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Abstract

Researchers have systematically explored the Markov equivalence
relationships among models from three classes of graphical mod-
els; the undirected, the directed acyclic, and the chain graph or
block-recursive models. This paper considers the Markov equiva-
lence relationships between models of different classes of graphical
models and gives conditions for the existence of a model from a
given class which is "almost Markov equivalent" to a given model
from another class. An example of such a condition which is well
known in the literature is the Wennuth condition. In addition, for
each of the classes of models correct algorithms for learning mod-
els from conditional independence facts are given. While correct
algorithms for learning undirected and directed acyclic graphs
from only conditional independence facts exist in the literature,
no such algorithms exists for chain graphs. This paper presents
algorithms for learning undirected and directed acyclic graphs to
highlight the relationship between the learning problems for these
classes of models and the learning problem for chain graphs. The
learning algorithms are proved correct and are shown to run in
polynomial time in the number of vertices for fixed degree graphs
except for one algorithm for learning undirected graphs which is
polynomial in the number of vertices regardless of the degree of
the graph.

1 Research for this paper was supported by the Office of Navel Research grant ONR
#N00014-93-l-0568.



1 Introduction
In this paper several classes of graphical models are compared and algorithms
for learning models in each class are given. The classes are the undirected,
directed acyclic and chain graph models. The directed acyclic graphical mod-
els have a long history in statistical modeling (see Sewall Wright 1921) while
the undirected and chain graph models more recent innovations. Accounts of
recent work in statistical modeling and decision-making under uncertainty us-
ing directed graphical representations can be found in Pearl (1988), Schacter
(1986) and Spirtes et al. (1993). This work goes under many names includ-
ing influence diagrams, belief networks, and Bayesian networks. An account
of recent work on the use of undirected graphs can be found in Whittaker
(1990) and Pearl (1988). The most recent of these classes of models are the
chain graphs which were introduced in Lauritzen and Wermuth (1989) and
further developed in Prydenberg (1990). Chain graphs are a class of models
which essentially subsume both the undirected and directed acyclic graphical
models. While correct algorithms for learning undirected and directed acyclic
graphs exist in the literature no such algorithm exists for chain graphs. This
paper remedies this deficiency and gives additional results which relate each
of these classes of models.

2 Notation and definitions
A graph is a pair G = (V, E) where V is a finite set of vertices (which
correspond to random variables) and E is a set of edges, i.e. a subset of the
set of all ordered pairs of distinct vertices, Ord(V) = {(a,/3)\a 6 V A /? 6
VAa ^ /?}. We write (and draw) a -> /? if and only if (a, /?) e EA(0, a) & E
and a— j3 if and only if (a, 0) G E A (/?, a) € E. When we draw a graph
there is no edge between two vertices if and only if neither ordered tuple is
in the set of edges, a is adjacent to 0 if and only if a— /?, a —> /?, or (5 —> a;
we use a e ADJ(p) to denote this. A graph is undirected if and only if for
no pair of vertices a and /? is it the case that a -> /?. A graph is directed if
and only if for no pair of vertices a and /3 is it the case that a— /?.

An ordered n-tuple (c*i,... ,an) (n > 1) of distinct vertices is called a
path from ax to an in graph G if and only if for 1 < i < n it is the case
(afj, oti+\) G E. A path is directed if and only if for some i it is that case
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Figure 1: Example graphs

that cti —> cti+i and a path is undirected if and only if for all i it is the case
that oti — ttj+i. a < ft if and only if there is a directed path from a to /?.
The descendants of a vertex a are those vertices in de(a) = {/3\ct < /?}. The
nondescendants of a vertex a are those vertices in nd{a) = V\de(a). An n-
tuple (a i , . . . , o:n-i, c*i) is a cyc/e if and only if (c*i,..., an_i) and (an-ij ĉ i)
are paths. A graph is acyclic if and only if there is no directed cycle (i.e. no
edge in any cycle is directed).

If A is a subset of the vertices then the induced subgraph given A is
GA = (A,EA) where EA = En Ord(A). The underlying undirected graph of
a graph G is Gu = (V,£u) where £w = {(a,/?)|(c*,/J) e EV (P,a) e E}.
The boundary of vertex a in graph G is the set of vertices connected to
a by a directed or undirected edge; bd(a) = {P\P ~> a V ft—a}. More
generally the definition of the function bd applied to sets of vertices is defined
as bd{A) = UpeAbd(/3). The example graphs in Figure 1 and Table 2 illustrate
some of the definitions.

