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Abstract

The Gibbs sampler can be used to obtain samples of arbitrary size from the posterior

distribution over the parameters of a structural equation model given covariance data and

a prior distribution over the parameters. Point estimates, standard deviations and interval

estimates for the parameters can be computed from these samples. If the prior

distribution over the parameters is uninformative, the posterior is proportional to the

likelihood, and asymptotically the inferences based on the Gibbs sample are the same as

those based on the maximum likelihood .solution, e.g., output from LISREL or EQS. In

small samples, however, the likelihood surface is not multivariate normal and in some

cases not even unimodal. Nevertheless, the Gibbs sampler draws a sample from the true

posterior distribution over the parameters regardless of the sample size and the shape of

the likelihood surface. With an informative prior distribution over the parameters, it can

be used to estimate underidentified models, as we illustrate on a simple errors-in-variables

model.

Key Words: Structural equation modeling, Gibbs sampler, Bayesian inference, Posterior

predictive p-values.



1. Introduction

This paper shows that when the Gibbs sampler is used for structural equation

models (SEMs), two issues of practical interest can be addressed. First, posterior

distributions over the parameters and the posterior predictive p-value of fit statistics can

be approximated to arbitrary precision, even for small samples. Second, prior knowledge

may be incorporated to a fuller extent within the Bayesian framework of inference than

within the classical framework.

In the Bayesian approach, posterior distributions can be approximated by the Gibbs

sampler or by normal distributions based on maximum likelihood estimates. In what

follows we compare both statistical procedures, and evaluate their merits in structural

equation modeling. As an introduction and for notation, we first briefly review ML-

estimation and Bayesian statistical inference.

1.1 Maximum Likelihood Estimation

Let X = (xi, x2, ..., xN) be a set of N normally and independently distributed random

variables x = (xi, x2,..., xp)
f, with expectation E{x} = (I and variance-covariance matrix £ =

£(0Pop)> where the elements of X depend on the values of t < p(p+l)/2 unknown

population parameters 6pop = (61, 02, ..., 6t)
f. 2(0pOp) represents the structural equation

model (SEM) in the population. Under the assumption that the probability density of x

is p-variate normal, i.e., x ~ Np{|i,£(0pOp)}, maximum likelihood estimates 0ML of the

unknown parameter vector Gpop can be obtained. For structural equation models 0 M L can

be calculated using programs like LISREL (Joreskog & Sorbom, 1993b) and EQS (Bentler,

1989).

Without loss of generality it is assumed that there is no interest in estimating first

order moments. Then, for estimation purposes the sample covariance matrix S (p x p),

where S is an unbiased estimate of £ based on a sample of observations X (N x p), is a

sufficient statistic.



Let p(X|9) denote the'joint probability density function of X. If p(X|0) is regarded as

a function of 6, given the observations X, it is called the likelihood function of 8 given X,

i.e.,

Ue|X)=p(X|G) . (1)

To be more specific, for a given X the likelihood function is by definition any

function of G proportional to p(X|0); it is thus defined up to a multiplicative constant

Given the sample co variance matrix S the likelihood can be expressed as (cf. Anderson,

1958, p. 157)

L(G|S) = |Z(e)r<N-1)/2 exp[{-(N-l)/2} t r fS^e)}- 1 ] , (2)

and thus it follows that the log-likelihood

log L(6|S) = -{(N-l)/2} (log|E(e)| + trtSme)}"1]} . (3)

Standard ML-estimation of a structural equation model by the LISREL program, for

example, uses an iterative Davidon-Fletcher-Powell (DFP) algorithm which minimizes a

function of the log-likelihood:

FML[S;E(6)] = lo gm6)| + tr[S{Z^)}"1] - log|S| - p , (4)

where p is the number of observed variables.

It is well established theoretically that asymptotically, as N goes to infinity, the

sampling distribution of 0ML is Nt(0pop, ^ (0 ) ) , where J(0) is the expected Fisher

information matrix (cf. Tanner, 1993, p. 16). This implies that the marginal sampling

distribution of a single parameter estimate 0ML is asymptotically N(0poP, AVAR {0ML}),

where AVAR denotes the diagonal element of J"x(0) corresponding to the parameter at

hand (cf. Bollen, 1989, p. 468f.).



Thus, because of the asymptotic normality of 0ML, sampling theoretical statistical

inferences can be made with respect to individual unknown model parameters 0poP. Also,

the sampling distribution of the so called %2 goodness-of-fit statistic, (N-1)F M L[S;£(0) ] ,

which is used for testing the hypothesized model against a saturated model,

asymptotically has a central chi-squared distribution with p(p+l)/2 - t degrees of

freedom, given that the model holds.

Such an approach reflects a frequentist point of view: 0poP is considered fixed, but

0ML is a vector of random variables. The probabilities involved refer to the frequency with

which different values of parameter estimates (arising from sets of data other than those
*

which are actually observed) could* occur for some fixed but unknown value of a

population parameter 6poP (cf. Box & Tiao, 1973, p. 72). In this paper, however, the

emphasis will be on a Bayesian approach.

1.2 Bayesian Statistical Inference

In a Bayesian framework statistical inferences are associated with different values of

parameters which could have given rise to the fixed set of data which has actually been

observed (cf. Box & Tiao, 1973, p. 72). The main interest is in the posterior density of

the vector of random variables 0 given the sample data X, which for continuous variables

is defined as

p(0|X) = p(X|0) p(0) / J p(X|0) p(0) d0

- p(X|0) p(0) . (5)

Here p(0) is the prior distribution over 0, expressing what is known about 0 before any

knowledge of X. In constrast, the posterior distribution p(0|X) expresses the result of

changing p(0) to take sample data X into account. Given that L(0|X) = p(X|0), see (I), it

follows that (5) can be expressed as



p(6|X) - L(0|X) p(0) , (6)

showing that p(6|X) is proportional to the product of the likelihood L(6|X) and the prior

p(9). As emphasized by Box and Tiao (1973, p. 11), the likelihood function plays an

important role here: fIt is the function through which the data X modifies prior knowledge

of 0; it can therefore be regarded as representing information about 0 coming from the

data.1

Depending on the amount of prior knowledge relative to the information in the

sample, the posterior distribution can be dominated by the likelihood or by the prior. If

an uninformative ('improper1) prior p(@) = c is used, where c is a real constant, the

posterior distribution p(0|X) is proportional to the likelihood function, i.e.,

p(0|X) - L(0|X) , (7)

and thus, apart from a normalizing constant, the posterior distribution function is equal to

the likelihood function. Also, the marginal posterior distribution functions would be

proportional to the marginal likelihood functions: p(0|X) «= L(0|X).

If, on the other hand, an informative prior distribution is used, and in this paper it is

assumed throughout that in such a case p(0) has a multivariate normal distribution

Nt(|i,o,£o)> then when N is small enough for the prior to make more than a negligible

contribution to the posterior the marginal posterior distribution functions p(0|X) are not

proportional to the corresponding marginal likelihood functions L(0|X); (6) holds, not (7).

It is also well established theoretically that asymptotically the posterior density

p(0|X) converges to normality. That is, the posterior density (likelihood) is proportional

to the multivariate normal density N(0ML, I'^OjX)), where I(0|X) is the observed Fisher

information matrix (cf. Tanner, 1993, p. 16).



