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Abstract

We unify two contemporary theoretical frameworks for representing causal

dependencies. Directed graphical models were introduced and developed by Kiiveri,

Speed, Wermuth, Lauritzen, Pearl and others. Rubin introduced a framework for

analyzing the relation between the conditional probability of Y on X and the distribution

Y would have if X were forced to have a particular value. Pratt and Schlaifer have

extended Rubin's analysis to offer sufficient "counterfactual" conditions for the

conditional distribution of Y on Z, X= x to equal the conditional distribution of Y on Z

when all units in the population are forced to have that value of X. Using two axioms for

directed graphical causal models, we obtain rigorous derivations of claims given by

Rubin and by Pratt and Schlaifer, and we give general characterizations in terms of

causal structure-represented by directed graphs--for Pratt and Schlaifer's notions of

the "observability of a law" and the "observability of a law with concomitants." Results

obtained in the Rubin framework are generalized, and some relevant sampling

properties of graphical causal models are obtained. 1
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One of the aims of an empirical study may be to predict the effects a general policy would

have if put in force, or to predict relevant differences resulting from alternative

policies. The interest might be in predicting the differential yield if a field is planted

with one species of wheat rather than another; or the difference in number of polio cases

per capita if all children are vaccinated against polio as against if none are; or the

difference in recidivism rates if parolees are given $600 per month for six months as

against if they are given nothing; or the reduction of lung cancer deaths in middle aged

smokers if they are given help in quitting cigarette smoking; or the decline in gasoline

consumption if an additional dollar tax per gallon is imposed. Such inference problems

are puzzling because a policy of treatment creates a potential distribution different from

the distribution sampled in observations or experiments, and alternative policies of

treatment create alternative potential distributions with alternative statistics. The

inference task is to move from a sample of one of these distributions, the one

corresponding to passive observation or experimental manipulation, to conclusions

about the distribution that would result if a policy were imposed.

A further feature makes prediction especially difficult. Empirical studies are often

unable to control or randomize all of the relevant variables, with the result that the

dependency among variables relevant to prediction may be confounded by unmeasured

common causes. In that case, the effect of a policy that manipulates one of the variables

cannot be expected to be predictable from sample statistics. There are many examples of

predictions whose disappointment may be in part due to confounding. The second Surgeon

General's report on smoking and health (1979, p. 43) found that mortality ratios

(compared to permanent non-smokers) for those who quit smoking declined with the

number of years since quitting, equaling lifelong non-smokers after 15 years. Brownlee

(1965), following Fisher (1959) conjectured that such decreases might at least in

part be due to self-selection of quitters caused by genetic or cultural factors. The

Brownlee hypothesis can be represented by a simple picture.

Genotype

Smoking ^ Lung Cancer



Figure 1

If accepted, the picture leads one to expect that the sample mortality ratios reported by

the Surgeon General will not be good predictors of the effects of intervention against

cigarette smoking. Shortly after the Surgeon General's report there appeared the results

of randomized intervention studies that followed subjects for six and ten years

respectively. The studies (Rose, et al., 1982; MRFIT, 1983) found that intervention

that reduced cigarette smoking in middle aged males did not reduce their mortality rate.

Prediction of the effects of a policy from sample data requires knowledge of the causal

processes that generated the sample. There are two questions: (i) what must be known,

and (ii) when can it be known? Rubin (1974;1977; 1978) and following him, Holland

(1986) and Pratt and Schlaifer (1984; 1988) have developed a theory that addresses

the first question, and Pratt and Schlaifer (1988), have applied it to attempt to answer

the second question as well. Their account has been applied to the question of

randomization in experimental design (Rubin, 1978), to estimation of the difference in

expected values of an outcome variable if alternative treatments were to be given to an

entire population (Rubin, 1977), to determining from a causal structure when the law

giving the distribution of a variable Y if a variable or set of variables X were to be

forced to have a specified value is "observable," i.e., equal to the observed conditional

distribution of Y on that value of X (Pratt and Schlaifer, 1988), to advice about when

regression coefficients are "structural" (Pratt and Schlaifer, 1984, 1988), and to

other topics.

Our aims are, first, to show how the results announced in the Rubin framework may be

rigorously derived from simple axioms on graphical causal models and thereby connected

with another line of statistical work on causality deriving from Kiiveri and Speed

(1982), Wermuth and Lauritzen (1983), Pearl (1989) and others. We will,

furthmore, generalize results in Rubin's framework and characterize in graphical

terms the conditions under which their results apply.

2. Rubin's Framework and Pratt and Schlaifer's Rules

Rubin's framework has a simple and appealing intuition. In experimental or

observational studies we sample from a population. Each unit in the population, whether

a child or a national economy or a sample of a chemical, has a collection of properties.



Among the properties of the units in the population, some are dispositional~\hey are

propensities of a system to give a response to a treatment. A glass vase, for example,

may be fragile, meaning that it has a disposition to break if struck sharply. A

dispositional property isn't exhibited unless the appropriate treatment is applied-

fragile vases don't break unless they are struck. Similarly, in a population of children,

for each reading program each child has a disposition to produce a certain post-test

score (or range of test scores) if exposed to that reading program. In experimental

studies when we give different treatments to different units, we are attempting to

estimate dispositional properties of units (or their averages, or the differences of their

averages) from data in which only some of the units have been exposed to the

circumstances in which that disposition is manifested. Rubin associates with each such

dispositional quantity, Q, and each value x of relevant treatment variable, X, a random

variable, Qxf, whose value for each unit in the population is the value Q would have if

that unit were to be given treatment x, or in other words if X were forced to equal x. If

unit i is actually given treatment x1 and a value of Q is measured for that unit, the

measured value of Q equals the value of Qxif.