Let P be a probability measure over Xy (a space for the random variables
in V) and G = (V, E) be an acyclic graph. The pair (P, G) satisfy the local
Markov condition with respect to acyclic graph G if and only if for all a G V it
is the case that a±±(nd(a)\(bd(a)U{a})) \bd(a). Every vertex is independent
of its nonboundary nondescendants given its boundary. Markov(G) is the
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Table 1: Examples

set of distributions that satisfy the local Markov condition with respect to
G. Two graphs,G and Gf are Markov equivalent if and only if Markov(G) =
Marhov(G').

A distribution P over random variables V satisfies the intersection prop-
erty if and only if for all disjoint subsets X, Y, W, and Z of V it is the case
that X1±Y\ZW A X1±W\YZ => X1±YW\Z. The intersection property
holds for positive distributions. Markov^(G) is the set of distributions that
satisfy the local Markov condition with respect to G and the intersection
property. Two graphs, G and G' are almost Markov equivalent if and only if
Markov+(G) = Markov+(G').

Let r(a) be the set of all vertices reachable from a by an undirected
path. For a directed graph r(a) = {a}. The moral graph of G = (V, E) is
the graph Gm = (V, Em) where Em = Eu U (\JaeV Ord(bd(r(a))\r(a))). In
the case where the graph is directed and acyclic the moralization of the graph
corresponds to connecting all pairs of parents for each vertex in the graph and
then undirecting all of the edges. In an undirected graph, S separates A and
B if and only if every path from a member of A to a member of B contains a
member of S. The anterior set of A with respect to an acyclic graph G is the
smallest set containing (i) every member of A (ii) every member in KJpeAj(fi)
and (iii) every vertex a < /3 for some /? e UieAr(j). Let an(A) denote the
anterior set for A.

Pearl (1988) and Lauritzen et al. (1990) have given rules that can be used
to infer independence facts about probability distributions in Markov(G)
and Markov+{G) from the graphical structure of a directed acyclic graph
G. The two rule are equivalent in the case of directed acyclic graphs but
Lauritzen's rule generalizes to arbitrary acyclic graphs.



Definition 1 (Lauritzen's rule) G h A1±B\S if and only if S separates A
andB in (Gan{AuBus))m

Definition 2 P \= A1±B\S if and only if the independence fact Al±B\S
holds in the joint distribution P.

A set of inference rules is sound for a class of models if and only if the
statements derivable by the rules are true of all models in the class of models.
A set of inference rules is complete for a class of models if and only if all of
the statements true in all models are derivable by the rules. In the cases
that considered in this paper the statements are of the form Al±B\S and
the sets of models are sets of distributions which satisfy the local Markov
condition with respect to some graph and possibly the intersection property.
The importance of the completeness of a set of inference rules is that one can
be insured that no further facts can be correctly inferred from the graphi-
cal structure and the local Markov condition. The pair (G,P) satisfy the
faithfulness condition if and only if the only independence facts true in P are
exactly those entailed by Lauritzen's rule; i.e. P |= Al±B\S if and only if
G h A1-LB\S. A class of distributions V has the strong completeness prop-
erty if and only if for all G there exists a distribution P € V such that (G,P)
satisfies the faithfulness condition. In this paper the class of distribution will
be the class of all probability distribution; see Meek (1995b) for a more de-
tailed discussion of strong completeness, faithfulness and completeness with
respect to classes of distributions of interest. Clearly strong-completeness
entails completeness. The relationship between the local Markov condition
and Lauritzen's rule and completeness is examined for each of the classes of
graphs.

3 Undirected graphical models (ugs)
In this section we present several results about undirected graphical models.
For more details about undirected graphical models see Whittaker (1990),
Pearl (1988) and Prydenberg (1990). We begin by investigating the usefulness
of Lauritzen's rule as an inference rule.

Theorem 1 (Soundness; Pearl, Lauritzen) Let G be an undirected graph.
IfS separates A andB in (Gan(AuBus))m then Al±B\S in every distribution
in Markov+(G).



Theorem 2 (Strong Completeness; Geiger et al.) For all undirected graphs
G there is a probability distribution such that the pair (G,P) satisfy the local
Markov condition, the intersection property and such that all and only those
independence facts which follow from Lauritzenys rule are true.