/. 3 Finite Sample Size and Prior Knowledge

The ML-estimation theory used in structural equation modeling is asymptotic theory.

The same holds for generalized least squares (GLS), and weighted least squares or

asymptotic distribution free estimation (WLS or ADF). Thus, for making proper

statistical inferences the sample size N must be large.

Several robustness studies show that sample size matters for the behaviour of these

estimation methods for SEM. See, for example, Bearden, Sharma and Teel (1982),

Boomsma (1982, 1983), Baldwin (1986), Chou, Bentler and Satorra (1991), Hu, Bentler

and Kano (1992), and Yung and Bentler (1994). From such research it may roughly be

concluded (neglecting the effect of model complexity and other interacting factors) that

the behaviour of ML and GLS is.fairly robust if the sample size N is as large as 300, say,

but definitely not so if N < 50, say. On the other hand, ADF estimation requires huge

sample sizes to obtain proper parameter estimates.

The variances and covariances of parameter estimates are also often incorrectly

estimated in small sample studies. Structural equation modeling programs like LISREL

and EQS use a sample estimate of the asymptotic variances AVAR(GML), which may

differ substantially from the true variance of 0ML given a small sample (Boomsma, 1983).

As a consequence, if the sample size is small the sampling distribution of the

(standardized) parameter estimates is unknown, and often cannot be estimated well by

applying formulas based on asymptotic theory.

Further, the distribution of likelihood-ratio fit statistics cannot be trusted in small

samples. For almost any sample size, the distribution of each of the numerous fit indices

currently available is almost completely unknown. See Joreskog and Sorbom (1993a), or

Hu and Bentler (1995), for an overview.

In short, asymptotic estimation theory, like ML-estimation, is inappropriate in

structural equation modeling when the sample size is small. A solution to this problem is

to work with posterior density functions p(6|X), which can be numerically approximated

to arbitrary precision at any sample size with Markov Chain Monte Carlo methods, and
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in particular with the Gibbs sampler. This procedure will be compared with the normal

approximation to the posterior obtained from ML-estimation. We now give a brief outline

of the Gibbs sampler and the comparison to be made.

L4 The Gibbs sampler andML-approximations

With the Gibbs sampler (Geman & Geman, 1984), joint and marginal posterior

distributions, p(6|X) and p(0|X), can be approximated to arbitrary precision for any

sample size N without having to know a closed form expression of the posterior

distribution. All that is required is a closed form expression for the prior distribution p(0)

and for the likelihood of each parameter Q{ conditional on the other parameters and the

data, i.e., L(0i|0i,...,0i.i,0i+1,...,0t,S). Casella and George (1992) give a good introduction

to the Gibbs sampler, more technical treatments can be found in Tanner (1993), and in

Volume 55 (No. 1) of the Journal of the Royal Statistical Society, Series B, for example.

The Gibbs sampler can be used either by the Bayesian or the classical, sampling

theory oriented statistician. For the Bayesian, the Gibbs sampler is mainly used to

approximate marginal posterior distributions, whereas for the classical statistician it is

mainly used to approximate (marginal) likelihood functions (cf. Casella & George, 1992,

p. 173).

In the posterior distribution p(0|X), two statistics of interest are the mean, denoted

as 0EAP> where EAP means expected a posteriori, and the standard deviation of (0|X)

around 0EAP> denoted as SD(0EAP). Knowledge of the posterior marginal densities also

allows the inspection of order statistics 0a, defined such that p(0 < 0a | S) = a. The

median, for example (denoted 0MDAP)> is 0 50. These order statistics allow the inspection

of central regions of a specific size, say 90%, e.g., regions from 0O5 to 095. Also, knowing

the posterior density allows the inspection of the fit of the model by procedures using

posterior predictive p-values (cf. Section 2.2; see also Gelman, Meng & Stern, 1994;

Rubin & Stern, 1994).



The limiting normal approximation of the likelihood [i.e., the approximation of

L(6|X) by Nt(0ML, I '^X)) , see Section 1.2] can be viewed as a normal approximation of

p(0|X). If the sample size is large, this is reasonable even with an informative prior

distribution, because, fas N -» ~, the likelihood dominates the prior distribution, so we

could just use the likelihood alone to obtain the mode and curvature for the normal

approximation.1 (Gelman, et al., 1995, p. 92)

As the sample size N increases, 6ML converges to the mode of the marginal posterior

density, and the estimated asymptotic standard error of 0ML, denoted as ASD(0ML),

converges to the standard deviation of 0 in the posterior density.

Thus in large samples we expect the Gibbs sampler and the familiar ML normal

theory approximation of the posterior density (likelihood) to produce almost exactly the

same numerical quantities for corresponding statistics, even though their interpretation is

different (cf. Box & Tiao, 1973, Chapter 2). In examples considered below (Section 3),

we compare the two approaches, not only on large samples with an uninformative prior,

but also on small samples with and without an informative prior. Asymptotic theory

tells us to expect the same results for large N, but we expect the results to diverge as the

sample size decreases. Since the Gibbs sampler approximates the true posterior at any

sample size, we expect results based on its approximation of the posterior to be better

than those obtained from an approximation of the posterior based on ML-estimation.

7.5 Outline of the Paper

In Section 2 the Gibbs sampler is explained. A detailed outline is given of how to obtain a

sample from the joint and marginal posterior distributions p(0|X) and p(0|X). Statistics of

interest and a model check using posterior predictive p-values are also discussed. Section

3 presents several examples in which we use Gibbs sampling techniques on structural

equation models.



In Sections 3.1 and 3.3, parameter estimates for Wheaton, et al.'s (1977) Stability of

Alienation model computed by the Gibbs sampler are compared with maximum likelihood

estimates computed by LISREL 8. The two statistical approaches are compared both, for

large (Section 3.1) and for small sample size (Section 3.3). The results show an interesting

characteristic of the posterior densities p(6|X), or the likelihood functions L(G|X): the

absence of unimodality. In Section 3.2 this multimodality is discussed and illustrated at

some length. The uncertainties that remained from previous discussions around this theme

(see for example Rubin & Thayer, 1982, 1983; Bentler & Tanaka, 1983) seem to be

resolved.

In Section 3.4 we explore one adwtage of using a probability measure to incorporate

prior knowledge into parameter estimation. SEM programs like LISREL allow the user to

incorporate prior knowledge, but only in the form of inequality constraints, linear and

non-linear constraints on parameters, and interval restrictions on their values. While these

sorts of constraints can be incorporated directly into the prior distribution p(0) (cf.

Section 2.1; Box and Tiao (1973, pp. 67-69); Smith and Roberts (1993, p. 12f.), so can

probabilistic information about the parameters, which allows the Gibbs sampler to

provide informative estimates for underidentified models. An example of such an

approach is given in Section 3.4, where an underindentified errors-in-variables model is

estimated using the Gibbs sampler.

Using the%2 goodness-of-fit test, Section 3.5 illustrates how the Gibbs sampler can

be used to compute posterior predictive p-values (cf. Section 2.2). The final section of

paper details some of the questions that the research we report on here suggests but does

not answer.
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2. The Gibbs Sampler

2.1 Obtaining a Sample from p(O|S)

The Gibbs sampler (Casella and George, 1992; Tanner, 1993; Smith and Roberts, 1993) is

an iterative procedure that, after convergence, renders a dependent sample from p(0|S). In

each iteration m=l,...,M, each of the model parameters is sampled from its posterior

conditional on the current values of the other parameters, the inequality constraints

appropriate for the parameter at hand, and the data S.

