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1 Introduction:
This paper is concerned with statistical dependence and independence in
linear causal systems with feedback. Such systems can be represented by
Directed Cyclic Graphical Models (DCGs), which are a generalization of
DAG models (See Spirtes (1993), Koster (1994)). We give a feasible
characterization of the class of Directed Cyclic Graphical models (DCGs)
which entail, in virtue of their structure, the same conditional
independencies. This problem was posed (independently) by Koster
(1994), and similar questions have been considered by Basmann (1965),
Stetzl (1986) and Lee (1987).

A greater understanding of the relationship between cyclic causal systems
and statistical independencies will facilitate the construction of efficient
discovery algorithms which will output the class of Directed Cyclic
Graphical models compatible with data given as input, in situations where
the underlying causal structure contains loops.

h thank P. Spirtes, C. Glymour, R Scheines & C. Meek for helpful conversations.
Research supported by NSF grant 9102169.
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i

2 Systems with Feedback

In many physical processes the relation between cause and effect is not

anti-symmetric: An event of type A can cause an event of type B, which

can then subsequently cause an event of type A. As a consequence, in any

given population, the number of occurrences of A, may be determined in

part by the number of occurrences of B, while the number of occurrences

of B is itself determined by the number of occurrences of A. There are

examples of systems which display behaviour of this kind in many fields:

In economics, the price of a good in a market may be a function of the

quantity either demanded or supplied, while these quantities themselves

may be influenced by the price or the expectation of price that consumers

or suppliers may have.

In analogue electronics, operational amplifiers provide a common

example of a system in which feedback is exploited in order to carry out

various operations, such as integration, differentiation, and digital to

analogue conversion.

In biology, the concept of homeostasis, introduced by Bernard in the 19th

century, provides many instances. Homeostasis occurs at every level in the

natural world, from the molecular processes that control the enzymatic

production of chemicals, to the predator-prey relationships which curb

population growth among macro-fauna. Control systems that act to

maintain 'dynamic equilibria1 very often consist of feedback systems in

which causal processes operate in contrary directions.

Other examples of systems in which causal influences propagate in

opposite directions abound in fields as diverse as sociology, robotics and

psychology, where some types of neural net are of this form.
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2.1 Non-Recursive Structural Equation Models

The numerous instances of systems with this structure motivate the

construction of models to describe the underlying causal mechanisms. In

engineering, economics, and the social sciences, when it has seemed

reasonable to assume linearity, these systems have been modelled by a

certain kind of linear structural equation model.

In a Structural Equation Model (SEM), the variables are divided into two

disjoint sets, the error terms, and the non-error terms. Associated to each

non-error variable V there is a unique error term ey . A linear SEM

contains a set of equations in which each non-error random variable V is

written as a linear function of other non-error random variables and ey- A

linear SEM also specifies a joint distribution over the error terms.

In our discussion we will consider only linear SEMs. We shall also assume

that the error terms are jointly independent, but as we shall see, in an

important sense, the scope of our analysis is not limited by this assumption

of independence. The following is an example of such a model:

X=EX A= ai X + a r B + 8A

Y=8y B= Pi-Y + p2'A + 8B

In this model the Ey's are jointly independent standard normal error terms.

A structural equation model in which, for some ordering of the variables,

the matrix of coefficients is in lower triangular form, is said to be

recursive. If for no ordering of the variables is the matrix of coefficients

lower triangular, then we say that the structural equation model is non-

recursive, (the model above is an example). This latter class, the non-

recursive SEMs have traditionally been used to simulate systems with

feedback. The fact that the coefficient matrix cannot be written in lower

triangular form means that given any ordering of the variables

< X l v . . X n > there will exist an ordered subset <X i i , . . . ,X i t > (ir<ir+i)

such that each variable X; is a linear function of X; (and other
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variables), and Xj is a linear function of X^ (and other variables). In the

example of a non-recursive model that we give above t=2, and

22 Graphs and DAG models

There is a directed graph, naturally associated with a given linear SEM, by

the following rule:

X->Y in the graph if and only if

the coefficient of X, in the equation for Y, is non-zero

By convention we do not include error terms in the graph. Hence the graph

relating to the model above is (here the error terms are omitted, being

assumed jointly independent):

X » - A ^ " ^ B ^ Y

A linear SEM with a jointly independent distribution over the error terms

defines a joint density function over the vertices in the associated graph.