Theorem 3 Two undirected graphs G = (V,E) and G1 = (V',Ef) are
Markov equivalent if and only ifV = V and E = E1'.

Proof — Suppose the two graphs are identical. Then the independence
constraints imposed by the Markov condition are identical and thus the set
of Markov distributions are identical. The converse follows from Theorem 2
and the fact that two non-identical graphs over V have different adjacencies
and thus different separation properties. •

3.1 Learning undirected graphs
Several authors have considered the problem of learning undirected prob-
abilistic models including Fung and Crawford (1990), and Pearl (1988). In
this section I present two correct algorithms for inducing probabilistic models
and compare the two algorithms.

If find-ug (or find-ug2) is given a complete graph on n variables and
a faithful joint distribution P over those variables then find-ug (or find-
ug2) will find the smallest undirected graph G such that (G,P) satisfy the
local Markov condition, i.e. it will find the undirected graph to which the
distribution is faithful.

Function maxdegree(G:graph):integer;
;; th is function returns the maximal number of adjacencies for any
;; vertex in G

begin
maxdegree = 0
for each vertex A in G do

if sizeof(ADJ(A)) > maxdegree then maxdegree = sizeof(ADJ(A))
return(maxdegree)

end



Function find-ug(G:graph;P:distribution;Sep:array of sets):graph;
;; Sep is an n x n array of sets of vertices
;; which is used in the next section

begin
n=0
repeat

for each ordered pair of adjacent vertices A, B do
begin

for each subset S of ADJ(A)\{B} of size n do
if A is independent of B given S
then

begin
remove the edge between A and B from G
Sep(A,B) = S

end

end
n = n + 1

unt i l maxdegree(G) < n
return(G)

end

Function find-ug2(G:graph;P:distribution) .-graph;
begin

for each ordered pair of vertices A, B do
if A is independent of B given V\{A,B}
then remove the edge between A and B from G

end

The correctness of these algorithms rests upon the correctness of the
statistical tests which are performed and the assumption of faithfulness. The
correctness of the two algorithms follows from the following argument. Let
G be the unique undirected graph to which P is faithful. Two vertices a
and 0 which are adjacent in G are not separated in G by any set S and thus
will remain connected in the final graph. If the two vertices a and /3 are not
adjacent then there is some set S which separates the two vertices. All that
needs to be argued is that this separating set S will be found. In the case



of find-ug2 this is trivial. In the case of the find-ug algorithm simply notice
that a is separated from (3 in G by the boundary of a (i.e. bd(a)) and the
algorithm does not terminate until every independence fact corresponding to
a separating set of at least the size of maxdegree(G) > bd(a) is checked.

Algorithms for performing tests of conditional independence are not given
but see Bishop et al. (1975) or Fienberg (1977) for tests in multinomial distri-
butions and Whittaker (1990) for tests in multivariate normal distributions.
The complexity analysis of find-ug and find-ug2 is straight forward if we as-
sume that the complexity of testing conditional independence is constant;
this assumption is reasonable in many contexts. Let n be the number of
vertices in the graph and k be the maximum degree of the graph to be
learned. In the case of find-ug2 the complexity of the algorithm is O(n2)
since there are that many pairs of vertices in the graph. In the case of find-
ug the complexity is O(nk+2) since, in the worst case, the algorithm requires

I J2i=o ( • I conditional independence tests. Although thenum-

ber of independence tests used in the find-ug2 algorithm is often less than
the number used in find-ugt find-ug2 is not practical in many cases because
it uses less powerful tests which are computationally less tractable, this is
especially true when using discrete data. In addition to its statistical and
computational advantages, the find-ug algorithm will be used as the basis of
learning algorithms in later sections.

4 Directed acyclic graphs (dags)

See Pearl (1988) and Lauritzen et al. (1990) for additional properties of
directed acyclic graphs.

Theorem 4 (Soundness; Pearl, Lauritzen) Let G be a directed acyclic
graph. If S separates A and B in (Gan(AuBus))m then A1±B\S in every
distribution in Markov (G).

Theorem 5 (Strong Completeness; Geiger et al.) For all directed acyclic
graphs G there is a probability distribution such that the pair (G,P) satisfy
the local Markov condition, the intersection property and all and only those
independence facts which follow from Lauritzen's rule are true.

