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Abstract

In the first part of this paper we discuss some aspects of Detlefsen's attempt to save Hilbert's
Program from the consequences of GodePs Second Incompleteness Theorem. His arguments are
based on his interpretation of the long standing and well known controversy on what, exactly,
finitistic means are. In his paper [1] Detlefsen takes the position that there is a form of the cj-rule
which is a finitistically valid means of proof, sufficient to prove the consistency of elementary
number theory Z. On the other hand, he claims that Z with its first order logic is not strong
enough to allow a formalization of such an w-rule. This would explain why the unprovability
of Con(Z) in Z does not imply that the consistency of Z cannot be proved by finitistic means.
We show that Detlefsen's proposal is unacceptable as originally formulated in [1], but that a
reasonable modification of the rule he suggests leads to a partial program already studied for
many years. We investigate the scope of such a program in terms of proof-theoretic reducibilities.
We also show that this partial program encompasses mathematically important theories studied
in the "Reverse Mathematics" program. In order to investigate the provability with such a
modified rule, we define new consistency and provability predicates which are weaker than
the usual ones. We then investigate their properties, including a few that have no apparent
philosophical significance but compare interestingly with the properties of the corresponding
standard predicates. Finally, we also discuss some possible extensions of the program, based on
the iteration of our w-rule. We determine some of the limitations of such programs, pointing out
that these limitations partly explain why partial programs that have been successfully carried
out use quite different and substantially more radical extensions of finitistic methods with more
general forms of restricted reasoning.

1. Introduct ion

One of the most important parts of Hilbert's Program was proving the consistency of formal

theories that correspond to the theories of mathematical practice using only restricted "finitistic"

means. As Hilbert himself stated (see [10]), this was supposed to "establish once and for all

*This paper grew out of a chapter from my Ph.D. Thesis [13] written under the supervision of Professor Jack Silver
at U.C. Berkeley. An earlier version of this paper was circulated in 1988 as a manuscript [12] with the same title.
The author is grateful to Professors Jack Silver, Charles Chihara and William Craig for many helpful discussions.
Also, Professors Wilfried Sieg and Teddy Seidenfeld kindly read a later version of this paper and pointed out many
inaccuracies and errors. Their valuable comments and constructive criticism helped improve this paper significantly.



the certitude of mathematical methods". Nevertheless, he never specified exactly what finitistic

means are. Apparently, he believed that once such consistency proofs were achieved, everyone

would recognize the means used in these proofs as finitisticaUy valid. It is usually assumed that

all finitistic means are formalizable in Peano's Arithmetic (PA), or even in Primitive Recursive

Arithmetic (PRA), which is an equational theory with no quantifiers in the language. If we turn it

into a first order theory by adding the first order logic we get a conservative extension of (PRA),

usually denoted1 by (QF — I A). Since there is a finitistic procedure2 for transforming a proof in

(QF — I A) of a Ilj sentence into a proof in (PRA) of the corresponding open formula, provability

in (QF — I A) and in (PRA) (and consequently also consistency of these theories) are equivalent

even for a finitist. Thus, we can use throughout this paper (QF — I A) and Ili-sentences instead

of (PRA) and open formulas. Tait [25] has argued that the finitisticaUy acceptable functions are

just those defined by primitive recursion as well as that a proposition of the form f(x) = g(x),

for / ,# defined by primitive recursion, is finitisticaUy provable if and only if it is provable in

(PRA); we will call this claim "Tait's Thesis". Thus, according to Tait's Thesis, a proposition

of the form f(x) = g(x) is finitisticaUy provable if and only if its universal closure is provable in

(QF — I A). We do not think that Tait's analysis delimits finitistic means beyond any doubt, but it

is certainly a quite tenable working hypothesis. Henceforth, we will use the words "finitistic" and

"finitisticaUy" with this meaning3. By GodePs Second Incompleteness Theorem we know that no

consistent primitive recursively axiomatized theory T extending (or, more generaUy, interpreting a

sufficiently strong fragment of) (QF — I A) can prove the statement Vz-»Pr/r(x, f 1 = 0"|) "saying"

that T is consistent, where Prfx(x,y) is the standard, primitive recursive proof predicate for T.

Thus, if we accept Tait's Thesis, the consistency of any such theory T is not provable by purely

finitistic means, since otherwise the proof could be formalized in (QF — I A) and would yield a

proof p in (QF - I A) of Vx-«Pr/r(a:, [1 = 0]), which is impossible. By Godel's Theorem not only

is this statement unprovable in (QF - I A), but also in the (possibly stronger) theory T.

In order to overcome this difficulty, one could accept more powerful methods in consistency

aSee, for example, [21].

2This procedure is based on the cut elimination technique; for details see again [21].

3Note that we say "defined by primitive recursion" rather than just "primitive recursive". For a finitist it is
important how a function is presented. For example function y = / (x ) defined by (y = 0 ACOUZF) V(y = 1 A->COTIZF)
is primitive recursive since it is a constant function, but a finitist cannot compute its value at any x.



proofs as perhaps non-finitistic, but still constructive: transfinite induction up to £0 for a primitive

recursive well-ordering applied only to primitive recursive predicates suffices to show the consistency

of (PA). Unfortunately, the epistemological value of such a consistency proof seems more doubtful

than the value of a purely finitistic consistency proof; by GodePs Second Incompleteness Theorem

transfinite induction up to So is not justifiable on equal grounds as, say, truth of an instance of the

induction schema QF - I A, and even truth of an instance of the induction schema for formulas of

arbitrary complexity4.

Rather than look for stronger yet finitisticaily acceptable mathematical principles to be employed

in finitistic consistency proofs, another way out would be to accept more general and yet finitisticaily

valid forms of logical inference5. Hilbert himself took such a path in [11], with another aim: to

obtain a complete and consistent system of arithmetic, most likely in response to GodePs First

Incompleteness Theorem (see [3] for a detailed discussion). In this paper Hilbert added to a

standard form of the first order arithmetic Z an informal rule of the following form6:

Rule u*i Whenever A(x) is a quantifier free formula for which the following can be

finitisticaily shown: A(z) is a correct numerical formula for each particular numerical

instance z, then its universal generalization can be taken as a new premise in all further

proofs.

He denoted this semi-formal system by Z* and went on to show completeness properties of Z* with

respect to Hi sentences.

As Feferman mentions in [3], the system Z* is not at all in the spirit of Hilbert's original ideas:

instead of having a precisely formalized system in which rules of inference axe specified purely by

their syntactical form, here not only an informal, but also vaguely formulated rule of inference is

used within the system Z*. The vagueness comes from the fact that the rule depends on what is

accepted as a valid finitistic proof.

4 Of course, one cannot rule out the possibility that any basis sufficient to justify what is formalized by (PRA)
and which satisfies some necessary closure properties in order to be acceptable as an epistemologically distinguished
system of methods, is also sufficient to justify 60-transfinite induction.

Note that when it comes to rules of inference such as u;-rule, which involve numerical concepts, it is difficult to
say what is a logical inference and what is a mathematical principle.

6See [3]; for the original formulation in German see [11], p. 491.



Nevertheless, since we are mainly concerned with consistency proofs which are anyway informal

mathematical proofs rather than formal proofs in a formal theory, using a rule of this sort is accept-

able as long as we precisely define it and then justify it on a previously accepted epistemological

basis. Thus, in the rest of this paper we consider various informal rules of this form, interpreting

differently what "finitarily" in the above description of the u;*-rule can mean. We will investigate

on what grounds one can justify such a rule and which theories can be proved to be consistent

using it. Since formal proofs (seen as sequences of symbols) and finitistic manipulations of formal

proofs are reducible to (token) numbers seen as sequences of strokes and the corresponding finitis-

tic manipulations of numbers, consistency statements for primitive recursively axiomatized theories

can be taken to be statements about numbers of the form Vx.F(x), with F(x) a primitive recursive

predicate7. This is why we are interested in means of proving formulas of such a form in general.

