
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.

Equivalence of Causal Models

with Latent Variables

by

Peter Spirtes and Thomas Verma

October 1992

Report CMU-PHIL-33

Philosophy
Methodology
Logic

Pittsburgh, Pennsylvania 15213-3890

Equivalence of Causal Models with Latent Variables

by Peter Spirtes and Thomas Verma

Report CMU-Phil-33

1 Introduction
In this paper, we will investigate when it is impossible to determine which of two causal

structures generated a given probability distribution, given only the set of conditional

independence and dependence relations true of the distribution.

Causal relations among a set of random variables V are represented by a directed acyclic

graph over V, where there is an edge from A to B if and only if A is an immediate cause of

B relative to V. If there is a directed path from A to B in the causal graph, we will say that

A is a (possibly indirect) cause of B. (In what follows, we will capitalize random variables,

and boldface any sets of variables. We will use the terms "vertices in a graph" and

"variables in a graph" interchangeably.)

A directed acyclic graph G over a set of random variables V can also be used to represent

the set of probability distributions over V that satisfy the following two conditions:

Markov Condition: Let Parents(X) be the set of parents of X in G (i.e. the set of Z

such that Z -> X is in G) and Descendants(X) be the set of descendants of X in a graph

G (i.e. the set of Z such that there is a directed path from X to Z in G.) A directed acyclic

graph G and a probability distribution P on the vertices V of G satisfy the Markov

condition if and only if for every X in V,X and V\({X} u Descendants(X)) are

independent conditional on Parents(X).

Faithfulness Condition: If G is a directed acyclic graph G and P is a distribution over

the set of vertices V in G, then P is faithful to G if and only if every conditional

independence relation true in P is entailed by the Markov condition for G.

Suppose we make the assumption that the probability distribution generated by a causal

structure satisfies the Markov and Faithfulness Conditions for the causal structure. (For a

justification of this assumption see Spirtes, Glymour, and Schemes forthcoming.) Then

there are a number of algorithms (Pearl and Verma 1990, Spirtes, Glymour and Schemes

1990, Spirtes, Glymour, and Scheines 1990, Spirtes, Glymour and Scheines,

forthcoming) that can find the set of causal structures compatible with the observed

conditional independence relations in a distribution. Under these assumptions, what are the

limitations of any method of causal inference that uses only conditional independence and

dependence relations to construct a set of causal structures? The answer to this question is

that no such method can distinguish between any two causal graphs G\ and G2 if satisfying

the Markov and Faithfulness Conditions for G\ entails the observed conditional

dependencies and independencies, and satisfying the Markov and Faithfulness Conditions

for G2 entails the observed conditional dependencies and independencies; let us call this

condition faithful entailment equivalence. Faithful entailment equivalence between

directed acyclic graphs is equivalent to a number of other interesting relationships between

graphs including: strong Markov equivalence (the set of distributions satisfying the

Markov Condition for G\ equals the set of distributions satisfying the Markov Condition

for G2), strong faithful equivalence (the set of distributions satisfying the Markov and

Faithfulness Conditions for G\ equals the set of distributions satisfying the Markov and

Faithfulness Conditions for G2), and weak faithful equivalence (there exist

distributions satisfying the Markov and Faithfulness Conditions for G\ and G2.)

There is a way to characterize when two directed acyclic graphs satisfy faithful entailment

equivalence that follows from results proved in Verma and Pearl (1990). (See Spirtes,

Glymour, and Scheines forthcoming.) One way of phrasing the answer is this. A pattern is

a graph which contains a mixture of directed and undirected edges. Let a pattern for a

directed acyclic graph G be a graph with the same vertices as G, the same adjacencies as G,

and each edge A - B is undirected except if there is an undirected subgraph A -> B <- C of

G, where A and C are not adjacent in G; those edges are also oriented as A -> B <- C in the

pattern. Then two directed acyclic graphs are weakly faithful equivalent if and only if they

have identical patterns.

Let us now weaken the assumptions we have made for causal inference. Suppose that the

observed distribution does not necessarily satisfy the Markov and Faithfulness Conditions

for some directed acyclic graph G representing the causal structure, but that it is the

marginal of a distribution that satisfies the Markov and Faithfulness Conditions for some

directed acyclic graph G that represents the causal structure. By observing the conditional

independence relations in a distribution, we can construct the class of latent variable models

that are compatible with the conditional independence relations in the observed marginal

distribution. This is the strategy used by the FCI Algorithm (see Spirtes 1992 and Spirtes,

Glymour, and Scheines forthcoming.)

Let O be the set of variables in the observed marginal distribution. Under these

assumptions, what are the limitations of any method of causal inference that uses only

conditional independence relations to construct a set of latent causal graphs that are

compatible with the conditional independence relations in the observed marginal

distribution? Clearly, no such method can distinguish between any two causal graphs G\

and G2 if satisfying the Markov and Faithfulness Conditions for G\ entails the observed

conditional independence and dependence relations (i.e. just those involving members of

O) and satisfying the Markov and Faithfulness Conditions for G2 entails the observed

conditional independence and dependence relations; we will call this faithful entailment

equivalence over O. (Similarly, the other notions of equivalence presented above can be

relativized to O in an analogous way.) In this paper we will describe an algorithm for

deciding when two directed acyclic graphs satisfy the faithful entailment equivalence

relationship over O that is polynomial in the number of variables in the graphs.

The general strategy that we will use to decide faithful entailment equivalence over O is

similar to the one used to decide faithful entailment equivalence, albeit much more complex.

We will describe an algorithm that given a directed acyclic graph and a set of variables O

included in the vertices of the graph constructs an object called a POIPG over O for the

graph. Two directed acyclic graphs are faithful entailment equivalent over O if and only if

the algorithm constructs the same POIPG over O for each graph.

Note that faithful entailment equivalence over O does not entail strong faithful equivalence

over O. Even if two directed acyclic graphs G\ and G2 satisfy the weak faithful

equivalence relation over O, it may be that G2 entails non-independence constraints on

marginal distributions that G\ does not. In that case, if P(O) is the marginal of a

distribution P(V) that satisfies the Markov and Faithfulness Conditions for G\9 P(O) may

violate the non-independence constraints entailed by satisfying the Markov and Faithfulness

Conditions for G2; hence no distribution satisfying the Markov and Faithfulness

Conditions for G2 has marginal P(O). For an example of this, see Verma and Pearl (1991).

We do not know whether faithful entailment equivalence over O entails weak faithful

equivalence over O.

2. Preliminary Definitions
We will need the following series of definitions to describe the algorithm.

A directed graph <V,E> is an ordered pair of a set of vertices V, and a set of directed

edges E, where members of E are ordered pairs of distinct members of V; there is at most

one edge between any pair of variables. In a directed graph G, we will write X -> Y if there

is an edge from X to Y in G, and we will say that X is a parent of Y. X and Y are

adjacent in a directed graph G if and only if either X -> Y or Y -> X in G. In a

directed graph G, an undirected path U fromX to Y (which we sometimes write as <X,

..., Y>) is a sequence of vertices starting with X and ending with Y such that for every pair

of vertices A and B that are adjacent to each other in the sequence, A and B are adjacent in

G ; X and Y are the endpoints of U. If A and B are distinct vertices on undirected path U

= <X, ..., 7>, the subsequence of U which is equal to <A,...,2J> is a subpath of U

denoted by U(AJB). An edge A -> B is on undirected path U if and only if A -> £ is in

G, and A and 5 are adjacent on U. A path consisting of a single vertex is an empty path.

A path is acyclic if no vertex in the graph occurs on the path more than once. When we

mention an undirected path £/, we will assume it is acyclic unless explicitly stated

otherwise. An undirected path U between X and Y is into X if there is some ZonU such

that there is an edge Z -> X on U> and it is out of X if there is some Z on U such that there

is an edge X -> Z on U. In a directed acyclic graph G, a directed path P from X to 7 is a

sequence of vertices starting with X and ending with Y such that for every pair of variables

A and B that are adjacent to each other in the sequence in that order, the edge A -> B occurs

in G. A directed graph is acyclic if and only if it contains no cyclic directed paths. X

and Y are adjacent on path P (as distinct from adjacent in the graph) if and only if X and

Y are adjacent in the sequence P. If an undirected path U contains an edge between X and

7, and an edge between Y and Z, the two edges collide at Y if and only if X -> Y and Z

-> Y in G. On an undirected path £/, 7 is a collider if and only if there exist edges X -> Y

and Z -> 7 in U\ it is an unshielded collider on U if it is a collider on U, and Z and X are

not adjacent in G. X is an ancestor of Y and 7 is a descendant of X if and only if there

is a directed path from X to 7. (We count the sequence consisting of a single vertex <X>

as a directed path from X to X, so X is its own ancestor and descendant, although it is not

its own parent or child.) X, 7, and Z form triangle X-Y-Z in G if and only if X is

adjacent to 7, 7 is adjacent to Z, and Z is adjacent to X in G. A trek between distinct

vertices X and 7 is an unordered pair of directed paths from some variable Z to X and 7

respectively that intersect only at Z; Z is the source of the trek. (One of the directed

paths may be an empty path, in which case Z may equal X or 7.)

