does this make the grammars and programs more
readable, it reduces the number of simple typing errors that lead to inconsistencies.

As is to be expected, macros can't be recursive. That is, a macro, when ex-
panded, is not allowed to invoke itself, as in the ill-formed example:

infinite.list(Elt) macro

hd:Elt,

tl:infinite.list(Elt)

The reason is simple; it is not possible to expand this macro to a finite description.
Thus all recursion must occur in grammars or programs; it can't occur in either the
appropriateness conditions or in macros.

The user should note that variables in the scope of a macro are not the same as
ALE feature structure variables — they denote where macro-substitutions of param-
eters are made, not instances of re-entrancy in a feature structure. If we employ the
following macro:

blah(X) macro
b,
f: X,
g: X.

with the argument (c ,h:a) for example we obtain the following feature structure:

b
F c

H a
G c

H a

where the values of F and G are not shared (unless c and a are extensional). We
can, of course, create a shared structure using blah, by including an ALE variable
in the actual argument to the macro. Thus blah((Y,c ,h:a)) yields:

b
F [0] c

H a
G [0]

Because programming with lists is so common, ALE has a special macro for it,
based on the Prolog list notation. A description may also take any of the forms on
the left, which will be treated equivalently to the descriptions on the right in the
following diagram:
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•
[HIT]

[A1.A2, .

C A 1

. . ,AN]

A l l 1 X J

e.list

(hd:H,
tl:T)

(hd:Al,
tl:(hd:A2,

t l : . . .

(hd:Al,
tl:(hd:A2,

t l : . . .

tl:(hd:AN,
tl:e.l

tl:(hd:AN,

Note that this built-in macro does not require the macro operator G. Thus, for
example, the description [a|T3] is equivalent to hd:a , t l :T3, and the description
[a,b,c] is equivalent to h d : a , t l : (hd :b , t l : (hd :c , t l : e J . i s t ) ) . There are many
example of this use of Prolog's list notation in the grammars in the appendix.

Type Constraints

Our logical language of descriptions can be used with the type system in order
to enforce constraints on feature structures of a particular type. Constraints are
attached to types, and may consist of arbitrary descriptions. Their effect is to require
every structure of the constrained type to always satisfy the constraint description.

Constraints are enforced using the cons operator, e.g.:

bot sub [a ,b ] .
a sub •

intro [ f :b ,g :b ] .
b sub Q .

a cons (f:X,g:=\= X).

The constraint on the type a (which must occur within parentheses) requires all
feature structures of type a to have non-token-identical values for features / and
g. Notice that the type b has no constraints expressed. This is equivalent to the
(anonymous variable) constraint specification:

b cons _.

which is satisfied by any feature structure (of type b). A type constraint may use
any of the operators in the description language, including further type descriptions,
which may themselves be constrained.

It is crucial that the type descriptions be finitely resolvable. Because simple
depth-first search is used to evaluate constraints, infinite resolution paths will cause
the system to hang. For example, the following constraints would not be permitted
in the following signature:
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bot sub [a,b].
a sub [c]

intro [f:bot] .
c sub • .

b sub •
intro [g :bot ] .

a cons f : b .
b cons g:c .

This is because a subsumes c. If such a cycle exists, the user is given an error
message. Notice, however, that type constraints can be used to provide additional
information regarding value restrictions on appropriate features. An error is also
given if the constraint information is inconsistent with information given in the ap-
propriateness conditions. In general, ALE performs more efficiently when restrictions
are provided in the appropriateness conditions, rather than in general constraints;
but type constraints can encode a greater variety of restrictions. Specifically, they
allow constraints to express equality and inequality, as well as deeper path restric-
tions. Constraints may include relational constraints, which are defined using def-
inite clauses (which we discuss below). Type constraints are are compiled in the
same way as other descriptions, which is not inefficient. Also, like appropriateness
conditions, they are only enforced once for each structure.

It is also important to note that because of the delay in ALE'S inequation en-
forcement, type constraints that involve recursion that terminates by an inequation
failure may go into infinite loops due to this delay in enforcement. Because exten-
sionaiity is only enforced before the answer to a top-level query is given, recursive
type constraints that rely on the extensional identity of two feature structures to
terminate on the basis of their type will not terminate.

Example: The Zebra Puzzle

We now provide a simplified form of the Zebra Puzzle (Figure 3.1), a common puzzle
for constraint resolution. This puzzle was solved by Ait-Kaci (1984) using roughly
the same methods as we use here. The puzzle illustrates the expressive power of the
combination of extensional types, inequations and type constraints. Such puzzles,
sometimes known as logic puzles or constraint puzzles, require one to find a state of
affairs within some situation that simultaneously satisfies a set of constraints. The
situation itself very often implicitly levies certain constraints.

We can represent the simplified Zebra Puzzle in ALE as:

•/, Subsumption

bot sub [house,descriptor,background].

descriptor sub [nat_type,ani_type,bev_type]#

nat_type sub [norwegian,ukranian,Spaniard].
norwegian sub • .
ukranian sub • .
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Puzzle: Three different houses each contain a different pet, a different drink, and
an inhabitant of a different nationality. The following six facts are true about these
houses:

1. The man in the third (middle) house drinks milk.

2. The Spaniard owns the dog.

3. The Ukranian drinks the tea.

4. The Norwegian lives in the first house.

5. The Norwegian lives next to the tea-drinker.

6. The juice-drinker owns the fox.

Questions: Who owns the zebra? Who drinks juice?

Figure 3.1: The Zebra Puzzle.

Spaniard sub D .
ani_type sub [fox,dog,zebra].

fox sub • .
dog sub • .
zebra sub • .

bev_type sub [juice,tea,milk].
juice sub • .
tea sub • .
milk sub • .

house sub []
intro [nationality :nat_type, animal: ani.type,beverage :bev_type] .

background sub [clue]
intro [housel:house,house2:house,house3:house] .

clue sub [maximality] .
maximality sub • .

ext( [norwegian,ukranian,Spaniard,fox,dog,zebra,juice,tea,milk]) .

•/, Constraints
y(sssss===ssssssssssss===s=ssss

background cons

(housel: national it y:Nl, '/• inequational constraints

house2:nationality:(N2,(=\= Nl)),

house3:nationality:((=\= Nl),(=\= N2)),

housel:animal:Al,

house2:animal:(A2,(=\= Al)),

house3:animal:((=\= Al),(=\= A2)),
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house1:beverage:Bl,

house2:beverage:(B2,(=\= Bl)),

house3:beverage:((=\= Bl),(=\= B2))).

clue cons

(house3:beverage:milk, X clue 1

(housel.-nationality:spaniard,house 1:animal:dog X clue 2

;house2: nationality: Spaniard, house2: animal: dog

;house3:nationality: Spaniard,house3: animal: dog) ,

(housel :nationality:ukranian,housel:beverage:tea X clue 3

;house2 .-nationality :ukranian,house2: beverage: tea

;house3nationality:ukranian,house3:beverage:tea) ,

housel nationality :norwegian, X clue 4

(houselnationality:norwegian,house2:beverage:tea X clue 5

;house2: nationality :norwegian,house3:beverage: tea

;house2 nationality :norwegian,housel: beverage :tea

;house3nationality:norwegian,house2:beverage:tea) ,

(housel:beverage: juice,housel:animal:fox X clue 6

;house2: beverage: juice ,house2: animal: fox

;house3:beverage: juice,house3: animal:fox) ) .

maximality cons

(housel nationality: (norwegian;ukranian;Spaniard) , X maximality constraints

house2:nationality: (norwegian;ukranian; Spaniard) ,

house3:nationality: (norwegian;ukranian;Spaniard) ,

housel:animal: (fox;dog;zebra) ,

house2: animal: (fox; dog;zebra) ,

house3:animal: (fox;dog;zebra) ,

housel:beverage:(juice;tea;milk),

house2:beverage:(juice;tea;milk),

house3:beverage:(juice;tea;milk)) .

The subsumption hierarchy is shown pictorially in Figure 3.2. The type,
background, with the assistance of the types subsumed by house and descriptor,
represents the situation: there are three houses (the features of background), each
of which has three attributes (the features of house). The implicit constraints levied
by the situation appear as constraints on the type, background, namely that no two
houses can have the same value for any attribute. These are represented by inequa-
tions. But notice that, since we are interested in treating the values of attributes
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as tokens, we must represent those values by extensional types. If we had not done
this, then we could still, for example, have two different houses with the beverage,
juice , since there could be two different feature structures of type juice which
were not token-identical. Notice also that all of these types are maximal, and hence
satisfy the restriction that ALE places on extensional types.

The explicit constraints provided by the clues to the puzzle are represented as
constraints on the type clue, a subtype of background. We also need a subtype of
clue, maximality, to enforce another constraint implicit to all constraint puzzles,
namely the one which requires that we provide only maximally specific answers,
rather than vague solutions which say, for example, that the beverage for the third
house is a type of beverage (bev_type), which may actually still satisfy a puzzle's
constraints.

To solve the puzzle, we simply type:

I ?- mgsat maximality.

MOST GENERAL SATISFIER OF: maximality

maximality
H0USE1 house

ANIMAL fox
BEVERAGE juice
NATIONALITY norwegian

H0USE2 house
ANIMAL zebra
BEVERAGE tea
NATIONALITY ukranian

H0USE3 house
ANIMAL dog
BEVERAGE milk
NATIONALITY Spaniard

ANOTHER? y.

no
I ?-

So the Ukranian owns the zebra, and the Norwegian drinks juice. A most general
satisfier of maximality will also satisfy the constraints of its supertypes, background
and clue.

Although ALE is capable of representing such puzzles and solving them, it is not
actually very good at solving them efficiently. To solve such puzzles efficiently, a
system must determine an optimal order in which to satisfy all of the various con-
straints, ALE does not do this since it can express definite clauses in its constraints,
and the reordering would also be very difficult for the user to keep track of while
designing a grammar. A system which does do this is the general constraint resolver
proposed by Penn and Carpenter (1993)12.

12 This system was actually the precursor to ALE. It implemented a completely reversible
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norwegian
ukranian
Spaniard

- zebra
- fox
- dog

nat-type ani-type

p orange-juice
milk
tea

bev-type

house
NATIONALITY

ANIMAL

BEVERAGE

descriptor

maximality

clue

background
HOUSEl

HOUSE2

HOUSE3

Figure 3.2: Inheritance Network for the Zebra Puzzle.

constraint-based parser/generator with a weighting on the constraints based on their maximal
non-determinism. Re-ordering constraints, however, proved to be insufficient for efficient parsing
or generation, compared to a uni-directional system such as ALE.
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Definite Clauses

The next two sections, covering the constraint logic programming and phrase struc-
ture components of ALE, simply describe how to write ALE programs and how they
will be executed. Discussion of interacting with the system itself follows the descrip-
tion of the programming language ALE provides.

The definite logic programming language built into ALE is a constraint logic
programming (CLP) language, where the constraint system is the attribute-value
logic described above. Thus, it is very closely related to both Prolog and LOGIN.
Like Prolog, definite clauses may be defined with disjunction, negation and cut. The
definite constraints of ALE are executed in a depth-first, left to right search, according
to the order of clauses in the database, ALE performs last call optimization, but
does not perform any clause indexing.1 Those familiar with Prolog should have no
trouble adapting that knowledge to programming with definite clauses in ALE. The
only significant difference is that first-order terms are replaced with descriptions of
feature structures.

While it is not within the scope of this user's guide to detail the logic program-
ming paradigm, much less CLP, this section will explain all that the user familiar
with logic programming needs to know to exploit the special features of ALE. For
background, the user is encouraged to consult Sterling and Shapiro (1986) with re-
gard to general logic programming techniques, most of which are applicable in the
context of ALE, and Ai't-Kaci and Nasr (1986) for more details on programming with
sorted feature structures. For more advanced material on programming in Prolog
with a compiler, see O'Keefe (1990). The general theory of CLP is developed in
a way compatible with ALE in Hohfeld and Smolka (1988). Of course, since ALE
is literally an implementation of the theory found in Carpenter (1992), the user is
strongly encouraged to consult Chapter 14 of that book for full theoretical details.

The syntax of ALE'S logic programming component is broadly similar to that
of Prolog, with the only difference being that first-order terms are replaced with
at tribute-value logic descriptions. The language in which clauses are expressed in
ALE is given in BNF as:

<clause> ::= <literal> if <goal>.

<literal> ::= <pred_sym>
1Thus, additional cuts-might be necessary to ensure determinism, so that last call optimization

is effective.