8



The pattern for the directed graph G is the graph which has the identical
adjacencies as G and which has an oriented edge a —> (3 if and only if there
is a vertex 7 ^ AJDJ(c*) such that a —> /3 and 7 —>• ft in G. Let pattern(G)
denote the pattern for G. A triple (a?, /?, 7) of vertices is an unshielded collider
in G if and only if a —> /?, 7 —>• /3 and a is not adjacent to /?. It is easy to
show that two directed acyclic graphs have the same pattern if and only if
they have the same adjacencies and same unshielded colliders.

Theorem 6 (Pearl 1988) Two directed acyclic graphs, G and G1 are Markov
equivalent if and only ifpattern(G) = pattern{G').

Two graphs with the same pattern have the same Markov entailed in-
dependence facts; this follows from the fact that two graphs have the same
moralized anterior graph for every triple of disjoint sets of variables. The
converse follows from Theorem 5.

4.1 Learning directed graphs
Given the relationship between independence and graphical structure when
on assumes the Markov condition, several authors (Pearl 1988 and Spirtes
et al. 1993) have used statistical tests of independence to guide the selec-
tion of directed acyclic models. As in the case of undirected graphs, reliable
learning algorithms exist for learning the graphical structure for a distribu-
tion P if P is faithful to some directed acyclic graph.2 If find-dag is given a
complete graph on n variables and a faithful joint distribution P over those
variables then find-dag will find the pattern of a directed graph G to which
the distribution P is faithful.

Function find-pattern(G:graph; P:distribution; Sep:array of sets):graph;
begin

for each unshielded t r ip le <A,B,C> do
begin

2Many other approaches to learning directed acyclic models exists inluding Bayesian
(see Heckerman et al. 1994 and Cooper et al. 1992), minimum description length and
information theoretic methods (see Sclove 1994). Each of these alternative approaches
may be termed scoring methods since scores are given to models and model selection is
the process of finding the model which maximizes or minimizes a given score criterion. In
this paper only independence approaches are discussed.



if B is not in Sep(A,C)
then orient <A,B> and <C,B>

end
end

Procedure find-dag(G:graph; P:distribution);
begin

Sep = n x n array of empty sets
G = find-ug(G,P,Sep)
G = finti-pattern(G,P,Sep)
return(G)

end

The find-dag algorithm is essentially the same as the PC algorithm given
in Spirtes et al. (1993). The algorithm does not return a directed acyclic
graph but rather the pattern of any graph in a specific Markov equivalence
class. Let us assume that graph G in Figure 2 is a graph to which P is
faithful. The PC algorithm would output the graph pattern(G) also shown
in Figure 2. If the desired output is a directed acyclic graph in the Markov
equivalence class represented by pattern(G) then the algorithm described in
Meek (1995) can be used to extend pattern(G) to such a directed acyclic
graph.

Y Y
S 8
G pattern(G)

Figure 2: Graph and pattern

The reliability of the PC algorithm rests upon the correctness of statistical
tests and upon the assumption that P is faithful to some directed acyclic
graph. Let G be the graph to which P is faithful. The correctness of the first
step of PC (i.e. find-ug) follows essentially as in the correctness of the find-ug
algorithm applied to undirected graphs; basically, any pair of vertices which
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are adjacent in G will remain adjacent and for any pair of vertices which are
not adjacent in G a set will be found which separates the pair of vertices.
The correctness of the second part of the algorithm (i.e. find-pattern) follows
from the fact that for an unshielded collider (a, /?, 7) in G it is the case that
a and 7 are dependent conditional upon any set containing (3. If (a, /?, 7) is
an unshielded noncollider then a and 7 are dependent conditional upon any
set not containing /3. These facts are readily apparent if one considers the
moralized anterior graphs for the two cases. The algorithm simply finds a
set S upon which a and 7 are conditionally independent and check whether
/3 is in S and orients the unshielded triple accordingly.

The complexity of the find-pattern algorithm is O(n3). Thus for graphs
with maximum degrees larger than one the complexity of the find-ug proce-
dure dominates and thus, in such cases, the complexity of find-dag is O(nk+2).
It is important to note that the complexity of the learning procedure can be
significantly reduced if one has structural background knowledge. For in-
stance, if one has a total ordering on the variables the learning problem is
O(n2) for arbitrary degree graphs.