Experimentation may give a set of paired values <x, y> = <x, yxf>, where yxf is the value

of the random variable Yxf. But for a unit i that is given treatment x1, we also want to

know the value of YX2f» Yx3f, and so on for each possible value of X, representing

respectively the values for Y that unit i is disposed to exhibit if unit i were exposed to

treatment x2 or x3, that is, if the X value for these units were forced to be x2 or x3

rather than x1. These unobserved values depend on the causal structure of the system.

For example, the value of Y that unit i is disposed to exhibit on treatment x2 might

depend on the treatments given to other units. We will suppose that there is no

dependence of this kind, but we will investigate in detail other sorts of connections

between causal structure and Rubin's conterfactual random variables.

A typical inference problem in Rubin's framework is to estimate the distribution of Yxf

for some value x of X, over all units in the population, from a sample in which only some

members have received the treatment x. A number of variations arise. Rather than

forcing a unique value on X, we may contemplate forcing some specified distribution of

values on X, or we may contemplate forcing different specified distributions on X

depending on the (unforced) values of some other variables Z; our "experiment" may be

purely observational so that an observed value q of variable Q for unit i when X is

observed to have value x is not necessarily the same as Qxf. Answers to various
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problems such as these can be found in the papers cited. For example, in our

paraphrasing, Pratt and Schlaifer claim the following:

When all units are systems in which Y is an effect of X and possibly of other variables,

and no causes of Y other than X are measured, in order for the conditional distribution of

Yon X = x to equal Yxf for all values of x of X, it is sufficient and "almost necessary" that

X and each of the random variables Yxf (where xf ranges over all possible values of X) be

statistically independent

Pratt and Schlaifer's principle requires us to treat some counterfactual variables as the

same as their observed counterparts, to let the manipulated variable Xf be independent of

some counterfactual variables, and to let some other counterfactual variables have their

distributions be determined by manipulated variables in the same way as in the

unmanipulated, sampled distribution. What principles guide these choices? What

determines that some counterfactual variables are the same as their observed

counterparts while others are not? Which choices are to be made in applying the

framework, and why?

Pratt and Schlaiferfs claim may be clarified with several examples, which will also

serve to illustrate some tacit assumptions in the application of the framework. Suppose

X and U, which is unobserved, are the only causes of Y, and they have no causal

connection of any kind with one another, a circumstance that we will represent by a

diagram

X -> Y <- U

Figure 2

For simplicity we suppose the dependencies are all linear, and that for all possible

values of X, Y and U, and all units, Y = X + U. Let Xf represent values of X that could

possibly be forced on all units in the population. X is an observed variable; Xf is not. X is

a random variable; Xf is not. We further simplify Pratt and Schlaiffer's set-up by

giving each unit a precise value rather than a distribution of values. Consider the

following table of values

Table 1



U Xf U X f=1 YXf

1

1

1

2

2

2

1

2

3

2

3

4

0

1

2

0

1

2

1

1

1

1

1

1

0

1

2

0

1

2

1

2

3

1

2

3

Suppose for simplicity each row (ignoring Xf, which is not a random variable) is

equally probable. Here the X and Y columns give possible values of the measured

variables. The U column gives possible values of the unmeasured variable U. Xf is a

variable whose column indicates values of X that might be forced on a unit; we have not

continued the table beyond Xf = 1. The Uxf = 1 column represents the range of values of

U when X is forced to have the value 1; the Yxf = 1 gives the range of values of Y when X

is forced to have the value 1. Notice that in the table Yxf = 1 is uniquely determined by

the value of Xf and the value of U/f = 1 and is independent of the value of X.

The table illustrates Pratt and Schlaifer's claim: Yxf = 1 is independent of X and the

distribution of Y conditional on X = 1 equals the distribution of Yxf = 1.

We constructed the table by letting U = Uxf=1, and Yxf=i = 1 + Uxf=1- In other words,

we obtained the table by assuming that save for the distribution of X, the causal and

probabilistic structure are completely unaltered if a value of X is forced on all units. By

applying the same procedure with Yxf=2 = 2 + Uxf=2. the table can be extended to

obtain values when Xf = 2 that satisfy Pratt and Schlaifer's claim.

Consider a different example in which, according to Pratt and Schlaifer's rule, the law

relating Y to X is not observable. In this case X causes Y and U causes Y, and there is no

causal connection of any kind between X and U, as before, but in addition an unmeasured

variable V is a common cause of both X and Y, a situation we will represent with the

following diagram.
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Figure 3

Consider the following distribution, with the same conventions as in Table 1:

Table 2

X V U Y Xf Vxf-1 Uxf-1 Y x f - 1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

1

2

3

0

1

2

3

0

1

2

3

2

3

4

5

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

1

2

3

0

1

2

3

1

2

3

4

2

3

4

5

Again, assume all rows are equally probable, ignoring the value of Xf which is not a

random variable. Notice that Yxf=i is now dependent on the value of X. And, just as Pratt

and Schlaifer require, the conditional distribution of Y on X = 1 is not equal to the

distribution of Y x f = i .