34
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<pred_sym>(<desc_seq>)

<desc_seq> ::= <desc>
I <desc>,<desc_seq>

<goal> ::= true
<literal>
«goal>,<goal>)
«goal>;<goal>)
(<desc> =C <desc>)

<goal>)
prolog(<prolog_goal>)

Just as in Prolog, predicate symbols must be Prolog atoms. This is a more restricted
situation than the definite clause language discussed in Carpenter (1992), where
literals were also represented as feature structures and described using attribute-
value logic. Also note that ALE requires every clause to have a body, which might
simply be the goal true. There must be whitespace around the if operator, but
none is required around the conjunction comma, the disjunction semicolon, the cut
symbol !, or the unprovability symbol \+. Parentheses, in general, may be dropped
and reconstructed based on operator precedences. The precedence is such that the
comma binds more tightly than the semicolon, while the unprovability symbol binds
the most tightly. Both the semicolon and comma are right associative.

The operational behavior of ALE is nearly identical to Prolog with respect to goal
resolution. That is, it evaluates a sequence of goals depth-first, from the left to right,
using the order of clauses established in the program. The only difference arises from
the fact that, in Prolog, literals can't introduce non-determinism. In ALE, due to
the fact that disjunctions can be nested inside of descriptions, additional choice
points might be created both in matching literals against the heads of clauses and
in expanding the literals within the body of a clause. In evaluating these choices,
ALE maintains a depth-first left to right strategy.

We begin with a simple example, the member/2 predicate:2

member(X,hd:X) if
true,

member(X,tl:Xs) if
member(X,Xs).

As in Prolog, ALE clauses may be read logically, as implications, from right to left.
Thus the first clause above states that X is a member of a list if it is the head of a
list. The second clause states that X is a member of a list if X is a member of the
tail of the list, Xs. Note that variables in ALE clauses are used the same way as in
Prolog, due to the notational convention of our description language. Further note
that, unlike Prolog, ALE requires a body for every clause. In particular, note that
the first clause above has the trivial body true. The compiler is clever enough to
remove such goals at compile time, so they do not incur any run-time overhead.

2 As in Prolog, we refer to predicates by their name and arity.
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Given the notational convention for lists built into ALE, the above program could
equivalently be written as:

member(X,[X|J) i f
true,

member(X, [_ IXs]) if

member(X,Xs).

But recall that ALE would expand [X| J as (hd:X,tl:_). Not only does ALE not
support anonymous variable optimizations, it also creates a conjunction of two de-
scriptions, where hd:X would have sufficed. Thus the first method is not only more
elegant, but also more efficient.

Due to the fact that lists have little hierarchical structure, list manipulation
predicates in ALE look very much like their correlates in Prolog. They will also
execute with similar performance. But when the terms in the arguments of liter-
als have more interesting taxonomic structure, ALE actually provides a gain over
Prolog's evaluation method, as pointed out by AYt-Kaci and Nasr (1986). Consider
the following fragment drawn from the syllabification grammar in the appendix, in
which there is a significant interaction between the inheritance hierarchy and the
definite clause lessjsonorous/2:

segment sub [consonant,vowel] .
consonant sub [nasa l , l iquid ,g l ide] .

nasal sub [n,m].
n sub • .
m sub • .

l iquid sub [ l , r ] .
1 sub • .
r sub • .

gl ide sub [y,w].
y sub • .
w sub • .

vowel sub [a,e,i]

a sub • .

e sub • .

i sub • .

less.sonorous.basic(nasal,liquid) if true,

less.sonorous.basic(liquid,glide) if true,

less.sonorous.basic(glide,vowel) if true.

less.sonorous(LI,L2) if

less.sonorous.basic(Ll,L2).

less.sonorous(LI,L2) if

less.sonorous.basic(Ll,L3),

less.sonorous(L3,L2).

For instance, the third clause of less_sonorousJbasic/2, being expressed as
a relation between the types gl ide and vowel, allows solutions such as
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less_sonorous_basic(w,e), where glide and vowel have been instantiated as the
particular subtypes w and e. This fact would not be either as straightforward or
as efficient to code in Prolog, where relations between the individual letters would
need to be defined. The loss in efficiency stems from the fact that Prolog must
either code all 14 pairs represented by the above three clauses and type hierarchy,
or perform additional logical inferences to infer that w is a glide, and hence less
sonorous than the vowel e. ALE, on the other hand, performs these operations by
unification, which, for types, is a simple table look-up.3 All in all, the three clauses
for less_sonorousJbasic/2 given above represent relations between 14 pairs of let-
ters. Of course, the savings is even greater when considering the transitive closure
of l e s s jsonorous Jbasic/2, given above as less_sonorous/2, and would be greater
still for a type hierarchy involving a greater degree of either depth or branching.

While we do not provide examples here, suffice it to say that cuts, negation,
conjunction and disjunction work exactly the same as they do in Prolog. In partic-
ular, cuts conserve stack space representing backtracking points, disjunctions create
choice points and negation is evaluated by failure, with the same results on binding
as in Prolog.

The definite clause language also allows arbitrary prolog goals, using the pred-
icate, prolog (<prolog_goal>). This is most useful when used with the Prolog
predicates, assert and retract, which provide ALE users with access to the Prolog
database, and with I/O statements (these are quite useful for debugging definite
clauses). Because of the way in which ALE compiles definite clauses, side effects
created by prolog hooks may not occur properly in cases where a clause can never
succeed. For example, with the following two definitions:

P i f
prolog(write('blah >)).

q i f
P.
foo((X,a) , (X,b)) .

If a and b are not unifiable, the clause for q can never succeed. In ALE, not only will
it not succeed, but the message 'blah* will not be printed either. This is because
ALE checks the descriptions of subgoals (like the one for f oo) before it actually calls
the subgoals in cases such as this. This behaviour will be corrected in a future
version. Until then, the user may need to add extra subgoals to avoid this. We can
rewrite the above predicates as:

P i f
prolog(write( 'blah') ) .

q i f
P»
q2(X,Y),
foo(X.Y).

q2((X,a),(X,b)) i f true.

3 Table look-ups Involved in unification in ALE rely on double hashing, once for the type of each
structure being unified.
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for example, to remedy this particular case.
Should prolog_goal contain a variable that has been instantiated to an ALE

feature structure, this will appear to Prolog as ALE'S internal representation of that
feature structure. Feature structures can be asserted and retracted, however, with-
out regard to their internal structure. The details of ALE'S internal representation
of feature structures can be found in Carpenter (1993).

Another side effect of not directly attaching inequations to feature structures
is that if a feature structure with inequations is asserted and a copy of it is later
instantiated from the Prolog database or retracted, the copy will have lost the
inequations. For this reason, asserting feature structures with inequations should
be avoided.

There is a special literal predicate, =0, used with infix notation, which is true
when its arguments are token-identical. As with inequations, which forbid token-
identity, the =€ operator is of little use unless multiply occurring variables are used
in its arguments' descriptions. Note, however, that while inequations (=\=) and
equations (==) are part of the description language, =C is a definite clause predicate,
and cannot be used as a description. It is more important to note that while the
negation of the structure-identity operator (==), namely the inequation (=\=), is
monotonic when interpreted persistently, the negation of the token-identity operator
(=$), achieved by using it inside the argument of the \+ operator, is non-monotonic,
and thus its use should be avoided.

It is significant to note that clauses in ALE are truly definite in the sense that
only a single literal is allowed as the head of a clause, while the body can be a general
goal. In particular, disjunctions in descriptions of the arguments to the head literal
of a clause are interpreted as taking wide scope over the entire clause, thus providing
the effect of multiple solutions rather than single disjunctive solutions. The most
simple example of this behavior can be found in the following program:

foo((b;c)) if t rue ,

bar(b) if t rue .

baz(X) if foo(X), bar(X).

Here the query f oo(X) will provide two distinct solutions, one where X is of type b,
and another where it is of type c. Also note that the queries f oo(b) and f oo(c)
will succeed. Thus the disjunction is equivalent to the two single clauses:

foo(b) if t rue ,
foo(c) if t rue .

In particular, note that the query baz(X) can be solved, with X instantiated to
an object of type b. In general, using embedded disjunctions will usually be more
efficient than using multiple clauses in ALE, especially if the disjunctions are deeply
nested late in the description. On the other hand, cuts can be inserted for control
with multiple clauses, making them more efficient in some cases.
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Type Constraints Revisited

The type constraints mentioned in the last chapter can also incorporate relational
constraints defined by definite clauses, with the optional operator goal. Consider
the following example from HPSG:

word cons W
goal (single.rel.constraint(W),

clausal_rel_prohibition(W)).

In this example, the constraint from the description language is simply the vari-
able W, which is used to match any feature structure of type word. That fea-
ture structure is then passed as an argument to the two procedural attachments
single_rel_constraint/ l and c lausal-re l -prohibit ion/ l , which each represent
a principle from HPSG which governs words (among other objects). Notice that the
goal, when non-literal, must occur within parentheses.

While every type constraint must have a description, procedural attachments
are optional. If they do occur, they occur after the description. The syntax is given
in BNF as:

<cons_spec> ::= <type> cons <desc>
I <type> cons <desc>

goal <goal>



Chapter 5

Phrase Structure Grammars

The ALE phrase structure processing component is loosely based on a combination
of the functionality of the PATR-II system and the DCG system built into Prolog.
Roughly speaking, ALE provides a system like that of DCGS, with two primary dif-
ferences. The first difference stems from the fact that ALE uses attribute-value
logic descriptions of typed feature structures for representing categories and their
parts, while DCGs use first-order terms (or possibly cyclic variants thereof). The
second primary difference is that ALE uses a bottom-up active chart parser rather
than encoding grammars direclty as Prolog clauses and evaluating them top-down
and depth-first. In the spirit of DCGS, ALE allows definite clause procedures to be
attached and evaluated at arbitrary points in a phrase structure rule, the differ-
ence being that these rules are given by definite clauses in ALE'S logic programming
system, rather than directly in Prolog.

Phrase structure grammars come with two basic components, one for describing
lexical entries, and one for describing grammar rules. We consider these components
in turn, after a discussion of the parsing algorithm.

Parsing

It is not necessary to fully understand the parsing algorithm employed by ALE to
exploit its power for developing grammars. But for those users concerned with effi-
ciency and writing grammars with procedural attachments, it is crucial information.

The ALE system employs a bottom-up active chart parser which hats been tai-
lored to the implementation attribute-value grammars in Prolog. The single most
important fact to keep in mind is that rules are evaluated from left to right. Most of
the implementational considerations follow from this rule evaluation principle and
its specific implementation in Prolog.

The chart is filled in using a combination of depth- and breadth-first control.
In particular, the edges are filled in from right to left, even though the rules are
evaluated from left to right. Furthermore, the parser proceeds breadth-first in the
sense that it incrementally moves through the string from right to left, one word at
a time, recording all of the inactive edges that can be created beginning from the
current left-hand position in the string. For instance, in the string The kid ran
yesterday, the order of processing is as follows. First, lexical entries for yesterday
are looked up, and entered into the chart as inactive edges. For each inactive edge
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that is added to the chart, the rules are also fired according to the bottom-up rule
of chart parsing. But no active edges are recorded. Active edges are purely dy-
namic structures, existing only locally to exploit Prolog's copying and backtracking
schemes. The benefit of parsing from right to left is that when an active edge is
proposed by the bottom-up rule, every inactive edge it might need to be completed
has already been found. The real reason for the right to left parsing strategy is
to allow the active edges to be represented dynamically, while still evaluating the
rules from left to right. While the overall strategy is bottom-up, and breadth-first
insofar as it steps incrementally through the string, filling in every possible inactive
edge as it goes, the rest of the processing is done depth-first to keep as many data
structures dynamic as possible, to avoid copying other than that done by Prolog's
backtracking mechanism. In particular, lexical entries, the bottom-up rule, and the
active edges are all evaluated depth-first, which is perfectly sound, because they all
start at the same left point (that before the current word in the right to left pass
through the string), and thus do not interact with one another.

Rules can incorporate definite clause goals before, between or after category
specifications. These goals are evaluated when they are found. For instance, if a
goal occurs between two categories on the right hand side of a rule, the goal is
evaluated after the first category is found, but before the second one is. The goals
are evaluated by ALE'S definite clause resolution mechanism, which operates in a
depth-first manner. Thus care should be taken to make sure the required variables
in a goal are instantiated before the goal is called. The resolution of all goals should
terminate with a finite (possibly empty) number of solutions, taking into account
the variables that are instantiated when they are called.

The parser will terminate after finding all of the inactive edges derivable from
the lexical entries and the grammar rules. As things stand, ALE does not keep
track of the parse tree. Of course, if the grammar is such that an infinite number
of derivations can be produced, ALE will not terminate. Such an infinite number
of derivations can creep in either through recursive unary rules or through the
evaluation of goals.

