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1. INTRODUCTION 

Recent progress in the theory of optimal algorithms has led to new al­

gorithms as well as theoretical bounds on the efficiency of any possible 

algorithm. 

I believe that historically thepe have been three major stages in the 

development of algorithmic analysis. They are: 

1. Synthesis of an algorithm 

2. Analysis of an algorithm 

3. Analysis of a class of algorithms. 

Initially the emphasis was on the synthesis of an algorithm. Around 

1947 people started analyzing particular algorithms very carefully, which 

was the second stage. Within the last 10-15 years people have been looking 

at classes of algorithms and trying to find the best. This trend has recently 

accelerated and there is now tremendous interest in analyzing classes of 

algorithms, that is, in computational complexity. 

There are many reasons for studying computational complexity. Those 

I consider most important are: 

1. Constructing "good11 new algorithms. 

2. Filtering out "bad" algorithms. 

3. Creating a theory of algorithms which will establish theoretical 

limits on computation. 

To discuss optimal algorithms we need a measure of cost. The measure 

I'll use throughout this paper is the total number of arithmetic operations, 

+» "> X> Gentleman [73] and Reddy [73] have discussed some of the other 
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components of the cost which might be included. Other properties of a 

numerical algorithm, such as stability and domain of convergence, are 

critical. Measures of cost deserve more refinement. 
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2. ALGEBRAIC AND ANALYTIC COMPUTATIONAL COMPLEXITY 

I want to distinguish between two types of algorithms. The dichotomy 

depends on the nature of the underlying mathematical problem. A mathematical 

problem can be finite or infinite. Examples of finite problems are matrix 

multiplication and polynomial evaluation. Examples of infinite problems are 

the solution of an elliptic partial differential equation and the calculation 

of a polynomial zero. 

I will refer to optimality theory for finite problems as algebraic  

computational complexity. Optimality theory for infinite problems I will 

refer to as analytic computational complexity. I give some examples of 

work from each domain. 
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3. RECENT RESULTS IN ALGEBRAIC COMPUTATIONAL COMPLEXITY 

Borodin [73] gives a survey of the enormous recent activity in algebraic 

complexity. I will confine myself to some very recent results which deal 

with one set of related problems. 

The problems are: 

1• Polynomial multiplication. Given two polynomials of degree n, to 

find the product polynomial. 

2. Polynomial division. Given two polynomials of degree n and ;|n, to 

find their quotient and remainder. More generally we divide a 

polynomial of degree n by a polynomial of degree m. The choice of 

m = jn makes the "size11 of the problem depend on just one parameter. 

3. Polynomial interpolation. Given (x^y^), i = 0,1, ...,n. Find P(t) 

such that P(x.) - y.. l 

4. Evaluation of a polynomial at many points. Evaluate an nth degree 

polynomial at n+1 points given simultaneously. 

5. Evaluation of a polynomial and all its derivatives. Evaluate an 

nth degree polynomial and all its derivatives at one point. 

2 
These problems take 0(n ) operations classically. Using "fast" algorithms 

the first two problems can be done in 0(n log n) operations while the next three 
2 

problems can be done in 0(n log n) operations. Fast polynomial multiplication 

is done with the Fast Fourier Transform. Other fast algorithms are due to Moenck 

and Borodin [72], Strassen [72], and Kung [73]. Borodin [73] summarizes 

the state of the art in fast algorithms. 
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The results above are asymptotic. They are only significant for rather 
2 2 

large values of n. For example n is smaller than n log n until n is some­
what greater than 30. (All logarithms are to base 2.) Furthermore, analyses 
ignore asymptotic constants which can prove significant if n is not too large 
(Borodin [73]). 