The table was constructed so that when X = 1 is forced, and hence Xf = 1, the

distributions of U x f = i , and Vxf=i are independent of Xf. In other words, while the

system of equations {Y = X + V + U; X = V} was used to obtain the values of X and Y, the

assumptions Uxf = U, Vxf = V and the single equation Yxf = Xf + Vxf + Uxf were used to

determine the values of Uxf=i , Vxf=i and Yxf = 1. The forced system was treated as if it

were described by the diagram:
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Figure 4

For another example, suppose Y = X + U, but there is also a variable V that is dependent

on both Y and X, so that the system can be depicted in the following way:

• Y * U

V

Figure 5

Here is a table of values, obtained by assuming Y = X + U and V = Y + X, and these

relations are unaltered by a manipulation of X:

Table 3

X Y V U Xf Vxf-1 Uxf-1 Yxf-1

0

0

0

1

1

1

0

1

2

1 '

2

3

0

1

2

2

3

4

0

1

2

0

1

2

1

1

1

1

1

1

2

3

4

2

3

4

0

1

2

0

1

2

1

2

3

1

2

3

Again assume all rows are equally probable. Note that Yxf=i is independent of X, and

Yxf=1 has the same marginal distribution as Y conditional on X = 1. So Pratt and

Schlaifer's principle is again satisfied, and in addition the law relating X and Y is

"observable." The table was constructed by supposing the manipulated system satisfies



the very same system of equations as the unmanipulated system, and in effect that the

diagram of dependencies in figure 4 is unaltered by forcing values on X.

Consider finally an example due to Rubin. In an experiment in which treatments T are

assigned on the basis of a randomly sampled value of some variable X which shares one or

more unmeasured common causes, V, with Y, we wish to predict the average difference x

in Y values if all units in the population were given treatment T = 1 as against if all

units were given treatment T = 2. The situation in the experiment can again be

represented by a diagram:

U

The pre-test (X), reading program assignment (T), post-test (Y) case is a model.

Provided the experimental sample is sufficiently representative, Rubin says that an

unbiased estimate of x can be obtained as follows: Let k range over values of X, let Y1 k be

the average value of Y conditional on X = k and T = 1, and analogously for Y2k. Let n1k

be the number of units in the sample with T = 1 and X = k, and analogously for n2k. The

numbers n1 and n2 represent the total number of units in the sample with T =1 and T

=2 respectively. Then estimate the expected value of Y if treatment 1 is forced on all

units by
K

X n 1 k + "2k Y1k
k=1 n1 + n2

and estimate x by:

K
n 1 k + n 2 k [Y1k - Y2k]

n1 + n2

The basis for this choice may not be apparent. In the distribution of experimental units,

the expected value of Y conditional on T = 1 is



P ( X | T = 1) P ( Y | T = 1,X = k).

But in calculating the expected value of Y if treatment 1 is forced on all units, Rubin

substitutes the formula

E k P ( X ) P ( Y | T - 1 , X - k )

Now, P(X | T) is equal to P (X) if and only if X and T are independent. In other words, in

calculating the distribution of Y when T is forced to have value 1 (or when forced to have

value 2), Rubin treats X and T as independent. In effect, he assumes the manipulated

systems would have the structure:

V

Figure 7

We trust these examples help to clarify the idea behind Pratt and Shlaiferfs principle,

but they don't themselves answer the chief questions: Pratt and Schlaifer's principle is

satisfied when (1) we treat some counterfactual variables as the same as their observed

counterparts, (2) let the manipulated variable Xf be independent of some counterfactual

variables, and (3) let some other counterfactual variables have their distributions

determined by Xf, Uxf and Vxf in the same way that the distribution of Y is determined by

X, U and V. What principles guide these choices? If, to modify Rubin's example,

treatment were assigned not on the basis of pre-test X but on the basis of some variable

such as family income which presumably is a cause of X, could we predict the conditional

distribution of Y on X values if all children were given a particular reading program?

Presumably there is some principle that determines which variables are changed in

their marginal distributions upon a manipulation, which are not changed, and which

formerly dependent variables are made independent. We will give such a principle in

the context of graphical causal models.

1 0



3. Graphical Causal Models

Under appropriate conventions, the diagrams we have drawn are not only depictions of

hypothetical causal dependencies, they are also perfectly definite statistical hypotheses.

We will assume that causal relations among variables are represented by a directed

acyclic graph. The variables of interest are vertices of the graph and a directed edge X ->

Y indicates that X is a cause of Y whose influence is not entirely mediated by other

variables in the graph. Following Kiiveri and Speed (1982) and Pearl (1988) we will

assume that if units satisfying such causal relations are to be sampled randomly the

distribution thus determined satisfies the Markov condition, or more strongly, the

Faithfulness condition.

Markov Condition: A graph G and a probability distribution P on the vertices V of G

satisfy the Markov condition if and only if for every V in V, and every set X of vertices

in V such that no member of X is a descendant of V , V and X are independent conditional

on the parents of V.

Faithfulness Condition: P is faithful to G provided for all disjoint sets of variables

X, Y, and Z, X and Z are independent conditional on Y in P if and only if X and Z are

independent conditional on Y in every distribution satisfying the Markov condition for G.

The Faithfulness condition says that the Markov condition applied to G completely

axiomatizes the conditional independence relations in P. For linear causal systems with

multinormally distributed variables it can be shown that the set of linear coefficients

and exogenous variances for which the Markov condition is satisfied by a graph but

faithfulness is not satisfied has zero Lebesque measure. As we wifl see, Pratt and

Schlaifer assume a condition that is at least as strong as Faithfulness.

For any distribution satisfying the Markov condition on a graph G with vertex set V, the

joint density can be factored



where n\ denotes the (possibly empty) set of parents of vertex Vj (Kiiveri and Speed,

1982). Directed independence graphs represent hypotheses about marginal independence

and marginal conditional independence relations as well as non-marginal relations. We

will use "conditional independence11 to include both marginal and non-marginal relations.

For multinomial distributions the maximum likelihood estimate of the distribution

subject to the conditional independence constraints represented by the causal graph can

be obtained by substituting the marginal sample frequencies into formula (I).