In light of Tait's Thesis, if a proposition of the above form is provable using only finitistic means,

then there is a proof p(x) in PRA of F(x); thus, all instances F(n) of F(x) have uniform finitistic

proofs: there exists a finite skeleton proof p*(x), which is the informal finitistic proof corresponding

(as in Tait's [25]) to the formal proof in PRA of p(x), such that for each n, p*(n) is a finitistic

proof of jP(n), obtained by mere substitution of the variable x by the numeral n in the proof p*(x).

One can argue that it is not necessary to require such strong uniformity. Perhaps just having

an effective, explicitly given construction8 producing for each individual n a finitistic proof of F(n)

would suffice to accept VXJP(X) as finitistically proved on the basis of an u>-rule in which the only

restriction to make it "finitistic" is that the finitistic proofs of each instance are produced using an

effective construction. In particular, according to this view, to prove the consistency of a theory

T it would be enough to describe an effective construction which produces for each n a finitistic

proof of the fact that n does not code a proof of an inconsistency in T (with the standard first

order logic). Such a position is discussed in the following quotation from Detlefsen [1]; to make our

discussion easier, we have added in square brackets an enumeration of his claims.

7As noted in [25], since the syntax of the first order language is primitive recursively encodable, to prove fini-
tistically that formulas or proofs of a primitive recursively axiomatized theory T have a (finitistically meaningful)
property amounts to proving finitistically that the primitive recursive predicate which corresponds to that property
is true of the corresponding codes.

8This term is used in Tait [25]; Detlefsen [1] uses the term "manual" to denote the same thing.



"In this section I would like to sketch an argument against the claim that G2 im-

plies the failure of the Hilbert's Program for finding a finitistic consistency proof for

the various theories of classical mathematics. The central claim of the argument is

that Con(T), the consistency formula shown to be unprovable by G2, does not really

"express" consistency in the sense of that term germane to an evaluation of Hilbert's

Program.

In order for a consistency formula to "express" consistency in the appropriate sense

the quantifiers and operators in it must be construed finitistically, and not classically,

since it is the finitistic consistency of a classical system that is at issue. But a finitistic

interpretation of the universal quantifier would seem to differ drastically from a classical

interpretation of it, as is clear from the following remark of Herbrand."

At this point Detlefsen gives the following quotation from Goldfarb's [8], pp. 288-9, footnote 5:

"...when we say that an argument (or theorem) is true for all (these) x, we mean

that, for each x taken by itself, it is possible to repeat the general argument in question,

which should be considered to be merely the prototype of these particular arguments."

Then Detlefsen continues:

"And, again, he says that a proof of a universal claim is merely a description or

manual of operations which are to be executed in each particular case ([8], pp. 49-51).

[Claim 1:] This view of the universal quantifier would seem to sponsor the following

restricted o?-rule: if I have an effective procedure P (i.e., a manual of operations P)

for showing of each individual n that 4F(n)' is finitistically provable, then 'Vx^x) ' is

also finitistically provable. [Claim 2:] Indeed in a 1930 paper ([11], pp. 49-51.), Hilbert

stated a rule something like this. [Claim 3:] And at that time it was apparent to finitists

that the rule did not give one the power to go beyond the means of some methods that

had already been accepted as finitistic ([8], p. 297).

[Claim 4^] Now one would not, in general, want to add the abovementioned u;-rule

to a scheme designed to serve as the finitistic proof theory of the classical theory T,
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since that rule does not constitute a truth of the finitistic proof theory of the classical T!

[Claim 5:] Still, certain instances of the rule would seem to be called for; in particular

the one producing Con(T) from its instances. [Claim 6:] This addition made, Con(Z)

becomes provable in Zw* (= Z plus the above-mentioned instance of the restricted

u;-rule)."

[Claim 7:] Of course, if one adds instances of the restricted cj-rule to T, in order

to get an adequate context in which to do the finitistic proof theory of the classical T,

then one will not be able to formulate the finitistic proof theory of T as a proof system,

but I see nothing in Hilbert's program which suggests that such formalizability is an

essential or important feature of it." ....

[Claim 8:] "G2 [Godel's Second Incompleteness Theorem], then only seems to imply

the failure of Hilbert's program so long as one ignores the fact that the logic of the

finitistic proof theory of the classical T and the logic of the classical T itself axe two

quite different logics!...If the logic of T is expanded in a way that produces a scheme

whose logic is in agreement with the lope of the finitistic proof theory of the classical

T, then in at least some instances (e.g., for the case where T is the system Z), Con(T)

becomes provable. The basic flaw of those using G2 to thwart Hilbert's Program is that

they fail to recognize that the logic of the axithmetized proof theory of T in G2 (since

the axithmetized proof theory is itself embedded in T) is the logic of T itself not the

logic of the finitistic proof theory of T (which logic is not a subsystem of T's logic)!"

First of all, the above quotation from Herbrand9 states "...to repeat the general argument in

question, which should be considered to be merely the prototype of these particular arguments."

This description fits much better our construction of proofs obtained from a single skeleton proof

by replacement of the free variable by particular numerals, than does Detlefsen's u>-rule from the

Claim 1 above. Indeed, the skeleton proof p*(x) can be seen as a general argument which is the

prototype of all particular arguments obtained by simple substitution; regardless of the numeral

being substituted, substitution leaves the structure of the argument the same. Also, Herbrand's

claim ([8], pp. 49-51) given immediately after the quotation from Herbrand, refers in fact to an

9This quotation refers to the intuitionistic arguments, but at that time (and until Godel-Gentzen double negation
interpretation) finitism and intuitionism were thought to be coextensive.



inductive argument about finitistically meaningful properties (p.50) of "proofs put into signs..."

(p. 49) i.e. formal proofs and it is easy to see that this argument is formalizable in (QF - I A).

Thus, quotations from Herbrand do not offer any support to Claim 1.

Second, Hilbert's u;-rule mentioned in Detlefsen's Claim 2 is in fact the one which we presented

on page 3, and is of substantially different nature (in the position of the universal quantifier) than

the rule Detlefsen suggests in Claim 2. Hilbert's rule allows us to use Vx(p(x) as a new premise in

proofs if the following universal statement has afinitistic proof: A(x) is a correct numerical formula

for each particular numerical instance z. Detlefsen's version of the u;-rule only requires that we

have an effective procedure for showing that for each n instance F(n) is finitistically provable.

Detlefsen seems to distinguish finitistic metamathematical arguments whose objects are formal

proofs; these arguments he calls afinitistic proof theory of the classical theory T", on the other hand

he also considers formal proofs in T itself. Despite his Claim 3, he decides that the rule he proposes

in his Claim 1 "...does not constitute a truth of the finitistic proof theory of the classical 27". This

very odd statement presumably means that such a rule is not a finitistically acceptable inference

in the metatheory, i.e. cannot be used in finitistically acceptable informal arguments about formal

proofs in T. He offers no reason why this should be so. Yet, he says (Claim 5) that certain instances

of such a rule "are called /or", in particular one producing Con{T) from its instances. Again, he

does not say what is so peculiar about the consistency statements of Z compared to just any other

statement which is of the same logical complexity, which makes the particular instance of his a?-rule

a finitistically acceptable means of inference in case of the consistency statement for Z but not for

the consistency statement for every other theory, or, even more generally, every other statement

of the same syntactical complexity. The addition of such a rule to the elementary number theory

Z produces an "adequate context" in which we can carry arguments of finitistic proof theory of

T, but now predicate Con(Z) becomes provable using the additional rule (Claim 6), which is why

the Second Incompleteness Theorem, according to Detlefsen, has no impact on Hilbert's Program.