It is easy to see that the linear SEM associated with an acyclic graph will

be a recursive structural equation model. Likewise non-recursive SEMs

are associated with cyclic graphs. (The set (x{l ,...,Xit) introduced above

will be a cycle.) This is in keeping with the use of non-recursive SEMs to

model processes in which feedback is present.

The acyclic graph associated with a recursive structural equation model is

an example of a certain class of statistical models, known as directed

acyclic graph (DAG) models, which encode independence, and

conditional independence constraints. (See Pearl, 1988). Though the

relationship between the graph and the SEM is straightforward - the graph

represents explicitly the causal structure implicit in the SEM - this

formalism has had fruitful results in many areas: there is now a relatively

clear causal interpretation of these models, there are efficient procedures

for determining the statistical indistinguishability of DAG's, reliable
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algorithms for generating a class of DAG models from sample data and

background knowledge, etc. Two important elements in these

investigations were:

• First, a purely graphical condition for calculating the conditional

independence relations entailed by a DAG.

• Second, a 'local' characterization of equivalence between two graphs, in

the sense that all of the same conditional independencies are entailed by

each graph.

This local characterization was essential in allowing the construction of

efficient algorithms which could search the whole class of DAG models to

find those which fitted the given data.

The DAG formalism is very general: A gamut of more familiar constructs

such as regression models, factor analytic models, path models, discrete

latent variable models, and as we have seen, recursive linear SEMs with

independent errors, can be represented as DAG models. However, as you

might suspect from the name, directed acyclic graphs, DAG models do

exclude non-recursive structural equation models. In this paper we will

develop the theory of cyclic graphical models, thereby allowing the

generalization of acyclic techniques and methods to the cyclic case.

Definition: Linear Entailment

A directed graph containing disjoint sets of variables X, Y, and Z , 2

linearly entails that X is independent of Y given Z if and only if X is

independent of Y given Z for all values of the non-zero linear

coefficients for which the model has a reduced form and all

distributions of the exogenous variables in which they have positive

variances and are jointly independent.

2We use bold face letters (X) to denote sets of variables, and script letters (g) to denote
graphs.
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It is important to note that in any particular SEM with directed graph Q,

there may be conditional independencies which hold even though they are

not linearly entailed by Q. However, if a zero-correlation holds for some

but not all parameterizations of Q, then the set of parameterizations in

which this 'extra* conditional independence holds, is of zero Lebesgue

measure over the set of all parameter value assignments to the non-zero

linear coefficients,

23 Conditional Independencies and Equivalence in a graph.

In an acyclic graph Q, there is a graphical 'path' condition which holds

between disjoint vertex sets X, Y and Z in the graph if and only if Q

linearly entails that X JL Y I Z.3 Similarly, the same graphical 'path*

condition holds between X, Y and a set Z, not containing X or Y, if and

only if in Q the partial correlation between X and Y controlling for Z,

vanishes: PXY.Z - °- We can calculate the partial correlations that are zero

in all linear parameterizations of Q in which X and Y have correlated

errors in the following way. First, form a directed graph (# in which X and

Y are the effects of a latent common cause T. The same graphical path

condition holds in Qf iff in every parameter assignment to Q in which X

and Y have correlated errors, PXY.Z - °•

This observation is central to the usefulness of the graphical method. The

task of generalizing this result to the cyclic case has already been

accomplished: Building on the work of Haavelmo(1943), Spirtes (1993)

showed that the same graphical condition, the Geiger-Pearl-Verma

d-separation criterion (defined in the Appendix) which determines whether

a particular conditional independence relation or zero partial correlation is

linearly entailed by a recursive structural equation model, can also be

used with linear non-recursive models. Or equivalently, that the same

3 'X JL Y I Z' means that 'X is independent of Y given Z\
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technique used for reading conditional independencies from an acyclic

graph can be applied in the cyclic case.

Definition: Equivalence for Graphs (Cyclic or Acyclic)

Graphs Q\ and Q% are equivalent if they both linearly entail the same

set of conditional independencies.

It is important to be clear what we are establishing when we work out the

conditional independencies linearly entailed by a given model: we are

calculating the conditional independence consequences of having a certain

form of linear equations, i.e. having linear equations in which certain

coefficients are zero. We are not trying to estimate parameters, we are not

making any distinction between latent and measured variables, and we are

not constructing a model from data; though the development of efficient

procedures for determining the equivalence of cyclic models will facilitate

the construction of computer aids for model specification and updating.

3 Characterizations of Equivalence

We begin with the following preliminary result which is a corollary of the

Equivalence Theorem for cyclic graphs:

3.1 The Orientation of cycles4

Given a graph Q with a cycle £ there is an equivalent graph Q*, in which

C is replaced by another cycle C\ having the opposite orientation to C

Thus if Cis clockwise, C*is anti-clockwise, and vice-versa.