In keeping with the discussion of section 1, we are interested in making predictions

about distributions that are produced by forcing a distribution on a variable(s) in a way

that breaks causal links into that variable, and only such links, in the causal structure

actually sampled. We make one assumption about distributions produced by such forcing:

Manipulation Condition: If the original distribution is

then a manipulation of X to force Px on X~in such a way that changes in distributions of

other variables are due entirely to changes in the distribution of X-gives the same

distribution save that P(X|7Cx) is replaced by Px.

In view of the factorization principle for probability distributions satisfying the

Markov condition, the Manipulation Condition implies that in a system originally

represented by graph G, the directed graph Gf representing the system upon forcing a

distribution P(X) is obtained by deleting from G all of the edges directed into X. A

generalization of the Manipulation Condition says that if we force a distribution on X

depending on the unforced values of a variable Z, the original conditional distribution of

X on its parents should be replaced by the forced conditional distribution of X on Z, and

the original graph replaced by a graph that is otherwise the same save that there is an

edge from Z into X and there are no other edges directed into X.

In each of the examples illustrating Pratt and Schlaifer's condition the tables of values

accord with the Manipulation Condition-indeed that is how we calculated them.

Likewise, Rubin's analysis of treatment assignment determined by a covariate gives

exactly the result that would be obtained by applying the Manipulation Condition. That

12



seems to us good reason to think that the structure the Rubin framework is after is

caught by the Markov, Faithfulness and Manipulation Conditions. A "model-free" theory

of causal inference and experimental design follows from these axioms, and in practice

the entire story is contained in the diagrams. If the causal structure of the experimental

system is known, determining observability is as simple as drawing a picture and then

erasing one or more lines.

While we will show how to obtain equivalents in graphical terms of Rubin's and Pratt

and Schlaifer's results, it should be pointed out that the framework is more general. The

results we have described in the Rubin framework give rules for predicting particular

features of a joint distribution provided the causal structure is known and satisfies

various conditions. The Markov and Manipulation conditions specify, for any causal

structure given by an acyclic directed graph, any appropriate joint distribution, and any

distribution or conditional distribution to be imposed on any subset of the variables, the

resulting joint distribution of all of the variables.

4. Sampling and Conditional Probabilities

If the conditional probability relations for variables in units with the same structure

are known, then by the Manipulation Condition we can derive the probability

distribution that will be obtained for any variable Y upon forcing a distribution on a set

of variables X in a fashion that satisfies the antecedent of the Condition. Hence an

estimate of the conditional probability relations leads to a prediction. In both

observational and experimental studies we sample from a population; the difference is

that in experimental studies we force a distribution on some of the variables. Rubin

(1978) emphasizes, correctly we believe, the importance of sample selection and

assignment mechanisms. However we sample, to apply the Manipulation Condition to

predict the effects on variable Y of manipulations or policies directed to variables X, we

need to know if the conditional probabilities can be consistently estimated from the

sample. Suppose there is a population whose units are each described by a directed graph

G of causal structure; let the values of the variables be distributed as P faithfully to G.

Under what methods of sampling will the conditional probabilities for sampled variables

be as in P?

We will assume that a sample is always obtained by specifying a property S that, like

other variables of concern, has a distribution of values in the population. In the simplest

13



case S can be viewed as a binary variable with the value 1 indicating that a unit has the

sample property. In principle one might wish to select a sample by using a variable with

several values (e.g., age group) and drawing fixed numbers or proportions from each

group. So our general questions concern when conditioning on any value of S leaves

unaltered the conditional probabilities or conditional independence relations for

variables in the vertex set of G. We will not consider questions about the sampling

distributions obtained by imposing various constraints on the distribution of values of S

in a sample. Our treatment assumes that S is not logically connected with any of the

variables in G, but trivial variations of the theorems apply when S is identical with one

of those variable.

The graph G can be expanded to a graph G(S) that includes S and whatever causal

relations S and the other variables realize. We assume a distribution P(S) faithful to

G(S) whose marginal distribution summing over S values will of course be P. We

suppose that the sampling distribution is determined by the conditional distribution

P(JS). Our questions are then, more precisely, when this conditional distribution has

the same conditional probabilities and conditional independence relations as P. We

require, moreover, that the answer be given in terms of the properties of the graph

G(S). To give the full answer we require some simple graph theoretic definitions and a

lemma.

Any sequence of vertices joined by edges of any orientation, e.g. A->B<-C<-D->E, is an

undirected path, and any vertex in which two edges meet in such a path is a collider on

the path, e.g., B in the path illustrated. An undirected path is said to be into a terminus,

e.g. E, if it contains an edge into E, and out of a terminus, e.g., A, if it contains an edge out

of A. A parent of vertex V in graph G is any vertex U such that U->V in G; a descendant of

U is any vertex V (including U) such that there is a directed path from U to V.

In directed graph G, variables X, Y are d-connected relative to a set Z of variables not

containing X or Y provided there exists a sequence p of edges (an undirected path)

connecting X, Y such that no non-collider on p is in Z and every collider on Z has a

descendant in Z. (Pearl, 1988; Lauritzen, et al. 1990). Any undirected path with the

properties of p is said to be a d-connecting path for X, Y with respect to Z. X and Y are

d-separated by Z if and only if X and Y are not d-connected given Z. For any three

disjoint sets of variables X, Y, and Z, X and Y are d-separated by Z if and only if every

member of X is d-separated from every member of Y by Z.

14



Assume for the moment that all variables are discrete.

Lemma: For any directed acyclic graph G and probability distribution P on the vertices

of G, P is faithful to G if and only if for all vertices X, Y and every set Z of vertices, Z d-

separates X, Y if and only if X, Y are conditionally independent on Z.