The current version of ALE has no mechanism for detecting duplicate edges. Thus
there is no mechanism to prevent the propagation of spurious ambiguities through
the parse. A category C spanning a given subsequence is said to be spurious if there
is another category C' spanning the same subsequence such that C is subsumed
by C". Only the most general category needs to be recorded to ensure soundness.
Furthermore, it might be the case that there is redundancy, in the sense that there
are two derivations of the same category. ALE is also unable to detect this situation.
This strategy was followed rather than the standard one which checks for subsump-
tion when an edge is added, because it was felt that most grammars do not have
any spurious ambiguity. Most unification-based grammars incorporate some notion
of thematic or functional structure representing the meaning of a sentence. In these
cases, most structural ambiguities result in semantic ambiguities. Thus it would
actually slow the algorithm down to constantly check for a condition that never
occurs. Future versions of ALE should allow the user to set a flag which determines
whether spurious ambiguity and redundancy is captured during parsing.
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Lexical Entries

Lexical entries in ALE are specified as rewriting rules, as given by the following BNF
syntax:

<lex_entry> ::= <word> > <desc>.

For instance, in the categorial grammar lexicon in the appendix, the following lexical
entry is provided, along with the relevant macros:

John >

pn(Name) macro
synsem: € np(Name),
0 quant i f ier . free .

np(Ind) macro
syn:np,
semrlnd.

quant i f ier . free macro
qstore: • .

Read declaratively, this rule says that the word John has as its lexical category the
most general satisfier of the description 0 pn(j) , which is:

cat
SYNSEM basic

SYN np

SEM j

QSTORE e.list

Note that this lexical entry is equivalent to that given without macros by:

John >
synsem: (syn:np,

sem:j),

qstore:e_list.

Macros are useful as a method of organizing lexical information to keep it consistent
across lexical entries. The lexical entry for the word runs is:

runs > C iv((run,runner:Ind) ,Ind) .

iv(Sem,Arg) macro

synsem:(backward,

arg: 6 np(Arg),

res:(syn:s,

sem:Sem)) ,
fl quantifier.free.
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This entry uses nested macros along with structure sharing, and expands to the
category:

cat
SYNSEM backward

ARG synsem
SYN np
SEM [0] sem.obj

RES SYN s
SEM run

RUNNER [0]
QSTORE e . l i s t

It also illustrates how macro parameters are in fact treated as variables.
Multiple lexical entries may be provided for each word. Disjunctions may also

be used in lexical entries. Thus the first three lexical entries, taken together, are
identical to the fourth:

bank >

synrnoun,

sem:river.bank.

bank >

synrnoun,

s em:money.bank.

bank >

synrverb,

sem:roll.plane.

bank >

( synrnoun,

sem:( river.bank

; money.bank

)

; synrverb,

semrroll.plane

).

Note that this last entry uses the standard Prolog layout conventions of placing
each conjunct and disjunct on its own line, with commas at the end of lines, and
disjunctions set off with vertically aligned parentheses at the beginning of lines.

The compiler finds all the most general satisfiers for lexical entries at compile
time, reporting on those lexical entries which have unsatisfiable descriptions. In the
above case of bank, the second combined method is marginally faster at compile-
time, but their run-time performance is identical. The reason for this is that both
entries have the same set of most general satisfiers.

ALE supports the construction of large lexicons, as it relies on Prolog's hashing
mechanism to actually look up a lexical entry for a word during bottom-up parsing.
Constraints on types can also be used to enforce conditions on lexical representa-
tions, allowing for further factorization of information.
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Empty Categories

ALE allows the user to specify certain categories as occurring without any corre-
sponding surface string. These are usually referred to somewhat misleadingly as
empty categories, or sometimes as null productions. In ALE, they are supported by
a special declaration of the form:

empty <desc>.

Where <desc> is a description of the empty category.
For example, a common treatment of bare plurals is to hypothesize an empty

determiner. For instance, consider the contrast between the sentences kids over-
turned my trash cans and a kid overturned my trash cans. In the former sentence,
which has a plural subject, there is no corresponding determiner. In our categorial
grammar, we might assume an empty determiner with the following lexical entry
(presented here with the macros expanded):

empty Q gdet(some).

gdet(Quant) macro

synsem:(forward,

arg:(syn:(n,

numrplu),

sem:(body:Restr,

ind:Ind)),

res:(syn:(np,

num:plu),
semrlnd),

qs tore: [ (Quant,
var:Ind,
restr :Restr) ] .

Of course, it should be noted that this entry does not match the type system of the
categorial grammar in the appendix, as it assumes a number feature on nouns and
noun phrases.

Empty categories are expensive to compute under a bottom-up parsing scheme
such as is used in ALE. The reason for this is that these categories must be inserted
at every position in the chart during parsing (with the same begin and end points).
If the empty categories cause local structural ambiguities, parsing will be slowed
down accordingly as these structures are calculated and then propagated. Consider
the empty determiner given above. It will produce an inactive edge at every node in
the chart, then match the forward application rule scheme and search every edge to
its right looking for a nominal complement. Because there are relatively few nouns
in a sentence, not many noun phrases will be created by this rule and thus not many
structural ambiguities will propagate. But in a sentence such as the kids like the
toys, there will be an edge spanning kids like the toys corresponding to an empty
determiner analysis of kids. The corresponding noun phrase created spanning toys
will not propagate any further, as there is no way to combine a noun phrase with the
determiner the. But now consider the empty slash categories of form X/X in GPSG.
These categories, when coupled with the slash passing rules, would roughly double
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parsing time, even for sentences that can be analyzed without any such categories.
The reason is that these empty categories are highly underspecified and thus have
many options for combinations. Thus empty categories should be used sparingly,
and prefarably in environments where their effects will not propagate.

Another word of caution is in order concerning empty categories: they can occur
in constructions with other empty categories. For instance, if we specify categories
C\ and C2 as empty categories, and have a rule that allows a C to be constructed
from a C\ and a C2, then C will act as an empty category, as well. These com-
binations of empty categories are computed at run-time, and may be a processing
burden if they apply too productively. Keep in mind that ALE computes all of the
inactive edges that can be produced from a given input string, so there is no way
of eliminating the extra work produced by empty categories interacting with other
categories, including empty ones.

There is a significant restriction on the use of empty categories in ALE. Even
though empty categories are copied into the chart, if a rule involves more than
one instance of an empty category, spanning the same portion of the chart, it is
not guaranteed to work. For instance, if the categories a and b are declared to be
empty, and there is a grammar rule such as c —> a, b, then it is not guaranteed
that c will be constructed. On the other hand, if the rule is c —> a, d, b, and
if d is not empty, then the rule will function normally; it is only the use of two
contiguous empty categories in a rule that causes problems. This problem could be
worked around at compile-time, but would require significant rewriting of both the
lexical processor and the parser.

Lexical Rules

Lexical rules provide a mechanism for expressing redundancies in the lexicon, such as
the kinds of inflectional morphology used for word classes, derivational morphology
as found with suffixes and prefixes, as well as zero-derivations as found with detran-
sitivization, nominalization of some varieties and so on. The format ALE provides
for stating lexical rules is similar to that found in both PATR-II and HPSG.

In order to implement them efficiently, lexical rules, as well as their effects on
lexical entries, are compiled in much the same way as grammars. To enhance their
power, lexical rules, like grammar rules, allow arbitrary procedural attachment with
ALE definite constraints.

The lexical rule system of ALE is productive in that it allows lexical rules to
apply sequentially to their own output or the output of other lexical rules. Thus,
it is possible to derive the nominal runner from the verb run, and then derive the
plural nominal runners from runner, and so on. At the same time, the lexical system
is leashed to a fixed depth-bound, which may be specified by the user. This bound
limits the number of rules that can be applied to any given category. The bound on
application of rules is specified by a command such as the following, which should
appear line initially somewhere in the input file:

:- lex_rule_depth(2).

Of course, bounds other than 2 can be used. The bound indicates how many appli-
cations of lexical rules can be made, and may be 0. If there is more than one such
specification in an input file, the last one will be the one that is used.
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The format for lexical rules is as follows:

<lex_rule> ::= <lex.rule.name> lex.rule <lex_rewrite>

morphs <morphs>.

<lex_rewrite> ::= <desc> **> <desc>

I <desc> **> <desc> if <goal>

<morphs> ::= <morph>

I <morph>, <morphs>

<morph> ::= (<string_pattern>) becomes (<string_pattern>)

I (<string_pattern>) becomes (<string_pattern>)

when <prolog_goal>

<string_pattern> ::= <atomic_string_pattern>

I <atomic_string_pattern>, <string_pattern>

<atomic_string_pattern> ::= <atom>

I <var>

I <list(<var_char>)>

<var_char> ::= <char>

I <var>

An example of a lexical rule with almost all of the bells and whistles (we put off
procedural attachment for now) is:

plural.n lex.rule

(n,

num:sing)

**> (n,

num:plu)

morphs

goose becomes geese,

[k,e,y] becomes [k,e,y,s],

(X,man) becomes (X,men),

(X,F) becomes (X,F,es) when fricative(F),

(X,ey) becomes (X,[i,e,s]),

X becomes (X,s).

fricative([s]) .
fr icat ive([c ,h]) .
fr icat ive([s ,h]) .
fr icative([x]) .

We will use this lexical rule to explain the behavior of the lexical rule system. First
note that the name of a lexical rule, in this case plural_n, must in general be a
Prolog atom. Further note that the top-level parentheses around both the descrip-
tions and the patterns are necessary. If the Prolog goal, in this case fricative(F),
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had been a complex goal, then it would need to be parenthesized as well. The next
thing to note about the lexical rule is that there are two descriptions — the first
describes the input category to the rule, while the second describes the output cat-
egory. These are arbitrary descriptions, and may contain disjunctions, macros, etc.
We will come back to the clauses for f r i c a t i v e / 1 shortly. Note that the patterns in
the morphological component are built out of variables, sequences and lists. Thus a
simple rewriting can be specified either using atoms as with goose above, with a list,
as in [ k , e , y ] , or with a sequence as in (X,man), or with both, as in (X, [ i , e , s ] ) .
The syntax of the morphological operations is such that in sequences, atoms may
be used as a shorthand for lists of characters. But lists must consist of variables or
single characters only. Thus we could not have used (X, [F]) in the fricative case,
as F might is itself a complex list such as [s ,h] or [x] . But in general, variables
ranging over single characters can show up in lists.

The basic operation of a lexical rule is quite simple. First, every lexical entry,
including a word and a category, that is produced during compilation, is checked to
see if its category satisfies the input description of a lexical rule. If it does, then a new
category is generated to satisfy the output description of the lexical rule, if possible.
Note that there might be mutliple solutions, and all solutions are considered and
generated. Thus multiple solutions to the input or output descriptions lead to
multiple lexical entries.

After the input and output categories have been computed, the word of the input
lexical entry is fed through the morphological analyzer to produce the corresponding
output word. Unlike the categorial component of lexical rules, only one output word
will be constructed, based on the first input/output pattern that is matched.1 The
input word is matched against the patterns on the left hand side of the morphological
productions. When one is found that the input word matches, any condition imposed
by a when clause on the production is evaluated. This ordering is imposed so that
the Prolog goal will have all of the variables for the input string instantiated. At this
point, Prolog is invoked to evaluate the when clause. In the most restricted case, as
illustrated in the above lexical rule, Prolog is only used to provide abbreviations for
classes. Thus the definition for f r i c a t i v e / 1 consists only of unit clauses. For those
unfamiliar with Prolog, this strategy can be used in general for simple morphological
abbreviations. Evaluating these goals requires the F in the input pattern to match
one of the strings given. The shorthand of using atoms for the lists of their characters
only operates within the morphological sequences. In particular, the Prolog goals
do not automatically inherit the ability of the lexical system to use atoms as an
abbreviation for lists, so they have to be given in lists. Substituting f r i ca t ive ( sh )
for f r i c a t i v e ( [ s , h ] ) would not yield the intended interpretation. Variables in
sequences in morphological productions will always be instantiated to lists, even if
they are single characters. For instance, consider the lexical rule above with every
atom written out as an explicit list:

[g,o,o,s,e] becomes [g,e,e,s,e],
Ck,e,y] becomes [k,e,y,s],
(X,[m,a,n]) becomes (X,[m,e,n]),

1Thus ALE's lexical rule system is not capable of handling cases of partial suppletion, where
both a regular and irregular morphological form are both allowed. To allow two ouptut forms, one
must be coded by hand with its own lexical entry or a separate lexical rule.
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(X,F) becomes (X,F,[e,s]) when fricative(F) ,
(X,[e,y]) becomes ( X , [ i , e , s ] ) ,
X becomes (X,[s]) .

In this example, the s in the final production is given as a list, even though it is
only a single character.