Fig.l

4By a cycle we mean a directed path XQ-*X2. . . -*Xn - i -»Xo of n distinct vertices.
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In Fig.l, in Q\, the cycle < C 3 J5JE> has anti-clockwise orientation, while

in the equivalent graph Qi, the corresponding cycle <C3>DJE> has

clockwise orientation. One important consequence of this result is that it is

not possible to orient a cycle merely using conditional independence

information.

3.2 Equivalence in the Acyclic Case

In the acyclic case there is a relatively simple characterization of the

equivalence class that leads directly to an O(n3) algorithm. We first

require two definitions:

Definition: Adjacent (for acyclic graphs)
In an acyclic graph Q> if there is an edge from A to B or from B to A

in the graph, then we say that A and B are adjacent in Q.

Definition: Unshielded Collider and Non-Collider (acyclic graphs)
In an acyclic graph Q, the triple < A 3 £ > forms an unshielded collider

in Q, if A and C are not adjacent, but A-*B*- C. If A and C are not

adjacent, but <A3,C> is not an unshielded collider, then we say it is an

unshielded non-collider, i.e. A-»B->C, A«-B-»C, or A«-B«-C.

Equivalence Theorem for Acyclic Graphs (Verma and Pearl 1990,

Frydenberg 1990)

Two directed acyclic graphs, Q\ and Qi are equivalent if and only if

(a) Qi and Qi have the same adjacencies

(b) Qi and Qi have the same unshielded colliders

Conditions (a) and (b) logically entail a third condition:

(c) Qi and Qi have the same unshielded non-colliders

Below we show three examples of acyclic equivalence classes:

A » B
A * B

»CA

CJ

(A »B« C )

c
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Conditions (a) and (b) above lead to an O(n3) algorithm for checking the

equivalence of two acyclic graphs on n variables; this follows from the

fact that (a) mentions pairs of variables, while (b) mentions triples.

Although d-separation allows us to check any given conditional

independence, there are 0(2n)-many conditional independencies, thus d-

separation alone does not provide a feasible test for equivalence.

33 Equivalence in the Cyclic Case

This raises the question of whether conditions similar to (a) and (b) exist

for the cyclic case. The answer is that such a set of conditions do exist.

The conditions are considerably more complicated, but still lead to a

polynomial algorithm though of O(n9).5 See Richardson (1994). This

result provides criteria for detecting feedback: it gives sets of conditional

independencies that are not linearly entailed by any acylic graph, with or

without latent variables. It is also a first step towards a discovery

algorithm which will construct models from conditional independencies

present in data; the output of such a discovery algorithm is an equivalence

class of models.

3.4 Real & Virtual Adjacencies

In the cyclic case the condition (a) which we gave above (§2.2) is no

longer a necessary condition for equivalence.6 This can be seen by

considering the following two equivalent models:

Fig. 2

^It should be stressed that this is a worst case complexity bound, the expected case may
be much lower.
6A similar point is made in Whittaker (1989).
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In the model on the left A and C are adjacent, but not on the right. We

introduce the following definition:

Definition: Virtually Adjacent (Cyclic Graphs)
A and C are said to be virtually adjacent in cyclic Q if and only if A

and C have a common child B such that B is an ancestor of A or C.7

We incorporate the notion of adjacency from acyclic graphs by saying that

if there is an edge between A and C (A-*C or A«-C) then A and C are

really adjacent.

Thus in Fig. 2 in the graph on the right A and C are virtually adjacent.

Virtual adjacencies can only occur in cyclic graphs (since B is in a cycle

with A or C). Condition (a) is necessary for equivalence in the acyclic case

since an acyclic graph linearly entails no conditional independencies

between a pair of vertices (A3) 8 if and only if A and B are (really)

adjacent. In the cyclic case no conditional independencies are linearly

entailed if and only if A and B are either really or virtually adjacent. It

follows that given two equivalent cyclic graphs Q\, Qi, the following is

true:

(I) If A and B are either virtually or really adjacent in Q\, then A and B are

either virtually or really adjacent in Qi.

In fact, if a cyclic graph contains a virtual adjacency then there is always

an equivalent cyclic graph in which that adjacency is real. In the rest of

this paper the term 'adjacency' will mean 'real or virtual adjacency*.