That d-separability characterizes the Markov condition was proved by Verma. See Pearl

(1988) .

Theorem 1 Let X, S, Y be distinct discrete variables in G, P a distribution faithful to G.

Then YJ|_S I X if and only if {X} d-separates Y and S in G(S).

(We use Dawid's notation, so that YJLS | X signifies that Y, S are independent

conditional on X). The theorem follows immediately from the Lemma since for discrete

variables P(Y | X) = P(Y | X, S) if and only if Y, S are independent conditional on X. A

parallel lemma can be proved for linear systems with partial correlations substituted

for conditional independence, and a corresponding theorem then follows (Spirtes,

1991b).

Theorem 1 generalizes to any number of conditioning variables X1,...,Xn. The theorem is

essentially the observation that for any covariate Z, P(Y | XZ) = P(Y | XZS) if and only

if in P the variables Y and S are independent conditional on {XZ}. It entails, for example,

that if we wish to estimate the conditional probability of Y on X from a sample of units

with an S property (say, S = 1) and a Z property, we should try to ensure that there is

(i) no direct connection between Y and S,

(ii) no trek between Y and S that does not contain X or Z, and

(iii) no pair of treks between Y and Z and between S and Z that are both into Z, and

similarly for Y and X.

Our sampling property should not be the direct or indirect cause or effect of Y save

through a mechanism that is blocked by holding X and Z constant, and neither X nor Z

should not be the effect, direct or indirect of both Y and the sampling property. (The

latter clause in effect guarantees that Simpson's paradox is avoided in a faithful

distribution).

15



These examples are of course not exhaustive. Theorem 1 entails a partial justification of

the conventional wisdom: "prospective" sampling is more reliable than "retrospective"

sampling if by the former is meant a procedure that selects by a property associated

with Y, the effect, only through X, the cause, and by the latter is meant a procedure that

selects by a property associated with X only through Y.

5. Prediction and Experimental Design

The Markov and Manipulation Conditions provide the basis for prediction from samples

obtained by experiment, quasi-experiment or observation provided appropriate facts

about the causal structure of the sampled population is known. We will consider several

issues of design taken up by Rubin or by Pratt and Schlaifer.

5.1 Randomization

Suppose as before that the goal is to estimate the conditional probability P(Y | X) in

distribution P. In drawing a random sample of units from P we in effect sample

according to a property S that is entirely disconnected, graphically, from the variables

of interest in the system. If we succeed in doing that then we ensure that S has no causal

connections that can bias the estimate of the conditional probability. Of course because of

sample variation an actual sample so obtained might give a poor estimate of the

conditional probability in the population. Substantive knowledge about the causal

relations of the sampling property could in principle substitute for randomization.

5.2 Observability

Pratt and Schlaifer are concerned with the following question: If X and Y are measured,

and no other relevant variables are measured, when is the conditional distribution of Y

on any value x of X equal to the distribution Y would have if X were forced to have value

x? If the equality holds they say the law relating the distributions of Y and X is

"observable." One of their "sufficient and almost necessary" conditions for observability

is that X and Yxf be independently distributed for any value xf of Xf. The condition can

only be applied if we know the joint distribution of X and Yxf. The Manipulation Condition

gives the following result:
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Theorem 2: Assuming the Faithfulness and Manipulation Conditions, and assuming that

all conditional probabilities are positive, the law giving the dependency of Y on X will be

"observable" if and (almost) only if in the sampled systems no undirected path into X d-

connects X, Y with respect to the empty set of vertices. Equivalently, if and (almost)

only if (1) Y is not a cause of X, and (2) there is no common cause of X and Y.

The sufficiency claimed in Theorem 2 is a special case of Theorem 3 below and requires

only the Markov and Manipulation Conditions. "Necessity" is used in the vague sense of

Pratt and Schlaifer's claim: unless the distribution satisfies special constraints, the

condition is necessary assuming Faithfulness.

In comparing the conditional distribution of Y on X in our experimental or observational

sample with the distribution of Yxf we are comparing factors in distributions for two

graphs. The original graph, G, represents the causal structure of the observed or

experimental system; the other graph, G\ is the original graph, minus all of the edges

directed into X. Yxf will be distributed in the same way as Y conditional on X if and only

if when we use the factorization formula (I) on the two graphs, we find in each case the

same formula for the conditional distribution of Y on X. Theorem 2 gives the sufficient

graphical condition for the sameness of the conditional distribution of Y on X in G and in

Gf.

Theorem 2 is illustrated in the three tables of section 2 and the accompanying causal

graphs. For example if G is given by figure 2, then Gf is given by the same figure, and

the conditional distribution of Y on X is trivially the same in both cases. If G is given by

the graph in figure 3 , then G1 is given by figure 4 and the conditional distribution of Y

on X for G is X U V P(Y | X,U,V)P(X | V)P(U)P(V) while for G1 it is X U V P(Y I

X,U,V)P(X)P(U)P(V) where probabilities of the same arguments have the same values

for G and G1. Save for odd cases, the two expressions are equal only if P(X) = P(X | V),

which will not be the case if P is a distribution faithful to G. The Faithfulness Condition

captures part of what is meant by Pratt and Schlaiferfs claim that their rule is "almost

necessary."

5.2 Covariates and Predicting Conditional Distributions in Manipulated
Populations
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Pratt and Schlaifer consider the case in which, besides X and Y, some further variables Z

are measured. Their discussion is a generalization of Rubin's (1977) discussion of

experiments in which treatment assignments depend on some variable that is a cause of

the outcome variable or shares a common cause with the outcome variable. (Rubin's X is

Pratt and Schlaifer's Z; Rubin's T is Pratt and Schlaifer's X; we will keep with Pratt and

Schlaifer's notation.) We know from Theorem 2 that if in the sampled or experimental

systems Z is a cause of both X and Y, or a cause of X and shares a common cause with Y,

then the distribution of Y if a value x is forced on X will not be the same as the

conditional probability of Y on X. The dependency of Y on X will not be "observable."