The morphological productions are considered one at a time until one is matched.
This ordering allows a form of suppletion, whereby special forms such as those
for the irregular plural of goose and key to be listed explicitly. It also allows
subregularities, such as the rule for fricatives above, to override more general rules.
Thus the input word beach becomes beaches because beach matches (X,F) with
X = [b,e,a] and F = [c,h], the goal fricative([c,h]) succeeds and the word
beaches matches the output pattern (X,F, [e ,s ] ) , instantiated after the input is
matched to ([b,e,a] , [c,h] , [e , s ] ) . Similarly, words that end in [e,y] have
this sequence replaced by [ i , e, s] in the plural, which is why an irregular form is
required for keys, which would otherwise match this pattern. Finally, the last rule
matches any input, because it is just a variable, and the output it produces simply
suffixes an [s] to the input.

For lexical rules with no morphological effect, the production:

X becomes X

suffices. To allow lexical operations to be stated wholly within Prolog, a rule may
be used such as the following:

X becomes Y when morph_plural(X,Y)

In this case, when morph_plural(X,Y) is called, X will be instantiated to the list of
the characters in the input, and as a result of the call, Y should be instantiated to
a ground list of output characters.

We finally turn to the case of lexical rules with procedural attachments, as in
the following (simplified) example from HPSG:

extraction lex.rule

local:(cat:(head:H,

subcat:Xs),

cont:C),

nonlocal:(to_bind:Bs,

inherited:Is)

**> local:(cat:(head:H,

subcat:Xs2),

cont:C),

nonlocal:(to_bind:Bs,

inherited:[G|Is])

if

select(G,Xs,Xs2)

morphs

X becomes X.

select(X,(hd:X),Xs) if true.
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select(X,[Y|Xs],[Y|Ys]) i f
select(X,Xs,Ys).

This example illustrates an important point other than the use of conditions on
categories in lexical rules. The point is that even though only the LOCAL CAT SUBCAT
and NONLOCAL INHERITED paths are affected, information that stays the same must
also be mentioned. For instance, if the cont: C specification had been left out of
either the input our output category description, then the output category of the rule
would have a completely unconstrained content value. This differs from the defaulty
nature of the usual presentation of lexical rules, which assumes all information that
hasn't been explicitly specified is shared between the input and the output. As
another example, we must also specify that the HEAD and T0J3IND features are to
be copied from the input to the output; otherwise there would be no specification
of them in the output of the rule. This fact follows from the description of the
application of lexical rules: they match a given category against the input description
and produce the most general category(s) matching the output description.

Turning to the use of conditions in the above rule, the s e l e c t / 3 predicate is
defined so that it selects its first argument as a list member of its second argument,
returning the third argument as the second argument with the selected element
deleted. In effect, the above lexical rule produces a new lexical entry which is like
the original entry, except for the fact that one of the elements on the sub cat list of
the input is removed from the subcat list and added to the inherited value in the
output. Nothing else changes.

Procedurally, the definite clause is invoked after the lexical rule has matched the
input description against the input category. Like the morphological system, this
control decision was made to ensure that the relevant variables are instantiated at
the time the condition is resolved. The condition here can be an arbitrary goal, but
if it is complex, there should be parentheses around the whole thing. Cuts should
not be used in conditions on lexical rules (see the comments on cuts in grammar
rules below, which also apply to cuts in lexical rules).

Currently, ALE does not check for redundancies or for entries that subsume each
other, either in the base lexicon or after closure under lexical rules. ALE does not
apply lexical rules to empty categories.

Grammar Rules

Grammar rules in ALE are of the phrase structure variety, with annotations for both
goals that need to be solved and for at tribute-value descriptions of categories. The
BNF syntax for rules is as follows:

<rule> ::= <rule_name> rule <desc> ===> <rule_body>.

<mle_body> ::= <rule_clause>
I <rule_clause>, <rule_body>

<rule_clause> ::= cat> <desc>
I cats> <desc>
I goal> <goal>
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The <rule_name> must be a Prolog atom. The description in the rule is taken to be
the mother category in the rule, while the rule body specifies the daughters in the
rule along with any side conditions on the rule, expressed as an ALE goal. A further
restriction on rules, which is not expressed in the BNF syntax above, is that there
must be at least one category-seeking rule clause in each rule body.2 Thus empty
productions are not allowed and will be flagged as errors at compile time.

A simple example of such a rule, without any goals, is as follows:

s.np.vp rule

(syn:s,

sem: (VPSem,

agent :NPSem))

cat>

(syn:np,

agr:Agr,

semrNPSem),

cat>

(syn:vp,

agr:Agr,

sem:VPSem) .

There are a few things to notice about this rule. The first is that the parentheses
around the category and mother descriptions are necessary. Looking at what the
rule means, it allows the combination of an np category with a vp type category if
they have compatible (unifiable) values for agr. It then takes the semantics of the
result to be the semantics of the verb phrase, with the additional information that
the noun phrase semantics fills the agent role.

Even though the parsing proceeds from right to left, rules are evaluated from left
to right, so that the descriptions of daughter categories are evaluated in the order
in which they are specified. This is significant when considering goals that might be
interleaved with searches in the chart for consistent daughter categories.

Unlike the PATR-II rules, but similar to DCG rules, "unifications" are specified by
variable co-occurrence rather than by path equations, while path values are specified
using the colon rather than by a second kind of path equation. The rule above is
similar to a PATR-II rule which would look roughly as follows:

xO > xl, x2 if

(xO syn) == s,

(xl syn) — np,

(x2 syn) == vp,

(xO sem) == (x2 sem),

(xO sem agent) — (xl sem) ,

(xl agr) == (x2 agr)

Unlike lexical entries, rules are not expanded to feature structures at compile-
time. Rather, they are compiled down into structure-copying operations involving
table look-ups for feature and type symbols, unification operations for variables,

2 By doubling the size of the BNF for rules, this requirement could be expressed.
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sequencing for conjunction, and choice point creation for disjunction. In the case of
feature and type symbols, a double-hashing is performed on the type of the structure
being added to, as well as either the feature or the type being added. Additional
operations arise from type coercions that adding features or types require. Thus
there is nothing like disjunctive normal-form conversion of rules at compile time,
as there is for lexical entries. In particular, if there is a local disjunction in a rule,
it will be evaluated locally at run time. For instance, consider the following rule,
which is the local part of HPSG's Schema 1:

schema1 rule
(cat: (head:Head,

subcat: • ) ,
cont:Cont)

—=>
cat>

(Subj,
cat:head:( subst

; spec:HeadLoc,
) ) ,

cat>
(HeadLoc,
cat: (head: Head,

subcat: [Subj]),
cont:Cont).

Note that there is a disjunction in the cat :head value of the first daughter category
(the subject in this case). This disjunction represents the fact that the head value
is either a substantive category (one of type subst), or it has a specifier value which
is shared with the entire second daughter. But the choice between the disjuncts in
the first daughter of this rule is made locally, when the daughter category is fully
known, and thus does not create needless rule instantiations.

The cats> operator is used to recognize a list of daughters, whose length cannot
be determined until run-time. Daughters recognized as part of a cats> specification
are not recognized as quickly, as a result. Note also the interpretation of cats>
requires that its argument is subsumed by the type l i s t , which must be defined,
along with ne_list , e_list, etc., and the features HD, and TL, which we defined
above. This check is not made using unification, so that an underspecified list
argument will not work either. If the argument of cats> is not subsumed by l i s t ,
then the rule in which that argument occurs will never match to any input, and
a run-time error message will be given. This operator is useful for so-called "flat"
rules, such as HPSG'S Schema 2, part of which is given (in simplified form) below:

schema2 rule
(cat:(head:Head,

subcat:[Subj]))

cat>
(cat: (head:Head,

subcat: [Subj I Comps] ) ) ,
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cats> Comps.

Since various lexical items have SUBCAT lists of various lengths, e.g. zero for proper
nouns, one for intransitive verbs, two for transitive verbs, cats> is required in order
to match the actual list of complements at run-time.

It is common to require a goal to produce an output for the argument of cats>.
If this is done, the goal must be placed before the cats>. Our use of cats> is
problematic in that we require the argument of cats> to evaluate to a list of fixed
length. Thus the following head-final version of HPSG'S Schema 2 would not work:

schema2 rule
(cat:(head:Head,

subcat:[SubjSyn]))

cats> Comps,
cat>

(cat:(head:Head,
subcat:[Subj|Comps])).

One way to work around this is to post some finite upper bound on the size of the
Comps list by means of a constraint.

goal> three_or_less(Comps),

three_or_less(Q) if t rue .
three_or_less(LJ) if t rue .
three_or_less([_,_]) if t rue .
three_or_less([_,_,_]) if t rue .

The problem with this strategy from an efficiency standpoint is that arbitrary se-
quences of three categories will be checked at every point in the grammar; in the
English case, the search is directed by the types instantiated in Comps as well as that
list's length. From a theoretical standpoint, it is impossible to get truly unbounded
length arguments in this way.

ALE'S general treatment of disjunction in descriptions, which is an extension of
Kasper and Round's (1986) attribute-value logic to phrase structure rules, is a vast
improvement over a system such as PATR-II, which would not allow disjunction in
a rule, thus forcing the user to write out complete variants of rules that only differ
locally. Disjunctions in rules do create local choice points, though, even if the first
goal in the disjunction is the one that is solvable.3 This is because, in general, both
parts of a disjunction might be consistent with a given category, and lead to two
solutions. Or one disjunct might be discarded as inconsistent only when its variables
are further instantiated elsewhere in the rule.

Finally, it should be kept in mind that the mother category description is eval-
uated for most general satisfiers only after the categories and goals in the body of
the rule have been solved.

3In a future release, cuts will be allowed within descriptions, to allow the user to eliminate
disjunctive choice points when possible.
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A more complicated rule, drawn from the categorial grammar in the appendix,
and involving a non-trivial goal, is as follows:

backward.application rule

(synsemrZ,

qstore:Qs)

cat>

(synsem:Y,

qstore:Qsl),

cat>

(synsem: (backward,

arg:Y,

res:Z),

qstore:Qs2),

goal>

append(Qsl,Qs2,Qs).

Note that the goal in this rule is sequenced after the two category descriptions.
Consequently, it will be evaluated after categories matching the descriptions have
already been found, thus ensuring in this case that the variables Qsl and Qs2 are
instantiated. The append(Qsl,Qs2,Qs) goal is then evaluated by ALE'S definite
clause resolution mechanism. All possible solutions to the goal are found with the
resulting instantiations carrying over to the rule. These solutions are found using
the depth-first search built into ALE'S definite constraint resolver. In general, goals
may be interleaved with the category specifications, giving the user control over
when the goals are fired. Also note that goals may be arbitrary cut-free ALE definite
clause goals, and thus may include disjunctions, conjunctions, and negations. Cuts
may occur, however, within the code for any literal clause specified in a procedural
attachment. The attachments themselves must be cut-free to avoid the cut taking
precedence over the entire rule after compilation, thus preventing the rule to apply
to other edges in the chart or for later rules to apply. Instead, if cuts are desired in
rules, they must be encapsulated in an auxiliary predicate, which will restrict the
scope of the cut. For instance, in the context of a phrase structure rule, rather than
a goal of the form:

goal>
(a, !, b)

it is necessary to encode this as follows:

goal>
c

where the predicate c is defined by:

c if
(a, !, b ) .

This prevents backtracking through the cut in the goal, but does not block the
further application of the rule. A similar strategy should be employed for cuts in
lexical rules.
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As a programming strategy, rules should be formulated like Prolog clauses, so
that they fail as early as possible. Thus the features that discriminate whether a
rule is applicable should occur first in category descriptions. The only work incurred
by testing whether a rule is applicable is up to the point where it fails.

Just as with PATR-II, ALE is RE-complete (equivalently, Turing-equivalent),
meaning that any computable language can be encoded. Thus it is possible to
represent undecidable grammars, even without resorting to the kind of procedural
attachment possible with arbitrary definite clause goals. With its mix of depth-first
and breadth-first evaluation strategies, ALE is not strictly complete with respect to
its intended semantics if an infinite number of edges can be generated with the gram-
mar. This situation is similar to that in Prolog, where a declaratively impeccable
program might hang operationally.
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Compiling ALE Programs

This section is devoted to showing how ALE programs can actually be compiled. ALE
was developed to be run with a Prolog compiler, such as SICStus or Quintus Prolog.
As the system was developed with SICStus, which is meant to be compatible with
Quintus, ALE should work with either of these Prolog compilers. It would be futile
to run ALE with only a Prolog interpreter, as it would be slowed by at least two
orders of magnitude. The local systems administrator should be able to provide
help in running Prolog. This documentation only assumes the user has figured out
how to run Prolog as well as write and edit files. It is otherwise self-contained.