Those who believe that the Second Incompleteness Theorem does have an impact on Hilbert's

Program just fail to see that finitistic arguments about formal proofs employ a different kind of

logic (finitistically valid inferences) which are not formalizable in elementary number theory Z

(Claim 8). Claim 7 implies that such finitistic arguments might not be formalizable by a formal



system (in the usual sense) but this is really not required for a successful realization of Hilbert's

program.

Thus, to summaxize, Detlefsen's argument rests on two points. First, he mentions the old

problem of delineating what constitutes a valid finitistic argument, and whether there is a formal

theory which captures exactly such arguments, but this is a well known story. Second, he makes

an unsuccessful attempt to show that a form of o;-rule is an example of an argument which is

finitistically valid but not formalizable in Z, since it suffices to prove consistency of Z. The

quotations from Herbrand which Detlefsen cites do not support such a claim because, as we pointed

out, they clearly do not refer to the kind of rule he mentions in Claim 5. On the other hand, he

himself offers no explanations why certain very special instances of such a rule qualify as finitistically

valid forms of inference.

To explain why the rule from Detlefsen's Claim 5 cannot be accepted as a finitistically valid

inference, we show that using such a rule one can prove consistency of any consistent first order

theory T. This clearly makes his claim about the finitistic validity of such a rule implausible. On

the other hand, we also show that there is a modification of this rule which, applied to consistency

proofs, leads to a partial program of a reductive nature. Such a partial program is then shown

to encompass theories of the "Reverse Mathematics" program. We also show that using such a

modification of the rule mentioned in Claim 5 above, we can prove consistency of exactly the same

theories as we could prove using modification of the more general rule mentioned in Detlefsen's

Claim 1.

For convenience, let us formulate the rule again.

Rule 1 Let T be a theory. If we have an effective procedure for producing for each individual n a

finitistic proof o /^Pr/r(n , [1 = 0]), then we derive Con(T).

To show that the Rule 1 cannot be plausibly held a finitistically valid inference, consider, for

example, set theory (ZF) and the following procedure:

Procedure: Given n, find the least i < lh{n) such that (n)t- is a code of a formula™ which is

°Here lh(n) is the length of the sequence coded by n. If n is the code of a proof in a formal theory T, then each



neither an axiom of (ZF) nor is it obtained by an application of a first order rule of inference to

some of the formulas (n)j, for j < i, and prove this property of n.

Assuming that (ZF) is consistent, for every sequence <po,<fi,..-,<Pk of formulas of (ZF) such

that (fk is of the form 0 A -«0, one can find a formula <fi in that sequence that it is neither an

axiom of (ZF) nor is it obtained from the previous ones using a first order rule of inference. For

every such sequence this fact has a proof which is unquestionably finitistically acceptable and

easily formalizable in (PRA) because (ZF) is primitive recursively axiomatized and so it is easy

to verify that <# is not an axiom of (ZF), while to show that <# is not derived from some of

the previous formulas one has to check only a few rules of inference when applied to some of

9oj--i^t-i- Consequently, the procedure we described above is an effective procedure satisfying

the conditions for the "manual" Detlefsen mentions. However, no finitist can take this effective

procedure as a satisfactory proof of the consistency of (ZF) because he cannot realize that this

effective procedure indeed produces for each n a finitistic proof of the corresponding instance of the

consistency statement: in the above argument we assumed that (ZF) is consistent. Hence, Rule 1

cannot be seriously considered as a finitistic means of inference. In order to accept the consistency

of a theory T on grounds that could be reasonably argued to be finitistic, we have at least to be

able to give a finitistic proof that the function which is a suitable formalization of the effective

procedure mentioned in the rule 1 indeed has the property that for each n, it produces a code of

a proof of the formula -»Pr/j(n, [1 = 0]) in a formal theory which we recognize as formalizing

only finitistically acceptable principles (but not necessarily all such principles). Of course, this

is just a necessary condition; in general, unless the procedure is extremely uniform (e.g. if it

produces substitutional instances with the same skeleton proof) a finitist cannot recognize that

such a procedure has the necessary property since he cannot realize that everything provable in

a particular formal system is finitistically valid. A finitist can argue about formal proofs but not

about the general properties of the informal finitistical proofs which he produces; they are not

objects of his considerations. Thus, he either sees immediately that all proofs produced by an

effective procedure are finitistic proofs from the very definition of the procedure, in which case,

according to Tait's analysis, the statement is provable in (PRA), or he cannot accept such a means

number (n)i is a code of a formula which is either an axiom of T or a formula which is derived from some of the
previous formulas of the sequence coded by n using one of the rules of inference of the first order logic.



of inference as finitistically valid11. Nevertheless, it seems to us that a reasoning which employs a

rule of the above form is sufficiently close to finitistical reasoning that it deserves a closer scrutiny.

It seems uncontroversial that (PRA) is a theory which embodies only finitistic principles12. For

convenience, we rather choose a first order conservative extension of (PRA), i.e. (QF — I A) for

the following definition; recall that there is a primitive recursive function h(x) such that for any

open formula (p, PRA h Prf(QF-iA)(x<>v) -• Pr f(PRA)(h(x),<p). As we already have mentioned,

such a function is obtained by formalizing a cut elimination procedure.

Definition 1 Consistency of a theory T can be proved almost finitistically if there exists a

primitive recursive function f such that

QF-IA\- VxPr/(QF_M)(/(x), hPrfT(x, \1 = 01)1).

Here x denotes the term S(S(... (0))...) whose value is x (such terms are defined by primitive

recursion). To make our coding notation easier we introduce a "generic", "bar" notation for codes,

and use it whenever there can be no ambiguity. Thus, instead of the above formula we will often

write just QF — I AY- VxPr/(Qir«/>i)(/(x),-«Pr/r(x,l = 0)), rather than spell out the details of

the coding. Similarly,

is an abbreviation for

where (p is just a numerical variable, and Imp, Sub, Num usual functions associated with the chosen

Godel coding. For simpler formulas we will continue to use the standard notation, which "spells

out" the details of coding. In order to justify the concept introduced by the Definition 1, we have to

see whether there are any non-trivial theories whose consistency can be proved almost finitistically.

11 One could be tempted to try to bypass the above difficulty by introducing a "definition" of the following form.
The consistency of a primitive recursively axiomatized theory T is provable almost finitistically if there exists a
finitistically acceptable function / of which it can be finitistically proved that for each natural number n, / (n) is
a finitistic proof that n is not a code of a proof of a contradiction from the axioms of T with the standard first
order logic. Unfortunately, the above is not a (mathematical) definition; the notions of "a finitistically acceptable
function" and "a finitistic proof" have no rigorous definitions and are certainly not mathematical notions - informal
mathematical proofs are not themselves objects of mathematical but only philosophical considerations. Thus, the
above "definition" does not make sense.

12We are not claiming here that all finitistic principles are embodied in (PRA).
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Question 1 What are the theories whose consistency can be proved almost finitistically?

Despite Detlefsen's claims, there is no reason to restrict such an u;-rule only to the consistency

formulas; with equal justification we can apply it to any primitive recursive formula (p. Thus, we

introduce the following (meta)definition.

Definition 2 A sentence of the form Vx<p(x), where <p is a primitive recursive formula13, is prov-

able almost finitistically if there exists a primitive recursive function f such that

QF - IA h VzPr/(gF_M)(/(s), fc(z)l).

We denote by S the set of all sentences which are provable almost finitistically.

Here again a primitive recursive function and a (QF — I A) proof stand in place of the informal

notions of finitistically acceptable function and a finitistically acceptable proof As before, one can

see 5 as the set of all sentences provable using one application of a restricted o?-rule. This rule

can be seen as a strengthened combination of the rules mentioned in [3], pages 212 and 213: not

only do we restrict the complexity of the formula on which the rule is applied and require that the

fact uevery instance of the formula is finitistically provable" must be itself finitistically provable,

but we also require that the proofs of all these instances must be generated by a finitistically

acceptable function. If we accept Tait's Thesis, these restrictions eliminate the vagueness from

Hilbert's description of the informal u?-rule. We can adjoin to this form of the u;-rule the standard

first order logic to obtain a well defined formal system14. Further, the form of such an u;-rule

permits us to replace it with just the set S of its conclusions and get a first order theory (5) with

the usual rules of inference, axiomatized by S. It is now natural to ask the following question.