Rubin's observation is in effect that in this situation we can nonetheless use the

conditional probability of Y given Z = z and X = x to estimate the distribution of Y given

Z = z when X is forced to have the value x. Pratt and Schlaifer say in this case that the

law relating Y to X is "observable with concomitant Z." With an estimate in hand for each

value z of Z of the distribution of Y conditional on Z = z when X is forced to have the value

x, by summing over the values of the concomitant Z, Rubin estimates the average value Y

when X is forced to have the value x. Pratt and Schlaifer also claim sufficient and "almost

necessary" conditions for observability with concomitants, namely that for any value x

of X the distribution of X be independent of the conditional distribution of Yx on the value

of z of Zxf when X is forced to have the value x. We will give a general sufficient

condition in graphical terms, a condition which follows necessarily from the Markov and

Manipulation Conditions.

Theorem 3: Assuming the Markov and Manipulation Conditions and positivity for all

conditional probabilities, for all values of X and of Z, the distribution of Y conditional on

X = x and Z equals the distribution of Y conditional on Z when X is forced to have the

value x if no path d-connecting X, Y relative to Z is into X.

The proof is given in the Appendix.

Pratt and Schlaifer say their condition is "almost necessary." What they mean, we take

it, is that there are cases in which their condition fails to hold but they arise only if a

special constraint is satisfied by the conditional probabilities. Parallel remarks apply to

the graphical condition given in Theorem 3.

6. Causal Inference
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Some disputes are less about how much one variable affects another and more about

whether one variable affects another at all. For example in the 1950s R. A. Fisher and

many epidemiologists were not so much concerned with estimating how much of the

incidence of lung cancer was due to smoking, or how much the rate of lung cancer would

decline if people stopped smoking; they were principally concerned with whether

smoking has a causal role in producing lung cancer. (Cook, 1979). Consider questions of

the following kind: Does X influence Y at all? Does X influence Y by any mechanism that

cannot be blocked by controlling Z? Answers to such questions are to be obtained from a

sample of units that may or may not have been subjected to some experimental

treatment. As before, the first issue is to characterize sampling procedures that do not

bias answers to such questions.

In Theorem 4 let Z be any set of variables in G not including X and Y.

Theorem 4: Exactly one of < XJLY I Z; XJLY | Z U {S}> is false if and only if the

corresponding member and only that member of <Z d-separates X, Y; Z U {S} d-

separates X, Y> is false.

Theorem 4 is an obvious application of the previous Lemma. Suppose in the ambient

distribution P that X and Y are independent conditional on Z. When will sample property

S make it appear that X and Y are instead dependent conditional on Z? The answer is

exactly when X, Y are dependent conditional on Z U {S} in P(S). This circumstance-

conditional independence in P and conditional dependence in P(S)-can occur for faithful

distributions when and only when there exists an undirected path q from X to Y with

special properties. Then for conditional independence in P and conditional independence

in P(S) there must exist an undirected path q in the causal graph such that (i) no non-

collider on q is in Z U {S}; (ii) every collider on q has a descendant in Z U {S}; and (iii)

some collider on q does not have a descendant in Z.

The converse error involves conditional dependence in P and conditional independence in

P(S). That can happen in a faithful distribution when and only when there exists an

undirected path U from X to Y such that (i) every collider on U has a descendant in Z; and

(ii) no non-collider in U is in Z, and S is a non-collider on every such path. Again,

asymptotically both of these errors can be avoided by sampling randomly, that is by a

property S that is causally unconnected with the variables of interest.
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7. Conclusion

The Rubin framework for comparing distributional properties between manipulated and

unmanipulated (or differently manipulated) populations is a first step towards a

principled understanding of prediction and experimental design, and we hope the

derivation of the claims of that framework from axioms on directed graphical models

represents a further step towards the same goal. It is important to recognize, however,

how small these steps are, and how far they leave us from the goal.

The property Pratt and Schlaiffer call "observability" is better termed conditional

probability invariance under manipulation, since their principles are neither necessary

nor sufficient for predicting features of a distribution of manipulated systems from

distributional properties of a population of unmanipulated systems. The insufficiency is

due to the fact that Pratt and Shlaiffer's and Rubin's conditions presume counterfactual-

-that is, in most cases, causal-knowledge about the systems under study, but provide

no information as to when the marginal distribution of measured variables and

background knowledge determine enough about causal structure to conclude that

particular conditional probabilities are the same in the manipulated and unmanipulated

distributions. Assuming either the Markov or the Faithfulness conditions, there are

connections between causal structure and marginal distributional structure; the

implications of these connections for conditional probability invariance under

manipulation are described in Spirtes (1991b).

That conditional probability invariance is unnecessary for the prediction of features of

manipulated distributions can be illustrated in a simple linear case. Suppose the causal

structure is

G

\

- • S • C < V

Figure 8
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and all dependencies are linear. Suppose only A, S and C are observed. For concreteness,

we can interpret A as cigarette advertising exposure, S as cigarette smoking, C as age at

death, although it is not very likely these variables are linearly related. Let b be the

linear coefficient of S in the equation for C. For a standardized model, b equals the partial

correlation of C, S controlling for all unmeasured causes. If S is manipulated according

to the Manipulation Condition, the graph is the same save that the G -> S and H -> S edges

are omitted, the linear equations are correspondingly altered, and S becomes independent

of A, G and H. The conditional density of C given S is not the same in the manipulated and

unmanipulated distributions, and the "law" relating S and C is not "observable," in Pratt

and Schlaiffer's terminology.