File Management

After firing up Prolog, the following command should be used to load the ALE
system:

I ?- compile(AleFile) .

where AleFile is an atom specifying the file name in which ALE re-
sides. For instance, in Unix, you might need to use something like:
compile(»/users/carp/Prolog/ALE/ale .p l J ) ., or a local abbreviation for it like
compile (a le) . if the system is in a file named ale .pi in the local directory (SICS-
tus, at least, can fill in the a . p l" suffix). Note that the argument to compile must
be an atom, which means it should be single-quoted if it is not otherwise an atom.
After the system has compiled, you should see another Prolog prompt. It is neces-
sary to have write permission in the directory from which Prolog is invoked, because
ALE creates files during compilation. But note that neither the grammar nor ALE
have to be locally defined; it is only necessary to have local write permission.

ALE source code, being a kind of Prolog code, must be organized so that pred-
icate definitions are not spread across files.1 For instance, the sub/intro clauses
specifying the type hierarchy must all be in one file. Similarly, the definite clauses
must all be in one file, as must the grammar rules and macros.

1 Unless the appropriate multifile declarations are made.
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Compiling Programs

ALE can compile a program incrementally to some extent. In particular, the com-
piler is broken down into five primary components for compiling the type hierarchy,
type constraints, the attribute-value logic, the definite clauses and the grammar.
Compiling the type hierarchy consists of compiling type subsumption, type uni-
fication, appropriateness specifications, and extensionaJity information. The logic
compiler compiles predicates which know how to add a type to a feature structure,
how to find a feature value in a type and how to perform feature structure unifica-
tion. Compiling the grammar consists of compiling the lexicon, empty categories,
rules and lexical rules. Macros are not compiled, but are rather interpreted during
compilation.

There is one predicate compile_gram/l which can be used to compile a whole
ALE grammar from one file, as follows:

I ?- compile_gram(GramFt7e).

where GramFile is the name of the file in which the grammar resides. The compiler
will display error messages to the screen when it is compiling. But since ALE uses
the Prolog compiler to read the files, Prolog might also complain about syntax errors
in specifying the files. In either case, there should be some indication of what the
error is and which clause of the file contained it.

The following predicates are available to compile grammars and their component
parts. They are listed hierarchically, with each command calling all those listed
under it. Each higher-level command is nothing more than the combination of
those commands below it.

Command

compile.gram

compile.sig

compile_sub_type

compile_unify_type

compile.approp

compile.extensional

compile.cons
compile.logic

compile_add_to_type

compile_featval

compile_u

compile.dcs

compile.grammar

compile.lex

compile.empty

compile.mles

Requires File

nothing *

nothing *
*

compile_sub_type

compile.unify.type *

compile.approp *

compile.sig *

compile.sig
compile_add_to_type

compile_sig

compile.logic *

compile.logic *

compile.logic *

compile.logic *

compile JjDgix— *

Clause

sub

intro

ext
cons

if

>

empty

rule

The table above lists which compilations must have already been compiled be-
fore the next stage of compilation can begin. Thus before compile_grammar
can be called, compileJ.ogic must be called (or equivalently, the sequence of
compile_add_to_type, compile_f eatval, and compile_u). Each command with
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an asterisk in its clauses column in the above table may be given an optional file
argument. The file argument should be an atom which specifies the file in which
the relevant clauses can be found. The clauses needed before each stage of compi-
lation can begin are listed to the right of the asterisks. For instance, the if clauses
must be loaded before compilejdcs is called. But note that compile_unify-type
does not require any clauses to be loaded, as it uses the compiled definition of
sub_type rather than the user specification in its operation. Thus changes to the
signature in the source file, even if the source file is recompiled, will not be reflected
in compilejunif y_type if they have not been recompiled by compile_jsub_type first.
If an attempt is made to compile a part of a program where the relevant clauses
have not been asserted, an error will result.

Each of the lowest level commands generates a hidden file (e.g. in Unix, one
beginning with V) in the directory from which Prolog was called. (add_to_type
and f eatval actually generate two files each). These files contain Prolog source
code that is then compiled to generate the run-time environment for ALE. Thus it is
important to have write permission in the directory from which ALE is being called.
While these files are in an ASCII format, they are not intended to be read by ALE
users.

As long as these files remain undisturbed, they can be reloaded into ALE, or
loaded into a different ALE session called from the same directory, without recom-
piling the grammar file, by typing:

I ?- reload.

If these hidden files are loaded into a different ALE session, the grammar file itself
must be consulted first:

I ?- consult (GramFile) .

In general, whenever the ALE source program is changed, it should be recompiled
from the point of change. For instance, if the definite clauses are the only thing that
have changed since the last compilation, then only compile_dcs (FileSpec) needs
to be run. But if in changing the definite clauses, the type hierarchy had to be
changed, then everything must be recompiled.

Unfortunately, the ALE compiler is itself not very efficient, though it produces
rather efficient code. Thus it is always a good idea to recompile as little as possible.
The savings in time can be significant.

Compile-Time Error Messages

There are three sources of compile-time messages generated by ALE: Prolog mes-
sages, ALE errors, and ALE warnings.

ALE uses Prolog term input and output, thus requiring the input to be specified
as a valid Prolog program. Of course, any ALE program meeting the ALE syntax
specification will not cause Prolog errors. If there is a Prolog error generated,
there is a corresponding bug in the grammar file(s). Prolog error messages usually
generate a message indicating what kind of error it found, and just as importantly,
which line(s) of the input the error was found in. The most common Prolog error
messages concern missing periods or operators which can not be parsed. Such errors
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are usually caused by bad punctuation such as missing periods, misplaced commas,
commas before semicolons in disjunctions, etc. These errors are usually easy to
track down.

Prolog also generates warnings in some circumstances. In particular, if you
only use a variable once in a definition, it will report a singleton variable warning.
The reason for this is that variables that only occur once are useless in that they
do not enforce any structure sharing. There is little use for singleton variables in
ALE outside of the Prolog goals in morphological rules and some macro parameters.
Usually a singleton variable indicates a typing error, such as typing AgrNum in one
location and Agrnum in another. It is standard Prolog practice to replace all singleton
variables with anonymous variables. An anonymous variable is a variable which
begins with the underscore character. For instance, a singleton variable such as
Head can be replaced with the anonymous variable -Head, or even just _, to suppress
such singleton variable warnings. Two occurrences of the simple anonymous variable
_ are not taken to be co-referential, but two occurrences of something like _Head are
taken to be co-referential. In particular, the two descriptions, (foo:X, bar:X) and
(foo:_X, bar:_X) are equivalent to each other, but distinct from (foo:_,bar:_)
in that the latter description does not indicate any structure sharing. The second
description above is considered bad style, though, as it uses the anonymous variable
_X co-referentially.

Besides Prolog syntax errors, there are many errors that ALE is able to detect
at compile time. These errors will be flagged during compilation. Most errors give
some indication of the program clause in which they are found. Some errors may
be serious enough to halt compilation before it is finished. In general, it is a good
idea to fix all of the errors before trying to run a program, as the error messages
only report serious bugs in the code, such as type mismatches, unspecified types,
ill-formed rules, etc.

In certain cases, it is preferable to disable those error messages concerned with
ALE'S inability to add incompatible descriptions to a feature structure. This is
especially true during lexicon and empty category compilation, when, due to the
interaction of disjunctions and type constraints, the number of such errors can be
overwhelming. In ALE 2.0, these errors are automatically disabled during lexicon
and empty category compilation, and enabled otherwise. Commands will be added
to future versions so that the user may control when these errors should be displayed.

Less serious problems are flagged with warning messages. Warning messages
do not indicate an error, but may indicate an omission or less than optimal ALE
programming style.

The ALE error and warning messages are listed in an appendix at the end of this
report, along with an explanation. The manual for the Prolog in which ALE is being
run in will probably list the kinds of errors generated by the Prolog compiler.
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Running and Debugging ALE
Programs

After the ALE program compiles without any error messages, it is possible to test
the program to make sure it does what it is supposed to. We consider the problem
from the bottom-up, as this is the best way to proceed in testing grammars, ALE
does not have a sophisticated input/output package, and thus all ALE procedures
must be accessed through Prolog queries.

Testing the Signature

Once the signature is compiled, it is possible to test the results of the compilation.
To test whether or not a type exists, use the following query:

I ?- type(Type).

Type = bot ?;

Type = cat ?;

Type = synsem ?

yes

Note that the prompt I ?- is provided by Prolog, while the query consists of the
string type (Type) . 5 including the period and a return after the period. Prolog then
responds with instantiations of any variables in the query if the query is successful.
Thus the first solution for Type that is found above is Type = bot. After providing
an instantiation representing the solution to the query, Prolog then provides another
prompt, this time in the form of a single question mark. After the first prompt
above, the user typed a semicolon and return, indicating that another solution is
desired. The second solution Prolog found was Type = cat. After this prompt,
the user requested a third solution. After the third solution, Type = synsem, the
user simply input a return, indicating that no more solutions were desired. These
two options, semicolon-followed by return, and a simple return, are the only ones
relevant for ALE. If the anonymous variable _ is used in a query, no substitutions
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are given for it in the solution. If there are no solutions to a query, Prolog returns
no as an answer. Consider the following two queries:

I ?- type(bot).

yes

I ?- type(foobar).

no

In both cases, no variables are given in the input, so a simple yes/no answer, followed
by another prompt, is all that is returned.

The second useful probe on the signature indicates type subsumptions and type
unifications. To test type subsumption, use the following form of query:

I ?- sub_type(X,Y).

X = and,
Y = and ?;

X = backward,
Y = backward ?

yes

Note that with two variables, substitutions for both are given, allowing the possibil-
ity of iterating through the cases. In general, wherever a variable may be used in a
query, a constant may also be used. Thus sub_type(synsem,forward) . is a valid
query, as are sub_type(synsem,X) and sub_type(Y,forward). The first argument
is the more general type, with the second argument being the subtype.

Type unifications are handled by the following form of query:

I ?- unify.type(Tl,T2,T).

The interpretation here is that Tl unified with T2 produces T3. As before, any subset
of the three variables may be instantiated for the test and the remaining variables
will be solved for.

The following query will indicate whether given features have been defined and
can also be used to iterate through the features if the argument is uninstantiated:

I ?- feature(F).

Feature introduction can be tested by:

I ?- introduce(F,T).

which holds if feature F is introduced at type T.
Type constraints can be tested using:

I ?- show.cons(Type).
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which will display the description of the constraint assigned to the type, Type.
Finally, the inherited appropriateness function can be tested by:

I ?- approp(Feat,Type,Restr).

A solution indicates that the value for feature Feat for a type Type structure is
of type Restr. As usual, any of the variables may be instantiated, so that it is
possible to iterate through the types appropriate for a given feature or the features
appropriate for a given type, the restrictions on a given feature in a fixed type, and
so on.

There is one higher-level debugging routine for the signature that outputs a
complete specification for a type, including a list of its subtypes and supertypes,
along with the most general feature structure of that type (after all type inference
and constraint satisfaction has been performed). An example of the show_type/l
query is as follows:

I ?- show.type funct ional .

TYPE: functional
SUBTYPES: [forward,backward]
SUPERTYPES: [syns em]
MOST GENERAL SATISFIER:

functional
ARG synsem
RES synsem

If synsem had any appropriate features, these would have been added, along with
their most general appropriate values.

Evaluating Descriptions

Descriptions can be evaluated in order to find their most general satisfiers. ALE
provides the following form of query:

I ?- mgsat tlre.list.

ne_list.quant
HD quant

RESTR proposition
SCOPE proposition
VAR individual

TL e.list

ANOTHER? n.

yes

Note that there must be whitespace between the mgsat and the description to be
satisfied. The answer given above is the most general satisfier of the description
t l : e _ l i s t using the signature in the categorial grammar in the appendix. It is



62 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

important to note here that type inference is being performed to find most general
satisfiers. In the case at hand, because lists in the categorial grammar are typed to
have quantifiers as their HD values, the value of the HD feature in the most general
satisfier has been coerced to be a quantifier.

Satisfiable non-disjunctive descriptions always have unique most general satis-
fiers as a consequence of the way in which the type system is constrained. But a
description with disjunctions in it may have multiple satisfiers. Consider the follow-
ing query:

I ?- mgsat hit,hitter:(j;m) •

hit

HITTEE individual

HITTER j

ANOTHER? y.

hit

HITTEE individual

HITTER m

ANOTHER? y.

no

After finding the first most general satisfier to the description, the user is prompted
as to whether or not another most general satisfier should be sought. As there
are only two most general satisfiers of the description, the first request for another
satisfier succeeds, while the second one fails. Failure to find additional solutions is
indicated by the no response from Prolog.