Question 2 What are the theories whose consistency can be proved in (S)?

13Detlefsen does not explicitly impose this complexity restriction; nevertheless this restriction follows from what
Hilbert accepted as finitistically meaningful sentences and is present in Hilbert's paper [11] that Detlefsen quotes.

14As it happens, as soon as we formalize precisely some informal notion one can question whether the formalization
captures properly the informal notion being formalized, but our aim is anyway to investigate various plausible
delimitations of the mentioned informal u;-rule.

11



Note that all induction axioms of (QF - I A) can be written in the form rJ>(0) A (Vy < x)(\p(y) —>

V>(y + 1)) —* il>(x)<> for t/) a primitive recursive formula, which is itself a primitive recursive formula.

All other axioms of (QF — I A) obviously are primitive recursive formulas. Since for any primitive

recursive formula <p(x) provable in (QF — I A) with a proof p(x), f(x) given by f(x) = |p(s)]

satisfies the condition from the definition of the set S, the following Lemma immediately follows.

Lemma 1 (QF - I A) C S.

Thus, S extends what Tait takes to be a correct formalization of the standard finitist reasoning.

In the next sections we answer the above two questions and consider some possible generaliza-

tions.

2. Answer to the first question

As is well known, using the standard cut-elimination procedure one can show that the provably

recursive functions in (QF — I A) axe precisely primitive recursive functions15. Thus, we get the

following proposition.

Proposition 2 Let T be a primitive recursively axiomatized theory, then the consistency ofT can

be almost finitisticaUy proved if and only if

QF-IAY- Vx3yPrflQF_IA)(y, --Pr/T(x, 1 = 0)).

This is why we introduce the following definition.

Definition 3 Con*(T) = Vx3yPrf(QF__IA)(y,->PrfT(xyl = 0)).

It is easy to see that there are indeed theories whose consistency cannot be proved finitisticaUy,

but can be proved almost finitisticaUy; (QF-1 A) is an example. To see if there are theories which

5In fact, the procedure explicitly produces defining equations of a primitive recursive function.

12



are mathematically more interesting than (QF - I A) and whose consistency can be proved almost

finitistically, we need some further technical results.

Throughout the rest of this paper T denotes a consistent, primitive recursively axiomatized

theory whose axioms axe presented in such a way that (an extension by definition of) T provably

extends (QF — /A), i.e. such that

QF - IA h VX(A*{QF-IA){*) - AXT(X)).

Proposition 3 Let T be as above, then

(i) QF-IA h Con(T) «-* (CW(T) A Con(QF - I A));

(ii) QF-IA h Con*(T) ~ (Con(QF - /A) -> Con(r)).

Proof: (i) We can assume Con(QF - /A), since -*Con(QF - /A) implies -iCon(r), and in this

case (i) is obviously true. We first assume Con(T)\ then this implies Vx-«Pr/r(x, [1 = 0]), and so

by demonstrable Si completeness16 of (QF - /A), we have Vx3yPr/(QF«/^)(j/,-«Pr/r(x,l = 0)),

i.e. Con*(T). On the othex hand, if we now assume ->Con(T), then fox some c, Pr / r (c , [1 = 0])

and so, as befoxe, we get 3yPr/(QF_/^)(y, Pr/x(c, 1 = 0)). Since we assumed Con(QF — /A), we

get "^3yPr/(gir«/^)(y,-«Pr/x(c, 1 = 0)). Consequently, ->Con*(T), which implies oux claim,

(ii) This follows dixectly from (i) and the fact that

QF-IA\- ->Con(QF - I A) -> Con*(T).

Corollary 4 Let T be any theory as before. Then

1. QF - IA h Con*(T) if and only if QF - / A h Con(PRA) «-> Con(T).

2. In particular, QF - /A h Con*(Pi2A).

16This means that for arbitrary Ei formula ^(z), QF - IA \- Vx(«p(x) —• ThirtyF-J,4)(|V(£)1); here x is the
term built only from the constant 0 and x iterations of the successor function. Formally, it is defined by primitive
recursion; for more details about these points see [24].
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Thus, one can prove consistency of a theory T almost finitistically if and only if one can show

finitistically that consistency of T follows from the assumption that our finitistic number theory is

consistent17.

This explains why our restricted a;-rule leads to a reductive program. But before proceeding

with this point, we will first elaborate on a few more technical points. First of all, note that

by Propositions 3 (i) and (ii), Con*(T) is the exact measure of 'how much' Con(T) is stronger

than Con(QF — I A) i.e. the consistency of the base theory, "measured" from that base theory

(QF — I A). More generally, we have the following proposition whose proof is similar to the proof

of the previous proposition.

Proposition 5 Let S and T be any two theories provably extending (QF—IA); then for Con*s(T) =

Vx3yPr/5(y,-.Pr/T(x,l = 0)) we have

QF-IA\- Con*s(S), (QF - I A) h Con*s(T) ~ (Con(S) -+ Con(T)).

Also, observing that Con*(S) corresponds to

(QF - I A) \- Con\QF_IA)(S) A Con*s(T) - Con\QF_IA)(T)

and if (QF -1 A), S and T are "collinear" i.e. QF -1A C S C T (provably so in (QF -1 A)) then

(QF - I A) h Con\QF_IA)(S) A Con"s(T) ~ Con*{QF_1A)(T).

Compare the last two formulas with the triangle inequality in a metric space, with A corresponding

to +, —> corresponding to > and <-» corresponding to =. The above claims have easy proofs that

we omit.

Notion of an almost finitistic consistency proof can be of interest only if there are significant

theories whose consistency can be proved almost finitistically. The best example of such a theory

is Friedman's WKLQ, which is a fragment of second order arithmetic with induction only for Sj

17We note that Con(PRA) -+ Con(T) is not a II?-sentence, and consequently does not correspond directly to
a finitistically meaningful statement. However, since QF - IA h Con(PRA) —•> Con(T) is equivalent to PRA h
Vd(PrfT(d, fl = 0]) —• PrfPRA(f(d), fl = 0"|) for a suitable primitive recursive function / , we can adopt a convention
that the equiconsistency statement above has the meaning of the later, clearly finitistically meaningful statement.
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formulas, comprehension for A? formulas and Konig's Lemma for binary trees18. In this theory it is

possible to do a vast amount of classical analysis and algebra used in the sciences (for more details

see [6] , [7], [17], [18] and [19]). Yet, we can show almost finitistically the consistency of WKL0

because Sieg's proof that WKL0 is provably H^ conservative over (QF-IA) (see [21], Proposition

5.8) is effective and can be formalized in (QF - I A) yielding a primitive recursive function h(p)

such that:

QF - IA h Vy> e n°2Vp(PrfWKLo(p, ip) -> Prf{QF_IA)(h(p), <p)). (1)

In particular, taking <p = (1 = 0), we get QF - IA h Con(QF - I A) -> Con(WKL0)y and so

QF - IA h Con*(WKL0).

Corollary 6 The consistency of WKLQ can be proved almost finitistically.

Yet, as we noted, one can develop in WKLQ a great deal of the classical mathematics needed for

empirical sciences.

There can exist an almost finitistic proof of the consistency of a theory T even if T is not

provably (in PRA) III conservative over PiL4, even if T is not just III conservative over PRA.

Let for example <p be a Rosser sentence for the theory (QF — I A) and let T be (QF — I A) + (p.