Now suppose one knew the following about the causal structure: A has no effect on C save

possibly through S. Then b is determined by the ratio of the correlation of A and C to the

correlation of S and C. But b determines the difference in mean values of C for two

manipulations that assign different values to S. Asymptotically, given the assumption of

linearity and the substantive knowledge that A has no effect on C save through S, the

differental effects of alternative smoking behaviors on mortality could be predicted

without any knowledge of the unobserved common causes.

Finally, it should be noted that while the Manipulation Condition captures the intuitions

of the Rubin framework in graphical terms, in many cases it is not a correct

representation of the relation between a distribution of unmanipulated units and the

distribution that would result from a manipulation. In the Rose and MRFIT studies of

smoking and mortality, for example, the Manipulation Condition arguably did not apply

because the counseling and support treatment given to one group merely added another

cause of smoking behavior in the members of that treatment group. Other causes of

smoking behavior in the treatment and non-treatment groups were not disengaged, as

they might have been the case if, for example, members of one group had been forced not

to smoke and members of the other had been forced to continue smoking.
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Appendix

Let P be the distribution over a set of variables containing X in a population, and P' be

the corresponding distribution when X is manipulated to have the value x. Y is

observable conditional on Z, when X is manipulated iff P(Y|Z) = P'(Y|Z). We

will show that if P is faithful to the graph G of the causal process that generated P then Y

is observable conditional on XZ when X is manipulated if in G there are no paths that d-

connect X to Y given Z that are into X, and Y is observable conditional on Z when X is

manipulated if in G, X either has no descendants in YZ or X is not d-connected to Y given

Z.

In a directed acyclic graph G containing Y and Z, if Y is not in Z, then V is in IV(Y,Z)

(informative variables for Y given Z) if and only if V is not in Z, V is d-connected to Y

given Z, and V has a descendant in YZ. W is in IP(Y,Z) (W has a parent who is an

informative variable for Y given Z) if and only if W is a member of Z, and W has a

parent in IV(Y,Z).

Lemma 1: If G is a directed acyclic graph over V, P is a distribution faithful to G, and

V =V\ND(YZ) then

£ II
P(Y\Z) = I V ( K Z ) w* IV(y>Z)

n
IV(V,Z) u {V} We IV( V,Z) u IP(V,Z) u {Yj

Lemma 2: If G is a directed acyclic graph containing X, Y, and Z, X and Y are not in Z, X

* Y, and G1 the corresponding graph when X is manipulated, and V * X, and no path that

d-connects X to Y given Z is into X, then V is in IV(Y,XZ) in G if and only if V is in

IV(Y,XZ) in Gf.

Proof. It is trivial that if V is in IV(Y,XZ) in Gf then V is in IV(Y,XZ) in Gf because G1

is a subgraph of G.

Suppose then that V * X, no path that d-connects X to Y given Z is into X, and V is in

IV(Y,XZ) in G. By definition, V is not in Z. Then in G there is a path that d-connects V

to Y given XZ, and V has a descendant in XYZ. We will show that in G1 there is a path that

d-connects,V to Y given XZ.
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Suppose first that there is a path U in G that d-connects Y to V given XZ that does not

contain an edge into X. It follows that there is a corresponding path U1 in G1. Every non-

collider on U1 is not in Z. If every collider on U1 has a descendant in XZ then U1 d-

connects V and Y given Z in G\ Otherwise let R be the collider on U1 closest to Y that does

not have a descendant in XZ in G'; in G every directed path D from R to a member of XZ

contains X. Let Q be the point of intersection of D and the subpath of U from R to Y that is

closest to Y on U. The concatenation of the subpath of D from Q to X and the subpath of U

from Q to Y is into X and d-connects X and Y given Z in G, contrary to our assumption.

Suppose then that every path U in G that d-connects V to Y given XZ is into X. It follows

that X is a collider along U. If there is no collider along the subpath of U from X to Y such

that every directed path from the collider to a member of Z contains X, then in G the

subpath of U from X to Y d-connects X to Y given Z, and is into X, contrary to our

assumption. Otherwise this reduces to the previous case.

We will now prove that if V is in IV(Y,XZ) in G then V has a descendant in XYZ in G1.

Suppose that V is in IV(Y,XZ). V has a descendant in XYZ in G. Suppose that V does not

have a descendant in XYZ in G1. It follows that in G every directed path from V to a

member of XYZ contains X. Because in G there is directed path from V to some member of

XYZ, in G there is a directed path from V to X that contains no member of Z. Let U1 be a

directed path from V to X that contains no member of Z in G. We have already proved that

V and Y are d-connected given Z in G\ so there is some path U2 that d-connects V and Y in

G that does not contain X, such that every collider on U2 is the source of a directed path

to a member of Z that does not contain X. Let Q be the vertex on U2 closest to Y such that

Q is on both U1 and U2. The concatenation of the subpath of U1 from Q to X and the

subpath of U2 from Q to Y is a path that d-connects X and Y given Z in Gf and is into X,

contrary to our assumption. Q.E.D.

Theorem 3: If P is a distribution faithful to the directed acylic graph G of the causal

process that generated P, G contains X, Y, and Z, X and Y are not in Z, X * Y, , Gf is the

graph resulting from manipulating X, and P1 the distribution resulting from the

manipulation of X, then Y is observable conditional on XZ when X is manipulated if in G

there are no paths that d-connect X to Y conditional on Z that are into X.