Error messages will result if there is a violation of the type hierarchy in the
query. For instance, consider the following query containing two type errors before
a satisfiable disjunct:

I ?- mgsat hd:j ; a ; j.

add.to could not add incompatible type j to:

quant

RESTR proposition

SCOPE proposition

VAR individual

add.to could not add undefined type: a to

bot

MOST GENERAL SATISFIER OF: hd:j;a;j
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ANOTHER?

Here the two errors are indicated, followed by a display of the unique most general
satisfiers. The problem with the first disjunct is tha t lists have elements which
must be of the quantifier type, which conflicts with the individual type of j , while
the second disjunct involves an undefined type a. Note tha t in the error messages,
there is some indication of how the conflict arose as well as the current s tate of the
structure when the error occurred. For instance, the system had already figured
out tha t the head must be a quantifier, which it determined before arriving at the
incompatible type j . The conflict arose when an a t tempt was made to add the type
j to the quant type object.

To explore unification, simply use conjunction and mgsat . In particular, to see
the unification of descriptions Dl and D2, simply display the most general satisfiers of
Dl, D2, and their conjunction (Dl ,D2). To obtain the correct results, Dl and D2 must
not share any common variables. If they do, the values of these will be unified across
Dl and D2, a fact which is not represented by the most general satisfiers of either Dl
or D2. Providing most general satisfiers also allows the user to test for subsumption
or logical equivalence by visual inspection, by using m g s a t / 1 and comparing the set
of solutions. Future releases should contain mechanisms for evaluating subsumption
(entailment), and hence logical equivalence of descriptions.

Hiding Types and Features

With a feature structure system such as ALE, grammars and programs often ma-
nipulate very large feature structures. To aid in debugging, two queries allow the
user to focus attention on particular types and features by supressing the printing
of other types and features.

The following command supresses printing of a type:

I ?- no_write_type(T) .

After no_write_type(T) is called, the type T will no longer be displayed during
printing. To restore the type T to printed status, use:

I ?- write_type(T).

If T is a variable in a call to write_type/l, then all types are subsequently printed.
Alternatively, the following query restores printing of all types:

I ?- write-types.

Features and their associated values can be supressed in much the same way as
types. In particular, the following command blocks the feature F and its values
from being printed:

I ?- no_writejfeat ( F ) .

To restore printing of feature F, use:

I ?- writejfeat ( F ) .

If F is a variable here, all features will subsequently be printed. The following
special query also restores printing of all features.

I ?- write_feats.
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Evaluating Definite Clause Queries

It is possible to display definite clauses in feature structure format by name. The
following form of query can be used:

I ?- show.clause append.

HEAD: append(e_list,
[0] bot,
CO] )

BODY: true

ANOTHER? y.

HEAD: append(ne.list.quant
HD [0] quant

RESTR proposition
SCOPE proposition
VAR individual

TL [1] l i s t . quan t ,
[2] bot,
ne_list_quant
HD [0]
TL [3] l i s t .quant )

BODY: appendCCl],
C2],
[3])

ANOTHER? y.

no

Note that this example comes from the categorial grammar in the appendix. Also
note that the feature structures are displayed in full with tags indicating struc-
ture sharing. Next, note that prompts allow the user to iterate through all the
clauses. The number of solutions might not correspond to the number of clause
definitions in the program due to disjunctions in descriptions which are resolved
non-deterministically when displaying rules. But it is important to keep in mind
that this feature structure notation for rules is not the one ALE uses internally,
which compiles rules down into elementary operations which are then compiled,
rather than evaluating them as feature structures by unification. In this way, ALE
is more like a logic programming compiler than an interpreter. Finally, note that
the arity of the predicate being listed may be represented in the query as in Prolog.
For instance, the query show_clause append/3 would show the clauses for append
with three arguments.

Definite clauses in ALE can be evaluated by using a query such as:

I ?- query append(X,Y,[a,b]).
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append(e.list,
[0] ne.list
HD a
TL ne.list

HD b
TL e. l i s t ,

[0] )

ANOTHER? y.
append(ne_list

HD [0] a
TL e. l is t ,
[1] ne.list
HD b
TL e. l ist ,
ne.list
HD [0]
TL [1] )

ANOTHER? y.
append(ne.list

HD [0] a
TL n e . l i s t

HD [1] b
TL e . l i s t ,

[2] e.list,
ne.list
HD [0]
TL n e . l i s t

HD [1]
TL [2] )

ANOTHER? y.

no

The definition of append/3 is taken from the syllabification grammar in the ap-
pendix. After displaying the first solution, ALE queries the user as to whether or
not to display another solution. In this case, there are only three solutions, so
the third query for another solution fails. Note that the answers are given in fea-
ture structure notation, where the macro [a,b] is converted to a head/tail feature
structure encoding.

Unlike Prolog, in which a solution is displayed as a substitution for the variables
in the query, ALE displays a solution as a satisfier of the entire query. The reason
for this is that structures which are not given as variables may also be further
instantiated due to the type system. Definite clause resolution in ALE is such that
only the most general solutions to queries are displayed. For instance, consider the
following query, also from the syllabification grammar in the appendix:
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I ?- query less_sonorous(X,r).

less.sonorous(nasal,
r)

ANOTHER? y.

less.sonorous(sibilant,
r)

ANOTHER? n.

Rather than enumerating all of the nasal and s ibi lant types, ALE simply dis-
plays their supertype. On the other hand, it is important to note that the query
less_sonorous(s,r) would succeed because s is a subtype of s ib i lan t . This ex-
ample also clearly illustrates how ALE begins each argument on its own line arranged
with the query.

In general, the goal to be solved must be a literal, consisting only of a relation
applied to arguments. In particular, it is not allowed to contain conjunction, dis-
junction, cuts, or other definite clause control structures. To solve a more complex
goal, a definite clause must be defined with the complex goal as a body and then
the head literal solved, which will involve the resolution of the body.

There are no routines to trace the execution of definite clauses. Future releases
of ALE will contain a box port tracer similar to that used for Prolog. At present,
the best suggestion is to develop definite clauses modularly and test them from the
bottom-up to make sure they work before trying to incorporate them into larger
programs.

Displaying Grammars

ALE provides a number of routines for displaying and debugging grammar specifi-
cations. After compile-time errors have been taken care of, the queries described in
this section can display the result of compilation.

Lexical entries can be displayed using the following form of query:

I ?- lex(kid).

WORD: kid
ENTRY:
cat
QSTORE e.list
SYNSEM basic

SEM property
BODY kid

ARG1 [0] individual
IND [0]

SYN n
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ANOTHER? y.

no

As usual, if there are multiple entries, ALE makes a query as to whether more should
be displayed. In this case, there was only one entry for kid in the categorial grammar
in the appendix.

Empty lexical entries can be displayed using:

I ?- empty.

EMPTY CATEGORY:
cat
QSTORE ne.list.quant

HD some
RESTR [0] proposition
SCOPE proposition
VAR [1] individual

TL e.list
SYNSEM forward

ARG basic
SEM property

BODY [0]
IND [1]

SYN n
RES basic

SEM [1]
SYN np

ANOTHER? no.

Note that the number specification was removed to allow the empty category to
be processed with respect to the categorial grammar type system. As with the
other display predicates, empty provides the option of iterating through all of the
possibilities for empty categories.

Grammar rules can be displayed by name, as in:

I ?- r u l e forward .appl icat ion .

RULE: forward.appl icat ion

MOTHER:

cat
QSTORE [4] list.quant
SYNSEM [0] synsem

DAUGHTERS/GOALS:
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CAT cat
QSTORE [2] l i s t . q u a n t
SYNSEM forward

ARG [1] synsem
RES [0]

CAT cat
QSTORE [3] l i s t . q u a n t
SYNSEM [1]

GOAL append ([2],
[3],
[4])

ANOTHER? n.

Rules are displayed as most general satisfiers of their mother, category and goal
descriptions. It is important to note that this is for display purposes only. The
rules are not converted to feature structures internally, but rather to predicates
consisting of low-level compiled instructions. Displaying a rule will also flag any
errors in finding most general satisfiers of the categories and rules in goals, and can
thus be used for rule debugging. This can detect errors not found at compile-time,
as there is no satisfiability checking of rules performed during compilation.

Macros can also be displayed by name, using:

I ?- macro np(X).

MACRO:
np([0] sem.obj)

ABBREVIATES:
basic
SEM [0]
SYN np

ANOTHER? n.

First note that the macro name itself is displayed, with all descriptions in the macro
name given replaced with their most general satisfiers. Following the macro name is
the macro satisfied by the macro description with the variables instantiated as shown
in the macro name display. Note that there is sharing between the description in
the macro name and the SEM feature in the result. This shows where the parameter
is added to the macro's description.

Finally, it is possible to display lexical rules, using the following query:

I ?- lex. rule p lura l .n .

LEX RULE: plural.n
INPUT CATEGORY:

n -
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NUM sing
PERS pers

OUTPUT CATEGORY:
n
NUM plu
PERS pers

MORPHS:
[g,o,o,s,e] becomes [g,e,e,s,e]
[k>e,y] becomes [ k , e , y , s ]
A,[m,a,n] becomes A,[m,e,n]
A,B becomes A,B, [e , s ]

when fr icat ive(B)
A,[e ,y] becomes A , [ i , e , s ]
A becomes A,[s]

ANOTHER? n.

Note that the morphological components of a rule is displayed in canonical form
when it is displayed. Note that variables in morphological rules are displayed as
upper case characters. When there is sharing of structure between the input and
output of a lexical rule, it will be displayed as such. As with the other ALE grammar
display predicates, if there are multiple solutions to the descriptions, these will be
displayed in order. Also, if there is a condition on the categories in the form of an
ALE definite clause goal, this condition will be displayed before the morphological
clauses. A3 with grammar rules, lexical rules are compiled internally and not actually
executed as feature structures. The feature structure notation is only for display.
Also, as with grammar rules, displaying a lexical rule may uncover inconsistencies
which are not found at compile time.

Executing Grammars

In this section, we consider the execution of ALE phrase structure grammars. The
examples shown in this section have been produced while running with the mini-
interpreter off. The mini-interpreter will be discussed in the next section.

The primary predicate for parsing is illustrated as follows:

I ?- rec [John,h i t s ,every , toy] .

STRING:
0 John 1 hits 2 every 3 toy 4

CATEGORY:
cat
QSTORE e.list
SYNSEM basic

SEM every
RESTR toy

ARG1 [0] individual
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SCOPE h i t
HITTEE [0]
HITTER j

VAR [0]
SYN s

ANOTHER? y.

CATEGORY:
cat
QSTORE ne_list_quant

HD every
RESTR toy

ARG1 [0] individual
SCOPE proposition
VAR [0]

TL e . l i s t
SYNSEM basic

SEM hi t
HITTEE [0]
HITTER j

SYN s

ANOTHER? y.

no

The first thing to note here is that the input string must be entered as a Prolog list
of atoms. In particular, it must have an opening and closing bracket, with words
separated by commas. No variables should occur in the query, nor anything other
than atoms. The first part of the output repeats the input string, separated by
numbers (nodes in the chart) which indicate positions in the string for later use in
inspecting the chart directly, ALE asserts one lexical item for every unit interval,
with empty categories being stored as loops from every single node to itself. The
second part of the output is a category which is derived for the input string. If there
are multiple solutions, these can be iterated through by providing positive answers
to the query. The final no response above indicates that the category displayed is
the only one that was found. If there are no parses for a string, an answer of no is
returned, as with:

I ?- rec([runs,John]).

STRING:
0 runs 1 John 2

no

Notice that there is no notion of "distinguished start symbol" in parsing. Rather,
the recognizer generates all categories which it can find for the input string. This
allows sentence fragments and phrases to be analyzed, as in:
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I ?- rec [big,kid].

STRING:
0 big 1 kid 2

CATEGORY:
cat
QSTORE ne_list_quant

HD some
RESTR and

CONJ1 kid
ARG1 [0] individual

C0NJ2 big
ARG1 [0]

SCOPE proposition
VAR [0]

TL e . l i s t
SYNSEM basic

SEM [0]
SYN np

ANOTHER? n.

Once parsing has taken place for a sentence using rec/1, it is possible to look
at categories that were generated internally. In general, the parser will find every
possible analysis of every substring of the input string, and these will be available
for later inspection. For instance, suppose the last call to rec/1 executed was rec
[john,hits ,every, toy] , the results of which are given above. Then the following
query can be made:

I ?- edge(2,4) .

COMPLETED CATEGORIES SPANNING: every toy

cat
QSTORE ne.list.quant

HD every
RESTR toy

ARG1 [0] individual
SCOPE proposition
VAR [0]

TL e_ l i s t
SYNSEM basic

SEM [0]
SYN np

ANOTHER? n.