The following is an example of a new algorithm which is better than the 

best previously known algorithm, not just asymptotically, but for all n. Given 

n 
P(t) = ?. a . t J, 

j=0 J 

and a number x, the problem is to calculate the normalized derivatives 
P ( j )(x) 
— . I > j 3 0,...,n. The standard algorithm is some 150 years old and appears 

J • 

in most numerical methods texts. It is known as the iterated Horner rule or 

a synthetic division. This algorithm can be written as 

T^1 « a i + 1 , i = 0,1,...,n-1, 

T j = V j = 0,1,...,n, 

T i = Ti-1 + x T i - V j = 0 , 1 ••••>n-1> 1 = 

It is not difficult to verify that 

P ^ ! ( X ) • T j, j - 0,1,...,n. J. n 

Observe that the first two lines of the algorithm define initial condi­

tions. All the work is done in the recursion of the last line. The recursion 

is done ^ti(n+1) times and there is one addition and one multiplication per step. 

Thus the iterated Horner algorithm requires jn(nH-l) multiplications and |n(nrl-1) 

additions. 
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Consider now the following algorithm. 

a i+1 x 
n-i-1 • i - 0,1 n-1, 

(3.1) ri a nx n, J - 0,1 9 • • • 9 

+ T i-1 , J - 0,1 n-1, i = j+1 n. 

It may be shown (Shaw and Traub [72]) that 

^ ! ( X ) = x" jTJ, j = 0,l,...,n-l. 

In this algorithm all the multiplications are done as part of the initial 

conditions. The recursion involves additions only. The normalized deriva­

tives are obtained by division using the x** calculated as part of the initi­

alization. 

Thus this algorithm, which is just as simple as the iterated Horner rule, 

yields the normalized derivatives in 3n-2 multiplications and divisions and 

^ti(n+1) additions. The algorithm is of practical utility. It is also of 

theoretical interest since it demonstrates that only a linear number of multi­

plications and divisions are needed. 

The problem posed here is a special case of the problem of calculating 

m derivatives of an nth degree polynomial. The algorithm presented above is 

a member of a one-parameter family of algorithms (Shaw and Traub [72]), The 

optimal choice of the parameter as a function of m and n is discussed by Shaw 

and Traub [73]. Stability of these algorithms is established by Wozniakowski 

[73]. 
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4. AN EFFICIENCY MEASURE 

The remainder of this paper deals with analytic computational 

complexity. Recent research includes the complexity of elliptic partial dif­

ferential equations (Schultz [73]) and the complexity of systems of non-linear 

equations (Brent [72]). A more extensive bibliography may be found in Traub [72], 

I confine myself here to the problem of calculating a real simple zero 

or of a real function f. This zero-finding problem may seem rather specialized, 

but it is equivalent to the fixed-point problem, a ubiquitous problem in mathe­

matics and applied mathematics. It may be formulated in an abstract setting 

and covers partial differential equations, integral equations, and many other 

important problems. Traub [72] and Kung and Traub [73a, 73b] may be consulted 

for the results reported in the rest of this paper and for proofs of the 

theorems. 

Consider iteration algorithms for approximating a* Let the x^ be gen­

erated by an iteration function cp, 

x 1 + 1 = c o ( x . ) 

To define an efficiency measure for co we need measures of goodness and cost. 

As the measure of goodness we use the order p defined as follows. If 

cp(x ) -ry 
lim - = S / 0 

P 

then p = p(cp) is the order of convergence. 

The cost consists of two parts: the evaluation cost and the combinatory  

cost. Let cp use v^ evaluations of f ^ . If f ^ is rational, let c ( f ^ ) 
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denote the number of arithmetic operations for one evaluation of fKJm/; other­

wise let c ( f ^ ) denote the number of arithmetic operations used in the ration­

al subroutine which approximates f ^ \ Then 

Evaluation cost = S v. c ( f ^ ) . 
i:>0 1 

Let a(cp) be the minimum number of arithmetic operations to combine the 

f ^ to form cp by any procedure X. Then 

Combinatory cost = a(cp). 

Finally, the cost of performing one iteration step is 

2 v c(f ( i )) a(cp). 
i*0 1 

We define the efficiency e(cp,f) of the iteration cp with respect to the 

problem f by 

log p(cp) 
(4.1) e(cp,f) = TTT . 