Proof. Suppose G is a directed acylic graph, Gf is the graph resulting from manipulating

G, and in G there are no paths that d-connect X and Y with respect to Z that are into X.
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By lemma 2, IV(Y,XZ) is the same in G and G\

Because the parent relationship is the same in G and G1 except for the parents of X, it

follows that IP(Y,XZ) is the same in G and G1 with the possible exception of X. X is not

in IP(Y,XZ) in Gf because X has no parents in G\ Suppose that X is in IP(Y,XZ) in G. It

follows that X has a parent V not in XZ that is in IV(Y,XZ) in G. Hence V is d-connected

to Y given XZ in G by some path U. If U contains X then X is a collider on U because

otherwise U does not d-connect Y and V given XZ. It follows then that X is d-connected to

Y given Z by the subpath of U from X to Y that is into X, contrary to our assumption. If U

does not contain X then the concatenation of U with the edge from V to X is a path from X to

U that d-connects X and Y given Z that is into X, contrary to our assumption. Hence X is

not in IP(Y,XZ) in G, and IP(Y,XZ) is the same in G and G'.

By hypothesis, P(W|*w) = P (W|T IW) for all W in V, except for W = X. By lemma 1,

P(Y|XZ) = Pf(Y|XZ). Q.E.D.

Lemma 3: If G is a directed acyclic graph containing X, Y, and Z, X and Y are not in Z, X

* Y, and Gf is the corresponding graph when X is manipulated, X is not in IV(Y,Z), and V

* X then V is in IV(Y,Z) in G if and only if V is in IV(Y,Z) in G1.

Proof. It is trivial that if V is in IV(Y,Z) in G1 then V is in IV(Y,Z) in G, because Gf is a

subgraph of G.

X is not in IV(Y,Z) in either G or G1. Suppose then that V * X, and V is in IV(Y,XZ) in

G. First we will show that V and Y are d-connected given Z in G1; then we will show that

if V and Y are d-connected given Z in Gf then V has a descendant in YZ in Gf. It will follow

that V is in IV(Y,Z) in G\

First we will show that V is d-connected to Y given Z in G1. Suppose, contrary to the

hypothesis that V is not d-connected to Y given Z in G\ In G, either there is a path

U(V,Y) d-connecting V and Y given Z that contains an edge into X, or there is some path

U(V,Y) d-connecting V and Y given Z contains a collider W for which every directed path

to a member of Z contains X.

Suppose first that some path U(V,Y) d-connecting V and Y given Z contains a collider W

for which every directed path to a member of Z contains X. Let U(W,X) be the directed
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path from W to X, and U(W,Y) be the subpath of U(V,Y) from W to Y. If U(W,X) does not

intersect U(W,Y) except at W then the concatenation of U(W,X) and U(W,Y) d-connects

X and Y given Z. If U(W,X) does intersect U(W,Y) at some vertex not equal to W, let Q

be the vertex on U(W,Y) closest to Y where they intersect. Let U(Q,Y) be the subpath of

U(W,Y) from Q to Y, and U(Q,X) the subpath of U(W,X) from Q to X. Q is not in Z

because no member of Z is on U(W,X). The concatenation of U(Q,X) and U(Q,Y) is an

undirected path that d-connects X and Y given Z in Gf.

Suppose next that there is a path U(V,Y) d-connecting V and Y given Z that contains an

edge into X. Let U(X,Y) be the subpath of U(V,Y) from X to Y. If there is a collider W on

U(X,Y) such that every directed path from W to a member of Z contains X, this reduces

to the previous case. Hence U(X,Y) d-connects X and Y given Z.

Next we will show that if V is d-connected to Y given Z in G\ then V has a descendant in

YZ. Because V is d-connected to Y given Z in Gf by some path U(V,Y), either U is into V,

or V has Y or a collider on U as a descendant. Every collider on U has a descendant in Z,

so if U is not into V, then V has a descendant in YZ. Suppose then that U(V,Y) is into V.

In G, V has a descendant in YZ. Hence V has a descendant in YZ in G1 unless every directed

path from V to a member of YZ contains X. In G, there exists a path from V to a member

of YZ; if in addition every directed path from V to a member of YZ contains X it follows

that X has a descendant in YZ in G. Let U(V,X) be a directed path from V to X. If U(V,X)

does not intersect U(V,Y) then the concatenation of U(V,X) and U(V,Y) d-connects X and

Y given Z. If U(V,X) does intersect U(V,Y) let Q be the vertex on U(V,Y) closest to Y that

is a point of intersection. Let U(Q,X) be the subpath of U(V,X) from Q to X, and U(Q,Y)

be the subpath of U(V,Y) from Q to Y. Then the concatenation of U(Q,X) and U(Q,Y) d-

connects X and Y given Z. Hence X is in IV(Y,Z), contrary to our assumption. Q.E.D.

Theorem 4: If P is a distribution faithful to the directed acylic graph G of the causal

process that generated P, G contains X, Y, and Z, X and Y are not in Z, X * Y, , G1 is the

graph resulting from manipulating X, and Pf the distribution resulting from the

manipulation of Xf then Y is observable conditional on Z when X is manipulated if X is not

in IV(Y,Z).

Proof. Suppose G is a directed acylic graph, G1 is the graph resulting from manipulating

G, and in G, and X is not in IV(Y,Z).

By lemma 3f IV(Y,Z) is the same in G and G'.
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Because the parent relationship is the same in G and G1 except for the parents of X and X

is not in Z, it follows that IP(Y,Z) is the same in G and Gf.

By hypothesis, P(W|TCW) = P(W|rcw) for all W in V, except for W = X. By lemma 1,

P(Y|XZ) = P'(Y|XZ). Q.E.D.
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