This tells us that from positions 2 to 4, which covers the"string every toy in the
input, the indicated category was found. Even though an active chart parser is used,
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it is not possible to inspect active edges. This is because ALE represents active edges
as dynamic structures which are not available after they have been evaluated.

Using edge/2 it is possible to debug grammars by seeing how far analyses got
and inspecting analyses of substrings.

Mini-interpreter

ALE contains a mini-interpreter which allows the user to traverse and edit an ALE
parse tree. By default, the mini-interpreter is off when ALE is loaded. To turn the
mini-interpreter on, simply type:

I ?- interp.

interpreter is active

yes
I ?-

To turn it off again, use no interp. Any parse created while the mini-interpreter
is active will automatically store the following information on the edges added to
ALE'S chart:

• Spanning nodes

• Substring spanned

• Creator

• Daughters (if any)

The spanning nodes are the nodes in the chart that the edge spans. The substring
spanned is the concatenation of lexical items between the spanning nodes. If an
edge was formed by the application of an ALE grammatical rule, its creator is that
rule, with the daughters being the daughters of the rule (i.e. the cat> and cats>
of the rule). If an edge represents an empty category, its creator is empty. If an
edge represents a lexical item, its creator is lexicon. In either of the last two cases,
there are no daughters.

The status of the mini-interpreter has no effect on compilation. The same com-
piled code is used regardless of whether the mini-interpreter is active or inactive.
The mini-interpreter has an effect on two run-time commands: rec/1 and edge/2.

When the mini-interpreter is active, rec/1 operates in one of three modes, add-
mode, go-mode, and quiet-mode. When the mini-interpreter is active, rec/1 always
begins in add-mode. In add-mode, the user is prompted just before any edge is
added. Because ALE parses from right to left, the edges are encountered in that
order. The prompt consists of a display of the feature structure for the edge, followed
by the mini-interpreter information for that edge, followed by an action-line, which
lists the options available to the user. For example:

I ?- rec([kim,sees,sandy]).
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STRING:
0 kim 1 sees 2 sandy 3

word
QRETR l i s t .quant
QSTORE e_set
SYNSEM synsem

LOC loc
CAT cat

HEAD noun
CASE case
MOD none
PRD bool

MARKING unmarked
SUBCAT e . l i s t

CONT nom.obj
INDEX [0] ref

GEN gend
NUM sing
PER third

RESTR e_set

Edge created for category above:
from: 2 t o : 3

s tr ing: sandy
rule: lexicon

# of dtrs: 0

Action(add,noadd,go(-#),quiet,break,dtr-#,abort)?
I :

We see, in this example, the action-line for rec. If the user selects add, the edge is
added, and rec proceeds, in add-mode, as usual. If noadd is selected, the edge is
not added, and rec proceeds in add-mode.

go puts the mini-interpreter into go-mode. In go-mode, rec proceeds to add
all of the edges that it would if the mini-interpreter were inactive, or to think of
it another way, it functions as if the user always chose add, but it does not stop
to ask. As it adds the edges, it displays them, along with their mini-interpreter
information, go suffixed with a number, e.g. go-1, puts the mini-interpreter into
go-mode until it encounters an edge whose left node is that number, and then,
beginning with that edge, automatically switches back into add-mode. With ALE'S

current parsing strategy, go-TV will remain in go-mode until it encounters the first
edge corresponding to the (N+l)st lexical item in the string being parsed.

quiet puts the mini-interpreter into quiet-mode. Quiet-mode is just like go-
mode, except that the feature structures and their mini-interpreter information are
not printed. What separates quiet-mode from simply turning the mini-interpreter
oflFis that the mini-interpreter information is still recorded in quiet-mode, which the
user can examine later with edge/2. ~



74 CHAPTER 7. RUNNING AND DEBUGGING ALE PROGRAMS

break simply invokes the Prolog break commmand, placing the user into an
interpreter with a new break-level. Edges that have been added so far can be
examined and retracted at this time. When the user pops out of the break, the
current prompt is redisplayed.

dtr-N displays the Nth daughter, its mini-interpreter information, and the action-
line for dtr:

Act ion (retr act , dtr-# , pair ent)?
I :

retract removes the daughter from the chart. When the parse continues, ALE
grammatical rules will not be able to use that edge. The current edge which is the
parent of this daughter, however, can still be added. dtr-N has the same effect as in
the rec action-line, parent returns to the current edge's parent and its action-line
(either rec or dtr).

The mini-interpreter will not display any edge that has already been retracted.
Currently, the mini-interpreter cannot traverse the daughter(s) corresponding to

a cats> operator in a rule unless it is preceded by one or more cat> operators. The
number of daughters will not include them, and the daughters which are visible to
the mini-interpreter will be numbered beginning with 1, i.e. the first cat> daughter
will be numbered as the first daughter. This shortcoming will be corrected in future
versions.

If abort is selected, the parse is aborted. All of the edges added so far remain in
memory until the next rec statement. The edge which was displayed when abort
was chosen is discarded.

When the mini-interpreter is active, edge/2 displays not only the feature struc-
tures of the edges spanning the two argument nodes, but their mini-interpreter
information, and the action-line for edge/2, e.g.:

I ?- edge(0,3) .

COMPLETED CATEGORIES SPANNING: kirn sees sandy

phrase
QRETR e.list
QSTORE e.set
SYNSEM synsem

LOC loc
CAT cat

HEAD verb
NARKING unmarked
SUBCAT e.list

CONT psoa
NUCLEUS see

SEEN [1] ref
GEN gend
NUM sing
PER third

SEER [0] ref
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GEN gend
NUM sing
PER third

QUANTS e . l i s t

Edge created for category above:
index: 21
from: 0 to: 3

string: kirn sees sandy
rule: schema 1

# of dtrs: 2
Action(retract,dtr-#,next)?
I :

Every edge that is actually asserted into the chart is assigned a unique number,
called an index (since ALE has no subsumption checking yet, the feature structures
themselves may not be unique), which edge displays also, retract and dtr behave
the same as in the dtr action-line, next tells the mini-interpreter that the user is
done traversing the parse tree rooted at the current edge. ALE then asks if the user
wants to search for more edges spanning the two argument nodes given to edge/2,
just as when the mini-interpreter is inactive.

Note that in order for edge/2 to display the mini-interpreter information for an
edge, the mini-interpreter must be active, and the mini-interpreter must have been
active when the edge in question was asserted. If the former is not true, and the
latter is, the information will be ignored. If the former is true, but the latter is not,
the following line will be appear in place of the information:

(Edge created while interpreter was inact ive)



ALE Keyword Summary

The following is a summary of keywords discussed in this manual, along with page
references. A table of auxiliary keywords, those that only occur as arguments of
other keyword operators, such as the cat> argument of a rule, will be provided in
a future version.

A keyword of kind Description is one that occurs in an ALE description of a
feature structure. One of kind Def. Clause, or DCL, is one that occurs in ALE'S

definite clause language. One of kind Signature is a declaration that occurs in an
ALE signature. One of kind Type is an ALE type with special properties. One of
kind ALE is a Prolog query (entered at the I ?- prompt) that can be used after
ALE has been loaded (see p. 4). One of kind rec, dtr, or edge, is a mini-interpreter
command that appears in the respective keyword's action-line.

Description Page
Conjunction 22, 37
Declare lexical entry. 42
Feature value. 22
Disjunction. 22, 37
Equation. 22
Predefined token-identity definite clause 38
predicate.
Inequation. 22
Macro instantiation. 26
Predefined list macro. 27
Comment delimiter. 7
Abort parse. 74
Add the current edge. 73
Show value restriction on a feature at a type. 61
Add clause to Prolog database. 37
In an ALE signature, this type must appear, 6
and must subsume all of the other types.
Invoke Prolog break. 74
Compile ALE signature (or parts of it — see 56
table, p. 56).
Compile a Prolog file. 4
Declare type constraint. 28, 39

Keyword
9

— >

:

i

S S

=G

=\=

[...]
'/.
abort
add
approp
assert
bot

break
compile_gram

compile
cons

Kind
Desc./DCL
Signature
Description
Desc./DCL
Description
Def. Clause

Description
Description
Description
Prolog
rec
rec
ALE

Prolog
Type

r e c
ALE

Prolog
Signature
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Keyword
consult

control-c
control-z
dtr-iV
edge
empty
empty
ex t
feature

go
go-N

halt
i f
interp
introduce
l e x
lexjrule
lex_rule
lex_rule_depth
l i s t

Kind
Prolog

Prolog
Unix
rec/dtr/edge
ALE
ALE

Signature
Signature
ALE

rec
rec

Prolog
Def. Clause
ALE

ALE

ALE

ALE

Signature
ALE

Type

macro
macro
mgsat
next
no_write_feat
no_write_type
no add
nointerp
parent
prolog
query
quiet

r e c
reload
retract
retract
rule
rule _
show.clause

ALE
Signature
ALE

edge
ALE

ALE

rec
ALE

dtr
Def. Clause
ALE

r e c

ALE

ALE

dtr/edge
Prolog
ALE

Signature
ALE

Description Page
Load Prolog file (such as an ALE signature) 57
into database.
Prolog interrupt. 4
Unix interrupt. 5
Display Mh daughter edge of current edge. 74
Show a chart edge. 71
Show empty categories. 67
Declare empty category. 44
Declare extensional types. 19
Test if feature exists. 60
Add current and all subsequent edges. 73
Add current and all subsequent edges until 73
node Nis reached.
Exit from Prolog. 4
Definite clause language equivalent of :-. 35
Turn on mini-interpreter. 72
Test if a feature was introduced by a type. 60
Show lexical entry. 66
Show lexical rule. 68
Declare lexical rule. 46
Set bound on lexical rule application. 45
This type, along with types e_ l i s t and 27, 51
neJ. ist , and features HD and TL, must be de-
fined in an ALE signature in order to use the
predefined [...] macro in descriptions, or the
cats> list-argument operator in grammatical
rules.
Show macro definition. 68
Declare macro. 25
Find most general satisfier(s) of a type. 61
Proceed to next edge. 75
Hide a feature and its value. 63
Hide a type. 63
Don't add the current edge. 73
Turn off mini-interpreter. 72
Return to parent edge. 74
Definite clause hook to Prolog. 37
Evaluate a definite clause. 64
Add current and all subsequent edges without 73
displaying them.
Parse a string. 69
Reload signature from compiled files. 57
Retract current edge. 74
Remove clause from Prolog database. 37
Show grammatical rule. 67
Declare grammatical rule. 49
Show a definite clause. 64
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Keyword
show-cons
show_type

sub
sub_type
true

type
unify_type
write_f eat
writejf eats
write_type
write_types

Kind
ALE

ALE

Signature
ALE

Def. Clause

ALE

ALE

ALE

ALE

ALE

ALE

Description Page
Show constraint for a type. 60
Show subtypes, supertypes, constraint and 61
most general satisfiers for a type.
Declare subtyping relationship. 6
Test subsumption between two types. 60
Definite clause that is always satified (also 35
used to construct ground clauses in def. clause
language).
Test if type exists. 59
Unify two types. 60
Don't hide a feature. 63
Don't hide any features. 63
Don't hide a type. 63
Don't hide any types. 63



Pleuk Grammar Development
Environment

For those using SICStus 2.1#9 or later under X windows, the Pleuk grammar devel-
opment shell has been adapted for ALE. Pleuk provides a graphical user interface,
facilities for maintaining and testing corpora, and an interactive, incremental deriva-
tion checker. Pleuk is available free of charge from:

ftp.cogsci.ed.ac.uk:/pub/pleuk
The file README contains instructions for downloading the system. Pleuk has

been ported to Sun SPARCs SunOS 4.* and HP-UX. For more information, send
email to pleuk@cogsci.ed.ac.uk. Pleuk was developed by Jo Calder and Chris Brew of
the Human Communication Research Centre at the University of Edinburgh, Kevin
Humphreys of the Centre for Cognitive Science at the University of Edinburgh, and
Mike Reape, of the Computer Science Department, Trinity College, Dublin.
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Appendix A

Sample Grammars

English Syllabification Grammar

'/• Signature
•/. =========

bot sub [unit,list,segment].
unit sub [cluster,syllable,word]

intro [first:segment,
last:segment].

cluster sub [consonant.cluster, vowel.cluster]
intro [segments:list.segment].

consonant.cluster sub [onset,coda].
onset sub Q.
coda sub • .

vowel.cluster sub D.
syllable sub •

intro [syllable:list.segment].
word sub •

intro [syllables:list.list.segment].
segment sub [consonant,vowel].

consonant sub [sibilant,obstruent,nasal,liquid,glide]
sibilant sub [s,z].
s sub • .
z sub • .

obstruent sub [p,t,k,b,d,g].
p sub • .
t sub • .
k sub • .
b sub D .
d sub • .
g sub • .

nasal sub [n,m].
n sub • .
m sub • . ~~
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liquid sub [l,r]•

1 sub • .

r sub • .

glide sub [y,w]•

y sub • .

w sub • .

vowel sub [a,e,i,o,u].

a sub • .

e sub • .

i sub • .

o sub • .

u sub D .

list sub [e.list,ne.list,list_segment,list.list.segment]

e.list sub • .

ne.list sub [ne.list.segment,ne.list.list.segment]

intro [hd:bot,

list.segment sub [e.list,ne.list.segment].

ne.list.segment sub •

intro [hd:s egment,

tl:list.segment].

list.list.segment sub [e.list,ne.list.list.segment].

ne.list.list.segment sub •

intro [hd:list.segment,

tl:list.list.segment].