S v. c ( f w ) + a(cp) 
i^O 1 

A discussion of this efficiency measure, including its relation to other ef­

ficiency measures, is given by Kung and Traub [73b]. Here I will only point 

out that earlier measures (Traub [72]) did not include the combinatory cost 

a(cp) and that inclusion of combinatory cost is crucial. 

The efficiency measure has the following two properties: 

1. It is invariant under composition. 

2. It is inversely proportional to total cost. 
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The first property can be written as 

e(cp*cp>f) = e(cp,f), 

where cp*q> denotes performing the iteration cp twice. This says that a sequence 

and a subsequence have the same efficiency. The second property is stated more 

precisely as follows. Let cp̂ , cp2 be two iterations used to approximate a to 

within a certain accuracy. Let the total cost of cp̂  be W^. Then 

e ( c p rf) W2 
e(cp2,f) W 1 

Let 

c f
 = m m c(f ), 

i;>0 

In this paper, we refer to c^ as the problem complexity. Let 

v(cp) = S v (cp). 
i^O 1 

Clearly, v(cp) is the total number of evaluations used in cp. Then by (4.1), 

(4.2) e(cp,f) * P ( % \ , v v(cp) c f + a(cp) 

This will be useful for obtaining upper bounds for e(cp,f). 

The optimal efficiency depends on the family $ to which cp belongs. Our 

classification for $ depends on the information required by $. We can dis­

tinguish between iterations with or without memory. We restrict ourselves 

here to iterations without memory. That is, the new iterate is computed 

using information only at the current iterate x^. For iterations without 
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memory we distinguish between one-point iteration and multipoint iteration. 

Roughly speaking, if f or its derivatives require evaluation at k points in 

order to generate a new iterate by the iteration cp, then cp is a k-point itera­

tion. In particular, if k = 1 we call cp a one-point iteration and if k > 1 

and the value of k is not important we call cp a multipoint iteration. This 

terminology was introduced by Traub [64]. Precise definitions are given by 

Kung and Traub [73a]. 

The following two examples illustrate the definitions. 

Example 4.1. (Newton-Raphson Iteration) 

This is a one-point iteration with p(cp) = 2, v Q ( c p ) B v^(qj) B 1, and a(cp) « 2. 

Hence 

cp(f)(x) - x - f ( x ) 

f ( x ) * 

e(cp,f) •« c(f)+c(f ')+2' 

e(cp,f) £ 1 

Example 4.2. 

c p ( f ) (x) - z, -
f( 2 l)f(z 0) 

[f( 2 l)-f(z 0)] 2 * f'(z0) • 

This is a two-point iteration with p(cp) • 4, v f t ( c p ) • 2, v - (cp) s 1 and a(cp) 8 5 8. 
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Hence 

e ( c P , f ) = 2c(f)+c(f')+8 9  

2 
e ( c p > f ) * 3^+8 • 

Given an algorithm cp and a problem f, we can use e(cp,f) as defined by 

(4.1) to calculate efficiency. We are also interested in the optimal ef­

ficiency of a class of algorithms. This motivates the following definitions. 

It is natural to ask for a given problem f what is the optimal value of 

e(cp,f) for all cp belonging to some family $. Define 

En($,f) = sup{e(co,f) | v(cp) = n}. 
cp€$ 

Thus En($,f) is the optimal efficiency over all cp € $ which use n evaluations. 

Define 

E($,f) - sup{En($,f) | n = 1,2,...}. 

Thus E($,f) is the optimal efficiency for all CP 6 $• We will establish lower 

and upper bounds for E^($,f) and E($,f) with respect to different families 

of iterations. When there is no ambiguity, we write En($,f) and E($,f) as 

E R(f) and E(f), respectively. Since in practice we are more concerned with 

efficiency for problems f with higher complexity, we are particularly inter­

ested in the asymptotic behavior of these bounds as c f -* °°. 
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5. EFFICIENCY OF ONE-POINT ITERATION 

The iterations most used in practice are one-point iterations. We de­

rive lower and upper bounds on the efficiency of any one-point iteration. 