7 The terms 'ancestor', 'child' etc., arc defined in the appendix. Note that every vertex is
its own descendant and ancestor.
°By 'an independence between A and B' we mean an independence relation of the form
AJLB IS, withA3£S.
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25 'Conductors'

In the cyclic case, the condition (c) given above (§2.2) is no longer

necessary for equivalence. This can be seen from the following equivalent

graphs £i,and Qi-

Fig. 3

<A3,G> forms an unshielded non-collider in Q\ but not in Q%. We make

the following definition:

Definition: Unshielded Conductor and Unshielded Non-Conductor

(for Cyclic graphs)

In a cyclic graph Q, we say triple of vertices <A,B,C> forms an

unshielded conductor if:

(i) A and B, and, B and C are adjacent, A and C are not adjacent

(ii) B is an ancestor of A or C

If <A3,C> satisfies (i), but B is not an ancestor of A or C, we say

<A3,C> is an unshielded non-conductor.

In the acyclic case condition (c) was necessary for equivalence, since there

is a set of conditional independencies between a triple <A3,G> which are

linearly entailed by an acyclic graph if and only if <A3,C> is an

unshielded non-collider. In the cyclic case the same set of conditional

independencies are linearly entailed by a graph iff <A3,G> is an

unshielded conductor. Thus if cyclic graphs Q\, Q% are equivalent then:

(II) <A3,C> is an unshielded conductor in Q\ if and only if <A3,C> is

an unshielded conductor in Qz

Thus an unshielded conductor is the cyclic analogue of the unshielded

non-collider; in an acyclic graph every unshielded conductor will be an

unshielded non-collider.
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3.6 'Perfect Non-Conductors'

Condition (b) given above is also no longer a necessary condition for

equivalence. This can be seen by considering the triple <AJD3> in Fig- 3.

In Q2 <AJB>D> is an unshielded collider, but this is not the case in Q\.

Definition: Unshielded Perfect Non-Conductor (for Cyclic graphs)

In a cyclic graph Qy we say triple of vertices <A3,C> is an unshielded

perfect non-conductor if:

(i) A and B, and, B and C are adjacent, A and C are not adjacent

(ii) B is not an ancestor of A or C

(iii) B is a descendant of a common child9 of A and C

If <A3,C> satisfies (i) and (ii) but B is not a descendant of a common

child of A and C, we say <A,B,C> is an unshielded imperfect non-

conductor.

As in the previous cases condition (b) was necessary for equivalence in the

acyclic case because there is a set of conditional independencies which are

linearly entailed by an acyclic graph if and only if that triple is an

unshielded collider. In a cyclic graph the same set of independencies are

linearly entailed, if and only if <A3,C> is an unshielded perfect non-

conductor. Hence the following is also necessary for equivalence:

(HI) <AJB,C> is an unshielded perfect non-conductor in Q\ iff it is also an

unshielded perfect non-conductor in Qi

Thus unshielded perfect non-conductors are the cyclic analogue to

unshielded colliders in the acyclic case. However, in an acyclic graph

every unshielded triple is either an unshielded collider or non-collider,

whereas it is not the case that in a cyclic graph every unshielded triple is

either an unshielded conductor or an unshielded perfect non-conductor. A

triple may form an unshielded imperfect non-conductor. It follows from

''Child* refers to real adjacencies. Thus if D is a common child of A and C, then
A-*D«-C. Virtual adjacencies are unoriented.
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this that the conditional independencies linearly entailed by a graph among

a triple which forms an unshielded imperfect non-conductor are not

linearly entailed by any acyclic graph (even with latent variables). This

provides a criterion for detecting the presence of feedback in linear

systems.

3/7 Contrast with the Acyclic case: Non-locality

In the acyclic case, if two graphs are not equivalent then there will be

some conditional independence between vertices separated by at most two

edges, linearly entailed by one graph, and not by the other. This means

that we need only look at the structure of triples of adjacent vertices in

order to establish that two graphs are equivalent. This is not true for the

cyclic case, as the following two graphs which are not equivalent show:

rz A • X4T~>X4T~> X^^Z^X^m B

Although every independence linearly entailed by Qi, is also entailed by

Qi, in Qi, A JL B, while in £2, A JLB. But A and B are separated by more

than two edges in both graphs. Clearly these graphs could be extended by

increasing the number of X's so that A and B were separated by arbitrarily

many edges. This is also why the cyclic equivalence algorithm is of

higher complexity; cyclic graphs cannot be compared by checking that all

'local' subgraphs are equivalent. Q\ and Qi also show that the conditions

(I)-(III) are not sufficient since they are satisfied by these non-equivalent

graphs. The full set of necessary and sufficient conditions is given in the

appendix.
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Appendix
An arrow from A to B (A-*B) or from B to A (B-*A) is called an edge

between A and B. Given three vertices A, B and C such that there is an

edge between A and B, and between B and C, then if the edges 'collide* at

B, then we say B is a collider between A and C, relative to these edges i.e.