Then we have, just by formalizing the usual proof of the unprovability of Rosser's sentence (see for

example [24]) QF-IA h Con(QF-IA) -• ->Thm(QF_IA)(^(p), i.e. QF-1A h Con(QF-IA) ->

Con((QF - 1 A) + v>), but (QF - 1 A) + <pis obviously not IIi conservative over (QF - 1 A) because

QF — IA\f <p. On the other hand, we have the following Proposition.

Proposition llfT is a theory as above and QF — / A h Con*(T), then

QF-IA h V9 € n1(Tftmr(^) -+ Thm{QF_IA)+Con{QF-iA)(v))- (2)

We first prove the following Lemma.

Lemma 8 There are primitive recursive functions v(x) and w(x)} such that

QF - IA h V9 e £ iPr / ( g F_M ) ( t ; (9) , J m ^ (3)

18This form of Konig's Lemma is usually called Weak Konig's Lemma; it asserts that every infinite binary tree has
an infinite path; for more details see [18].
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Notice that in the above formula the value of w(x) is a closed term (denoting the code of a

proof). We will see that this term is not uniform in <p, i.e. it is not of the form *(|V1), where

t(x) is indepent of (p. In our sloppy notation ("add codes where needed") the above formula

becomes: QF - IA\-V(p € ^\Prf(QF_jA)(v((p),(p -• Prf(QF_IA)(w((p),<p)). This clearly implies

that QF - IA h Vy> G ^iThm{QF_IA)((p -+ Thm{QF_IA)(<p)).

As mentioned above, it is not the case that there is a primitive recursive function g such that

for all Ei formulas <p

, \<p\) (4)

because if (4) was true, then u J= (p «•+ Pr/(Q/r_/,4)(<7([V~|), |V]), since the other implication always

holds on CJ. This is impossible because by Godel's Diagonal Lemma there is a formula ty 6 So such

that QF - IA h V «-• -i>r/ (QF_M)(s(N'l),

On the other hand, for all Sj formulas <p,

QF-IA\-<p-+ 3pPrf(QF_IA)(p, |V1). (5)

Proof p is obtained from the computation which verifies the truth of (p; the reason why p cannot be

obtained by a primitive recursive procedure from (p is that there is no primitive recursive procedure

which given an arbitrary primitive recursive formula produces a computation testing the truth of

the formula. Nevertheless, there is a primitive recursive procedure which for arbitrary n and

arbitrary formula (p from the nth level Qn of Grzegorczyk's Hierarchy produces the code [p| of a

proof p in (QFn - I A) and a proof in QF - IA of <p -• Prf(Qpn^jA){ \p\, \<p\). This is the basis of

the proof of Lemma 8.

Proof of Lemma 8: Let (QFn — I A) be the fragment of (QF — I A) containing only functional

symbols and defining equations for functions up to the nth level Qn of Grzegorczyk's Hierarchy

and Ln the corresponding fragment of the language of (QF — I A). By the well known facts

about Grzegorczyk's Hierarchy, there is a function Tn+i € &n+i such that for any formula (p €

Lnj (QFn+i - IA) h v> ~ ^ c r ^ / ^ . / ^ ^ n + i C ^ D J v l ) where V rer (gFn . /A)(c,^) is a formula

of (QFn — I A) formalizing "c is a (code of a) computation testing the truth of <pn. Also, it is

easy to see that there is a primitive recursive function n such that one can prove by the usual
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metainathematical induction on n (not induction formalized in (QF — I A)) that QF - / i t -

V<pVc(VerQF-IAn(c,<p) -+ ^r/(gFn-/^)(n(<p),^)). Assuming that this is true for n, case n + 1 is

proved using the induction schema of (QF - I A) (with complexity of </? as a variable); the atomic

case f(xyz) = y, if / E (7n+i> and / is defined by primitive recursion on x from some g(z),h(x,zyt),

is again proved by induction in (QF - I A) with x as the induction variable. Here we use the fact

that c contains computation f(0,z) = g(z), f(y + 1,2:) = h(yyz,f(y,z)) for y < z, and that, by

inductive hypothesis, each equation is provable in (QFn~-IA). Clearly putting these proofs together

we can get a proof of /(x, z) = y. Non-atomic formulas are handled in the usual inductive manner.

Thus, if if e Ei and tp 6 £ n , then (QFn+1 - I A) h <p - Pr/ ( Q F n . / > l)(n(^n + 1([¥)l)) , [>]). The

above proof by mathematical induction is clearly finitistic and it can be formalized in (QF — I A)

yielding a primitive recursive function H such that

QF - IA h VnVy> 6 l n n S 1Pr/ ( g F n + 1 .M ) (JJ(n ,9) , 9 - P r / ( 0 F n _ M ) (n ( j ; + 1 ( V ) ) , y>)), (6)

Since for each Ei formula <p one can find in a primitive recursive way the least n such that <^6 l n ,

we get the claim of our Lemma as an immediate consequence.

Proof of Proposition 7: Essentially, we formalize the proof of Kreisel's III conservativeness

Theorem. Since by our assumption and Proposition 3 (ii) QF — / A h Con(QF — I A) —* Con(T),

we also have

QF - IA h r&mW F . / A ) + C a i l W F . / A )(rCon(r)l).

By the provable Si completeness of (QF — I A) we have

- IA h V<p(ThmT(<p)

thus

- IA h V<p(ThmT(<p)

This, together with the following direct consequence of Lemma 4

QF - IA \- V<p € I

implies the claim of Proposition 7.
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The converse of Proposition 7 is false; just take for example T = (QF - I A) + Con(QF - I A).

Then (2) is trivially true but QF - IA \f Con*((QF - I A) + Con(QF - I A)) because by Godel's

Second Incompleteness Theorem (QF -1 A) + Con(QF -1 A) \f Con((QF -1 A) + Con(QF -1 A)).

It is easy to see that (2) implies that there is a primitive recursive function f(p) of which it can

be proved in (QF — I A) that for every quantifier free formula <p and every proof p of <p in T, f(p)

is a proof of (p in (QF - /A) + Con(QF - I A). This, in the terminology of [4], implies that T is

proof-theoretically reducible to (QF - I A) + Con(QF — I A) conservatively for III sentences; we

denote this property by T < ((QF - I A) + Con(QF - JA))[IIi]. Thus, we get that

{T:T< (QF-IA)^])} C {T : (QF-IA) h Con*(T)} C{T:T< ((QF-IA) + Co^QF-IA))^]}

Since proof-theoretic reducibility of T\ to T2, conservatively for IIi formulas (in the above no-

tation Ti < T2[IIi]) implies that 2\ is IIi conservative over T2 (see [4], pp 368-9), theories

(QF - IA)+Rosser sentence for (QF - I A) and (QF - IA + Con(QF - IA)) show that both

(the first and respectively the second) inclusions are strict. It would be interesting to see if there

are mathematically significant theories whose consistency can be almost finitistically proved, and

which are not IIi conservative over (QF — I A).

As we observed, finding rich theories whose consistency can be almost finitistically proved is a

reductive (partial) realization of Hilbert's Program. In such a program not only do we incorporate

only a part of mathematics in our formal theories, but also we weaken the requirement of what

is to be accepted as a proof of consistency of these theories: instead of producing an "absolute"

consistency proof, we finitistically (in general: constructively) reduce the consistency of a theory

to the consistency of the finitistic (constructive) number theory19.

19 Nevertheless, having an almost finitistic proof of the consistency of a theory still seems like good grounds for a
belief in the consistency of a theory, with an argument like this. Assume the consistency of T can be proved almost
finitistically, with / supplying the necessary proofs. Yet, assume that T is inconsistent with k coding a proof of an
inconsistency in T. Then / could not find the 'erroneous' place in the proof coded by k, and consequently would not
be able to produce a finitistic proof of the fact that k does not code an inconsistency in T. But we have a reliable (i.e.
finitistic) proof of the fact that / (n) is always a proof showing that n does not code a proof of an inconsistency in
T. Thus, no number can code an inconsistency in T, and since all proofs in T are enumerated, T must be consistent.
A careful reader comparing the above argument with Proposition 3(i) will notice immediately that we implicitly
presuppose the consistency of our finitistic methods (actually we presuppose the soundness of finitistic methods for
proving a variable free primitive recursive predicate, which is, by the completeness of finitistic methods for such
predicates, equivalent to consistency).
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Reductive partial programs represent one of the most important developments in proof-theory

and philosophy of mathematics ever since Godel's destruction of Hilbert's Program in its original

form.20 The central accomplishment of a reductive program is a proof-theoretic reduction of a

theory formalizing a significant part of mathematical practice done in the classical foundational

framework to a suitable theory in a constructive (or otherwise restricted) foundational framework.