For m=0, initial values are assigned to each of the model parameters 0j, j=l,...,t. In

TETRAD in , each parameter is giyeil an initial value by the user. If the prior is

informative, the prior mean for each parameter is used as the starting value, i.e., 6° = |i<).

Subsequently for m=l,...,M, and j=l,...,t, Ĝ 1 is sampled from

(8)

where LB and UB denote the lower and upper bound respectively that are appropriate

for 0j. A few examples: if a parameter is a variance, the lower bound is zero and the upper

bound is °°. If a researcher decides that parameter 2 has to be larger than parameter 1 and

smaller than parameter 3, the lower and the upper bound are G^and G™"1 respectively.

If a parameter is unconstrained, the lower and upper bounds are -°° and °°, respectively.

A sample from (8) can be obtained using a combination of inverse probability

sampling and rejection sampling (Gelman, Carlin, Stern, and Rubin, 1995, Chapter 10).

The resulting procedure is summarized in steps a) through f) that follow. Steps a) and b)

describe how to obtain values for the parameters of a normal approximation of (8). Steps

c) through e) describe how inverse probability sampling may be used to obtain a random

draw from the normal approximation of (8) truncated below and above by LB and UB

respectively. Finally, in step f) rejection sampling is used to decide whether the random

11



draw obtained is accepted or rejected: the closer the approximate and the true density of

the random draw, the larger the probability that it will be accepted.

a) Find the value MAX of 0j that maximizes (8), and compute its asymptotic

variance (AVAR) as 1/I(MAX), where I(MAX) denotes the observed Fisher

information for (8) evaluated at 8j = MAX.

b) Use MAX and AVAR, multiplied with a factor D, as parameters in a normal

approximation of p(0j|.)> denoted by p*(Oj|.)- The variance of the normal

approximation is multiplied by a factor D, to make (almost) sure that the left hand

side of (12) is never larger than 1.0 (the upperbound of a uniform deviate).

Experience until now indicated that for D > 2 the left hand side of (12) is rarely

larger than 1.0.

c) Compute the probabilities that 0j < LBj and 0j > UBj from the normal

approximations:

j j , (9)

and

, (10)

d) Generate a uniform random deviate u[0,l].

e) Use inverse probability sampling to obtain a draw from the admitted region of the

normal approximation, i.e., compute 9?1 such that

ej11

J
j

= Jp*(ej|.)d0j . (11)
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f) Use rejection sampling to decide whether the draw obtained in step e) will be

accepted, or if step e) has to be repeated. I.e., generate a uniform random deviate

v[0,l],andif

/ p*( Bf I.)] [P*(MAX|.) / p(MAX|.)] > v , (12)

accept 6™, else repeat step e).

2.2 Statistics for the Posterior

Using G and G' as generic symbols to represent any of the parameters in 6, the expected a
»

posteriori estimates (GEAP) are approximated in the K remaining elements of the Gibbs

sample (see Section 2.3, paragraph 1) by

GEAP -ZGk/K . (13)

The median a posteriori (GMDAP) estimates of the model parameters are given by the

50-th percentile of the K sampled values of G.

The elements from the posterior covariance matrix of the parameters centered around

the expected a posteriori estimates (COV(G ,6)) are given by

COV(G ,G) - X (Gk - 6EAP)(6'k - G'EAP)/K . (14)
k=l

The *= in (13) and (14) reflects that the accuracy with which the summations in (13)

and (14) approximate the corresponding integrals over uni- and bivariate marginals of (2)

depends on K. The same holds for the accuracy with which the median a posteriori

estimate approximates the 50-th percentile of the corresponding marginal of (2).

With a constant prior, the posterior density of G is proportional to the likelihood of

6. This implies that the finite sample covariance matrix of GML can be approximated by

13



(14), with 0EAP replaced by 6ML. Maximum likelihood estimates of the model parameters

based on multivariate normality can be computed using LISREL, for example.

The Gibbs sampling approach should not be used to compute the maximum

likelihood estimate 0ML, however. Since the dimensionality of 0 is usually large, a sample

of only K values of 0 provides too crude a grid in the parameter space to have any

confidence that the sampled value with the highest likelihood is also the maximum

likelihood.

2.3 Convergence and Autocorrelation

There is not yet a generally agreed upon method to decide whether the sequence generated

by the Gibbs sampler has converged or not. See, for example, Gelman and Rubin (1992)

and subsequent discussions. To avoid strong dependencies among subsequent draws from

p(q|S) (see below), we will retain only every r-th iteration from the iterative sequence

described above. These iterations will be indexed k=l,...,K. Inspection of the mean,

median, standard deviation, and 5-th and 95-th percentile of the distribution of each

parameter, across four sequences of K/4 iterations, will be used to determine whether the

Gibbs sampler has converged (the resulting numbers are similar) or not (the resulting

numbers are substantially dissimilar or are mildly dissimilar but show an increasing or

decreasing trend). Convergence will be discussed for several of the examples presented in

Section 3.

The Gibbs sampler does not render independent draws of 0 from its posterior

density. It is clear from the iterative sequence that 0m depends on Qm~l, ...,0°, i.e.,

subsequent draws are dependent. If r is chosen such that the multiple correlation between

each of the elements in 0m and all of the elements in 0m"r is small, then the resulting

sample will be (approximately) linearly independent. Note however, that this does not

imply the absence of nonlinear dependencies. So far, the dependence structure for

subsequent draws can only be determined exactly for very simple models. Structural
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equation models do not belong to the class of simple models. As a consequence, the best

safeguard against strong nonlinear dependencies is the use of a large value for r.

Experience up to now indicates that (for all practical purposes) linear and nonlinear

dependencies may be ignored. Parameter estimates, standard deviations, covariance

matrices, posterior predictive p-values are virtually the same whether computed from K

iterations with lag r > 1, or K iterations with r = 1 (provided that K is a large number, and,

provided that the iterative sequence has converged). An explanation for this feature may

be the following. Due to the dependence of adjacent iterations, the Gibbs sampler 'over-

samples1 certain regions of the parameter space if the number of iterations is small, but it

'over-samples1 each region of the parameter space if the number of iterations is large. If for

each region of the parameter space, the degree of 'over-sampling1 is proportional to the

posterior density of that region, the result is virtually indistinguishable from an

independent sample.

2.4 Goodness of Fit Statistics and Posterior Predictive p-values

In this section it will be explained how posterior predictive (or Bayesian) p-values

(Gelman, Meng and Stern, 1996; Rubin, 1984; Rubin and Stern, 1994) can be used to

evaluate any goodness-of-fit statistic that is a function of the model parameters and the

observed data. As an example, we use the so called %2 goodness-of-fit statistic:

LR(S,Z(0)) = (N-1) FML[S;E(e)] , (15)

where the discrepancy function FML is defined as in (4).