A-*B«- C. Otherwise we will say that B is a non-collider between A and

C, relative to these edges. i.e. A is a non-collider: A-*B-*C, A«-B-»C,

A«-B«-C.

If there is an arrow from A to B (A-»B), then we say that A is a parent of

B, and B is a child of A. We define 'descendant' relation as the transitive

reflexive closure of 'child', and similarly, 'ancestor' as the transitive

reflexive closure of 'parent'. A sequence of distinct edges <E\,... JE^> in Q

is an undirected path if and only if there exists a sequences of vertices

<Vi,... V n + i> s.t. for 1^ i«s n either <V i+i,Vi>=£i or <Vi,Vi+i>=£i.

Definition: d-connection / d-separation for (cyclic or acyclic) graphs

For disjoint sets, X, Y and Z, X is d-connected to Y given Z if for some

XGX, and YGY, there is a path from X to Y, satisfying the following

conditions:

(i) If A, B and C are adjacent vertices on the path, and BGZ, then B is a

collider between A and C.

(ii) If B is a collider between A and C, then there is a descendant D, of
CandDGZ.

If X and Y are not d-connected given Z then X and Y are said to be

d-separated by Z.

The following important theorems give the relationship between

d-separation and the linear entailment of conditional independencies, and

partial correlations. Spirtes (1993) proved them for the cyclic case.
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Theorem (Spirtes): In a (cyclic or acyclic) graph Q, for disjoint sets, X,

Y, Z, X and Y are d-separated given Z, if and only if Q linearly entails

X JL Y I Z.

(This result was independently discovered by Koster(1994).

Theorem (Spirtes): In a (cyclic or acyclic) graph £, for any set Z, not

containing X or Y, X and Y are d-separated given Z, if and only if Q

linearly entails pXY.z - 0.

We give below the Equivalence Theorem in full. However, this requires

three more definitions:

Definition: Itinerary
If <Xo,Xi,...Xn+i > is a sequence of distinct vertices s.t. Vi 0 2s i ^n,

Xi and Xi+i are really or virtually adjacent then we will refer to

<Xo,Xi,.. .Xn+i > as an itinerary.

Definition: Mutually Exclusive Conductors with respect to a certain

itinerary

If <Xo,.. .Xn+i> is a sequence of vertices such that:

(i) Vt 1 £ t ^ n, <Xt-i, Xt, Xt+i> is a conductor

(ii) Vk 1 ^ k ^ n, Xk-i is an ancestor of Xt, & X^+i is an ancestor of

Xk.

(iii) Xo is not a descendant of Xi , and Xn is not an ancestor of Xn+i

then <Xo,Xi,X2> and <Xn-i,Xn,Xn+i> are mutually exclusive (m.e.)

conductors on the itinerary <Xo,.. .Xn+i>.

Definition: Uncovered itinerary
If <XO,. . .XIH-I> is an itinerary such that V i j 0 ^ i < j - l < j ^ n+1

<Xi,Xj> is not an adjacency then we say that <Xo,...Xn+i> is an

uncovered itinerary.
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Theorem: Equivalence in Cyclic Graphs (Richardson 1994)
Cyclic graphs Q\ and Qi are equivalent if and only if the following

conditions hold:

(1) Q\ and Qi have the same adjacencies.

(2) Q\ and Qi the same unshielded conductors

(3) Qi and Qi the same unshielded perfect non-conductors

(4) If <A3,C> and <X,Y,Z> are m.e. conductors on some uncovered

itinerary P =<A3,C,...X,Y,Z> in Q\ if and only if <A3,C> and

<X,Y,Z> are m.e. conductors on some uncovered itinerary
Q=<A3,C,. . .X,Y,Z>in&.

(5) If <A,X3>, and <A,Y3> are unshielded imperfect non-conductors,
then X is an ancestor of Y in Q\ iff X is an ancestor of Y in Qi.

(6) If <A3,C> and <X,Y,Z> are m.e. conductors on some uncovered

itinerary P=<A,B,C,...X,Y,Z> and <A,M, Z> is an imperfect non-

conductor, then M is a descendant of B in Q\ if and only if M is a

descendant of B in Qi.
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