Here the notion of a constructive framework consists of rules for generating objects of a constructive

domain together with the appropriate notion of a constructive proof, which follows the construction

of objects. The most fundamental example is the constructive definition of the notion of a natural

number, where natural numbers are seen as generated by the construction of a successor.

A realization of a partial reductive program for a significant part of mathematical practice

consists of formalizing this part of mathematical practice in a classical formal theory P* and then

finding a corresponding constructive (or otherwise restricted) theory F* to which the classical theory

P* is to be reduced. This reduction consists in recognizing constructively that each P* derivation

d of a sentence (p from a class of formulas $ is (constructively) sound. This means showing in F*,

which embodies constructively valid proofs, that for each P*-derivation d one can prove in F* the

partial reflection principle for P*:

The class $ is a class of formulas which are formalizations of propositions meaningful from the

constructive standpoint taken. Formally,

F* h VdV<̂> € $PrfF*(f(d),PrfP*(d,<p) -> <p).

In this paper we consider various theories of the "Reverse Mathematics Program" as formalizing

important parts of classical mathematics and choose finitism as the most basic constructive foun-

dational standpoint. According to Tait's Thesis, we take (QF — I A) as formalization of finitism

and we take the set of 11° sentences as (again according to Tait's Thesis) corresponding to the set

of finitistically meaningful propositions21.

20Here we extensively use Sieg's presentations from [23], [22] and[20] as well as Feferman's [4], The reader is
encouraged to read these papers for further details.

21 Theories of "Reverse Mathematics Program" can also contain second order variables, so we must specify that we
consider H? sentences rather than IIi sentences as corresponding to finitisticaly meaningful propositions.
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We now show that the above kind of reduction via proving partial reflection principle for P*

is equivalent to proving the consistency of P* almost finitistically. More precisely, we have the

following proposition:

Proposition 9 Let P* be a classical theory extending (QF — I A). Then

1. If $ is a class of formulas containing all variable free formulas, and if

QF-IAh M<N<p e *Pr / ( Q F - j A ) ( / (<0 , PrfMd, <p) -> <p) (7)

then one can prove in (QF — I A) that P* is equiconsistent to (QF — I A), i.e. (7) implies

that

QF-IAY- Con(QF - I A) -+ Con(P*). (8)

2. If $ consists of exactly II? formulas, then (7) and (8) above are in fact equivalent and they

imply that it is finitistically provable that P* is 11°- conservative over QF — I A. In the ter-

minology we are using in this paper, this means that P* is proof-theoretically reducible to

(QF — I A) conservatively for 11° sentences.

Proof: To prove (1) assume (7) and take for <p the formula 1 = 0. Then

QF - IA h VdPr/ ( Q F_M ) ( / (d) , - P r / P . ( d , 1 = 0)).

On the other hand, the provable E^-completeness of (QF — I A) implies that

QF - IA h Vd(PrfP.(d, \1 = 01) -> Pr/ ( Q F_M )(a(<0, Prfp*(d, 1 = 0)))

for a primitive recursive function (p.r. function in the sequel) s(d). Thus QF — IA \- Vd(Con(QJF-

IA) -+ -P r / F . ( d , [1 = 01)), i.e. QF - IA h Con(QF - I A) -> Con(P*).

To prove (2) assume that QF-IA h Con(QF-IA) -> Con(P*). Since QF-IA h Con(P*) -

p, 1 = 0), provable S? completeness of (QF — I A) implies

QF - IA h Con(P*) -> VpThm(QF_IA)(->Prfp*(p, 1 = 0)).

This and our assumption imply

QF - IA h Con(QF - /A) -* VpThm(QF_IA)(^PrfP.(p, 1 = 0)).
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Also, elementary properties of the proof predicate together with Ei provable completeness of (QF —

I A) imply that for a p.r. function m, the following sentence is provable in (QF — I A):

V(Kd'V<pThm{QF_IA)(PrfP.(d,<p) A Prf{QF_IA)(d',^<p) - PrfP.(m(d,d'), 1 = 0)).

This implies that

QF - IA h Con(QF - I A) -

On the other hand, Lemma 8 implies that there is a p.r. function / such that

QF - IA h V<p € I

Consequently, QF-IAY- Con(QF -1 A) -> V<N<pThm(QF_IA)(Prfp.(d,<p) -+ <p). Finally, if

denotes a formalization of the set of all sentences of the language of (QF — /A), then clearly

QF - IA h VV> € Sent(^Con(QF - /A) -• r/im (gF. />1)(^)). Combining the above we get

- / A h VdT/im(gF./>1)(Pr/p.(d,v?) -+ y>), which implies (7). The second part of (2) is our

Proposition 7. This completes our proof.

Work on partial realizations of Hilbert's Program has produced truly impressive results in proof

theory as well as in isolating fragments of the second order arithmetic needed to formalize and

develop significant parts of mathematics (" The Reverse Mathematics Program"). Proof-theoretic

results of this kind axe systematically presented in Fefennan's paper [4], Sieg's papers [20], [22] and

[23], while the accomplishments of the "Reverse Mathematics Program" are presented in Simpson's

papers [18], [17]. Other relevant references can also be found in these papers.

Of course, we cannot do much set-theory or model-theory in theories whose consistency can be

proved almost finitistically; standard model-theoretic arguments for the consistency of our number-

theories like (QF - I A) or PA cannot be formalized in these theories because they do not "know"

that theories like PA or even (QF - I A) are consistent: if QF -I Ah- Con*(T) then (QF - I A) h

Con(QF - I A) -» Con(T), and so T \f Con(QF - I A) since otherwise T h Con(T), which

is impossible. Moreover, the same argument can be used to prove the following analog to the

standard Second Incompleteness Theorem.

Proposition 10 Let T be a consistent primitively recursively axiomatized theory provably extend-

ing (PRA). IfT is strong enough to prove the consistency of the finitistic reasoning about numbers,
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i.e. i /Th Con(PRA), then T \f Con*(T).

Corollary 11 We cannot prove almost finitistically the consistency of strong theories such as PA.

Interestingly, predicate Cori*(T) has, if not some naturalness, then at least some properties

similar to the properties of the "standard" Con(T) predicate. Unfortunately, to get a provability

predicate for formulas of arbitrary complexity which would correspond to the consistency predicate

Con*(T), we must define it in a roundabout way, reducing provability to consistency. Bearing in

mind that T h <p iff T + -»y> is inconsistent, we introduce the following provability predicate, which

allows us to prove for it an analogue of the First Incompleteness Theorem.

Definition 4 Let T be as before, then Thm$(<p) = -,Con*(T + -.y>).

We list a few properties of Con*(T) and Thrrtj>, comparing them with properties of the corre-

sponding standard predicates. Since all the proofs are standard and easy, we omit them. We first

relate the predicate Thm? to the standard predicate Thmx-

Proposition 12 QF - IA h Thm$(\(p\) ^ ThmT{\<p\) A Con(QF - I A).