Verma and Pearl (see Pearl 1988) have shown how to calculate the conditional

independence relations that are entailed by distributions satisfying the Markov condition for

a graph G using the d-separability relation. In graph G, an undirected path U between

distinct vertices X and 7 not in S d-connects variables X and 7 given a set of
vertices S not containing X or 7 if and only if (i) every collider on U has a descendent in

S and (ii) no other vertex on U is in S. Distinct vertices X and 7 are d-separated given

a set S not containing X and 7 if and only if no path d-connects X and 7 given S.

i

j

Disjoint sets of vertices X and Y are d-separated given S in G if and only if every member

of X is d-separated from every member of Y given S in G. If distribution P satisfies the

Markov and Faithfulness Conditions, then for disjoint sets of vertices X, Y, and S, X is

independent of Y conditional on S if and only if X is d-separated from Y given S in G

(Pearl 1988).

Given a directed acyclic graph G over a set of variables V, and O a subset of V, Verma and

Pearl (1991) have characterized the conditions under which two variables in O are not d-

separated given any subset of OMA^B}- If G is a directed acyclic graph over a set of

variables V, O is a subset of V containing A and By and A * B, then an undirected path U

between A and B is an inducing path over O if and only if every member of O on U

except for the endpoints is a collider on £/, and every collider on U is an ancestor of either

A or B. We will sometimes refer to members of O as observed or measured variables;

variables not in O are latent variables.

Theorem 1: If G is a directed acyclic graph with vertex set V, and O is a subset of V

containing A and 5 , then A and B are not d-separated by any subset Z of 0\{A,B} if and

only if there is an inducing path over the subset O between A and B.

The inducing paths relative to O in a graph G over V can be represented in the following

structure described (but not named) in Verma and Pearl (1990). G1 is an inducing path

graph over O for directed acyclic graph G if and only if

(i) O is a subset of the vertices in G;

(ii) there is an edge A <-> B in G1 if and only if A and B are in O, and there is an

inducing path in G between A and B over O that is into A and into B;

(iii) there is an edge A -> B in G1 if and only if A and B are in O, there is no edge A <-

> B in G\ and there is an inducing path in G between A and B over O that is out of A

and into B; and

(iv) there are no other edges in G\

The inducing path graph over O of a directed acyclic graph G also contains no directed

cycles. It can be shown that in an inducing path graph, A -> B entails that every inducing

path over O between A and B is out of A and into B\ A <-> B entails that there exists an

inducing path over O that is into A and into B, but is not incompatible with there being an

inducing path over O that is out of A and into B. A <-> B occurs in an inducing path graph

G1 when in G there is a latent common cause of A and B (i.e. there is a trek between A and

B whose source is not in O.)

We can extend the concept of d-separability to inducing path graphs if the only kinds of

edges that can occur on a directed path are edges with one arrowhead, but undirected paths

may contain edges with either single or double arrowheads. The following theorem is

proved in Spirtes, Glymour, and Scheines (forthcoming).

Theorem 2: If G is a directed acyclic graph, G1 is the inducing path graph for G over O,

and X, Y, and S are disjoint sets of variables included in O, then X and Y are d-separated

given S in G' if and only they are d-separated given S in G.

If G1 is an inducing path graph over O and A * B, let V e D-SEP(A,B) if and only if A *

V and there is an undirected path U between A and V such that every vertex on U except

for the endpoints is a collider on U and every vertex on U is an ancestor of A or 5.

Theorem 2 is proved in Spirtes, Glymour, and Scheines (forthcoming).

Theorem 3: If G is a directed acyclic graph, G' is the inducing path graph for G over O,

A and B are in O, A is not an ancestor of B> and A and B are not adjacent in G\ then A and

B are d-separated given D-SEP(A,B).

In an inducing path graph either A is not an ancestor of B or B is not an ancestor of A.

Thus we can determine whether A and B are adjacent in an inducing path graph without

determining whether A and B are dependent conditional on all subsets of O.

A partially oriented inducing path graph can contain several sorts of edges: A -> B,

A o-> 5, A o-o B, or A <-> B. Note that there is no mark at the "A" end of A -> 5; for

convenience we say that the MA!I end of A -> B is the empty mark, which we denote EM.

We use "*" as a metasymbol to represent any of the three kinds of ends (EM (the empty

mark), ">", or "o"); the "*" symbol itself does not appear in a partially oriented inducing

path graph. (We also use "*" as a metasymbol to represent the two kinds of ends (EM or

">") that can occur in an inducing path graph.)

A partially oriented inducing path graph n for directed acyclic graph G with inducing path

graph Gf over O is intended to represent the adjacencies in G\ and some of the orientations

of the edges in Gf that are common to all inducing path graphs with the same d-connection

relations as G\ If G1 is an inducing path graph over O, Equiv(G') is the set of inducing

path graphs over the same vertices with the same d-connections as G. Every inducing path

graph in Equiv(G') shares the same set of adjacencies. We use the following definition:

n is a partially oriented inducing path graph (or POBPG) of directed acyclic

graph G with inducing path graph G! over O if and only if

(i) if there is any edge between A and B in it, it is one of the following kinds:

A -> £ , B -> A, A o-> £ , B o-> A, A o-o £ , or A <-> B\

(ii) K and G' have the same vertices;

(iii) n and G1 have the same adjacencies;

(iv) if A <-> B is in n, then A <-> B is in every inducing path graph in Equiv(G');

(v) if A -> B is in it, then A -> B is in every inducing path graph in Equiv(G');

(vi) if A *-* B *-* C is in n9 then the edges between A and B, and B and C do not
collide at B in any inducing path graph in Equiv(G');
(v) if A o-> B is in n, then in every inducing path graph X in Equiv(G'), either A -> B

or A <-> B in X;
(vi) if A o-o B is in K, then in every inducing path graph X in Equiv(G!)> either A ->

5 , A <- B, or A <-> B in X.

Note that an edge A *-o £ does not constrain the edge between A and B either to be into or

to be out of B in any subset of Equiv(G'). If G is a directed acyclic graph G, and G1 an

inducing path graph of G over O, any POIPG for G over O is also a POIPG over O for

any directed acyclic graph whose inducing path graph over O is G1; hence we also speak of

the POIPG over O of G\

In a graph G, a variable X on a path U is hidden if and only if there are distinct vertices 7

and Z adjacent to X on U, and Y and Z are adjacent in G; the edge between Y and Z hides

X. In a graph G\ if £/ is an undirected path between X and 7, Z is the vertex adjacent to Y

on £/, and Z is a hidden vertex on £/, then U is a semi-inducing path between X and 7

for Z if and only if X is not adjacent to 7, every vertex on (7 except the endpoints and

possibly Z is a collider on U, and for every vertex V on U except for the endpoints and

possibly Z there is an edge V -> 7 in G.

2, The Faithful Entailment Equivalence Algorithm(Input: Gi,G2, O; Output
FE)

The input to the Faithful Entailment Equivalence Algorithm is two directed acyclic graphs

G\ and G2 and a set O of vertices that is a subset of the vertices in both graphs. The output

is a boolean variable FE that is true if and only if G\ and G2 are faithful entailment

equivalent over O.

A.) Form the inducing path graph for G\ over O using the Inducing Path Graph

Algorithm with inputs G\ and O and output G\.

B.) For each pair of variables A and B that are not adjacent in G\> using the Find D-Sep

Algorithm with inputs G\\ A, and 5, find a set of variables S such that A and B are d-

separated given S in G\. Set Sepset[y4,5] and Sepset[Z?,A] equal to S.

C.) Form the POIPG n\ for G\ over O by calling the POIPG Algorithm with inputs

G\,Gi\ O, and Sepset.

D.) Form the inducing path graph for G2 over O using the Inducing Path Graph

Algorithm with inputs G2 and O and output G21.

E.) Form the POIPG ni for G2 over O by calling the POIPG Algorithm with inputs

G2, G21, O, and Sepset.
F.). FE = TRUE if and only if only if n\ = n^.

3.1 The Inducing Path Graph Algorithm(Input: G, O: Output: G)

The input to the Inducing Path Graph Algorithm is a directed acyclic graph G with vertex

set V, and the output is the inducing path graph of G over O, where O is a subset of V. G1

is initialized to have no edges.

A). Determine for each pair of vertices /, / whether there is a directed path from / to / in

G.

B). Determine for each pair of vertices /, / whether there is a directed path in G from /

to J that does not contain any member of O except possibly for the endpoints.