We consider a particular family of one-point iterations {yn)» The first 

three members of this family are given by 

f(x) 
^2 = V, - f . ( x ) 

f " ( x ) 
V 3 " V 2 " f ( x ) f ( x ) 

The family has been thoroughly studied (Traub [64], Section 5.1). Its 

important properties from our point of view are summarized in the following 

Theorem 5.1 

1. v ^ y ^ = 1, i = 0,1,...,n-1, v i(y n) 

0. i > n-1. Hence v(v ) = n. ' 'n 

2. p(y n) = n. 

It can be shown (Kung and Traub [73b]) that 

2 
(5.1) a0y n) £ p n log n 

for some positive constant p. By (5.1) and Theorem 5.1, 

_1°S_S (5.2) e ( V f ) * 
2 c(f ( i )) + pn 2 log n 
isO 
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For ri small, a(Y Q) c a n ^ e calculated by inspection. Thus aCy^) = 7 a n <* 

(5.3) e(Y 3,f) - c ( f ) + c(r)+ c(f..)+7 * 

I now turn to general one-point iterations. Let CD be any one-point 

iteration, with v(co) = n, which satisfies a mild smoothness condition. Then 

by Traub [64, Section 5.4], Kung and Traub [73b, Theorem 6.1], v (cp) ^ 1, 

i « 0,... ,p(co)-l and hence p(co) ^ n. Since at least n-1 arithmetic operations 

are needed to combine n evaluations of f and its derivatives, aWn) ^ n-1. 

Hence, from (4.2), 

(5.4) e(cp,f) * nl°^ = h(n). 

It may be verified that 

(5.5) h(n) £ h(3) = | ° 6
+ ^ , for all n, for c f > 4. 

Since it is important to solve "difficult" problems efficiently, the condition 

ĉ_ > 4 is not restrictive. Since 

h m - log 2 1 _ 
h ( 2 ) " 2 ^ T " 2c~H 

and j log 3 = .52, there is little difference between the bounds on the second 

and third order iteration. 

One of the pieces of folk wisdom of numerical mathematics is that for 

most problems it is better to use a fairly low order method more often than 

to use a higher order method less often. The above result gives a theoretical 
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justification in the case of one-point iterations. We shall see this does 

not hold for multipoint iterations. 

From (5.2), (5.3), (5.4), (5.5) we obtain the theorem giving lower and 

upper bounds on the efficiency of one-point iterations. 

Theorem 5.2 

For the family $ of one-point iterations, 

log_n £ E (f) £ n 
log n for a constant p > 0, Vn, (5.6) n-1 n (i) 2 2 c ( f w ) + p n log n 

1=0 . 

nc^+n-1' 

(5.7) c(f)+c(f')+c( 
log 3 

f")+7 £ E(f) £ 
log 3 
3c f+2' for c£ > 4. 
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6. EFFICIENCY OF MULTIPOINT ITERATION 

In the previous nection it was shown that the order of a one-point iter­

ation is at most linear in the number of evaluations it requires. This re­

striction does not apply for multipoint iterations. Furthermore a one-point 

iteration of order p requires the evaluation of at least the first p-1 de­

rivatives of f. This restriction also does not apply to multipoint itera­

tions. A high order multipoint iteration can be constructed that requires 

no derivative evaluations at all. 

To illustrate these points we consider the family of iterations {Y^} 

defined by Kung and Traub [73a, Section 4]. The important properties of {^n) 

from our point of view are summarized in 

Theorem 6.1 

1. v n 0 T ) = n. v.(Y ) - 0, i > 0. 
u n I n  

Hence v(Y ) « n. n 

2. p(Y n) = 2 n - 1 . 

Thus Y n requires just n evaluations of f, and no derivative evaluations, 

and is of order 2 n \ In particular 

v(Y 4) - 4, Por4) = 8. 
The best previously known result for four evaluations was order five. 

Kung and Traub [73a, Appendix I] give a procedure for computing Y ( x ) 
n 

3 2 3 
in J11 + 2*1-7 arithemtic operations. Hence 

3 9 3 a(Y ) £ + ;rn-7. n z z 
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More generally, we assume that 

(6.1) a(Y n) * r(n) f 

2 

where r(n) 8 3 r 2n + r^n + r^, r 2 > 0. 