Let S(6) denote a covariance matrix drawn pseudo-randomly (with appropriate N)

from S(G).1 The posterior predictive p-value of the %2 goodness-of-fit statistic can be

written as:

1 We use the Monte Carlo Generator in TETRAD II (Scheines, et, al., 1994, chp. 13) to draw
pseudo-random samples from a given SEM.
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p-value = jPr {LR(S,£(e)) < LR(S(G),S(e))} p(9|S) d6 ,
e

K
Z Pr{LR(S,Z(0k)) < LRCSCe^^G^)} / K , (16)

k=l

- E Z Iz/ZK,
k=l z=l

where, Iz = 1 if LR(S,E(Gk)) < LR(S2(6
k),Z(ek)), and 0 otherwise. The integral in (16) is

approximated using a summation over a grid of K values of 0 sampled from p(G|S). The

Pr(.) in (16) is approximated by the probability observed in z=l,...,Z data matrices (with

sample covariance matrices S^O*) simulated conditional on each value of Gk.

The principle underlying (16) can be explained as follows. If Pr{LR(S,Z(6pop)) <

LR(S(0pOp),Z(6pop))} is smaller than say 5 percent, then we would decide that the model

is specified incorrectly. The population values of the model parameters are never known,

but their posterior density is. The Bayesian solution is to use the average of

Pr{LR(S,E(e)) < LR(S(6),Z(e))} using p(9|S) as a weight function. If the posterior

predictive p-value is small (say 0.05 or less), the observed values of the fit statistics are

usually worse than the corresponding simulated values of the fit statistics. This implies

that the model used does not provide an accurate description of the observed data set.

3. Examples

This section gives several examples in which the Gibbs sampler implemented in

TETRAD III is used to sample from the posterior distribution over the parameters of a

structural equation model. We begin by comparing LISREL's maximum likelihood

estimates of the parameters of the Stability of Alienation model (Wheaton, et al., 1977)

with estimates based on the Gibbs sample. We discuss the problems that arise for

maximum likelihood estimation when the likelihood surface is multimodal and the sample
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size is small, which we illustrate with the Alienation model and with a simpler, more

analytically accessible model. We then illustrate how diffuse but not totally flat prior

distributions over the parameters eliminate multimodality in the posterior. Next we use a

simple errors-in-variables model to illustrate how the Bayesian approach to estimation

can handle iinderidentified models. Finally, we illustrate posterior predictive p-values.

3.1 The Stability of Alienation: Large Sample

Consider a longitudinal structural equation model developed by Wheaton, et al., (1977) to

investigate the stability of social alienation (Figure 1).

6631

I l
[Anomia67 | powerlessness 67 |Anomia71 | [Powerlessness 71

[Education [ | SEI

61 82

Figure 1. The Stability of Alienation model.

The purpose of this study was to estimate the effect that a given level of social

alienation in 1967 (Alienation 67) had on the level of social alienation in 1971 (Alienation

71), controlling for socioeconomic status (SES). Thus measurement models were

17



constructed for the latent variables, and the central purpose of the study was to estimate

the parameter p.

In practice the population parameters of the Alienation model are unknown. Since

our purpose is methodological, however, it is preferable to work with a model in which

the population is known. We thus varied the sample covariance matrix S reported in

Wheaton, et al.'s paper slightly such that S = £(0pOp) = £(9ML)- We then did a series of

experiments in which we varied the sample size but not the elements of S. The

population parameters are given in Table 1 and the covariance matrix S = 2XGpOp) =

£(GML) i n Table 2. In the first experiment we used a very large sample size (N = 20,000),

and compared the results of LISREL 8 (Joreskog and Sorbom, 1993) and the Gibbs

sampler in TETRAD III.

Parameter Value Parameter Value Parameter Value

0eu

6e 2 2

0e33

ee 4 4

esn

05 2 2

0e31

4.730

2.570

4.400

3.070

2.800

2.649

1.620

0e4 2

Xn

X21

^32

* 4 2

^53

x«

0.340

1.000

0.980

1.000

0.920

1.000

0.522

V11

V22

Yi

Y2

P

4.850

4.090

6.810

-0.570

-0.230

0.610

Table 1. Popluation parameters for the Stability of Alienation model.

In all of the estimation experiments involving this model, the latent error variances

(Yii>Y22>(!)) were fixed at their population values, one factor loading for each latent (A,n,
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A,32, ^53) was constrained to be strictly positive, and the remaining parameters were given

population starting values.

Anomia 67

Powerlessness 67

Anomia 71

Powerless 71

Education

SH

Table 2. S = Z(epop) = Z(QML) for the Stability of Alienation model.

11.7926

6.9213

6.8209

4.7849

-3.8817

-2.0262

9.3529

5.0969

5.0292

-3.8041

-1.9857

12.5674

7.5140

-3.9341

-2.0536

9.9829

-3.6194

-1.8893

9

3

.6100

.5548 4.5045

TETRAD III produced a Gibbs sample of size M=10,000 from p(6|S) that, although

it is autocorrelated (the multiple correlation coefficients, as decribed in Section 2.3 but

only for autocorrelation with the other structural parameters, were 0.7, 0.5, and 0.5 for (3,

Yi, and y2 respectively), rendered the same results as a normal approximation to the

posterior using 6ML and A V A R ( 0 M L ) as obstained by LISREL 8. Figure 2 shows a

histogram with an accompanying normal curve of the 10,000 values of the structural

parameter p that the Gibbs procedure sampled from p(0|S).
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2000

1000

.565 .575 .585 .595 .605 .615 .625 .635 .645 .655
.570 .580 .590 .600 • .610 .620 .630 .640 .650 .660

Figure 2. Frequency distribution for the Gibbs sample from the posterior marginal

over p. M=10,000, N=20,000, and (3pop = 0-61.

To eliminate the autocorrelation in the 10,000 original draws, we kept every 10th

iteration to produce 1,000 final draws (K= 1,000). The multiple correlation coefficients in

the resulting sub-sample were 0.11, 0.12, and 0.06, for (5, yv and y2 respectively.

To confirm that the final 1,000 iterations are from a sequence that has converged, we

calculated 9EAP
 a n d SD(6EAP) for each of the model's three structural parameters (p, Yi,

andy2) within each of four blocks (250 iterations each). The results are given in Table 3.
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0EAP

0.608

0.610

0.609

0.611

P
sD(eE A P)

0.012

0.011

0.013

0.012

0EAP

-0.571

-0.570

-0.569

-0.571

Y,

SDCOEAP)

0.011

0.010

0.011

0.011

Y2

©EAP

-0.230

-0.230

-0.230

-0.229

SDCGEAP)

0.012

0.011

0.011

0.010

Block

1

2

3

4

Table 3. Convergence analysis for the structural parameters in the Stability of

Alienation model. M=10,000 and N=20,000.

Since GEAP and SD(GE AP) vary by at most 0.003 between any two blocks, we

conclude that the sequence has converged. Table 4 gives point estimates GEAP, GMDAP and

the measure of spread SD(0EAP) for the final sample of 1,000 draws, and compares them

to the corresponding output from ML estimation as computed by LISREL 8. It is worth

noting that eliminating the autocorrelation in the Gibbs sample had no effect on these

numbers, i.e., the same results held for all 10,000 iterations and the retained 1,000.

"pop

-0.570

-0.230

0.610

"EAP

-0.570

-0.230

0.610

"MDAP

-0.570

-0.230

0.610

-0.570

-0.230

0.610

SD(6EAP)

0.011

0.011

0.012

A S D ( 6 M L )

0.011

0.011

0.013

Yi

Y2

P

Table 4. Final Gibbs estimates vs. ML estimates for the Stability of Alienation

Model- K=l,000 and N=20,000.