C). Determine for each pair of vertices /, / whether there is a trek between / and / that

is directed into / and / and that contains no members of O except possibly for the

endpoints.

D). For each pair of variables K and L in O

for each pair of variable / and / in V that are ancestors of K or L in G

determine whether there is an undirected path between / and / that is into /

and into / such that each collider on the path is an ancestor of AT or of L, and

each member of O on the path except for the endpoints is a collider on the

path;

if there is such an undirected path between K and L, add the edge K <-> L to

G\
E). For each pair of variables K and L in O not connected by a double-headed arrow

for each ordered pair of variables / and / in V

determine whether there is an undirected path between / and J that is not into

/ such that each collider on the path is an ancestor of K or of L, and each

member of O on the path except for the endpoints is a collider on the path;

if there is such an undirected path between K and L, add the edge K -> L.

Steps D) and E) determine whether K is adjacent to L in the inducing path graph, and what

kind of edge connects them. Step A), B), and C), are simply results used in D) and E). We

discuss each step in more detail below.

Lemma 1: There is a trek between a pair of variables / and / that is into / and into / and

that contains no members of O with the possible exception of the endpoints if and only if

there is a vertex K not in O u {IJ} such that there is a directed path from K to I that

contains no member of O u {IJ} except for the endpoint /, and a directed path from KtoJ

that contains no member of O u {IJ} except for the endpoint /.

Proof. The "only if1 direction is trivial. For the "if1 direction let M be the last point of

intersection of the two directed paths. M is not equal to I or J because it occurs on both

paths. The subpaths from Mtol and MtoJ form a trek between / and / that is into / and

into / and that contains no member of O with the possible exception of the endpoints.

Q.E.D.

Lemma 2: There is an undirected path U between variables M and N that is into M if M is

in O and into N if N is in O, such that the endpoints and every collider on U is an ancestor

of / or / and every member of O on U except for the endpoints is a collider on £/, if and

only if there is an acyclic sequence of vertices from M to N such that for any pair of

vertices K and L adjacent in the sequence, K and L are ancestors of / or /, and there is a

trek between K and L that is into K if K is in O and into L if L is in O, and that contains no

member of O with the possible exception of the endpoints.

Proof. The "only if direction is trivial. We will now prove the "if direction. Suppose

that there is a sequence of vertices such that for any pair of vertices K and L adjacent in the

sequence, K and L are ancestors of / or /, there is a trek between K and L that is into K if

K is in O and into L if L is in O and contains no member of O with the possible exception

of the endpoints. It is possible to form an undirected path U between M and N out of edges

10

in the sequence of treks. Because each trek with an endpoint Q in O is into Qy and each

vertex in O occurs only as an endpoint of a trek it follows that the only edges containing a

vertex in O are into that vertex. Hence if a vertex on U is in O it is a collider on U or an

endpoint of U. Because the endpoints of each trek are ancestors of either / or /, every

vertex on each trek is an ancestor of / or /. Hence every collider on U is an ancestor of/ or

J. U is into M if M is in O because if M is in O every edge on every trek that contains M is

into M. Similarly U is into N if N is in O . Q.E.D.

Lemma 3: For each / and / in O such that there is no inducing path between / and / over

O that is into / and into /, there is an inducing path over O between variables / and / in O

that is out of / if and only if either there is a directed path from / to / that contains no

members of O except for the endpoints, or there is a vertex K such that there is a directed

path D from I to K that contains no member of O except for the endpoints, and an

undirected path U between K and / that is into K and into /, such that every member of O

that is on U except for the endpoints is a collider on U> and the endpoints and every collider

on U is an ancestor of either / or /.

Proof. The "only if1 direction is trivial. We will now prove the "if1 direction. If there is a

directed path from / to / that contains no member of O except for the endpoints then it is

trivial that there is an inducing path between / and / over O. Suppose then that there is a

directed path D from / to K, and an undirected path U between K and / that is into K, and

into 7, such that every member of O that is on U except for the endpoints is a collider on £/,

and every collider on U is an ancestor of either I or J.I is not on U because otherwise

U(IJ) is an inducing path between / and / over O that is into / and into /, contrary to the

hypothesis. Let M be the first vertex on D which is also on U. M is on a trek between some

pair of vertices A and B on U, where B is between A and /. If M is on the branch of the

trek with sink 2?, then M is not a collider or a member of O on the concatenation of D{IM)

and U(MJ), so the concatenation is an inducing path over O between / and / which is out

of /. If M is not on the branch of the trek with sink 5, it is on the branch of the trek with

sink A. In that case M is a collider on the concatenation of Z>(/,M) and U(MJ) that has a

descendant in / or /, so the concatenation is an inducing path between / and / over O that is

out of/. Q.E.D.

We repeatedly use the following Path Sum Algorithm described in Aho, Hopcroft and

Ullman (1974). Cy represents the sum over all paths of the product of labels on each path

from V(to Vj that with the possible exception of the endpoints contains only vertices in the

set {Vi,...,Vjfc}. We use Boolean addition in the algorithm, i.e. 1 + 1 = 1. The input to the

11

algorithms is a directed acyclic graph whose edges are labeled by a real number. The cost

of a path is the product of the labels of the edges on the path. The output is a cost function

c, where c(IJ) represents the sum of the costs of all directed paths from / to / . The Path

Sum Algorithm is 0(n3).

Path Sum AIgorithm(Input: G: Output: c)

A.) for 1 < ij <= n and i *j do c j <- l(VhVj)

B.) for k := 1 to n do
for 1 <= ij <= n and i *j do

G) for 1 < ij < n do c(V(Vj) <- Cj

Step A) of the Inducing Path Algorithm can be performed by setting /(K/,Vy) = 1 if there is

an edge between V/ and Vj in directed acyclic graph G and 0 otherwise. There is a directed

path from A to B in G if and only if c(AJB) = 1. If there are n vertices in a directed acyclic

graph G, then the algorithm is O(n3).

Step B) can be performed by ordering the variables so that all of the members of O are last

in the ordering. Set /(V,\V)) = 1 if there is an edge between V[and Vj in directed acyclic

graph G and 0 otherwise. Perform the Path Sum Algorithm except in step B) the inner for

loop runs only to n - m, instead of to n. There is a directed path from A to B in G that with

the possible exception of the endpoints contains no member of O if and only if c(AJi) = 1.

This step is 0Oi3).

Step C) is based upon lemma 1. First order the variables so that/, / , and all of the variables

in O follow all of the other variables. Then set l(KJL) = 1 if and only if there is a directed

edge from K to L, and apply the Path Sum Algorithm, replacing n in the inner for loop of

step B) of the Algorithm by n minus the number of vertices in O u {IJ}. c(KJL) = 1 if and

only if there is a directed path from K to L that contains no vertices in O u {IJ} with the

possible exception of the endpoints. Then there is a trek between / and / that is into / and

into / and contains no members of O except for the endpoints if and only if there is a vertex

K*I,J such that c(KJ) = c(KJ) = 1. This is O(n5) because it requires applying the Path

Sum Algorithm O(n2) times (once for each pair of vertices /, J).

12

Step D) is based on lemma 2. For a given pair of variables / and / in O, in order to

determine if there is an inducing path between / and / that is into / and into /, set l(KJL) = 1

if K is an ancestor of / or /, L is an ancestor of / or /, and there is a trek between K and L

that is into K if K is in O and into L if L is in O and contains no members of O with the

possible exception of the endpoints (determined from step C) and 0 otherwise. Then apply

the Path Sum Algorithm. Then set A <-> B if and only if c(AJS) = 1. This is O(m2n3)

because it requires applying the Path Sum Algorithm O(m2) times (once for each pair of

vertices in O).

Step E) is based on lemma 3. First set c{IJ) = 0. For a given pair of variables / and / in O

for which there is no inducing path over O between / and / into / and into /, determine if

there is a directed path from / to / that contains no member of O except for the endpoints

(from step B); if there is set cfJJ) = 1. If there is not, determine if there is a vertex K not

equal to / or /, such that there is a directed path from / to K that does not contain any

members of O except possibly for the endpoints (determined from step B), and an

undirected path U from K to / that is into K and into / and on which the endpoints and

every collider is an ancestor of / or /, and every member of O on U except for the

endpoints is a collider (determined from step D). If there is then reset c(IJ) = 1. This is

O(n3). Then set A -> B if and only if c(AJB) = 1.

The algorithm is dominated by step C), which is O(n5).

3.2 The Find D-SEP Algorithm

The input to the Find D-SEP Algorithm is an inducing path graph G and two vertices / and

/ in G\ The output S is equal to D-SEP(/,7).

Find D-SEP A!gorithm(Input: G1,/,/: Output: S)

Set 1{KJJ) = 1 if there is an edge K <-> L in G\ and K and L are ancestors of / or /.