Then by (6.1) and Theorem 6.1, 

(6.2) e(Y ,f) * , \ . 
n' nc(f)+r(n) 

We choose n so as to maximize the righthand side of (6.2). The maximum is 

achieved when n=t where 
r 0 + r 1 + r 2  

r 2 
t « 1 + + 6, 6 

Let 

(6.3) M - round(t). 

Then from (6.2) we can easily prove 

Theorem 6.2 

There exists a constant C < 0 such that if M q M('f) as chosen by. (6.3) then 

e(Vf) 2 7( i7 ( 1 +^k K forc(f) lar**-
From (6.2) and Theorem 6.2, we have 

Corollary 6.1 

For the family $ of one-point or multipoint iterations, 

E n ( £ ) * nc(f)lr(n)» W h e r e r ( n ) ' ' + r l " * V r 2 > ° ; » n d 

E(f) 2: ̂ j y ^ •+ ^ . ( f j)- f o r a c o n s t a n t C < °» f o r c ^ f ) large. 
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Can still higher order be achieved with n evaluations of f? An upper 

bound is provided by the following theorem proven by Kung and Traub [73a, 

Theorem 7.2]. 

Theorem 6.3 

Let cp be a multipoint iteration with V Q ( C D ) = n, V ^ ( C D ) = 0, i > 0. Then 

p(rp) <. 2 n . 

As the conjecture at the end of this paper shows, we don't believe that 

the bound of 2 n can be achieved. Since a(co) ^ n-1, 

(6.4) e(cp,f) * n c ( f H n _ i * 7(fT * 

Since Y r is a multipoint iteration which uses evaluations of f only, 

from (6.4) and Corollary 6.1, we have 

Theorem 6.4 

For the family of $ of multipoint iterations using values of f only, 

n-1 , £>. n 
nc(f)+r(n) V t J nc(f)+n-T V n » 

c(f) V x/c(f)J c(f; 

2 
for c(f) large, where r(n) - r 2n + r^n + r^, > 0, and £ < 0. 

We can now give a lower bound on the ratio of the optimal efficiency of 

multipoint iteration to the optimal efficiency of one-point iteration. 

For a given problem f let E f(f), Eff(f) be the optimal efficiency achiev­

able by one-point iteration and multipoint iteration, respectively. By 
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Theorem 5.2 and Corollary 6.1, 

** U ; 3c f+2' 

c(f 
Hence 

> L E"<f> * 7777 I 1 + "FT T H. C < 0» for c(f) large. 

E"(f) 3 c f + 2 

E'(f) (log 3)c + v c f r r ] " ^ • ̂  f o r c ( f ) l a r s e * 

In particular, if f is a problem such that c f = c(f) and c f is large, then the 

ratio between optimal efficiencies achievable by multipoint iteration and one-

point iteration is at least 3/log 3 ~ 1.89. 
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7. TWO CONJECTURES 

Section 6 showed that an iteration of order 2 n ^ can be constructed 

using n evaluations of f. Kung and Traub [73a] conjecture that this order 

is optimal for any iteration (without memory) using n evaluations of f and 

its derivatives. 

Conjecture 7.1 

n 1 
For any one-point or multipoint iteration cp with v(cp) a n, p(cp) ̂  2 " . 

The conjecture is very general, cp may use any n values of f or its 

derivatives evaluated at any points. This conjecture is one of the major 

open questions in analytic complexity. 

If Conjecture 7.1 is true, it implies the truth of the following conjec­

ture (Kung and Traub [73b]). 

Conjecture 7.2 

For the family $ of one-point or multipoint iterations, 

E_(f) £ n ~ ] 

n N nc +n-T 

E(f) <; 1 

This conjecture states, essentially, that the optimal efficiency for solving 

the problem f with respect to all one-point or multipoint iterations is bound-

ed by the reciprocal of the problem complexity. 
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