Note that the correctness of the algorithm rest upon slightly weaker as-
sumption than the faithfulness of P; only the tests which are actually used
in the algorithm are required to be correct.

4.2 Relating directed and undirected graphs
A directed acyclic graph satisfies the Wermuth condition if and only if there
are no unshielded colliders in G.

Theorem 7 A directed acyclic graph G has an almost Markov equivalent
undirected graph if and only if G satisfies the Wermuth condition. The undi-
rected Markov equivalent graph for G is Gu.

Proof — If directed acyclic graph G = (V, E) satisfies the Wermuth condi-
tion then for all B C V it is the case that G% = G%. Thus if a and j3 are
separated by S in G^{Q ^JU 5 ) if and only if they are separated in Gu and
thus they have the same Markov entailed independence facts.

In the case where directed acyclic graph G does not satisfy the Wermuth
condition there is an unshielded collider (a,/?,7). Let PQ be a distribution
which is faithful to G and satisfies the intersection property; one exists by
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Theorem 5. We know that G h a±±i\S for some set S C V\{a,P,i} and
that for all sets 5" C V\{a, 0,7} it is not the case that PG (= ad_l7|5"U{/?}.
Suppose there is an almost Markov equivalent undirected graph H. Let PH

be a distribution which is faithful to H and satisfies the intersection property;
one exists by Theorem 2.
(Case i) H has an edge between a and 7. We know that for all S it is not
the case that P# |= alA.^\S thus P# ^ Markov*(G), a contradiction.
(Case ii) H does not have an edge between a and 7. For some set S" it
is the case that H h a±±7|£" U {/?}. But it is not the case that PG \=
a±±j\S" U {/?} thus PG <£ Markov+{H), a contradiction.•

It is easy to write an algorithm to test if there exists a Markov equivalent
undirected graph for a given directed acyclic graph exists and to find such
an undirected graph if one exists.

A cycle (c*i,..., an, ax) is chordal if and only if for some non-consecutive
pair of vertices a; and otj (1 < i < n — 2 and i + 2 < j < n) Ojis adjacent to
otj. A graph is said to be a chordal graph if and only if every cycle is chordal.

Theorem 8 An undirected graph G has an almost Markov equivalent di-
rected acyclic model if and only if G is a chordal graph.

Proof— A total ordering -< on the vertices of an undirected graph G induces
a directed acyclic graph G^ by the rule that if a— /? in G then orient as
a -> P in Gx if ot -< fi. A total order -< is consistent for undirected graph G
if and only if G^ satisfies the Wermuth condition. An undirected graph has
a consistent total ordering if and only if it is chordal (see Meek 1995). By
Theorem 7, an undirected graph has an almost Markov equivalent directed
acyclic graph if and only if it is chordal. •

Tarjan and Yannakakis (1984) have given a linear time algorithm to check
the chordality of a graph. An algorithm for finding a directed acyclic graph
G' which is Markov equivalent to a chordal undirected graph G can be found
in Meek (1995).

12



5 Chain Graphs
A graph G is a chain graph if and only if G is acyclic. Every directed acyclic
and every undirected graph is a chain graph.

Theorem 9 (Soundness; Frydenberg) Let G be an acyclic graph. If S
separates A and B in (Gf

On(AuBu5))m then A1±B\S in every distribution in
Markov+(G).

In the case of directed and undirected graphs, strong completeness results
have been proven but strong completeness result for the case of the chain
graphs has been published although several authors have conjectured that
such a result holds (e.g. Frydenberg 1990).

A triple (a, 5,7) is a complex if and only if (i) B C r(S) for some S G B,
(ii) a e bd(B) and 7 6 bd(B) and (iii) a & ADJ(j). A triple (a,B,j) is a
minimal complex if and only if (i) the triple is a complex, and (ii) there is no
B ' C B such that (a, B[\ 7) is a complex.

We extend the notion of pattern to handle chain graphs. The pattern of
a chain graph G is the graph (i) with the same adjacencies as G and (ii) the
edge a— /3 is oriented a —> /3 if and only if there exists a vertex 7 and a set
B containing /3 such that (a, B, 7) is a minimal complex.

Theorem 10 (Frydenberg) Two chain graphs G = (V, E) and G1 = (V, E')
are almost Markov equivalent if and only if pattern(G) =pattern(G/).