Call Path Sum Algori thmic) .

If V * I and Visa parent of / or a parent of some vertex K for which c(IJC) = 1, add

V to S. If V * / and c(I9V) = 1, add V to S.

If / is not an ancestor of J, and / and / are not adjacent in G\ then every member V of D-

SEP(IJ) is on an undirected path between / and V that can be divided into two subpaths.

The first (possibly empty) subpath is a path that consists entirely of double-headed arrows

13

between / and some vertex X (possibly equal to V) such that each vertex on the path is an

ancestor of / or /. The second subpath, if it exists, is a single edge from V to X. The output

of the Path Sum Algorithm in this case sets c{K£) = 1 if and only if there is an undirected

path between K and L that consists of all double-headed arrows that are ancestors of / or /.

Then vertices not equal to / that are the endpoints of paths for which c(/,V) = 1 are added to

S, and vertices not equal to / that are parents of endpoints of paths for which c(/,V) = 1 are

added to S. The algorithm is O(m3) because of the call to the Path Sum Algorithm. It is

called O(rrP-) times (one for each pair of vertices in O that are not adjacent) Hence Step B

of the POIPG Algorithm is O(m5).

3.3 The POIPG AIgorithm(Input: G, O, G\ Sepset; Output: ri)

The input to the POIPG Algorithm is a directed acyclic graph G; O, a subset of the vertices

in G; G\ an inducing path graph for G over O; and Sepset, a two dimensional array of

vertices such that for each A and B in O, Sepset[A,S] is in O, Sepset[A,£] =

Sepset[B,A], and A and B are d-separated given Sepset[A J5] in G. The output is a

partially oriented inducing path graph of G relative to O. Let n be the number of vertices in

G, and m be the number of vertices in O.

A.) For each pair of vertices A and B in O, place an undirected edge between A and B

if and only if A and B are adjacent in G\

B). For each triple of vertices A, By C such that the pair A, B and the pair B, C are each ^

adjacent in F but the pair A, C are not adjacent in G\ orient A *-* B *-* C as A *-> B ":

<-* C if and only if B is not in Sepset[A,C], and orient A *-* B *-* C as A *-* B *-*

C if and only if B is in Sepset[A,C].

C). repeat

1) If there is a directed path from A to B in n, and an edge A *-* £, orient A *-

* B a s A * - > £ ,

2) else if B is a collider along <AJB,C> in n, B is adjacent to D, and A and C

are not d-connected given D, then orient B *-* D as B <-* D,

3) else if U is a semi-inducing path between A and B for M in n, and F and /?

are adjacent to M on £/, and /* - M - R is a triangle, then

if M is in Sepset[A^] then M is marked as a non-collider on subpath P *-

* M *-* /?

else P *-* M *-* R is oriented as P *-> M <-*/?.

4) else if P *-> M *-* /? then orient as P *-> M -> /?.

until no more edges can be oriented

14

(When we say orient an edge as P *-> M we mean that the orientation step does not change

the P end of the edge between P and M.)

3.3.1 Step A

Step A) is O(m2).

3.3.2: Step B

Step B) is O(m3).

3.3.3: Step C

The only difficult part of step C) is finding semi-inducing paths in a partially oriented

inducing path graph. The proof that the orientations are correct follows from Theorem 6.4

in Spirtes, Glymour, and Schemes (forthcoming).

3.3.3.1 Step Cl

This is <9(m3) using the Path Sum Algorithm.

3.3.3.2 Step C2

This is <9(m4) because it requires examining each quadruple A, 5 , C, and D of vertices in

O.

3.3.3.3 Step C3

This can be performed by the following algorithm which determines for a given quadruple

of variables A, P, M, and Ry if there is a semi-inducing path U between A and R for M on

which P and R are adjacent to M. A semi-inducing path between A and R containing sub-

path P *-* M *-* R can be broken into three parts: the subpath P *-* M *-* R\ a (possibly

empty) path U between a vertex B and P that does not contain Mori? , such that every

vertex on U is a parent of/?; and an edge A *-> B.

The input to Find Semi-Inducing Paths is an inducing path graph G\ and the output is a

variable Semi that is an array of ordered triples of vertices, such that <A,P,R> is in

Semi[M] if and only if there is a semi-inducing path for M between A and Ry containing

subpath

Algorithm Find Semi-Inducing Paths(Input: G1: Output: Semi);

15

A.) For each pair of distinct vertices M and R in G1 such that M is adjacent to /?,

1.) Call Algorithm Find Collider-Paths(M^)

2.) For each vertex P such that P is not equal to M or Ry P <-* Af and P -> R

a.) for each vertex A distinct from Af, P9 and /?, Semi[Af] = <AyPJl> if A is not

adjacent to R and A *-> P;

b.) for each pair of vertices A and 5 distinct from each other and M, P9 and /?,

Semi[M] = <A,PJi> if c(B,P) = 1, A is not adjacent to /?, and A *-> B.

Step A2) finds the third part of a semi-inducing path, and steps A2a) and A2b) find the first

and second parts of a semi-inducing path. We show below that Algorithm Find Collider-

Paths is <9(/n3). Step A2) is also O(w3). These steps are each called O(m2) times, so the

entire algorithm is <9(/n5).

The following algorithm searches for the second part of a semi-inducing path. Gf is an

inducing path graph over O, and M and R are vertices in G\ The path U between B and P

exists if and only if c(B,P) = 1.

Algorithm Find Collider-Paths(lnput: G\ Af,/?; Output: c);
A.) Order the variables in G! so that M and R come last in the ordering.

B.) For each pair of variables / and K, set 1{JJC) = 1 if and only if / <-> K in G1 and / and

K are parents of R. v

C.) Apply the Path Sum Algorithm, where the inner for loop in step B) iterates up to only

m-2.

Algorithm Find Collider-Paths is O(m3) because of step C)

3.3.3.4 Step C4

Step C4) is O(m3).

Each time the repeat loop is entered, it either adds an arrowhead to an arrow, or it marks a

vertex on a path of two edges as a non-collider, or it removes a non-colliding mark from a

vertex on a path of two edges. Hence there O(/n3) marks that can be placed on the partially

oriented inducing path graph, and the repeat loop can be entered at most O(m3) times. Each

time the repeat loop is entered, the dominating action is step C3), which is O(m5). Hence

step C) is O(m8). Overall then the complexity of the POIPG algorithm is O(w8).

16
Appendix: The Correctness and Complexity of the Faithful Entailment
Equivalence Algorithm

Lemma 6.6.1 and 6.6.2 are from Spirtes, Glymour, and Scheines (forthcoming.)

Lemma 6.6.1: Suppose that G is a directed acyclic graph, and in G there is a sequence of

vertices M starting with A and ending with C, and a set of paths F such that for every pair

of vertices / and / adjacent in M there is exactly one inducing path W over O between / and

/ in F. Suppose further that if / * C then W is into /, and if / * A then W is into /, and /

and / are ancestors of either A or C. Then in G there is an inducing path T over O between

A and C such that if the path in F between A and its successor in M is into A then U is into

A, and if the path in F between C and its predecessor in M is into C then U is into C.

In an inducing path or directed acyclic graph G that contains an undirected path U between

X and Y, the edge between V and W is substitutable for U(V,W) in U if and only if V

and W are on £/, V is between X and W on U9 G contains an edge between V and W that is

not on J7, V is a collider on the concatenation of U(X,V) and the edge between V and W if

and only if it is a collider on U9 and W is a collider on the concatenation of U(YyW) and the

edge between V and W if and only if it is a collider on U.

Lemma 6.6.2: If G! is an inducing path graph for directed acyclic graph G over O, C is v

a descendant of B in G, and U is an undirected path in G1 between X and /? containing :-

subpath A *-> 2? <-> C where A is between X and 5, then in G! there is a vertex E onU

between X and A inclusive such that the edge between E and C is substitutable for U(E,C)

in U. Furthermore the concatenation of U(X,E) and the edge between E and C is into C,

and if £/ is into X, then the concatenation of U(XJZ) and the edge between E and C is into

X.

Let the length of a path be the number of edges on the path. If there is a directed path

from a vertex C to a member of Z, let Minlength(C,Z) be the length of a shortest directed

path from C to a member of Z. If f/ is an undirected path that d-connects X and Y given Z,

let d-length(f/,Z) be the sum over the colliders C on U of Minlength(C,Z). U is a

minimal d-connecting path between X and Y given Z, if and only if U is a d-

connecting path between X and Y given Z, and there is no path W that d-connects X and 7

given Z such that either

(i) the length of W is less than the length of £/, or

17

(ii) the length of W equals the length of £7, and d-length(WO is less than d-length(tT).

Clearly if there is a path that d-connects X and Y given Z, then there is at least one minimal

path that d-connects X and Y given Z.