X Rules

X =====

word.schema.rec rule

(word,

syllables:[Syllable I Syllables],

first:First1,

last:Last2)

cat> (syllable,

syllable:Syllable,

first:First1,

last:Lastl),

cat> (word,

syllables:Syllables,

first:First2,

last:Last2),

goal> (\+ less.sonorous(Lastl,First2))

word.schema.base rule
(word,
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syllables:[Syllable],

first:First,

last:Last)

cat> (syllable,

syllable:Syllable,

first:First,

last:Last).

v.syllable rule

(syllable,

syllable:[Vowel],

first:Vowel,

last:Vowel)

cat> (vowel,Vowel).

vc_syllable rule

(syllable,

syllable:[VowelISegsl] ,

first:Vowel,

last:Last)

cat> (vowel,Vowel),

cat> (coda,

segments:Segsl,

last:Last).

cv.syllable rule

(syllable,

syllable:Segs,

first:First,

last:Vowel)

cat> (onset,

segments:Segsl,

first:First),

cat> (vowel,Vowel),

goal> append(Segsl,[Vowel],Segs).

cvc_syllable rule
(syllable,

syllable:Segs,

first:First,

last:Last)

cat> (onset, -
segments:Segsl,
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first:First),

cat> (vowel,Vowel),

cat> (coda,

segments:Segs2,

last:Last),
goal> append(Segsl,[VowelISegs2],Segs).

consonant.cluster.base rule

(consonant.cluster,

segments:[Consonant],

first:Consonant,

last:Consonant)

cat> (consonant,Consonant) .

onset rule

(onset,

segments:[Consonant11 Consonants],

first:Consonant1,

last:Consonant3)

cat> (consonant,Consonant 1) ,

cat> (onset,

segments:Consonants,

first:Consonant2,

last:Consonant3),

goal> less.sonorous(Consonant1,Consonant2)

coda rule

(coda,

segments: [Consonant 11 Consonants] ,

first:Consonant1,

last:Consonant3)
===>

cat> (consonant,Consonant 1) ,

cat> (coda,

segments:Consonants,

first:Consonant2,

last:Consonant3),

goal> less_sonorous(Consonant2,Consonantl)

X Lexicon
•/ =======

p > p.

t > t.
k — > k.
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b — > b.
d — > d.
g > g.
s > s.
z — > z.
n > n.
m > m.
1 — > 1.
r > r.
y — > y.
w > w.
a > a.
e > e.
i — > i .
o > o.
u > u.

'/• Definite Clauses

less.sonorous.basic(sibilant,obstruent) if true,

less.sonorous.basic(obstruent,nasal) if true,

less.sonorous.basic(nasal,liquid) if true,

less.sonorous.basic(liquid,glide) if true,

less.sonorous.basic(glide,vowel) if true.

less.sonorous(LI,L2) if

less.sonorous.basic(LI,L2).

less.sonorous(LI,L2) if

less.sonorous.basic(LI,L3),

less.sonorous(L3,L2).

append(D ,Xs,Xs) if true.
append([X|Xs],Ys,[X|Zs]) if

append(Xs,Ys,Zs).
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Categorial Grammar with Cooper Storage

X Signature

bot sub [cat, synsem, syn, sem_ ob j , l i s t .quant] .
cat sub •

intro [synsem:synsem,
qstore:list_quant].

synsem sub [functional, basic],

functional sub [forward,backward]

intro [arg: synsem,

res:synsem] .

forward sub • .

backward sub • .

basic sub •

intro [syn:syn, sem:sem_obj] .

syn sub [np,s,n] .

np sub • .

s sub D .

n sub • .

sem.obj sub [individual, proposition, property],

individual sub [j,m].

j sub • .

m sub • .

property sub D

intro [ind:individual,

bodyrproposition].

proposition sub [1 ogical,quant,run,hit,nominal] .

logical sub [and,or].

and sub •

intro [conj1:proposition,

conj2:proposition].

or sub •

intro [disj1:proposition,

disj2:proposition].

quant sub [every,some]

intro [var:individual,

restr:proposition,

scope:proposition].

every sub • .

some sub • .

run sub •

intro [runner:individual].

hit sub •

intro [hitter:individual,

hittee:individual] .

nominal sub [kid,toy,big,red]
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intro [argl:individual] .
kid sub Q .
toy sub • .
big sub • .
red sub • .

list.quant sub [e_list, ne_list_quant].
e.list sub • .
ne_list_quant sub •

intro [hd:quant,
tl:list_quant].

% Lexicon

kid —->
€ cn(kid).

toy >
€ cn(toy).

big -—>
€ adj(big).

red >
€ adj(red).

every >
€ gdet(every).

some >
Q gdet(some).

John >
€ pn(j).

runs >
G iv((run,runner:Ind) ,Ind)

hits >
€ tv(hit).

'/• Grammar
7. =======

forward.application rule
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(synsem:Z,
qstore:Qs)

cat> (synsem: (forward,
arg:Y,
res:Z),
qstorerQsl),

cat> (synsem:Y,
qstore:Qs2),

goal> append(Qsl,Qs2,Qs).

backward_application rule
(synsem:Z,
qstore:Qs)

cat> (synsem:Y,
qstorerQsl),

cat> (synsem:(backward,
arg:Y,
res:Z),
qstore:Qs2),

goal> append(Qsl,Qs2,Qs).

s.quantifier rule
(synsem:(syn:s,

sem:(Q,
scope:Phi)),

qstore:QsRest)

cat> (synsem:(syn:s,

sem:Phi),
qstore:Qs),

goal> select(Qs,Q,QsRest).

'/, Macros
'/. ======

cn(Pred) macro
synsem:(syn:n,

sem:(body:(Pred,
argl:X),

ind:X)),
€ quantifier.free.
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gdet(Quant) macro
synsem:(forward,

arg: 0 n(Restr,Ind),
res: € np(Ind)),

qstore:[C quant(Quant,Ind,Restr)].

quant(Quant,Ind,Restr) macro
(Quant,
varrlnd,
restr:Restr).

adj(Rel) macro
synsem:(forward,

arg: C n(Restr,Ind),
res: € n((and,

conj1:Restr,
conj2:(Rel,

argl:Ind)),
Ind)),

€ quantifier.free.

n(Restr,Ind) macro
syn:n,
sem:(body:Restr,

ind:Ind).

np(Ind) macro
syn:np,
sem:Ind.

pn(Name) macro
synsem: Q np(Name),
G quantifier.free.

iv(Sem,Arg) macro
synsem:(backward,

arg: G np(Arg),
res:(syn:s,

sem:Sem)) ,
$ quantifier_free.

tv(Rel) macro
synsem:(forward,

arg:(syn:np,
sem:Y),

res:(backward,
arg:(syn:np,

sem:X) ,
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res:(syn:s,
sem:(Rel,

hitter:X,

hittee:Y)))),

€ quantifier.free.

quantifier.free macro

qstore: • .

% Definite Clauses

append(D ,Xs,Xs) if
true.

append([X|Xs],Ys,[X|Zs]) if
append(Xs,Ys,Zs).

select([Q|Qs],Q,Qs) if
true.

select([Ql|Qsl],Q,[Ql|Qs2]) if
select(Qsl,Q,Qs2).



Appendix B

Error and Warning Messages

Error Messages

subtyping cycle at T

The subsumption relation specified is not anti-symmetric. It can be
inferred that the type T is a proper subtype of itself.

consistent T\ and T<i have multiple mgus Ts

Types T\ and T*i have the non singleton set Ts as their set of most
general unifiers.

feature F multiply introduced at Ts

The feature F is introduced at the types in Ts, which are not comparable
with one another.

incompatible restrictions on feature F at type T are Ts

The inherited restrictions, consisting of types Tsy on the value of F at
type T are not consistent.

no lexical entry for W

Expression W is used, but has no lexical entry.

unsatisfiable lexical entry for W

Word W has a lexical entry which has no satisfying feature structure.

invalid line <f> in rule

A line of a grammar rule is neither a goal nor a category description.

description uses unintroduced feature F

A description uses the feature F which has not been defined as appro-
priate for any types.

94
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undefined macro M used in description

A description uses a macro which is not defined.

undefined type T used in description

A description uses a type T which is not defined.

undefined feature F used in path TT

A path 7r of features uses undefined feature F in a description.

subtype T\ used in T2 undeclared

Undefined type T\ declared as subtype in definition of T2-

T\ used in appropriateness definition of T2 undefined

Undefined type T\ used as value restriction in definition of T2.

T multiply defined

There is more than one definition of type T.

multiple specification of F in definition of T

More than one restriction on the value of feature F is given in the defi-
nition of type T.

appropriateness cycle following path TT from T

There is a sequence of features TT which must be defined for objects of
type T where the value must be of type T.

rule R has no cat> specification

The grammar rule named R is empty in that it does not have any daugh-
ter specification.

cats> value with sort S is not a valid l i s t argument

An argument of cats> was detected at run-time, which is not of a type
subsumed by l i s t .

Warning Messages

unary branch from T\ to T2

The only subtype of Ti is T2. In this situation, it is usually more efficient
to elimate T\ if every instance of T\ is a T2.

no features introduced
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There are no appropriate features for any types.

homomorphism condition f a i l s for F in Ti and T2

It is not the case that the appropriateness restriction on the type T =
Ti + T2 is the unification of the appropriateness restrictions on T\ and
T2.

no l e x i c a l rules found

There were no lexical rules specified in the program.

no lexicon found

There were no lexical entries specified in the program.

no phrase structure rules found

There were no phrase structure rules specified in the program.

no def in i te clauses found

There were no definite clause rules specified in the program.



Appendix C

BNF for ALE Programs

The following is a complete BNF grammar for ALE programs.

<desc> ::= <type>
<variable>
(<feature>:<desc>)
(<desc>,<desc>)
(<desc>;<desc>)
Q <macro_spec>
<path> == <path>
=\= <desc>

<path> ::= list(<feature>)

<macro_def> ::= <macro_head> macro <desc>.

<macro_head> ::= <macro_name>

I <macro_name> (<var_seq>)

<macro_spec> ::= <macro.name>

I <macro_name>(<desc.seq>)

<clause> ::= <literal> if <goail>.

<literal> ::= <pred_sym>

I <pred.sym>(<seq(<desc>)>)

<goal> ::= true

<literal>

(<goal>,<goal>)
(<goal>;<goal>)

(<desc> =<0 <desc>)
i

<goal»

<lGx.entry> ::= <word> > <desc>.
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<rule> ::= <rule_name> rule <desc> ===> <rule_body>.

<rule_body> ::= <rule_clause>
I <rule_clause>, <rule_body>

<rule_clause> ::= cat> <desc>
I cats> <desc>
I goal> <goal>

<lex_rule> ::= <lex_rule_name> l ex . ru le <lex_rewrite>
morphs <morphs>.

<lex_rewrite> ::= <desc> **> <desc>
I <desc> **> <desc> if <goal>

<morphs> ::= <morph>
I <morph>, <morphs>

<morph> ::= (<string.pattern>) becomes (<string_pattern>)
I (<string.pattern>) becomes (<string.pattern>)

when <prolog_goal>

<string.pattern> ::= <atomic -string.pattern>
I <atomic_string_pattern>, <string.pattern>

<atomic -string.pattern> ::= <atom>
I <var>
I <list(<var.char>)>

<var_char> ::= <char>
I <var>

<seq(X)> ::= X
I X, <seq(X)>

<empty.prod> ::= empty <desc>.

<t3rpe.spec> ::= <tjrpe> sub <list(<type>)>
I <type> sub <list(<type>)>

intro <list(<feat>:<type>)>

<cons.spec> ::= <type> cons <desc>
I <t]rpe> cons <desc>

goal <goal>

<ext.spec> ::= ext(list(<type>))

<prog> ::= <prog.line>
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I <prog_line> <prog>

<prog_line> : <type_spec>
<ext.spec>
<cons_spec>
<macro_def>
<empty.prod>
<clause>
<rule>
<lex.entry>
<lex.rule>