A S D ( 9 M L ) , which is calculated by LISREL 8 and other SEM software packages,

assumes that the likelihood is normal and is thus just an asymptotic approximation of the
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standard deviation. For all practical purposes, however, when N=20,000 the asymptote

has been reached and the approximation is exact. As Boomsma (1983) has shown on

precisely this model, however, the approximation badly breaks down at small samples,

e.g., N=50, and inferences based on ASD(6ML) can be wildly overconfident. With enough

iterations, i.e., when K is large enough, the Gibbs sample will converge in distribution to

the exact posterior density no matter what the sample size, and thus given convergence,

SD(6EAP) is exact at any sample size.

3.2 The Likelihood Surface Can be Multimodal

Even with a flat prior, at small sample? the posterior is sometimes quite different than

one would expect from asymptotic ML theory. To illustrate, we repeated the study

above with N=50. What emerged was at first disturbing but eventually illuminating. The

marginal posterior distribution of some of the parameters had more than one mode and

were very diffuse relative to the asymptotic approximation obtained from the ML

solution. In what follows we show that for certain SEMs, the likelihood surface is indeed

multimodal, and because the problem is interesting in its own right, we pause to discuss it

before examining the small sample results for the Alienation model.

Maximum likelihood estimators use an iterative search algorithm (cf. Section 1.1) in

order to find the value of 0 where L(9|S) is maximal. With only one starting point for 6,

such searches are reliable only if the surface of L(0|S) is unimodal with respect to 6.

Although many authors have expressed concern that in certain cases the likelihood surface

is not unimodal (Rubin & Thayer 1982, 1983; Bentler and Tanaka, 1983), as far as we

know no one has shown a clear violation of unimodality or characterized conditions under

which the surface is or is not unimodal.

The likelihood is usually written as a function of 6, but it can also be written as a

function of what Lehmann (1959, p. 51) calls the "natural" parameters 0nat- He proves

that the natural parameter space is convex, and Brown (1986, Lemma 5.3, p. 146) proves
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that the log-likelihood as a function of convex parameters is strictly concave. Thus the

likelihood is unimodal in 0Mt.

Unfortunately, the elements of 0Mtare complicated (and totally unnatural) functions

of the elements of 0, and it is prohibitively difficult to even write these functions out for

models with more than three measured variables. In a simple factor model with two

indicators (Figure 3) these functions are analytically accessible, however.

Figure 3. Simple factor model with two indicators.

Assuming that Cov(epe2) = Cov^e^) = Cov(ep^) = 0, and fixing 6u=Var(e1) and X{ at

1.0, we arrive at a model with three free parameters: <022=Var(e2), \2, c()=Var(^)>, whose

population values respectively are: <1.0, 1.4, 1.0>. Table 5 gives the population

covariance matrix £ ( 0 ^ ) , both symbolically and numerically.

Table 5. Population covariance matrix for the simple factor model in Figure 3.

If the likelihood surface is unimodal given the covariances in Table 5, then the first order

partial derivatives of the log-likelihood function for N=50 with respect to each of the free
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parameters 0j, should vanish at only one point in the parameter space: 0poP =

^22* 2̂9 (l)> = < l -0 , 1.4, 1.0>. As it turns out, however, for this case they also vanish at

e^t = <2.96, -1.0571, <10~16>. We obtained 6^ by deriving the first order partial

derivatives symbolically (called normal equations when they are set equal to 0), and then

using Mathcad 4.0 (Mathsoft, 1993) to find two solutions to the normal equations: 0pop

and 0^. Whereas the likelihood is locally maximal at 0pop, it is locally minimal at 0^ .

That is, L(0ait|S) < L(0b|S) for any 0b in the local neighborhood around 0^. We confirmed

this with LISREL as follows. We gave LISREL the model in Figure 3 and the covariance

matrix in Table 5, set N=50, and asked it to find 0ML with two different sets of starting

values:

0sl = <2.96,-1.0569, 0.00001>

0s2 = <2.96, -1.0572, 0.00001>

Starting from 0 s i , LISREL found 0ML = Gpop > but starting from 0s2, LISREL iterated away

from Opop and in the end failed to converge.

Plotting the likelihood surface makes the multimodality vivid. Figure 4 shows a 3-

dimensional plot of the likelihood surface against X̂  and <j), with all other parameters fixed

at their population values. The function is calculated and plotted at each point where the

grid lines intersect, and extrapolated between such points. Although the values of X̂  and $

proceed monotonically from back to front and left to right, and thus the topology is

accurate, in order to provide an informative visualization of the surface we had to vary the

scale substantially at different parts of the grid. That is, the numerical interval between

plotted values of X̂  and § is not constant.
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1.0 250

20.0
0.0

-250

Figure 4. The likelihood surface for the model in Figure 3 and covariance matrix

in Table 5 plotted against A,2and <j>.

The spike in the middle is over the population values of X2 and <j), the ridge running

back and to the left corresponds to values of <|> approaching 0 and values of X2 getting

more and more negative, and the ridge running back and to the right correspond to values

of <)> approaching 0 and values of X2 getting more and more positive. In fact the left and

right hand ridges never peak, but continue to rise gently until they meet the edge of the

parameter space where <() hits 0. This is also evident from LISREL 8, which converges to

the population mode when given starting values for the parameters near the large central

mountain, e.g., A ^ 3.0 and $ = 0.5. However, if the parameters are started solidly within

the left hand ridge, e.g., X2 = -150 and $ = 0.01, then LISREL lowers <|> and X2 in each

iteration until it hits the iteration limit and then reports convergence failure. We conjecture

that at least some convergence problems in SEM programs are the result of starting the
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iterative estimation procedure in a region of the parameter space in which the likelihood

surface slopes up towards a mode at a boundary of the parameter space.

The Gibbs sampler shows how the multimodality in the joint likelihood impacts the

posterior marginal distributions. We ran TETRAD III for 50,000 iterations on the

covariance matrix in Table 5 with N=50, a flat prior, and population starting values for all

the parameters. We kept every 25th iteration and on the remaining 2,000 draws

performed the same analysis for convergence and autocorrelation that we described in the

previous examples. The multiple correlation coefficients were all below 0.1. They were

0.071, 0.096, and 0.088., for G22, <|>, and X2 respectively. Table 6 and Table 7 show the

convergence results. For each of foui; blocks with 500 draws each, Table 6 shows the

point estimates GEAP and 0MDAP> and Table 7 the measures of spread SD(0EAP), QO5, and

0 95, where 6a is defined such that p(0 < 0a | S) = a.

022

Block

1

2

3

4

0EAP

1.534

1.495

1.520

1.463

0MDAP

1.248

1.270

1.235

1.238

0EAP

0.880

0.867

0.829

0.865

®MDAP

0.921

0.917

0.894

0.906

@EAP

0.437

0.282

-0.991

0.329

0MDAP

1.381

1.341

1.385

1.366

Table 6. Convergence results for point estimates of the parameters of the model

in Figure 3-

0MDAP is in general less sensitive to outliers, multimodality, and violations of

normality than is 0EAP>
 a nd is thus a more robust but less critical convergence criterion

than ©EAP- The results in Table 6 confirm this. Whereas ^EAP* fc>r example, fluctuates

fairly wildly from block to block, X^MDAP is quite stable. Similarly, QQ5 and 0.95 are less
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sensitive to outliers, multimodality, and violations of normality than is SD(GEAP), and

thus comprise a more robust but again less critical convergence criterion than does

SD(6EAP). In Table 7, for example, SD(A7EAP) fluctuates much more dramatically than

does either X^ .95 or X^ .05.