Lemma 4: In an inducing path graph G, if an undirected path U that d-connects X and Y

given Z contains subpath M *-> A -> /?, where M is between X and A, and there is a

vertex B o n t / such that A is between X and By there is an edge between A and 5 that is

into A and into B that is not on £7, U% is the concatenation of £7(X,A) the edge between A

and B and U(BJ), A is a collider on £/', and B is a descendant of A in G, then £7 is not a

minimal d-connecting path between X and 7 given Z.

Proof. See figure 1.

r
M • A —•/? . . . W . . .B

U\ /
Figure 1

X * A because U contains a subpath M *-> A -> R. By lemma 6.6.2 there is a vertex £

between X and Af inclusive such that the edge between £ and B is substitutable for lf(EJ5)

in £7!. Let £7" be the concatenation of U\X,E), the edge between E and 5 , and U\B,Y).

£ is a collider on £/" if and only if it is a collider on U\ and because t/XXjA) = £/(X,A),

£ is a collider on U" if and only if it is a collider on U. The edge between £ and B is into

B; hence if B is a collider on U then the edge between £ and fi is substitutable for U{Efi)

in U, and 17 is not minimal. Suppose then that B is not a collider on U. Let W be the vertex

on U adjacent to B and between B and X. If B is not a collider on U% then 5 is not a

collider on U, the edge between £ and B is substitutable for U{E,B) in £/, and £/ is not

minimal. Suppose then that B is a collider on U\ Because B is a collider on (7, but not on

Uj it follows that there is a directed edge B ->W on U. Hence some descendant of B on U

is a collider on £/, and has a descendant in Z. It follows that 5 has a descendant in Z. On

U", every vertex except B is a collider on U" if and only if it is a collider on U. B is a

collider on £/", and has a descendant in Z. Hence 17" d-connects X and y given Z. But

£7" is shorter than U9 so £7 is not minimal. Q.E.D.

18

Lemma 5: In an inducing path graph G\ if U is a path that d-connects X and 7 given Z,

and there are vertices M and N on U that are adjacent in G1 but not on £/, and the edge

between M and N is substitutable for U{Mff) in [/ then £/ is not a minimal d-connecting

path between X and 7 given Z.

Proof. Suppose without loss of generality that M is between X and N. Let Ux be

concatenation of U{XM), the edge between Af and N, and U{NJ). By the definition of

substitutable, for every vertex V on C/1, V is a collider on £/' if and only if it is a collider on

£/. Because U d-connects X and 7 given Z, £/' d-connects X and 7 given Z. But Ux is

shorter than (/, so £/ is not minimal. Q.E.D.

In a graph G, if t/ is an undirected path between X and 7 that contains vertices A and 5, A

is between X and 5, there is an edge between A and B that is not in U> and A is a collider

on £/ if and only if A is not a collider on the concatenation of C/(Xy4) and the edge between

A and B9 then the edge between A and 5 disagrees with U(AJ}) in C/ at A.

If U is an undirected path between X and 7, we will say that A is on the X side of B if

and only if A is equal to X or A is between X and 5 on U. If £i and £2 are single-headed

edges (i.e. "->" and not "<->") that hide vertices on U9 then E\ and £2 point in the

same direction whenever the end of E\ with an ">" is on the X side of the end of E\

without an arrow if and only if the end of £2 with an ">" is on the X side of the end of £2

without an arrow. See figure 2.

El E2

• C • £ • G

Figure 2: £1 and £2 point in the same direction

Lemma 6: In an inducing path graph G1 over O, if U is a minimal d-connecting path

between X and 7 given Z, and W is a hidden variable on £/, then there is a unique subpath

of U that is a semi-inducing path for W.

Proof. Suppose that W is a hidden variable on U and U is a minimal d-connecting path

between X and 7 given Z. First we will show that some subpath of U is a semi-inducing

path for W. Let /? be the vertex on U adjacent to W and on the X side of W, and V be the

19

vertex on U adjacent to W and on the 7 side of W. Let E be the edge between R and V. See

figure 3.

X * * • • • R * *W * *V • • • * * 7

Because U is a minimal d-connecting path between X and Y given Z, by lemma 5 E

disagrees with U(R,V) inUatR or V. Note that if E disagrees with U(R,V) in U at /?, then

£/(*,/?) is into /? and £/(/?,7) is out of/?, and if E disagrees with £/(/?, V) in U at V then

U(VJ) is into V and U(VX) is out of V. There are three cases: either V <-> R in G\ V ->

/? in G\ or R -> V in G1. Let £/' be the concatenation of UQCJR), E and U(VJ).

Suppose first that V <-> R in G\ If U is a minimal d-connecting path between X and 7

given Z then the edge between V and /? disagrees with U(VJR) on (7 at/?, or 7, or both.

Hence on £/, either V -> W, or /? -> W9 or both. Suppose first that R->W and V -> W. It

follows that W is a collider on £7, and because C7 d-connects X and 7 given Z, W has a

descendant in Z. Hence V and /? have descendants in Z. Every vertex on £/f except for V

and /? is a collider on If if and only if it is a collider on U\ and V and /? are colliders on U

and have descendants in Z; hence U d-connects X and 7 given Z if J7 does. It follows that

U is not a minimal d-connecting path between X and Y given Z, contrary to our

assumption. Suppose then without loss of generality that R->W and W *-> V. If W <->

V, then R has a descendant in Z because W is a collider on U; also V is a collider on If if

and only if it is a collider on U. Hence U' d-connects X and Y given ZifU does. It

follows that U is not a minimal d-connecting path between X and 7 given Z, contrary to

our assumption. Suppose then that W -> V on £/. Let r be the vertex adjacent to R on £/,

and on the X side of /?. If T <- R on £/ then the edge /? <-> V is substitutable for the

subpath U(R,V) in U, and £/ is not a minimal d-connecting path between X and 7 given Z,

contrary to our assumption. If T *-> /? then by lemma 4, [/ is not a minimal d-connecting

path between X and 7 given Z, contrary to our assumption.

The cases V -> R and /? -> V are essentially the same as each other, so without loss of

generality we will consider only the case where R -> V. Suppose that R -> V in G\ First

we will show that R -> V disagrees with U(Ry) in U at/?. Suppose that R ->V agrees

20

with U(R,V) in £7 at/?. Because £7 is minimal, R -> V disagrees with U(R,V) in £7 at V. It

follows that V -> W in G\ Because G1 is acyclic, R *-> W in G\ Hence W is a collider on

£7, and has a descendant in Z. It follows that although V is a collider on £7* but not on £7, it

has a descendant in Z. Every vertex except V on £7' is a collider on £7' if and only if it is a

collider on £7. Hence £7 is not a minimal d-connecting path between X and 7 given Z,

which is a contradiction. It follows that R->V disagrees with U(R,V) in £7 at /?. Hence R

is a collider on £7.

Let 5 be the vertex on U(XJl) closest to R such that either there is no edge 5 -> V in G\

or 5 is not a collider on £7. It follows that for all vertices M between 5 and W on £7 that M

-> V in G\ and M is a collider on £7. There are four cases: either 5 -> V, 5 is not adjacent

to Vj there is an edge 5 <- V in G\ or an edge 5 <-> V in G1 If 5 and V are adjacent, let

£7' be the concatenation of U(X9S)9 the edge between 5 and Vy and

Suppose first that there is an edge 5 -> V. By assumption then 5 is not a collider on £7. If 5

-> V agrees with £7(5,V) in £7 at V, then it follows that the 5 -> V edge is substitutable for

£7(5,V) in £7, and £7 is not minimal. Suppose then that 5 -> V disagrees with £7(5,V) in £7

at V. It follows then that V is not a collider on £7, but is a collider on £7'. Hence the edge

between V and W on £7 is V -> W. It follows that V has a descendant that is a collider on

£7, and hence V has a descendant in Z. It follows that £7f d-connects X and 7 given Z, so

£7 is not a minimal d-connecting path between X and 7 given Z.

Suppose next that 5 is not adjacent to V. Then U(SyV) is a semi-inducing path for W.

Suppose next that 5 <-> V in G\ First we will show that either V is a collider on both £7

and £7', or that V is a collider on £7! and has a descendant in Z. If V is not a collider on £7

and £7' then V is a collider on £7' but not on £7. Hence the edge between W and V on £7 is

oriented as V -> W. It follows then that V has a descendant on £7 that is a collider on £7,

and hence V has a descendant in Z. It follows that either V is a collider on both £7 and £7',

or that V is a collider on £7f and has a descendant in Z. If 5 is a collider on both £7 and £7',

then £7' d-connects X and 7 given Z, and £7 is not a minimal d-connecting path between X

and 7 given Z. Suppose then that 5 is a collider on £7', but not on £7. It follows that there

exist vertices M and N on £7 such that £7 contains the subpath M *-> 5 -> TV, where 5 is

between N and X. There is an N-> V edge by the definition of 5, so 5 is an ancestor of V.