Corollary 13 Let T be as before; then for all sentences <p and tp we have

(t) QF-IA \- Thm*T(\<p\)-+ThmT(\<p\),

QF-IA \f ThmT(\<p])-* Thm*T(\<p\);

(ii) QF-IA h Con{T)-+Con*{T),

QF-IA \f Con*(T)-*Con(T);

(in) u \= Thmj-(\ip\) <=> T \- <p,

u \= Con*(T) •$=> T is consistent;

(iv) QF-IA \f Thm$(\0 = 0]);

(v) QF-IA \- Thm*T{\<p}) «-> Thm*T(0 = 01 AThmT(\<p\),

(vi) QF-IA I- Con*(T)~-,Thm*T(\l = ti\);

(vii) QF-IA h Thm'T+lfi(\i>]) «-> Thm'T(\<p - • VI)-
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Despite having some unusual properties, Thmj(\(p]) still behaves in many respects as a provability

predicate; for example, we have the following analogue of the First Incompleteness Theorem.

Proposition 14 Let T be as before and let <p be a sentence asserting its own "star-unprovability"

in T, i.e. let (p be obtained by applying Godel's Diagonal Lemma on the predicate -«T/imj(x);

QF - IA h <p ~ ^

then T hip if and only if TV- ^Con(QF - I A), and T h - ^ if and only if TV- ^Con*(T). Thus,

ifT is an u-consistent theory, then T neither proves nor refutes (p.

The proposition that would correspond to Lob's theorem, i. e.

rhrfcmJ(|Vl)-*¥> <=> T\-<p

is true for theories having enough strength to prove Con(QF — I A), since T \- Con(QF — I A)

implies T h Thm%(\<p\) *-> ThmT(\<p\), and so

T \-ThrrCr{\<p\) -> <p <=> T h ThmT(\<p])-+<p <=> T h (p.

For weaker theories this need not be true; moreover, we can characterize the theories whose

consistency can be proved almost finitistically in terms of the following IIi "star-soundness".

Proposition 15 Let T be as before; then the consistency of T is provable almost finitistically if

and only if for all IIi formulas <p, QF — IA h Thm^ip]) —• (p.

Taking for <p a IIi sentence independent of T, for example Con(T), we get a counterexample to the

corresponding version of Lob's Theorem, because T h Thmj(\Con(T)]) —• Con(T) and, of course,

T \f Con(T).

3. Answer to the second question

We now show that the theories T which are such that 5 h Con(T) are exactly theories whose

consistency can be proved almost finitistically22. By the same argument as before, QF - / A h

"Recall that by Lemma 1 (QF - I A) C 5.
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VxPr/ (QF_M)(/(x),(V(£)l) if and only if QF - IA \- Vx3yPrf(QF_IA){y, \<p(x)]), and so we

introduce

Definition 5 Let (p be of the form Vx^(x), where V>(x) is primitive recursive. Then

AFThm(\<p\) = V*3yPrf(QF-lA){y, fa(aOD-

Here AFThm(x) stands for "almost finitistic theorem".

Thus, 9 G 5 if and only if QF - IA h AFThm(\<p\).

Proposition 16 For all Hi sentences

QF-IAY- AFThm(y) <+ (Con(QF - I A) -+ y>).

Proof: Similar to the proof of Proposition 3.

From Proposition 15 of the previous section, taking T = (QF — /A), we get that for all III

sentences </?, QF — IA V- r/im/Qp^j^ ([<£>]) —• </>; this, together with the previous proposition,

implies that for all III sentences (p

QF-IA\- ThmiQF_IA)(\<p\)

Also, just from the definitions, we have

QF-IA h Con*(T)++AFThm(Con(T)). (9)

To answer the second question we first prove the following proposition.

Proposition 17 5 and (QF — I A) + Con(QF — I A) have the same set of consequences.

Proof: Since by Corollary 4 QF-IA h Con*(QF-IA), (9) implies QF-IA h AJPr/im(Con(QF~

JA)). Thus, Con(QF - I A) € S and so, since by Lemma 1 (QF - I A) C 5, we get (QF - I A) +

Con(QF - I A) C 5. Conversely, let <p € 5; then QF - IA h AJFT/im([Vl). By Proposition 16 we

have QF - IA h AF77im(|Vl) -> (Con(Q.F - /A) -* y>), and so QF - IA h Con(QF - I A) -> 9.

Hence (QF — /A) + Con(QF — I A) h 9, which shows that all sentences from 5 axe provable in

(QF - I A) + Con(QF - /A).
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Corollary 18 Let T be as before, then S h Con(T) if and only if the consistency of T can be

proved almost finitistically.

Proof: By the previous Proposition 5 h Con(T) if and only if (QF - I A) + Con(QF - I A) h

Con(T), which is the case if and only if QF - IA h Con*(T).

Thus, if we restrict the u?-rule from Detlefsen's first claim in the same manner (and with the

same justification) as we restricted the u?-rule from Detlefsen's second claim, it turns out that this,

at the first sight stronger rule, does not provide us with more power in proving consistency of

theories than the previous one.

4. A generalization

One could argue that once we accept the above finitistically warranted u;-rule as a legitimate means

of finitistic proof, then there is no reason why we could not iterate it, i.e. use it to justify some

stronger u;-rules that are not justifiable in (QF — I A). Thus, we could build a chain of theories 5*

starting from (QF — I A) by adding to 5 t + 1 only those primitive recursive instances of the o;-rule

applied to only finitistically meaningful formulas that are already justifiable in S*.

Definition 6 Let S° = (QF - I A), and let 5 t + 1 be the collection of all sentences of the form

Vx<£>(x), for (p(x) primitive recursive, for which there exists a primitive recursive function f(x)

such that S{ h VxPr/ s ,(/(x), (V(*)l)- Then we $et S" = U^u; &.

Note that the above definition allows us to remain committed to the same class of sentences as

meaningful, and the same class of functions as acceptable.

Now one could argue that the resulting theory S" is quite close to the standard finitistic rea-

soning, with an argument as follows. Assume 5^ h 8. To prove 5, a finitist could start with some

axioms of (QF-IA) and then add in stages some instances of the cj-rule mentioned in Definition 6,

always justifying in an already obtained system any new instance he wants to add. After finitely

many steps, he gains enough power to prove 9.
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It is easy to present applications of such rules in a more natural form. Consider the following

sequence of rules and proof-systems defined simultaneously by induction. Let <JQ = (QF — /A),

where (QF — I A) is taken with a Tait style proof system (i.e. proofs are in a tree form, with axioms

and rules of inference). Let Ri+\ : ——r^vyMn-/l/? ^d at+i ^e obtained from a* by adding

the rule -Rt-fi, with the following restriction: for any application of the rule JRI+I, the immediate

subderivation above the application of the rule is a a1 derivation. It is easy to see that the sets of

theorems of a,- and S% coincide23.

But what are the theories whose consistency is provable in 5W? As before, it is easy to see

that 5* C 5 t + 1 . Also, by Proposition 5, we have QF — IA h Con^^S1), and so, again using the

fact about the provably recursive functions of (QF — /A) , we get that for some primitive recursive

function / (x ) , QF - IA h P r / s , ( / ( x ) , [-iPr/s,(x, [1 = 01)1), which implies 5 l + 1 h Con(S{).

On the other hand, in the same way as in the proof of Proposition 17 we get that for any

(p € 5 1 + 1 , S% + Con(S%) h (p. Hence, we have the following proposition.

Proposition 19 5 t + 1 and Sl + Con(Sl) have the same set of consequences.