022 •
Block

1

2

3

4

SD(6 E A P )

1.479

1.317

1.562

1.367

0.05

0.196

0.174

0.126

0.182

0.95

3.445

3.204

3.451

3.162

SD(8EAP)

0.570

0.589

' 0.561

0.561

0.05

0.005

0.003

0.002

0.004

0.95

1.805

1.777

1.675

1.759

SDCOEAP)

17.97

41.56

33.17

21.59

0.05

-3.87

-6.22

-7.97

-4.31

0.95

9.31

10.27

10.42

9.28

Table 7. Convergence results for measures of spread of the parameters of the

model in Figure 3.

Since fluctuations in 9EAP and in SD(GEAp) are caused by outliers in one of the

extreme modes, convergence would only be verified using these statistics if K is

enormous. For our purposes, we consider the iterative sequence to be converged if 6MDAP>

0.05, and 9.95 (which are robust against outliers) are stable over the four blocks.

The histogram of <|> in the retained 2,000 draws (Figure 5) has a shape proportional to

the marginal posterior p(<(>|S), and, because we used a flat prior, to the marginal likelihood

L(<j)|S). This histogram is clearly not unimodal, with at least one mode near the population

value of 1.0 and another against the edge of the parameter space at 0.
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Population Value r

Figure 5. Histogram of the values of $ sampled from the posterior over the

parameters in the model in Figure 3.

We suggest the following explanation. L(<]>|S) is not unimodal because two elements

in the implied covariance matrix (see Table 5) involve the product of $ and A,2. When \2

has a high absolute value, e.g., -100, § must be very close to 0 for X2§ and A,2
2(|) to remain

low, which they must be in order for the implied covariances to be near those observed.

3.3 The Stability of Alienation: Small Sample Results

We now examine the Alienation case when the sample size is small. Treating again the

covariance matrix in Table 2 as a sample, but with N=50, we ran the Gibbs sampler in

TETRAD III for 100,000 iterations, keeping every 50th to end up with a final sample of

2,000 values from p(0|S) that showed satisfactory convergence and autocorrelation. We

also used LISREL 8 to compute a maximum likelihood estimate of the model's parameters

from the same covariance matrix with N=50. The point of Wheaton, et al.'s study was to
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estimate the stability of social alienation, which is the parameter p. We therefore focus

our analysis on p(p|S) and on LISREL's ML estimate pML- Table 8 shows the wild

discrepancy between LISREL's results and those based on the final 2,000 values sampled

fromp(p|S).

pML pMDAP PEAP A S D ( P M L ) S D ( P E A P ) p.O25 P.975

.610 1.439 -21.695 0.22 213.9 -499.8 499.7

Table 8. A comparison of the estimates of p in the Stability of Alienation model:
t

i

Gibbs vs. Maximum Likelihood. N=50.

Inferences about p ^ supported by the two analyses are completely at odds. What is

particularly striking is that SD(PEAP) is approximately 1,000 times larger than ASD(PML) .

PML is almost three times as big as its standard error ASD(pML), and thus according to

asymptotic maximum likelihood estimation theory we can reject the null hypothesis that

PpOp is negative or 0 at a significance level of 0.05. Any sensible inference applied to

p(p|S) would conclude that from this data we know almost nothing about ppop, let alone

its sign.

The reason for the discrepancy in the two analyses is the multimodality of the

likelihood function for the Alienation model. The Gibbs procedure samples from the

entire posterior, and when there are many modes and the sample size is small, ASD(0ML)

is a poor approximation of the diffusion in the marginal posteriors. The histogram in

Figure 6 suggests that p(P|S) is tri-modal.
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Figure 6. Histogram of the values of (3 sampled from the posterior over the

parameters in the Stability of Alienation Model, N=50.

Which analysis is more reasonable? With 17 parameters to estimate from 50

observations, and absolutely no information about the ranges that the population

parameters are likely to occupy, then it would be surprising if we could learn much of

anything about the parameters.

In fact what makes the ML estimate of p "significant" in this case is a tacit use of

prior information that in effect treats the likelihood function "as if' it were unimodal. It is

of course desirable to rule out alternative modes for substantive reasons. Given Wheaton,

et al's. design, for example, we simply would not believe that (3pop ~ -500, which is where

one of its modes lies in the Gibbs sample from p((3|S) (Figure 6). As it turns out,

incorporating even a very loose prior over the parameters to rule-out nonsensical modes

causes the posterior to collapse toward the ML solution. To us this indicates that

whenever inferences are made about ML estimates on a problem in which the likelihood is

multimodal, prior information about the parameters is involved, yet tacitly.
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To illustrate, we ran the Gibbs sampler again on the Alienation model with the

relatively diffuse normal prior over the model's parameters given in Table 9.

All free error variances

All factor loadings

P
Yi

2.5

1.0

0.5

-0.5

-0.5

1.414

4.000

4.000

4.000

4.000

Table 9. Prior pistribution over the parameters in the Stability of Alienation

model.

The final sample from the posterior was assembled by keeping every 50th out of

100,000 iterations, leaving acceptable levels of autocorrelation and solid evidence of

convergence. In Table 10 we list point estimates and the bounds of a 95% central interval

around the point estimates for P, yu and 72- In the LISREL solution, the point estimate is

0ML, and the 2.5 percentile is 6ML - 2 ASD(0ML). The point estimates for the Gibbs

results are the values of 6MDAP, and the 2.5 and 97.5 percentiles for the Gibbs sample are

0.025 and 6.975 respectively.
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Point 2.5 97.5

Estimate percentile percentile

PPop = 0.61

YipoP=-0.57

Y2poP=-0.23

LISREL

Gibbs - Flat Prior

Gibbs - Loose Prior

LISREL

Gibbs - Flat Prior

Gibbs - Loose Prior

LISREL

Gibbs - Flat Prior

Gibbs - Loose Prior

0.61

1.44

0.62

-0.57

0.67

-0.57

-0.23

2.98

-0.24

0.17

-499.78

0.12

-1.07

-3.47

-1.10

-0.69

-405.50

-0.82

1.05

499.69

1.36

-0.07

5.78

-0.18

0.23

462.50

0.30

Table 10. Alternative estimates for the structural parameters in the Stability of

Alienation model, N=50-

The difference in the Gibbs results for a flat and loose prior are dramatic. For (3, the

size of the central 95% interval in the marginal posterior shrinks more than 800 fold from

almost 1,000 to 1.24. This collapse in the posterior distribution is in part an effect of

eliminating sampling from the alternative modes, because the posterior central 95%

interval of 1.24 is much smaller than the central 95% interval in the prior (four times

<Jo(P) = 16.0).

As the sample grows large, the alternative modes become small enough to ignore, so

techniques which assume they do not exist like ML estimation are perfectly reasonable.