By lemma 4 then, £7 is not a minimal d-connecting path between X and 7 given Z.

21

Suppose finally that V -> S in G\ S * R because otherwise there is a directed cycle in G\

and 5 * W because 5 is on the X side of W. Let T be the vertex on £7 adjacent to 5 and

between 5 and Y. There is no 5 -> T edge in G1 else G1 is cyclic. Because S * W, T is a

collider on £7, so there is an edge S <-> T on £7. Let A be the vertex on £7 that is adjacent to

T and not equal to 5. If A * W, then A is a collider on £7 and an ancestor of V. Hence,

there is a path between 5 and A on which each vertex except the endpoints is a collider, and

each collider is an ancestor of 5 (because V is an ancestor of S.) By lemma 6.6.1 there is

an S <-> A edge in G\ It is substitutable for U(SA) in £7 and hence £7 is not minimal.

Suppose then that A = W (in which case T = /?). By lemma 6.6.1, there is an 5 <-* W

edge in G\ If S <- W in G\ then /? <- W in G\ so S <- W is substitutable for U(S9W) in

£7, and £7 is not minimal. If S <-> W in G1, then if R <-> W in G1, 5 <-> W is

substitutable for U(S,W) in £7, and £7 is not minimal. If not R <-> W in G\ it follows that

/? <- W in Gf because R is a collider on £7. W is not in Z but has a descendant (R) that has

a descendant in Z. Hence the concatenation of C/(X,S), the edge between S and W, and

C/(M ,̂y) d-connects X and 7 given Z, and 1/ is not a minimal c-connecting path between X

and 7 given Z.

Now we will show that there is at most one subpath of U that is a semi-inducing path for

W. Suppose contrary to the hypothesis that £7/ and Uj are distinct subpaths of U that are

semi-inducing paths for W. Let En be the vertex on 17/ that is adjacent to W, and £2/ be the

other endpoint of £7/. Similarly, let Ey be the vertex on Uj that is adjacent to W, and £2/ the

other endpoint of £7;-. If En * E\p then Ey is on £7/, Eiy * W, and £iy * £2/ (because £2/

is not adjacent to W. Hence E\j is a parent of En. Similarly, En is a parent ofE\j. It

follows that G1 is cyclic, which is impossible. Suppose then that En = E\j. It follows that

£2/ ft Eiy Hence either £2/ is on Uy or £2/ is on £7/. Suppose without loss of generality

that £2/ is on [7/. £2/ * £1/ because £2/ * £1/. £2; * W by definition of semi-inducing

path for W. It follows that £2/ is a parent of £1/, and hence of E\y But then Uj is not a

semi-inducing path for W. Q.E.D.

Lemma 7: In an inducing path graph G\ if U is a minimal d-connecting path between X

and F given Z, then there is no pair of distinct vertices A/, Ay such that A/ is a hidden

vertex on the semi-inducing path for Aj on U, and Ay is a hidden vertex on the semi-

inducing path for A/ on U.

Proof. Let £7; be the semi-inducing path for A/ on £7, and £7y be the semi-inducing path for

Ay on £7. Let E\\ be the endpoint of £7/ that is adjacent to A/, and £2/ be the other endpoint

of £7/. Similarly, let £iy be the endpoint of £7y be the endpoint of £7y that is adjacent to Ay,

22

and £2/ be the other endpoint of Uj. By hypothesis, A/ is a hidden vertex on Uj. Hence Al-

lies between £ y and E^j exclusive. Similarly, Ay lies between E\i and £2/ exclusive. A/ is a

collider on £/y and hence on U, because A/ is on £/y, and is not equal to either of the

endpoints or Ay. Similarly, Ay is a collider on £//, and hence on U.

En is adjacent to A/, and hence between £ y and £2/ inclusive. Similarly, Ey is between £1/

and £2/ inclusive.

We will now show that En * Ey. Suppose on the contrary that En = Ey. Then A/ and Ay

are on opposite sides of En, and Ay is not on £//, contrary to our hypothesis.

Suppose then that En = £2y. Then all of the vertices between En and £2/ are colliders and

ancestors of En, with the possible exception of A/. However, A/ is a collider on £//

because it is a collider on U, and not an endpoint of £//. Also A/ is an ancestor or Eij

because it is on Uj, is not an endpoint of Uj, and is not equal to Ay. Because £2/ = £l/> A/

is an ancestor of £1/. Hence every vertex between En and £2/ is a collider and an ancestor

of either En or £2/. But then there is an inducing path between En and £2/, so £1/ and £2/

are adjacent It follows then that U[is not a semi-inducing path, contrary to our hypothesis.

Similarly, if £ y = £2/, then Uj is not a semi-inducing path, contrary to our hypothesis.

Suppose then that En * £2/ and £ y * £2/. £1/ is on Uj, it is not an endpoint of Uj, and it *?

is not equal to Ay (because Ay is between En and £2/). Hence En is an ancestor of Ey.

Similarly £ y is an ancestor of £1/. But then G is cyclic, contrary to our assumption.

It follows that it is not the case that both A/ is a hidden vertex on the semi-inducing path for

Ay on U and that Ay is a hidden vertex on the semi-inducing path for A/ on U. Q.E.D.

Lemma 8: In an inducing path graph G\ if U is a minimal d-connecting path between X

and Y given Z, then there is no triple of distinct hidden vertices A/_i, A/, A/+i on U such

that A/-i is a hidden vertex on the semi-inducing path for A/ on U, A/ is a hidden vertex on

the semi-inducing path for A;+i on U, and A/+i is between A/ and A/-i on U.

Proof. Let £// be the semi-inducing path for A/ on £/, and similarly for t / r + i . Because A/.i

is a hidden vertex on the semi-inducing path for A/ on U, every vertex between A/_i and A/

is on the semi-inducing path for A/ on U. Hence A/+i is on the semi-inducing path for A/

on U. Because A/+i is between A/ and A/-i, and neither A/ nor A/.i is an endpoint of £//,

23

is not an endpoint of £//; it follows that each of the vertices adjacent to A/+i on U are

also on £//. Because A/+i is a hidden vertex on t/, and both of the vertices adjacent to A/+i

are also on the semi-inducing path for A/ on (7, A/+i is a hidden vertex on £//. By

hypothesis, A/ is a hidden vertex on l//+i. But this contradicts lemma 7. Q.E.D.

Lemma 9: In an inducing path graph G\ if U is a minimal d-connecting path between X

and Y given Z, then there is no quadruple of distinct hidden vertices A/, A r + i , Ar, A;+i in

that order on U such that A/ is a hidden vertex on the semi-inducing path for A/+i on U,

and Ar is a hidden vertex on the semi-inducing path for Ar+i on U.

Proof. Let £/;+i be the semi-inducing path for A/+i on U, and similarly for £/r+i. Suppose

contrary to the hypothesis there is a quadruple of distinct hidden vertices A/, A r+i, Ar, A/+i

in that order on U such that A/ is a hidden vertex on the semi-inducing path for A/+i on £/,

and Ar is a hidden vertex on the semi-inducing path for Ar+i on U. Ar+i is on £//+i because

it is between A/ and A/ +i, and A/ is on £//+i. Ar+i is a hidden vertex on £/, and both of the

vertices adjacent to Ar+\ on U are also on t/f+i, because A r+i is not an endpoint of I//+1.

Hence Ar+i is a hidden vertex on t//+i. Similarly, A/+i is a hidden vertex on £/r+l- But this

contradicts lemma 7. Q.E.D.

Lemma 10: In an inducing path graph G\ if U is a minimal d-connecting path between X

and 7 given Z, then there is no sequence of length greater than 1 of distinct vertices

<Ai,A2,...>An>Ai> such that for each pair of vertices A/, A/+i that are adjacent in the

sequence, A/ is a hidden vertex on the semi-inducing path of A/+i on U.

Proof. Suppose without loss of generality that A1 is to the right of An on U. Let r be the

highest index such that Ar is to the right of A\ and A r+i is to the left of Ai, if such a pair

exists; otherwise let r = 1. We will now show that A r+i is to the left of An. Suppose first

that r = 1. We will show that all vertices not equal to A1 are to the left of A\. Suppose some

vertex is to the right of A1. Let A/ be the vertex with the highest index to the right of A\.

By hypothesis, there is a vertex with index n > i such that An is to the left of Ar, hence

there is a vertex A/+i in the sequence. A;+i is to the left of A\ by definition. But then r

* 1. It follows that if r = 1, every vertex except A1 is to the left of A\, so A2 is to the left

of A\. A2 * An by lemma 7. By lemma 8 then Ai is not between A\ and An, so it is to the

left of An. If r * 1, then A r+i is not between A\ and An by lemma 9. Hence A r+i is to the

left of An.