23Transnnite progressions of theories obtained by addition of reflection principles are considered in Feferman's
paper [2], with the purpose of bridging the gap between the r.e. theories for which the incompleteness theorem holds
and theories with non-constructive set of axioms (e.g. all true sentences of arithmetic). One of them (2.16(iv)) is
similar to the way the St5s are built, except that the proofs need not be produced by primitive recursive functions and
that there are no complexity restrictions put on formulas (i.e. we add to a theory A all formulas of the form Wx(p(x)
for all <p such that A h Vx3yPr/>i(y, (V(x.)D). While the first restriction is inessential, the complexity restriction
is important: without it, starting with (QF — I A), we get in the very next step full PA (of course our complexity
restriction is imposed by what we accept as nnitistically meaningful sentences). The iteration is transfinite along a
path through Kleene's O, and the theory obtained as the union of all these iterations is the complete theory of the
structure of natural numbers. In [5] Feferman and Spector showed that there are paths through O (all IIJ ones) along
which the same procedure as above gives a theory incomplete even for Hi sentences. Proof systems with rules similar
to the one we use are discussed in great detail in SchmerFs [15]. His systems are infinitary semi-formal systems;
he also discusses a proof system with an (infinitary) u>-rule which has a side condition that it must be provable in
PRA that the rule is applied to some appropriate (infinite) collection of immediate subderivations. We, besides using
only finitary proof-systems, are allowed to use <n rather than just PRA in proving VzPr/<r-(/(x), |V(x)"|). Using the
fact that for any recursively axiomatized extension T of (QF — I A) and any II i sentence ip, T h (p if and only if
PRA + Con(T) h (p one can see that these conditions are actually equivalent. A relevant reference is also Rosser's
paper [14] which, according to [3], contains the first published discussion of the "provable" a;-rule with no restriction
on the complexity of formulas. In this paper we are mainly interested in applications of restricted forms of the omega
rule in consistency proofs, connections of these proofs with Hilbert's Program and related philosophical issues rather
than in the u?-rule itself. Most of this paper I wrote during the third year of my graduate school (1988), without
any knowledge of the above results. After reading this earlier version of the present paper David Libert called my
attention to Feferman's paper [2]. Further references were provided by Professor Solomon Feferman. I am grateful
to both of them for their help.
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Obviously in the theory Ut€u/ S% o n e c a n P r o v e consistency of more theories than in (QF — I A)

or £, but these theories do not seem to be mathematically much more interesting than theories

whose consistency is already provable in S. For example, S proves the consistency of the fragment

(Si - I A) of Z (fragment with induction schema restricted to Ei formulas), because QF — IA h

Con(QF - I A) ++ Con(Ei - I A), and S h Con(QF - I A). On the other hand the strength of

induction available in a theory whose consistency is provable in 5W is below the full S2-induction.

This is a consequence of the following proposition.

Proposition 20 5" is a subtheory o/(£2 - I A).

Proof: Let Con^QF - I A) be defined by induction for % > 0 as follows: Con°(QF - I A) =

(0 = 0); Con**1 (QF - I A) = Con((QF - I A) + Con{(QF - I A)). These sentences are obviously

IIi, and for i > 1, S{ = ((QF - I A) + Con^QF - I A)). We prove by induction on t, that

(S2 - I A) h Con^QF - /A), which is enough to prove our claim, since (£2 - I A) by definition

extends (QF - /A). For i = 0 this is trivial. Assume that (E2 - I A) h Con{(QF - /A). From

the Propositions 3.1 and 1.6 of [21] it obviously follows that for all Si formulas y>, S2 — IA h

T/im(Qp_j,4)(£) —> <£>. Taking for <p formula ^Conx(QF—IA)^ we get from our inductive assumption

E2 — IA I—xThnnqp^jj^(\'^Cont(QF — /A)]), which by the basic property of (the formalized)

proofs implies E2 — IA h Conl(QF — /A). This clearly implies the claim which was to be proved.

Corollary 21 If S" h C<m(r), then (E2 - /A) g T.

Proof: Assume that S" h Con(T) and that S2 - IA is a subtheory of T. By the previous

proposition S" would also be a subtheory of T, and consequently we would have that T proves

Con(T), which is not possible.

From what we have seen it seems that by adding stronger forms of the o;-rule as above, we

might in fact lose finitistic grounds faster than we gain power in proving consistency of theories.

This indicates why partial realizations of Hilbert's Program that encompass stronger theories which

have been accomplished so far axe of rather different nature. They involve a "radical" replacement

of finitism by other, more general and clearly non-finitaxy but still restricted means. Finitistic

methods are substituted by predicative, genetic ("inductive from below") or countably infinitary
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methods; for details we refer the reader to [4].

[1] M. Detlefsen: On interpreting GodeVs Second Theorem, Journal of Philosophical Logic,

vol 8 (1979), pp. 297-313.

[2] S. Feferman Transfinite recursive progressions of axiomatic theories, Journal of Symbolic

Logic vol. 27, (1962), pp. 259-316.

[3] S. Feferman: Introductory note to 1931c, in Kurt Godel: Collected Works vol.1 (S.

Feferman editor-in-chief ),Oxford University Press, 1986.

[4] S. Feferman:Hilbert's Program Relativized: Proof-theoretical and foundational reductions Jour-

nal of Symbolic Logic, vol. 53 (1988).

[5] S. Feferman, C. Spector: Incompleteness along paths in progressions of theories, Journal of

Symbolic Logic, vol. 27 (1962).

[6] H. Friedman: Systems of second order arithmetic with restricted induction. I, II, (abstracts)

Journal of Symbolic Logic, vol. 41 (1976), pp. 557-559.

[7] H. Friedman, S.G.Simpson, R.L.Smith: Countable algebra and set existence axioms, Annals

of Pure and Applied Logic, vol. 25 (1983), pp. 141-181; addendum, vol 28 (1985), pp.

319-320.

[8] Jacques Herbrand: Logical Writings (W. Goldfarb, editor) Harvard University Press (1971),

pp. 288-9.

[9] L. Harrington: private communication to H.Friedman.

[10] D. Hilbert: Uber das Unendliche, Mathematische Annalen, vol. 95 pp. 161-190; translated

in Philosophy of Mathematics, selected readings,(P. Benacerraf and H. Putnam, editors),

Cambridge University Press, 1983.

[11] D. Hilbert: Die Grundlegung der elementaren Zahlenlehre, Mathematische Annalen, 104,

pp. 485-494.

[12] A. Ignjatovic: Hilbert's Program and the omega-rule, unpublished manuscript, December 1988.

28



[13] A. Ignjatovic: Fragments of first and second order arithmetic and length of proofs, Ph.D.

Thesis, University of California at Berkeley, 1990.

[14] B. Rosser: Godel Theorems for non-constructive logicsJournal of Symbolic Logic, vol. 2,

(1937), pp. 129-137.

[15] U. Schmerl: Iterated reflection principles and the u-rule, Journal of Symbolic Logic vol.

47, (1982), pp. 721-733.

[16] J.R. Shoenfield:On a Restricted u-rule, Bulletin De L'Academie Polonaise Des Sciences,

vol. VII, No. 7, 1959.

[17] S.G. Simpson: Which set existence axioms are needed to prove the Cauchy-Peano theorem for

ordinary differential equations?, Journal of Symbolic Logic, vol. 49 (1984), pp. 783-802.

[18] S.G. Simpson: Partial realization of Hubert's Program, Journal of Symbolic Logic, vol. 53

(1988), pp. 349-363.

[19] S.G. Simpson: Subsystems of second order arithmetic (in preparation).

[20] W.Sieg: Foundations For Analysis and Proof Theory, Synthese, 60 (1984), pp. 159-200.

[21] W. Sieg: Fragments of arithmetic, Annals of Pure and Applied Logic, vol. 28 (1985), pp.

33-71.

[22] W. Sieg: Hilbert's Program Sixty Years Later, Journal of Symbolic Logic, vol 53, Number

2 (1988), pp. 338-348.

[23] W. Sieg: Relative Consistency and Accessible Domains, Synthese, 84 (1990), pp. 259-297.

[24] C. Smorynski: The Incompleteness Theorems, in Handbook of Mathematical Logic

(J.Barwise, editor), North-Holland, (1977), pp. 821-895.

[25] W.W. Tait: Finitism, Journal of Philosophy, vol. 78 (1981), pp. 524-546.

Department of Philosophy

Carnegie Mellon University

Pittsburgh, PA 15213-3890, USA

29