At small N, however, it seems that they cannot be avoided, and the quantities calculated

from an ML solution on the basis of asymptotic theory can be wildly off. On the other

hand, when multimodality exists and the sample size is small enough for it to matter, then
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even small amounts of prior knowledge can have a big effect on bringing the posterior

back toward a solution consistent with the usual assumptions about unimodality.

Inferences based on the ML solution seem to use such knowledge tacitly, and in practice

it might well be reasonable to do so, but in our perspective it is always better to make

assumptions explicit. In the Bayesian perspective, the sort of prior knowledge that serves

to eliminate sampling from alternative modes is a step in that direction.

3.4 Estimating Underidentified Models

Substantial prior information about the parameters exists in many research contexts. The

sigji of a factor loading is often known, the results of previous research can provide
«

precise prior information about parameter values and their standard errors, and in contexts

of repeated measurements beliefs about parameter covariation can be warranted. If there is

a lot of data at hand, e.g., N=l,000, a prior distribution has little or no effect on the

posterior. If the sample size is small, however, e.g., N = 50, the prior can make a large

difference.

An informative prior distribution over the parameters can also make it possible to

estimate the parameters of an underidentified model. Virtually every introductory book

on structural equation models routinely warns readers to ensure that all the parameters in

their models are identifiable, i.e., uniquely determined from the measured data given the

statistical assumptions and the discrepancy function being minimized. This is good

practical advice, but since nature has no apparent reason to prefer systems whose models

are identified, it is a maxim that has no obvious connection to the truth. Further,

identification comes with a price: assumptions must be made which sometimes have little

theoretical justification. Thus it is desirable to develop estimation techniques which

explicitly incorporate uncertainty about identifying assumptions. Bayesian estimation is

one such possibility.

A simple structural equation model involving two measured variables serves to

illustrate the problem and a Bayesian solution to it. Suppose we wish to estimate the
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influence of Lead Exposure (LE) on IQ-scores in some population of children. We might

specify the following model, where X is a measure of LE, and all variables are expressed

as deviations from their mean:

IQ = p x + eIQ (17)

The parameters of this model are p, Var(X), and Varteq). If routine statistical

assumptions are satisfied, then these parameters are identified. They will only be

scientifically informative, however, if other assumptions hold as well. The estimate of p

reflects how unit changes in sample values of X inform us about changes in the

expectation of IQ. What we hope scientifically is that this is also how a unit change in

LE that we produced by an outside manipulation would affect the expectation of IQ. To

move from the regression results to this sort of conclusion we need at least to assume that

there are no unmeasured variables besides LE that confound the relation between X and

IQ. Further, we must also assume that X perfectly measures Lead Exposure.

Although both of these assumptions seem highly unlikely to hold even

approximately in the actual world, let us for the moment accept that no other factors

besides LE confound the relation between X and IQ, and consider only the measurement

error assumption. Since Lead Exposure is notoriously difficult to measure accurately, this

assumption is questionable and a better model of what is going on is the standard errors-

in-variables formulation in which LE is measured by X with error ex:

IQ = pLE + eIQ

ex (18)

Even with the usual assumptions, which now include Cov(LE,£IQ) = Cov(LE,£x) =

COV(£IQ,£X)
 = 0, this model is underidentified, i.e., for any implied covariance matrix £(90

that minimizes a discrepancy function, e.g., equation (4), of the implied and observed
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covariances, there are an infinity of 0j^ such that £(6$) = £(0j). Several strategies have

been explored for augmenting the errors-in-variables model to identify it, the most

common being instrumental variables, but all require assumptions in addition to the ones

already made for this model.

A better approach, in our view, was suggested by Klepper and Learner (1984).

Although one cannot uniquely determine p even from population data on just IQ and X,

they show that p can be bounded in the population just from assuming that all variances

are strictly positive. Klepper (1988) has also shown how more restrictive bounds on

Var(£x) in turn further narrow the bounds on p.

Klepper's strategy is really Bayesian in spirit. The more prior information you have

about how much or how little measurement error you face, the tighter the bounds on the

parameter of interest p. In this spirit, we used a prior distribution over Var(£x) to make

the inference about p fully Bayesian. We used the following multivariate normal

population model, which we chose for simplicity:

IQ = -0.657 LE + 6IQ ,

Var(LE) = Var(£x) = Var(eIQ) = 1 . 0 , (19)

Cov(LE,6x) = Cov(e I Q ,ex) = Cov(eiQ ,£x) = 0 .

[2.0 1
For this model, E(0) = A~~~\- Although there are four free parameters

|_.657 1.4322J

(Var(£x), Var(eIQ), Var(LE), and P) let us assume that the only meaningful prior

knowledge concerns the amount of measurement error for Lead Exposure, that is, the ratio

of Var(ex) to Var(LE). Without loss of generality we will suppose that our observed

covariance matrix S = Z(0). The variance of X is 2.0, and since Var(X) = Var(£x) +
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Var(LE), we can specify that half of X's variance is due to measurement error by

assuming that Var(ex) = 1.0. Table 11 shows the multivariate normal prior (the variances

are truncated below at 0) used for this example (Lo is diagonal).

Prior

Parameter

VarCex)

Var(eIQ)

Var(LE)' '

P

1.0

1.0

1.0

-1.0

do

0.1

4.0

4.0

4.0

Table 11. Prior distribution over the parameters of the model in equation 19.

By setting ao(Var(£x)) to 0.1 in the prior, p(0.8 < Var(ex) < 1.2) = 0.95, which

corresponds to the belief that approximately between 40% and 60% of the variance in our

measure of Lead Exposure is noise. We gave TETRAD HI the covariance matrix S with

N=100, and ran the Gibbs sampler for 100,000 iterations. The sequence of iterations

converged quickly, and after keeping every 50th iteration there was almost no

autocorrelation left in the sequence. The multiple correlation coefficients, again as

described in section 2.3, are 0.025, 0.056, 0.022, and 0.045 for Var(ex), Var(£iQ),

Var(LE), and p respectively. Table 12 shows that the sequence has converged.
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6EAP

Block

1

2

3

4

Var(ex)

1.013

1.007

1.004

1.012

Varfog)

1.020

1.043

1.057

1.018

Var(LE)

1.033

1.050

1.053

1.026

P
-0.687

-0.685

-0.672

-0.703

SD(6EAP)

Block

1

2

3

4

Vai(ex)

0.101

0.099

0.099

0.101

Var(eIQ)

0.227

0.218

0.230

0.229

Var(LE)

0.314

0.319

0.311

0.311

P
0.235

0.226

0.226

0.228

Table 12. Convergence results for the Gibbs sample from the posterior over the

parameters in the model in equation 19.

Figure 7 contains a histogram for the values of (3 in the final Gibbs sample of 2,000 draws.

Since the distribution is not normal, we use the median for a point estimate and the central

95% interval for inference. In this case PMDAP
 = -0.660, and the 95% central interval of

p(P|S) ranges from -1.090 to -0.384. Thus from this model, the data, and our prior, we

can conclude that there is a substantial negative influence of Lead Exposure on IQ.
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Population Value

Figure 1. Histogram of the values of (3 sampled from the posterior over the

parameters in the model in equation 19.