We will now show that some vertex As+\ whose index is greater than r+1 is to the right of

Ar. Ar+2 is not equal to An by lemma 8. Ar+2 is not between Ar+i and Ar by lemma 8. Ar+2

24

is not between Ar and Ar+\ by lemma 8. There are two cases. If Ar+2 is to the right of Ar,

then we are done. Suppose then that Ar+2 is to the left of A r+i. It follows that there is some

vertex with index greater than r+2 (e.g. An) on the other side of Ar+\. Let As and A5+i be

on opposite sides of Ar+\ (where As is to the left of Ar+\.) A5+i is not between Ar+i and Ar

by lemma 9. So A^+i is to the right of Ar.

We will now show that some vertex At whose index is greater than $+1 is to the left of As.

Aj+2 is not between As and As+\ by lemma 8. If As+2 is to the left of As then we are done.

Suppose then As+2 is to the right of As+\. Then there some vertex with index greater than

s+2 on the other side of As+\ (e.g. An.) Let At and At+\ be on opposite sides of A^+i, with

At to the right of As+\. At+\ is not between As and As+\ by lemma 9. It follows that At+\ is

to the left of As and hence to the left of A\. But then At and At+\ are on opposite sides of

A\9 and t is greater than r. But if r = 1 there is no pair of vertices on opposite sides of Ai,

and if r * 1, then r is the highest index such that Ar and Ar+\ are on opposite sides of A\.

Hence there is a contradiction. Q.E.D.

We will now recursively define the order of a semi-inducing path for a hidden variable on a

minimal d-connecting path. If U is a minimal d-connecting path between X and Y given Z,

and W is a hidden variable on U such that the semi-inducing path for W on U contains no

hidden variables other than W, then W is a 0-order hidden variable on U. If U is a minimal

d-connecting path between X and Y given Z, and W is a hidden variable on U such that the

maximum order of any other hidden variable on the semi-inducing path for W on U is n-1,

then W is an n*-order hidden variable on U.

Lemma 10 guarantees that this recursive definition is sound, because it guarantees that if U

is a minimal d-connecting path between X and Y given Z that contains hidden variables,

then there is a 0 order hidden variable on U and also that the definition of the order of any

hidden variable W on U is not defined in terms of the order of W.

From the definition of partially oriented inducing path graph, it follows that if n is a

partially oriented inducing path graph for a directed acyclic graph G over O, and G1 is the

inducing path graph for G over O, then if a path U is a semi-inducing path for W in n, then

it is a semi-inducing path for W in G\ Let us call the nih stage of the POIPG

Algorithm the stage that occurs at the nth iteration of the repeat loop in step C) of the

POIPG Algorithm. Let us call the POIPG produced by the POIPG Algorithm with inputs

G\ O, and Sepset the POIPG Algorithm partially oriented inducing path graph

25

for G1 over O using Sepset. (Including as inputs to inducing path algorithm both G and

G1 (the inducing path graph for G over O) is somewhat redundant Hence we will also

speak of the POIPG Algorithm partially oriented inducing path graph for G over O using

Sepset.)

Lemma 11: If G' is an inducing path graph, U is a minimal d-connecting path between X

and Y given Z in G\ U^Afi) is a semi-inducing path for R in G\ n is the POIPG

Algorithm partially oriented inducing path graph for G1 over O using Sepset, nn is the

partially oriented inducing path graph for G1 constructed at the n th stage of the POIPG

Algorithm, UniA^B) is the path corresponding to U{A£) in nn, UXAfi) is the path

corresponding to U(AJB) in %, and if there exists an n such that every vertex on Un\AJ3)

except for R is oriented as a collider, then U\AJB) is a semi-inducing path between A and

B in n.

Proof. The proof is by induction.

Base Case: Let <AM->N> be the first three vertices on Un\AJS) in it. M is a collider on

Ul
n\A J5) in nn by hypothesis. M -> B in G1 because £/(A,B) is a semi-inducing path for

R on U. Hence M is adjacent to B in /rn. A, M, and B are not in a triangle in %n because A

and B are not adjacent in G\ Hence the edge from M to B is oriented as Af -> B in ^ by the

POIPG Algorithm.

Induction Case: Let 5 be the m* vertex on Un\AJ}). Let the induction hypothesis be that •

for each vertex C between A and 5, the edge between C and B has been oriented as C -> B.

A is not adjacent to B, so it follows that the concatenation of Un\A,S) and the edge

between S and B is a semi-inducing path for S. Hence the POIPG algorithm orients the

edge between 5 and B as 5 -> B.

It follows that U\AJB) is a semi-inducing path in n. Q.E.D.

In a POIPG 7T, let us say that B is a definite non-collider on an undirected path U if and

only if either B is an endpoint ofUorU contains a subpath <AJS,C> and either A <- B *-

* C, A *-* 5 -> C, or A *-* £ *-* C in n. In a POIPG n, if X * 7, and X and y are not in

Z, then an undirected path U between X and Y definitely d-connectsX and Y given Z

if and only if every collider on U has a descendant in Z, and every definite non-collider on

U is not in Z. X and y are definitely d-connected given Z in ^r if and only if some

26

path definitely d-connects them. X and Y are definitely d-connected given Z if and

only if some X in X and some Y in Y are definitely d-connected given Z.

Lemma 12: If G' is an inducing path graph over O, it is the POIPG Algorithm partially

oriented inducing path graph for G1 over O using Sepset, U is a minimal d-connecting

path between X and Y given Z in G\ U(AJi) is a semi-inducing path on U for/? in G\

U\AJi) is the path corresponding to U(AJi) in n, then \J\Afi) is a semi-inducing path

for R in n.

Proof. The proof is by induction on the order of the semi-inducing path. Let M be the

semi-inducing path from a variable W on £/, Mn' be the corresponding path in nm, and M

the corresponding path in n.

Base Case: Suppose that W is a hidden variable on £7, and M is zero order. Because M

contains no hidden variables other than W, in n every vertex on M except W and the

endpoints is oriented as a collider on M by the POIPG Algorithm. By lemma 11, Mf is a

semi-inducing path in n. Hence the POIPG Algorithm orients W as a collider or a definite

non-collider on If.

Induction Case: Suppose that W is a hidden variable on £/, Af is rfi1 order, and all of the

hidden variables on Mn' except W of order n-1 or less have been oriented as colliders by

the POIPG algorithm. It follows that all of the colliders on Mn' except for W are oriented. v

By lemma 11, Af is a semi-inducing path for W in n. Hence W is oriented as a collider or a *

definite non-collider on If in n by the POIPG Algorithm. Because each of the vertices on

U except for the endpoints and possibly R is a collider on U in G\ each of the vertices on

If except for the endpoint and possibly R is a collider on If in n. Hence by lemma 11, IT

is a semi-inducing path for R in n. Q.E.D.

Lemma 13: If G' is an inducing path graph, n is the POIPG Algorithm partially oriented

inducing path graph for G1 over O using Sepset, and U is a minimal d-connecting path

between X and Y given Z in G\ then the corresponding path £/' in n definitely d-connects

X and Y given Z.

Proof. First we will show that every vertex on If is a collider or a definite non-collider. If

there are-no hidden variables on If, this follows from step C) of the POIPG Algorithm. If

there are hidden variables on U\ then by lemma 12, for each hidden vertex C on U\ the

path in n corresponding to the semi-inducing path for C on U is a semi-inducing path for C

27

in n. Hence C can be oriented as a collider or a definite non-collider by the POIPG

Algorithm. Hence every vertex on If is either a collider or a definite non-collider.

Suppose now that some collider C on U has a descendant in Z in G\ Let V be the shortest

path in G1 from C to a variable in Z. Suppose that there is a hidden vertex W on V, and the

edge hiding W is between A and £ , where A is before £ on V. We will now prove by

induction that for every vertex 5 between C and A inclusive on V, there is an edge 5 <-> B

in G1 by induction on the number of vertices preceding A on V.

Base Case: In G\ the edge between A and B is not A -> B else V is not the shortest path

from C to a member of Z. The edge is not B -> A because G' is acyclic. Hence the edge is

Induction Case: Let T be the n* vertex before A on V, and let the induction hypothesis be

that there is a T <-> B edge in G\ Let S be the predecessor of T on V. There is an edge S

-> T in G1 because that edge is on V. Hence there is a path 5 -> T <-> 5 in G\ and B is a

descendant of T in G\ This is an inducing path between S and B in G\ so there is an edge

between 5 and B in G\ The edge is not S -> J3, else V is not the shortest path from C to a

member of Z. The edge is not B -> S because G1 is acyclic. It follows that the edge is S <-

Let R be the vertex between X and C that is adjacent to C on 17, and let 5 be the vertex

between Y and C that is adjacent to C on U. There are three cases: either B is on t/(X,/?),

or 5 is on U(S,Y)i or B is on neither.