5.1 Learning chain graphs
As in the case of undirected and directed graphs, reliable learning algorithms
exist for learning the graphical structure for a distribution P if P is faithful
to some chain graph. If find-cg is given a complete graph on n variables and a
faithful joint distribution P over those variables then find-cg will find the pat-
tern of a graph to which P is faithful. Alternative methods for inducing chain
graphs have been published but these require large amounts of background
assumptions and strong modeling assumptions. For instance, H0jsgaard and
Thiesson (1992) require that the user specifies the block structure3 and that
the models within the blocks are decomposable (see Pearl 1988).

3In the notation of this paper, the user must specify disjoint sets of variables
(Ai,..., An) such that for all 1 < i < n and for all a € Ai it is the case that r(a) = Ai
and UiAi = V.
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Procedure orient-cg(G,P)
begin

for all pair of vertices A, B such that A not in ADJ(B) do
begin

find maximal subset SA of ADJ(A) such that
A is independent of B given SA

find maximal subset SB of ADJ(B) such that
A is independent of B given SB

if C in ADJ(A) and C not in SA then orient <A,C>
if C in ADJ(B) and C not in SB then orient <A,C>

end
end

Function Find-cg(G,P);
begin

Sep = n x n array of empty sets
G = find-ug(G,P,Sep)
G = orient-cg(G,P)
return(G)

end

As in the case of learning directed acyclic graphs, the output of find-
cg is a pattern which is not necessarily a chain graph. A chain graph G
and its corresponding pattern pattern(G) are shown in Figure 3. If P is a
distribution which is faithful to the chain graph G then the output of the
find-cg algorithm would be pattern(G). Note that pattern(G) is not a chain
graph since (a, 6, e, /?, a) and (7, £, e, /?, 7) are directed cycles.

a p 7 a P 7

d e Q 6 e (,
G pattern(G)

Figure 3: Chain graph and pattern
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The correctness of the find-cg algorithm is similar to that of the PC
algorithm.4 The correctness of the first step (i.e. find-ug) is completely
analogous and will not be repeated. To show the correctness of the second
step (i.e. orient-cg) we need the following three facts.

Fact 1 Let G be a chain graph and a and 7 be a pair of vertices not adjacent
in G. If there exists a B such that (a,B,j) is a minimal complex and (3 E B
is such that j3 € ADJ(a) then for all sets S CV which contains at least one
member of B it is not the case that G h a±±y\S.

Fact 1 follows trivially from Lauritzen's rule.

Fact 2 For all chain graphs G and pairs of vertices a and 7 not adjacent in
G there exists a unique maximum (written maximum{a, j)) set S such that
(i) S C ADJ{a) and (ii) G h aJ_L7|5.

Proof — Suppose not. Then there exists maximal sets S\ C ADJ(a) and
S2 C ADJ(a) such that SXAS2 ^ 0 and G h a±Lj\Si and G h aJLL7|S2.

5

Let (3 be a vertex in S1AS2 and with out loss of generality (3 6 S\. A vertex
6 is connected to a vertex e if and only if (i) S € r(e) or (ii) 6 < e or (iii)
e < 6. From the fact that G h aJ_l7|S'i and G h aJLL7|52 it must be the
case that /3 is not connected to 7. Thus G h a±±.j\S2 U {/?} and we have a
contradiction. •

Fact 3 Let G be a chain graph and a and 7 be a pair of vertices not adjacent
in G and {3 6 ADJ{a). Let maximum(a^j) be the set described in Fact 2;
the maximum subset of AD J (a) which makes a andj independent If j3 —> a
or (3— a then /3 G maximum(a, 7).

Fact 3 follows from Lauritzen's rule and the observation that j3 G an({a}).
Fact 2 guarantees that we can find the maximum sets SA and SB.Fact 1

guarantees that if a is involved in a minimal complex (a, B, 7) then the
vertex (3 £ B such that (3 G ADJ{a) will not be in maximum(a, 7) and thus

4 Several modifications can be made to make the orient-cg algorithm more efficient but
these would needlessly complicate the presentation.

5 Si A5 2 is the symmetric difference of the two sets.
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the edge will be oriented correctly. Finally Fact 3 guarantees that for each
fi e ADJ(a) such that ft —> a or /?— a then the edge will not be oriented
a —> (5 in the output of find-cg. Since every pair of nonadjacent vertices is
checked and the respective maximal sets for each of the pair is found every
edge involved in a minimal complex will be found. Thus the algorithm is
shown to be correct.