The example shows how Bayesian parameter estimation can convert uncertain beliefs

about incidental model parameters into useful posterior knowledge about parameters of

interest. In this case probabilistic knowledge about the measurement error infecting X, our

measure of Lead Exposure, was converted into uncertain but useful knowledge about the

dependence of IQ on Lead Exposure, which is what the model is in service of estimating.

The model in equation 19 contains four independent free parameters to estimate from

only three data points. Thus the degrees of freedom are -1 , and a prior which is

informative about at least one of the parameters serves to "identify" the model. Had we

specified a still more complicated model (Figure 8) in which Intelligence was a latent

variable measured by IQ-scores, then in order to estimate the parameters we would need a

prior that was informative about at least two of the parameters.
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Figure 8. Full errors-in-all-variables model for the effect of Lead Exposure on

Intelligence.

5.5 Posterior Predictive p-values for the ]£ Goodness-of-fit Test

In Section 2.4, we explained how posterior predictive p-values can be computed. In this

section we apply these ideas to the %2 goodness-of-fit statistic (15). This statistic is

calculated by LISREL and other SEM programs and is used in what is called the %2

goodness-of-fit test, whose p-value is the probability that the value of the %2 goodness-

of-fit statistic with appropriate degrees of freedom is as large or larger than the one

observed. In general, a test is said to be exact if the probability of making a Type I error is

exactly a (Good, 1994, p. 16). Since the %2 goodness-of-fit statistic is distributed as %2

only asymptotically, it is well known that the test based on it is not exact at small sample

sizes, e.g., N=50.

For small samples, the p-value of the %2 goodness-of-fit statistic calculated on the

basis of asymptotic theory is probably different from the posterior predictive p-value.

The latter can be computed for any sample size, i.e., no reference to asymptotic

properties is necessary for the computation! of the posterior predictive p-value.
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Alternative

x 2 x3 x4

r t t t
Xx X2 X3 X4

t t t t
63 6 4

Figure 9. The two models used to illustrate posterior predicitve p-values.
• » •

We used TETRAD HI to draw two pseudo-random samples from the true model in

Figure 9, one with N=50 and one with N=500 (Table 13).

Population

X!

x2

x3

X4

1.9084

0.6117

0.9807

0.9926

X!

x2

x3

X4

N=50

1.7885

1.1704

0.7173

2.0000

0.7500

1.3800

1.2006

3.5978

2.3755

1.5625

1.0350

0.9004

3.0669

3.9044

2.5268

2.0839

0.7572

1.5154

1.2591

3.1983

N=500

1.4982

1.1129 4.3547

0.9668 2.9162 3.4920

Table 13. Covariance matrices for the posterior predictive p-value example.
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To calculate p-values for the goodness-of-fit test on the basis of asymptotic theory,

we ran LISREL on each model for both samples (Table 14).

d.f. p-value

N=50

N=500

True Model

Alternative

True Model

Alternative

1

2

1

2

2.34

3.45

0.35

20.16

0.126

0.178

0.554

< 0.001

Table 14. LISREL goodness of fit results for the two models in Figure 9 on the two

sample covariance matrices in Table 13.

Using a significance level a = 0.05, the asymptotic test was able to separate the true

model from the alternative at N=500, but could not do so at N=50. We then ran the

Gibbs sampler in TETRAD III on each model on each sample with a flat prior. In each

study we computed 50,000 iterations and kept every 50th to retain 1,000 draws. In each

case convergence and autocorrelation were satisfactory. We computed the posterior

predictive p-value for a model with Z = 5 (cf. Section 2.4). The first two columns of

Table 15 show the results and repeat the p-values from LISREL for comparison.
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N=50

N=500

True Model

Alternative

True Model

Alternative

LISREL

0.126

0.178

0.554

< 0.001

p-values

Gibbs-Flat Prior

0.030

0.025

0.545

< 0.001

Gibbs-Loose Prior

0.355

0.047

Table 15: Comparative p-values for the two models in Figure 9 on the two sample

covariance matrices in Table 13.

At N=500, LISREL and Gibbs with a flat prior yield nearly indistinguishable p-

values, but at N=50 the results differ considerably. The posterior predictive p-values

have descended into the rejection region (< 0.05) for both models. At N=50, the posterior

predicitve p-values from the Gibbs sample produced with a flat prior are smaller than

those computed on the basis of asymptotic theory by LISREL at least in part because the

likelihood surface is multimodal for both models. At N=50 the alternative modes were

visited with enough frequency to matter, whereas at N=500 the sampler spends almost all

of its time within the mode that contains 0ML- Iterations 0k that are sampled from an

alternative mode drive down the posterior predicitve p-value. That is, because the

covariance matrices L(6k) are normally quite "distant" from S, P r lLRCS, !^ ) ) <

LR(S(9k),E(ek))} is very low.

Our experience so far, which is limited to a small number of experiments, indicates

that when the likelihood is multimodal, the posterior predicitve p-value is typically low

for very small sample sizes, even when the model is correctly specified and the sample S

is close to £(0pOp). Thus, before further research, we are not confident that the Gibbs p-

value as computed in (16) is an exact test in multimodal cases with a flat prior and small

sample size.
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Since using even a very loose prior effectively eliminates sampling from the

alternative modes, in order to examine the effect of the multimodality on the p-values

computed from the Gibbs sampler at N= 50, we ran TETRAD HI on both models with a

loose prior in which (io(0) = 0ML, Cov0(6i,9j) = 0 for i*j, and ao(6i) = 6 for all i. Again we

drew a sample of 50,000 from the posterior, and again kept every 50th draw. The results

of the autocorrelation and convergence analyses were satisfactory. The computed

posterior predictive p-values (the third column in Table 15) changed little for the

alternative model (0.025 to 0.047), but rose dramatically for the true model (0.030 to

0.355), allowing us to reject the alternative and accept the true model with a = 0.05,

contrary to either the asymptotic %2 goodness-of-fit test or the posterior predictive p-

values from a Gibbs sample produced with a flat prior.

4. Discussion

A Bayesian approach to structural equation modeling has recently begun to draw

attention. The focus, however, has been on finding better theoretical ways to handle

uncertainty over a class of models rather than on handling uncertainty over the many

possible values of the parameters in a single model. Raftery, (1993, 1994), for example,

attempts to use Bayesian theory to solve problems concerning model comparison that

present difficulties for the normal hypothesis testing regime. Geiger and Heckerman

(1994) explore using Bayesian methods for automated model search. Raftery (1994) has

also investigated incorporating model uncertainty into inferences about individual

parameters.

Our research, however, uses Bayesian theory to estimate the parameters of a single

SEM. Because the likelihood dominates the posterior at large sample sizes, the Bayesian

and standard frequentist approaches diverge practically only when the sample size is

small. Data sets in real research are of practical necessity often small, however, so this

seems an important area to explore.
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The prime benefits of the Bayesian approach seem to be an exact approximation of

the posterior over the parameters and over fit statistics at any sample size, instead of an

asymptotic approximation known to be off in the small sample, and the ability to

estimate a wider class of models (underidentified) by incorporating even small amounts of

prior knowledge.

In this paper we confined ourselves primarily to examples in which a single sample

was analyzed. In future work we hope to explore the frequentist properties of the

Bayesian approach to estimation and testing. That is, we intend to draw several samples

with small N from Z(0pop), and estimate the model's parameters and test the model on

each sample in order to determine the .frequentist properties of the methods proposed in

this paper.
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