Suppose first that B is on U(XJi). It follows that B is not on U(S,Y) because U is acyclic.

Let Ui be the concatenation of U(Y,C) and the C <-> B edge; t/2 is acyclic because B is

not on U(Y,C) and £/(Y,C) is acyclic. Because C is a collider on C7, there is an 5 *-> C

edge on £/, and hence on Ui- By lemma 6.6.2 there is a vertex F between Y and 5

inclusive such that the edge between F and B is substitutable in U2 for L^CF^), and the

edge between F and fi is into B. Let C71 be the path that is the concatenation of t/2(Y,F),

the edge between F and B and U(B,X). t/1 is acyclic because U2(YJF\ the edge between F

and 5 and U(BJC) are each acyclic, U2(Y,F) and t/(£,X) do not intersect, U2(Y,F)

intersects the edge between F and B only at F, and the edge between F and £ intersects

U(BJT) only at B. Because the edge between F and 5 is substitutable in U2 for U2(FJi)y F

is a collider on Ux if and only if it is a collider on U^ It follows that F is a collider on U if

28

and only if it is a collider on U. If B is a collider on U and on IT or on neither U nor U\

then IT d-connects X and Y given Z, so £/ is not minimal. Suppose then that B is a collider

on £/' but not on U. Let H be the vertex adjacent to 5 on f/ and between 5 and C. Because

5 is a collider on U but not on £/\ it follows then B is not in Z, but that there is an edge B

*-> H on £/, so B has a descendant who is a collider on £/, and hence has a descendant in

Z. Hence £/' d-connects X and 7 given Z. LT is shorter than £/ because it replaces the

subpath U(FJi) with a single edge between F and 5. Hence U is not a minimal d-

connecting path between X and Y given Z.

The case where B is on U(SyY) is analogous to the previous case.

Suppose then that B is not on U(S,Y) or U(XJR). Let t/i be the concatenation of U(X,C)

and the C <-> B edge. U\ is acyclic because U(X,C) is acyclic and 5 is not on U(XJR).

Because C is a collider on £/, there is an R *-> C edge on U, and hence on U\. By lemma

6.6.2 there is a vertex £ between X and /? inclusive such that the edge between E and B is

substitutable in U\ for U\(EJB), and the edge between £ and 5 is into B. Let £/i' be the

path that is the concatenation of U\QLJE) and the edge between E and B. Because the edge

between E and B is substitutable in U\ for U\(EJB), E is a collider on £/i' if and only if it

is a collider on C/i. It follows that E is a collider on £/i' if and only if it is a collider on U.

Similarly, let U2 be the concatenation of U(Y,C) and the C <-> B edge. U2 is acyclic

because £/(F,C) is acyclic and B is not on U(YyS). Because C is a collider on £/, there is ^

an S *-> C edge on £/, and hence on XTi* By lemma 6.6.2 there is a vertex F between Y

and 5 inclusive such that the edge between F and B is substitutable in U2 for U2(FJB), and

the edge between F and B is into 5. Let U2 be the path that is the concatenation of

U2(YJ7) and the edge between F and B. Because the edge between F and B is substitutable

in U2 for U2(FJB)y F is a collider on £/2 if and only if it is a collider on C/2. It follows that

F is a collider on U2 if and only if it is a collider on U.

Let (7 be the concatenation of UQL>E\ the edge between E and 5, the edge between B and

F, and U(F,Y). U(X,E) does not intersect the edge between E and B except at £, it does

not intersect the edge between B and F, and it does not intersect C/(F,F). The edge between

E and B intersects the edge between B and F only at By and it does not intersect t/(F,7).

The edge between B and F intersects U(F,Y) only at F. Hence IT is acyclic. It is no longer

than £/, because it replaces U(JEyC) with the single edge between E and B, and U(CJF) with

the single edge between 5 and F. With the possible exception of B, every vertex on U1 is a

29

collider on £/' if and only if it is a collider on U. B is a collider on U\ and B has a

descendant in Z. Moreover, the shortest path from B to a member of Z is shorter than the

shortest path from C to a member of Z, because 2J is after C on V. Hence £/ is not a

minimal d-connecting path between X and F given Z.

In any of these cases it follows from the assumption that there is a hidden vertex on V that

U is not a minimal d-connecting path between X and Y given Z; hence there is no hidden

vertex on V. Let V be the path corresponding to V in n. C is a collider on £/' in /r, and

because there is no hidden variable on V in G\ there is no hidden variable on V1 in n, and

V is a directed path in n.

Hence U definitely d-connects X and Y given Z in n. Q.E.D.

Theorem 4: If G is a directed acyclic graph, and % is the POIPG Algorithm partially

oriented inducing path graph for G over O using Sepset, for any set of vertices Z u

{A,B} included in O, A and B are d-connected given Z in G if and only if they are

definitely d-connected given Z in /r.

Proof. Because n is a partially oriented inducing path graph for G over O, it follows

trivially that A and B are d-connected given Z in G if they are definitely d-connected given

Z in K. Lemma 13 entails that A and B are d-connected given Z in G only if they are

definitely d-connected given Z in n. Q.E.D.

Corollary 1: If G is a directed acyclic graph, and ;ris the FCI partially oriented inducing

path graph for G over O, for any set of vertices Z u {AJS} included in O, A and B are d-

connected given Z in G if and only if they are definitely d-connected given Z in n.

Proof. The output of the FCI algorithm is a partially oriented inducing path graph for G

over O so A and B are d-connected given Z in G if they are definitely d-connected given Z

in n. The POIPG Algorithm partially oriented inducing path graph for G over O orients a

subset of the edges that the FCI Algorithm orients, so it follow from lemma 13 that A and

B are d-connected given Z in G only if they are definitely d-connected given Z in K.

Theorem 5: The Faithful Entailment Equivalence Algorithm is correct

Proof. The Faithful Entailment Equivalence Algorithm is correct if when G\ and Gi are

inducing path graphs over O of directed acyclic graphs G\ and G2, then G\ and Gi have

the same d-connection relations if and only if the POIPG partially oriented inducing path

graphs for G\ and Gi using Sepset are the same.

30

Suppose first that G\ and G2 have the same d-connection relations. It follows that they

have the same adjacencies. Hence step A) of the algorithm yields the same results for TTI

and #2- Furthermore, Sepset[A JB] was constructed so that if A and B are not adjacent in

G\\ A and B are d-separated by Sepset[A,S] in G\\ Hence for any two non-adjacent

vertices A and B in G2, Sepset[A,£] d-separates A and B in Gi because Sepset[A,£]

d-separates A and B in G\\

After step A), the rest of the algorithm depends only upon Sepset, which is the same for

both calls to the algorithm. It follows that G\ and Gi have the same POIPG Algorithm

partially oriented inducing path graphs over O using Sepset.

By lemma 13, if Gi' and Gi have the same POIPG Algorithm partially oriented inducing

path graphs over O using Sepset they have the same d-connection relations. Q.E.D.

Theorem 6: If the inputs to the Faithful Entailment Equivalence Algorithm are directed

acyclic graphs Gi, G2, and subset of vertices O, and the graph with the largest number of

vertices has n vertices, and O has m vertices, then the Faithful Entailment Equivalence

Algorithm is O(m8 + n5).

Proof. This follows from the fact that the two dominating steps in the Faithful Entailment

Equivalence Algorithm are the Inducing Path Graph Algorithm which is O(n5), and the

POIPG Algorithm, which is O(m8).

31

References

Aho, A., Hopcroft, J., Ullman, J. (1974). The Design and Analysis of Computer

Algorithms. Addison-Wesley, Massachusetts.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. Morgan and Kaufman,

San Mateo.

Spirtes P., Glymour C, Schemes, R. (1990). Causality from probability. Conference

Proceedings: Advanced Computing for the Social Sciences, Williamsburgh, VA.

Spirtes, P., Glymour, C, and Scheines, R. (1991). An algorithm for fast recovery of

sparse causal graphs. Social Science Computer Review, vol. 9, 1991, pp. 62-72.

Spirtes, P. (1992). Building causal graphs from statistical data in the presence of latent

variables", forthcoming in Proceedings of the DC International Congress on Logic,

Methodology, and the Philosophy of Science, B. Skyrms, ed., Uppsala, Sweden,

1991.

Verma, T. and Pearl, J. (1990). Equivalence and synthesis of causal models. Proc. Sixth

Conference on Uncertainty in AI. Association for Uncertainty in AI, Inc., Mountain

View, CA, 220-227. ^

Verma, T. and Pearl, J. (1991). Equivalence and synthesis of causal models. Technical

Report R-150, Cognitive Systems Laboratory, University of California, Los Angeles.