The complexity of the orient-cg algorithm is O(nz). Thus for graphs with
maximum degrees larger than one the complexity of the find-ug procedure
dominates and thus, in such cases, the complexity of find-cg is O{nk+2). As in
the case of learning directed acyclic models, structural background knowledge
can significantly improve the efficiency of learning algorithms.

The correctness of the algorithm rests upon the assumption that the dis-
tribution P is faithful to some chain graph. The difficulty with assuming
faithfulness in this context is that there is no proof that there exists a faith-
ful distribution exists for an arbitrary chain graph. One response to such
a criticism is to conjecture that such a faithful distribution exists for any
arbitrary chain graph out of an analogy to the undirected and directed cases.
Such a conjecture, while not unsound, would not be a reasonable answer to
such worries. A second response is that the reliability of the procedure does
not rest upon the full strength of the assumption of faithfulness (as in the
undirected and directed cases). But again the existence of a distribution
for this restricted notion of faithfulness has not been demonstrated. A final
response is that even in the event of failures of faithfulness procedures based
upon the assumption (e.g. the PC algorithm) have proved to be a useful ba-
sis of learning directed acyclic graphs (see Spirtes unpublished). While none
of these responses is completely satisfying only time (and empirical study)
will tell if such a procedure is useful.

5.2 Relating directed and undirected graphs and chain
graphs

Not all patterns of directed acyclic graphs are chain graphs. Figure 4 gives
example of a directed acyclic graph whose pattern is not a chain graph; the
pattern fails to be a chain graph because of the directed cycle (a, 7,5, a).

A pattern is a graphical representation of an entire class of Markov equiv-
alent graphs. This example shows that the pattern of a graph can not be used
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Figure 4: Graph and pattern

as a chain graph representation of the the set of Markov equivalent graphs.
However, a canonical graph of a directed graph G (defined below) is a chain
graph and represents the entire set of graphs which are Markov equivalent
to G. First, in words, a canonical graph for directed acyclic graph G (written
cg(G)) is the graph which represents all of the adjacencies and orientation
common to graphs which are Markov equivalent to G.

cg(G) = (V,Ei) where
E1 = (J{£'|G' = (V.E1) Apattern(G) = pattern(G')}

Theorem 11 (Meek;Madigan) For all directed acyclic graphs G cg(G) is
a chain graph6

Theorem 12 For all directed acyclic graphs G, G and cg(G) are almost
Markov equivalent

Theorem 13 A chain graph G has an almost Markov equivalent undirected
graph if and only if G has no minimal complexes.

Theorem 14 A chain graph G has an almost Markov equivalent directed
graph if and only if G has no non-chordal undirected cycle and each of the
minimal complexes in G are unshielded colliders (i.e. if (a, B, 7) is a minimal
complex then B is a singleton set).

Theorem 12, Theorem 13, and Theorem 14 follow from Theorem 10.
6In Meek (1995) the concept of cg(G) is equivalent to the concept of

max(pattern(G),9). Madigan's result is as of yet unpublished.
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6 Final Remarks
In summary this paper presents algorithms for learning undirected, directed
acyclic, and chain graph models. The paper also contains additional results
about the existence of almost Markov equivalent models in a given class for
a model in a second class. There are several avenues for continued research.

• As noted in the previous section, the pattern II of a chain graph is
not necessarily a chain graph. While it is easy to write inefficient
algorithms to find a chain graph G with the same minimal complexes
as the pattern (i.e. pattern(G) = II) no efficient algorithms for this
task have been published except for the special case where the pattern
is the pattern of a directed acyclic graph (see Meek 1995). A closely
related question originally posed by Prydenberg (1990) is the problem
of finding the chain graph with the same minimal complexes as a given
chain graph and with the smallest number of directed edges possible.
Prydenberg has shown that there is a unique model of this description
for any given chain graph.

• Two closely related open questions are the whether Lauritzen's rule is
strongly complete for chain graphs and whether there exists a faithful
distribution for arbitrary chain graphs.

• An empirical and theoretical evaluation of the reasonableness of faith-
fulness as an inferential tool for model selection, in particular, learning
chain graphs.
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